## Autoregressive Moving Average (ARMA): Sunspots data from __future__ import print_function import numpy as np from scipy import stats import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm from statsmodels.graphics.api import qqplot ### Sunpots Data print(sm.datasets.sunspots.NOTE) dta = sm.datasets.sunspots.load_pandas().data dta.index = pd.Index(sm.tsa.datetools.dates_from_range('1700', '2008')) del dta["YEAR"] dta.plot(figsize=(12,8)); fig = plt.figure(figsize=(12,8)) ax1 = fig.add_subplot(211) fig = sm.graphics.tsa.plot_acf(dta.values.squeeze(), lags=40, ax=ax1) ax2 = fig.add_subplot(212) fig = sm.graphics.tsa.plot_pacf(dta, lags=40, ax=ax2) arma_mod20 = sm.tsa.ARMA(dta, (2,0)).fit() print(arma_mod20.params) arma_mod30 = sm.tsa.ARMA(dta, (3,0)).fit() print(arma_mod20.aic, arma_mod20.bic, arma_mod20.hqic) print(arma_mod30.params) print(arma_mod30.aic, arma_mod30.bic, arma_mod30.hqic) # * Does our model obey the theory? sm.stats.durbin_watson(arma_mod30.resid.values) fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111) ax = arma_mod30.resid.plot(ax=ax); resid = arma_mod30.resid stats.normaltest(resid) fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111) fig = qqplot(resid, line='q', ax=ax, fit=True) fig = plt.figure(figsize=(12,8)) ax1 = fig.add_subplot(211) fig = sm.graphics.tsa.plot_acf(resid.values.squeeze(), lags=40, ax=ax1) ax2 = fig.add_subplot(212) fig = sm.graphics.tsa.plot_pacf(resid, lags=40, ax=ax2) r,q,p = sm.tsa.acf(resid.values.squeeze(), qstat=True) data = np.c_[range(1,41), r[1:], q, p] table = pd.DataFrame(data, columns=['lag', "AC", "Q", "Prob(>Q)"]) print(table.set_index('lag')) # * This indicates a lack of fit. # * In-sample dynamic prediction. How good does our model do? predict_sunspots = arma_mod30.predict('1990', '2012', dynamic=True) print(predict_sunspots) ax = dta.loc['1950':].plot(figsize=(12,8)) ax = predict_sunspots.plot(ax=ax, style='r--', label='Dynamic Prediction') ax.legend() ax.axis((-20.0, 38.0, -4.0, 200.0)) def mean_forecast_err(y, yhat): return y.sub(yhat).mean() mean_forecast_err(dta.SUNACTIVITY, predict_sunspots) #### Exercise: Can you obtain a better fit for the Sunspots model? (Hint: sm.tsa.AR has a method select_order) #### Simulated ARMA(4,1): Model Identification is Difficult from statsmodels.tsa.arima_process import arma_generate_sample, ArmaProcess np.random.seed(1234) # include zero-th lag arparams = np.array([1, .75, -.65, -.55, .9]) maparams = np.array([1, .65]) # Let's make sure this model is estimable. arma_t = ArmaProcess(arparams, maparams) arma_t.isinvertible arma_t.isstationary # * What does this mean? fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111) ax.plot(arma_t.generate_sample(nsample=50)); arparams = np.array([1, .35, -.15, .55, .1]) maparams = np.array([1, .65]) arma_t = ArmaProcess(arparams, maparams) arma_t.isstationary arma_rvs = arma_t.generate_sample(nsample=500, burnin=250, scale=2.5) fig = plt.figure(figsize=(12,8)) ax1 = fig.add_subplot(211) fig = sm.graphics.tsa.plot_acf(arma_rvs, lags=40, ax=ax1) ax2 = fig.add_subplot(212) fig = sm.graphics.tsa.plot_pacf(arma_rvs, lags=40, ax=ax2) # * For mixed ARMA processes the Autocorrelation function is a mixture of exponentials and damped sine waves after (q-p) lags. # * The partial autocorrelation function is a mixture of exponentials and dampened sine waves after (p-q) lags. arma11 = sm.tsa.ARMA(arma_rvs, (1,1)).fit() resid = arma11.resid r,q,p = sm.tsa.acf(resid, qstat=True) data = np.c_[range(1,41), r[1:], q, p] table = pd.DataFrame(data, columns=['lag', "AC", "Q", "Prob(>Q)"]) print(table.set_index('lag')) arma41 = sm.tsa.ARMA(arma_rvs, (4,1)).fit() resid = arma41.resid r,q,p = sm.tsa.acf(resid, qstat=True) data = np.c_[range(1,41), r[1:], q, p] table = pd.DataFrame(data, columns=['lag', "AC", "Q", "Prob(>Q)"]) print(table.set_index('lag')) #### Exercise: How good of in-sample prediction can you do for another series, say, CPI macrodta = sm.datasets.macrodata.load_pandas().data macrodta.index = pd.Index(sm.tsa.datetools.dates_from_range('1959Q1', '2009Q3')) cpi = macrodta["cpi"] ##### Hint: fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111) ax = cpi.plot(ax=ax) ax.legend() # P-value of the unit-root test, resoundly rejects the null of no unit-root. print(sm.tsa.adfuller(cpi)[1])