/* * Copyright (c) 2022-2022 Huawei Device Co., Ltd. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors may be used * to endorse or promote products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "los_statistics_pri.h" #include "los_task_pri.h" #include "los_process_pri.h" #ifdef LOSCFG_SCHED_DEBUG #ifdef LOSCFG_SCHED_TICK_DEBUG typedef struct { UINT64 responseTime; UINT64 responseTimeMax; UINT64 count; } SchedTickDebug; STATIC SchedTickDebug *g_schedTickDebug = NULL; UINT32 OsSchedDebugInit(VOID) { UINT32 size = sizeof(SchedTickDebug) * LOSCFG_KERNEL_CORE_NUM; g_schedTickDebug = (SchedTickDebug *)LOS_MemAlloc(m_aucSysMem0, size); if (g_schedTickDebug == NULL) { return LOS_ERRNO_TSK_NO_MEMORY; } (VOID)memset_s(g_schedTickDebug, size, 0, size); return LOS_OK; } VOID OsSchedDebugRecordData(VOID) { SchedRunqueue *rq = OsSchedRunqueue(); SchedTickDebug *schedDebug = &g_schedTickDebug[ArchCurrCpuid()]; UINT64 currTime = OsGetCurrSchedTimeCycle(); LOS_ASSERT(currTime >= rq->responseTime); UINT64 usedTime = currTime - rq->responseTime; schedDebug->responseTime += usedTime; if (usedTime > schedDebug->responseTimeMax) { schedDebug->responseTimeMax = usedTime; } schedDebug->count++; } UINT32 OsShellShowTickResponse(VOID) { UINT32 intSave; UINT16 cpu; UINT32 tickSize = sizeof(SchedTickDebug) * LOSCFG_KERNEL_CORE_NUM; SchedTickDebug *schedDebug = (SchedTickDebug *)LOS_MemAlloc(m_aucSysMem1, tickSize); if (schedDebug == NULL) { return LOS_NOK; } SCHEDULER_LOCK(intSave); (VOID)memcpy_s((CHAR *)schedDebug, tickSize, (CHAR *)g_schedTickDebug, tickSize); SCHEDULER_UNLOCK(intSave); PRINTK("cpu ATRTime(us) ATRTimeMax(us) TickCount\n"); for (cpu = 0; cpu < LOSCFG_KERNEL_CORE_NUM; cpu++) { SchedTickDebug *schedData = &schedDebug[cpu]; UINT64 averTime = 0; if (schedData->count > 0) { averTime = schedData->responseTime / schedData->count; averTime = (averTime * OS_NS_PER_CYCLE) / OS_SYS_NS_PER_US; } UINT64 timeMax = (schedData->responseTimeMax * OS_NS_PER_CYCLE) / OS_SYS_NS_PER_US; PRINTK("%3u%14llu%15llu%11llu\n", cpu, averTime, timeMax, schedData->count); } (VOID)LOS_MemFree(m_aucSysMem1, schedDebug); return LOS_OK; } #endif #ifdef LOSCFG_SCHED_HPF_DEBUG STATIC VOID SchedDataGet(const LosTaskCB *taskCB, UINT64 *runTime, UINT64 *timeSlice, UINT64 *pendTime, UINT64 *schedWait) { if (taskCB->schedStat.switchCount >= 1) { UINT64 averRunTime = taskCB->schedStat.runTime / taskCB->schedStat.switchCount; *runTime = (averRunTime * OS_NS_PER_CYCLE) / OS_SYS_NS_PER_US; } if (taskCB->schedStat.timeSliceCount > 1) { UINT64 averTimeSlice = taskCB->schedStat.timeSliceTime / (taskCB->schedStat.timeSliceCount - 1); *timeSlice = (averTimeSlice * OS_NS_PER_CYCLE) / OS_SYS_NS_PER_US; } if (taskCB->schedStat.pendCount > 1) { UINT64 averPendTime = taskCB->schedStat.pendTime / taskCB->schedStat.pendCount; *pendTime = (averPendTime * OS_NS_PER_CYCLE) / OS_SYS_NS_PER_US; } if (taskCB->schedStat.waitSchedCount > 0) { UINT64 averSchedWait = taskCB->schedStat.waitSchedTime / taskCB->schedStat.waitSchedCount; *schedWait = (averSchedWait * OS_NS_PER_CYCLE) / OS_SYS_NS_PER_US; } } UINT32 OsShellShowSchedStatistics(VOID) { UINT32 taskLinkNum[LOSCFG_KERNEL_CORE_NUM]; UINT32 intSave; LosTaskCB task; SchedEDF *sched = NULL; SCHEDULER_LOCK(intSave); for (UINT16 cpu = 0; cpu < LOSCFG_KERNEL_CORE_NUM; cpu++) { SchedRunqueue *rq = OsSchedRunqueueByID(cpu); taskLinkNum[cpu] = OsGetSortLinkNodeNum(&rq->timeoutQueue); } SCHEDULER_UNLOCK(intSave); for (UINT16 cpu = 0; cpu < LOSCFG_KERNEL_CORE_NUM; cpu++) { PRINTK("cpu: %u Task SortMax: %u\n", cpu, taskLinkNum[cpu]); } PRINTK(" Tid AverRunTime(us) SwitchCount AverTimeSlice(us) TimeSliceCount AverReadyWait(us) " "AverPendTime(us) TaskName \n"); for (UINT32 tid = 0; tid < g_taskMaxNum; tid++) { LosTaskCB *taskCB = g_taskCBArray + tid; SCHEDULER_LOCK(intSave); if (OsTaskIsUnused(taskCB) || (taskCB->processCB == (UINTPTR)OsGetIdleProcess())) { SCHEDULER_UNLOCK(intSave); continue; } sched = (SchedEDF *)&taskCB->sp; if (sched->policy == LOS_SCHED_DEADLINE) { SCHEDULER_UNLOCK(intSave); continue; } (VOID)memcpy_s(&task, sizeof(LosTaskCB), taskCB, sizeof(LosTaskCB)); SCHEDULER_UNLOCK(intSave); UINT64 averRunTime = 0; UINT64 averTimeSlice = 0; UINT64 averPendTime = 0; UINT64 averSchedWait = 0; SchedDataGet(&task, &averRunTime, &averTimeSlice, &averPendTime, &averSchedWait); PRINTK("%5u%19llu%15llu%19llu%18llu%19llu%18llu %-32s\n", taskCB->taskID, averRunTime, taskCB->schedStat.switchCount, averTimeSlice, taskCB->schedStat.timeSliceCount - 1, averSchedWait, averPendTime, taskCB->taskName); } return LOS_OK; } #endif #ifdef LOSCFG_SCHED_EDF_DEBUG #define EDF_DEBUG_NODE 20 typedef struct { UINT32 tid; INT32 runTimeUs; UINT64 deadlineUs; UINT64 periodUs; UINT64 startTime; UINT64 finishTime; UINT64 nextfinishTime; UINT64 timeSliceUnused; UINT64 timeSliceRealTime; UINT64 allRuntime; UINT64 pendTime; } EDFDebug; STATIC EDFDebug g_edfNode[EDF_DEBUG_NODE]; STATIC INT32 g_edfNodePointer = 0; VOID EDFDebugRecord(UINTPTR *task, UINT64 oldFinish) { LosTaskCB *taskCB = (LosTaskCB *)task; SchedEDF *sched = (SchedEDF *)&taskCB->sp; SchedParam param; // when print edf info, will stop record if (g_edfNodePointer == (EDF_DEBUG_NODE + 1)) { return; } taskCB->ops->schedParamGet(taskCB, ¶m); g_edfNode[g_edfNodePointer].tid = taskCB->taskID; g_edfNode[g_edfNodePointer].runTimeUs =param.runTimeUs; g_edfNode[g_edfNodePointer].deadlineUs =param.deadlineUs; g_edfNode[g_edfNodePointer].periodUs =param.periodUs; g_edfNode[g_edfNodePointer].startTime = taskCB->startTime; if (taskCB->timeSlice <= 0) { taskCB->irqUsedTime = 0; g_edfNode[g_edfNodePointer].timeSliceUnused = 0; } else { g_edfNode[g_edfNodePointer].timeSliceUnused = taskCB->timeSlice; } g_edfNode[g_edfNodePointer].finishTime = oldFinish; g_edfNode[g_edfNodePointer].nextfinishTime = sched->finishTime; g_edfNode[g_edfNodePointer].timeSliceRealTime = taskCB->schedStat.timeSliceRealTime; g_edfNode[g_edfNodePointer].allRuntime = taskCB->schedStat.allRuntime; g_edfNode[g_edfNodePointer].pendTime = taskCB->schedStat.pendTime; g_edfNodePointer++; if (g_edfNodePointer == EDF_DEBUG_NODE) { g_edfNodePointer = 0; } } STATIC VOID EDFInfoPrint(int idx) { INT32 runTimeUs; UINT64 deadlineUs; UINT64 periodUs; UINT64 startTime; UINT64 timeSlice; UINT64 finishTime; UINT64 nextfinishTime; UINT64 pendTime; UINT64 allRuntime; UINT64 timeSliceRealTime; CHAR *status = NULL; startTime = OS_SYS_CYCLE_TO_US(g_edfNode[idx].startTime); timeSlice = OS_SYS_CYCLE_TO_US(g_edfNode[idx].timeSliceUnused); finishTime = OS_SYS_CYCLE_TO_US(g_edfNode[idx].finishTime); nextfinishTime = OS_SYS_CYCLE_TO_US(g_edfNode[idx].nextfinishTime); pendTime = OS_SYS_CYCLE_TO_US(g_edfNode[idx].pendTime); allRuntime = OS_SYS_CYCLE_TO_US(g_edfNode[idx].allRuntime); timeSliceRealTime = OS_SYS_CYCLE_TO_US(g_edfNode[idx].timeSliceRealTime); runTimeUs = g_edfNode[idx].runTimeUs; deadlineUs = g_edfNode[idx].deadlineUs; periodUs = g_edfNode[idx].periodUs; if (timeSlice > 0) { status = "TIMEOUT"; } else if (nextfinishTime == finishTime) { status = "NEXT PERIOD"; } else { status = "WAIT RUN"; } PRINTK("%4u%9d%9llu%9llu%12llu%12llu%12llu%9llu%9llu%9llu%9llu %-12s\n", g_edfNode[idx].tid, runTimeUs, deadlineUs, periodUs, startTime, finishTime, nextfinishTime, allRuntime, timeSliceRealTime, timeSlice, pendTime, status); } VOID OsEDFDebugPrint(VOID) { INT32 max; UINT32 intSave; INT32 i; SCHEDULER_LOCK(intSave); max = g_edfNodePointer; g_edfNodePointer = EDF_DEBUG_NODE + 1; SCHEDULER_UNLOCK(intSave); PRINTK("\r\nlast %d sched is: (in microsecond)\r\n", EDF_DEBUG_NODE); PRINTK(" TID RunTime Deadline Period StartTime " "CurPeriod NextPeriod AllRun RealRun TimeOut WaitTime Status\n"); for (i = max; i < EDF_DEBUG_NODE; i++) { EDFInfoPrint(i); } for (i = 0; i < max; i++) { EDFInfoPrint(i); } SCHEDULER_LOCK(intSave); g_edfNodePointer = max; SCHEDULER_UNLOCK(intSave); } UINT32 OsShellShowEdfSchedStatistics(VOID) { UINT32 intSave; LosTaskCB task; UINT64 curTime; UINT64 deadline; UINT64 finishTime; SchedEDF *sched = NULL; PRINTK("Now Alive EDF Thread:\n"); PRINTK("TID CurTime DeadTime FinishTime taskName\n"); for (UINT32 tid = 0; tid < g_taskMaxNum; tid++) { LosTaskCB *taskCB = g_taskCBArray + tid; SCHEDULER_LOCK(intSave); if (OsTaskIsUnused(taskCB)) { SCHEDULER_UNLOCK(intSave); continue; } sched = (SchedEDF *)&taskCB->sp; if (sched->policy != LOS_SCHED_DEADLINE) { SCHEDULER_UNLOCK(intSave); continue; } (VOID)memcpy_s(&task, sizeof(LosTaskCB), taskCB, sizeof(LosTaskCB)); curTime = OS_SYS_CYCLE_TO_US(HalClockGetCycles()); finishTime = OS_SYS_CYCLE_TO_US(sched->finishTime); deadline = OS_SYS_CYCLE_TO_US(taskCB->ops->deadlineGet(taskCB)); SCHEDULER_UNLOCK(intSave); PRINTK("%3u%15llu%15llu%15llu %-32s\n", task.taskID, curTime, deadline, finishTime, task.taskName); } OsEDFDebugPrint(); return LOS_OK; } #endif #endif