
Unity Test API

Running Tests
RUN_TEST(func) Each Test is run within the macro RUN_TEST.

This macro performs necessary setup before the
test is called and handles cleanup and result
tabulation afterwards.

TEST_WRAP(function) If the test functions call helper functions and those
helper functions have the ability to make
assertions, calls to those helpers should be
wrapped in a TEST_WRAP macro. This macro
aborts the test if the helper triggered a failure.

Ignoring Tests
There are times when a test is incomplete or not valid for some reason. At these times,
TEST_IGNORE can be called. Control will immediately be returned to the caller of the test, and no
failures will be returned.

TEST_IGNORE() Ignore this test and return immediately

TEST_IGNORE_MESSAGE (message) Ignore this test and return immediately. Output a
message stating why the test was ignored.

Aborting Tests
There are times when a test will contain an infinite loop on error conditions, or there may be reason to
escape from the test early without executing the rest of the test. A pair of macros support this
functionality in Unity. The first (TEST_PROTECT) sets up the feature, and handles emergency abort
cases. TEST_THROW can then be used at any time within the tests to return to the last
TEST_PROTECT call.

TEST_PROTECT() Setup and Catch macro

TEST_THROW (message) Abort Test macro

Example:
main()

{

 if (TEST_PROTECT() == 0)

 {

 MyTest();

 }

}

If MyTest calls TEST_THROW, a failure with the message provided will be inserted, and program
control will immediately return to TEST_PROTECT with a non-zero return value.

Unity Assertion Summary

Basic Validity Tests
TEST_ASSERT_TRUE
(condition)

Evaluates whatever code is in condition and fails
if it evaluates to false

TEST_ASSERT_FALSE
(condition)

Evaluates whatever code is in condition and fails
if it evaluates to true

TEST_ASSERT
(condition)

Another way of calling TEST_ASSERT_TRUE

TEST_ASSERT_UNLESS
(condition)

Another way of calling TEST_ASSERT_FALSE

TEST_FAIL
(message)

This test is automatically marked as a failure. The
message is output stating why.

Numerical Assertions: Integers
TEST_ASSERT_EQUAL
(expected, actual)

Another way of calling
TEST_ASSERT_EQUAL_INT

TEST_ASSERT_EQUAL_INT
(expected, actual)

Compare two integers for equality and display
errors as signed integers.

TEST_ASSERT_EQUAL_UINT
(expected, actual)

Compare two integers for equality and display
errors as unsigned integers.

TEST_ASSERT_EQUAL_HEX8
(expected, actual)

Compare two integers for equality and display
errors as an 8-bit hex value

TEST_ASSERT_EQUAL_HEX16
(expected, actual)

Compare two integers for equality and display
errors as an 16-bit hex value

TEST_ASSERT_EQUAL_HEX32
(expected, actual)

Compare two integers for equality and display
errors as an 32-bit hex value

TEST_ASSERT_EQUAL_HEX
(expected, actual)

Another way of calling
TEST_ASSERT_EQUAL_HEX32

TEST_ASSERT_INT_WITHIN
(delta, expected, actual)

Asserts that the actual value is within plus or
minus delta of the expected value.

TEST_ASSERT_EQUAL_MESSAGE
(expected, actual, message)

Another way of calling
TEST_ASSERT_EQUAL_INT_MESSAGE

TEST_ASSERT_EQUAL_INT_MESSAGE
(expected, actual, message)

Compare two integers for equality and display
errors as signed integers. Outputs a custom
message on failure.

TEST_ASSERT_EQUAL_UINT_MESSAGE
(expected, actual, message)

Compare two integers for equality and display
errors as unsigned integers. Outputs a custom
message on failure.

TEST_ASSERT_EQUAL_HEX8_MESSAGE
(expected, actual, message)

Compare two integers for equality and display
errors as an 8-bit hex value. Outputs a custom
message on failure.

TEST_ASSERT_EQUAL_HEX16_MESSAGE
(expected, actual, message)

Compare two integers for equality and display
errors as an 16-bit hex value. Outputs a custom
message on failure.

TEST_ASSERT_EQUAL_HEX32_MESSAGE
(expected, actual, message)

Compare two integers for equality and display
errors as an 32-bit hex value. Outputs a custom
message on failure.

TEST_ASSERT_EQUAL_HEX_MESSAGE
(expected, actual, message)

Another way of calling
TEST_ASSERT_EQUAL_HEX32_MESSAGE

Numerical Assertions: Bitwise
TEST_ASSERT_BITS
(mask, expected, actual)

Use an integer mask to specify which bits should
be compared between two other integers. High
bits in the mask are compared, low bits ignored.

TEST_ASSERT_BITS_HIGH
(mask, actual)

Use an integer mask to specify which bits should
be inspected to determine if they are all set high.
High bits in the mask are compared, low bits
ignored.

TEST_ASSERT_BITS_LOW
(mask, actual)

Use an integer mask to specify which bits should
be inspected to determine if they are all set low.
High bits in the mask are compared, low bits
ignored.

TEST_ASSERT_BIT_HIGH
(bit, actual)

Test a single bit and verify that it is high. The bit
is specified 0-31 for a 32-bit integer.

TEST_ASSERT_BIT_LOW
(bit, actual)

Test a single bit and verify that it is low. The bit is
specified 0-31 for a 32-bit integer.

Numerical Assertions: Floats
TEST_ASSERT_FLOAT_WITHIN
(delta, expected, actual)

Asserts that the actual value is within plus or
minus delta of the expected value.

String Assertions
TEST_ASSERT_EQUAL_STRING
(expected, actual)

Compare two null-terminate strings. Fail if any

character is different or if the lengths are different.
TEST_ASSERT_EQUAL_STRING_MESSAGE
(expected, actual, message)

Compare two null-terminate strings. Fail if any
character is different or if the lengths are different.
Output a custom message on failure.

Pointer Assertions
Most pointer operations can be performed by simply using the integer comparisons above. However, a
couple of special cases are added for clarity.

TEST_ASSERT_NULL
(pointer)

Fails if the pointer is not equal to NULL

TEST_ASSERT_NOT_NULL
(pointer)

Fails if the pointer is equal to NULL

	Unity Test API
	Running Tests
	Ignoring Tests
	Aborting Tests

	Unity Assertion Summary
	Basic Validity Tests
	Numerical Assertions: Integers
	Numerical Assertions: Bitwise
	Numerical Assertions: Floats
	String Assertions
	Pointer Assertions

