ripgrep (rg)

    ripgrep is a line-oriented search tool that recursively searches the current directory for a regex pattern. By default, ripgrep will respect gitignore rules and automatically skip hidden files/directories and binary files. ripgrep has first class support on Windows, macOS and Linux, with binary downloads available for every release. ripgrep is similar to other popular search tools like The Silver Searcher, ack and grep.

    Build status Packaging status

    Dual-licensed under MIT or the UNLICENSE.


    Please see the CHANGELOG for a release history.

    Documentation quick links

    Screenshot of search results

    A screenshot of a sample search with ripgrep

    Quick examples comparing tools

    This example searches the entire Linux kernel source tree (after running make defconfig && make -j8) for [A-Z]+_SUSPEND, where all matches must be words. Timings were collected on a system with an Intel i7-6900K 3.2 GHz.

    Please remember that a single benchmark is never enough! See my blog post on ripgrep for a very detailed comparison with more benchmarks and analysis.

    Tool Command Line count Time
    ripgrep (Unicode) rg -n -w '[A-Z]+_SUSPEND' 452 0.136s
    git grep git grep -P -n -w '[A-Z]+_SUSPEND' 452 0.348s
    ugrep (Unicode) ugrep -r --ignore-files --no-hidden -I -w '[A-Z]+_SUSPEND' 452 0.506s
    The Silver Searcher ag -w '[A-Z]+_SUSPEND' 452 0.654s
    git grep LC_ALL=C git grep -E -n -w '[A-Z]+_SUSPEND' 452 1.150s
    ack ack -w '[A-Z]+_SUSPEND' 452 4.054s
    git grep (Unicode) LC_ALL=en_US.UTF-8 git grep -E -n -w '[A-Z]+_SUSPEND' 452 4.205s

    Here's another benchmark on the same corpus as above that disregards gitignore files and searches with a whitelist instead. The corpus is the same as in the previous benchmark, and the flags passed to each command ensure that they are doing equivalent work:

    Tool Command Line count Time
    ripgrep rg -uuu -tc -n -w '[A-Z]+_SUSPEND' 388 0.096s
    ugrep ugrep -r -n --include='*.c' --include='*.h' -w '[A-Z]+_SUSPEND' 388 0.493s
    GNU grep egrep -r -n --include='*.c' --include='*.h' -w '[A-Z]+_SUSPEND' 388 0.806s

    And finally, a straight-up comparison between ripgrep, ugrep and GNU grep on a single large file cached in memory (~13GB, OpenSubtitles.raw.en.gz):

    Tool Command Line count Time
    ripgrep rg -w 'Sherlock [A-Z]\w+' 7882 2.769s
    ugrep ugrep -w 'Sherlock [A-Z]\w+' 7882 6.802s
    GNU grep LC_ALL=en_US.UTF-8 egrep -w 'Sherlock [A-Z]\w+' 7882 9.027s

    In the above benchmark, passing the -n flag (for showing line numbers) increases the times to 3.423s for ripgrep and 13.031s for GNU grep. ugrep times are unaffected by the presence or absence of -n.

    Why should I use ripgrep?

    • It can replace many use cases served by other search tools because it contains most of their features and is generally faster. (See the FAQ for more details on whether ripgrep can truly replace grep.)
    • Like other tools specialized to code search, ripgrep defaults to recursive directory search and won't search files ignored by your .gitignore/.ignore/.rgignore files. It also ignores hidden and binary files by default. ripgrep also implements full support for .gitignore, whereas there are many bugs related to that functionality in other code search tools claiming to provide the same functionality.
    • ripgrep can search specific types of files. For example, rg -tpy foo limits your search to Python files and rg -Tjs foo excludes JavaScript files from your search. ripgrep can be taught about new file types with custom matching rules.
    • ripgrep supports many features found in grep, such as showing the context of search results, searching multiple patterns, highlighting matches with color and full Unicode support. Unlike GNU grep, ripgrep stays fast while supporting Unicode (which is always on).
    • ripgrep has optional support for switching its regex engine to use PCRE2. Among other things, this makes it possible to use look-around and backreferences in your patterns, which are not supported in ripgrep's default regex engine. PCRE2 support can be enabled with -P/--pcre2 (use PCRE2 always) or --auto-hybrid-regex (use PCRE2 only if needed). An alternative syntax is provided via the --engine (default|pcre2|auto-hybrid) option.
    • ripgrep supports searching files in text encodings other than UTF-8, such as UTF-16, latin-1, GBK, EUC-JP, Shift_JIS and more. (Some support for automatically detecting UTF-16 is provided. Other text encodings must be specifically specified with the -E/--encoding flag.)
    • ripgrep supports searching files compressed in a common format (brotli, bzip2, gzip, lz4, lzma, xz, or zstandard) with the -z/--search-zip flag.
    • ripgrep supports arbitrary input preprocessing filters which could be PDF text extraction, less supported decompression, decrypting, automatic encoding detection and so on.

    In other words, use ripgrep if you like speed, filtering by default, fewer bugs and Unicode support.

    Why shouldn't I use ripgrep?

    Despite initially not wanting to add every feature under the sun to ripgrep, over time, ripgrep has grown support for most features found in other file searching tools. This includes searching for results spanning across multiple lines, and opt-in support for PCRE2, which provides look-around and backreference support.

    At this point, the primary reasons not to use ripgrep probably consist of one or more of the following:

    • You need a portable and ubiquitous tool. While ripgrep works on Windows, macOS and Linux, it is not ubiquitous and it does not conform to any standard such as POSIX. The best tool for this job is good old grep.
    • There still exists some other feature (or bug) not listed in this README that you rely on that's in another tool that isn't in ripgrep.
    • There is a performance edge case where ripgrep doesn't do well where another tool does do well. (Please file a bug report!)
    • ripgrep isn't possible to install on your machine or isn't available for your platform. (Please file a bug report!)

    Is it really faster than everything else?

    Generally, yes. A large number of benchmarks with detailed analysis for each is available on my blog.

    Summarizing, ripgrep is fast because:

    • It is built on top of Rust's regex engine. Rust's regex engine uses finite automata, SIMD and aggressive literal optimizations to make searching very fast. (PCRE2 support can be opted into with the -P/--pcre2 flag.)
    • Rust's regex library maintains performance with full Unicode support by building UTF-8 decoding directly into its deterministic finite automaton engine.
    • It supports searching with either memory maps or by searching incrementally with an intermediate buffer. The former is better for single files and the latter is better for large directories. ripgrep chooses the best searching strategy for you automatically.
    • Applies your ignore patterns in .gitignore files using a RegexSet. That means a single file path can be matched against multiple glob patterns simultaneously.
    • It uses a lock-free parallel recursive directory iterator, courtesy of crossbeam and ignore.

    Feature comparison

    Andy Lester, author of ack, has published an excellent table comparing the features of ack, ag, git-grep, GNU grep and ripgrep:

    Note that ripgrep has grown a few significant new features recently that are not yet present in Andy's table. This includes, but is not limited to, configuration files, passthru, support for searching compressed files, multiline search and opt-in fancy regex support via PCRE2.


    The binary name for ripgrep is rg.

    Archives of precompiled binaries for ripgrep are available for Windows, macOS and Linux. Linux and Windows binaries are static executables. Users of platforms not explicitly mentioned below are advised to download one of these archives.

    If you're a macOS Homebrew or a Linuxbrew user, then you can install ripgrep from homebrew-core:

    $ brew install ripgrep

    If you're a MacPorts user, then you can install ripgrep from the official ports:

    $ sudo port install ripgrep

    If you're a Windows Chocolatey user, then you can install ripgrep from the official repo:

    $ choco install ripgrep

    If you're a Windows Scoop user, then you can install ripgrep from the official bucket:

    $ scoop install ripgrep

    If you're an Arch Linux user, then you can install ripgrep from the official repos:

    $ pacman -S ripgrep

    If you're a Gentoo user, you can install ripgrep from the official repo:

    $ emerge sys-apps/ripgrep

    If you're a Fedora user, you can install ripgrep from official repositories.

    $ sudo dnf install ripgrep

    If you're an openSUSE user, ripgrep is included in openSUSE Tumbleweed and openSUSE Leap since 15.1.

    $ sudo zypper install ripgrep

    If you're a RHEL/CentOS 7/8 user, you can install ripgrep from copr:

    $ sudo yum-config-manager --add-repo=
    $ sudo yum install ripgrep

    If you're a Nix user, you can install ripgrep from nixpkgs:

    $ nix-env --install ripgrep
    $ # (Or using the attribute name, which is also ripgrep.)

    If you're a Debian user (or a user of a Debian derivative like Ubuntu), then ripgrep can be installed using a binary .deb file provided in each ripgrep release.

    $ curl -LO
    $ sudo dpkg -i ripgrep_13.0.0_amd64.deb

    If you run Debian Buster (currently Debian stable) or Debian sid, ripgrep is officially maintained by Debian.

    $ sudo apt-get install ripgrep

    If you're an Ubuntu Cosmic (18.10) (or newer) user, ripgrep is available using the same packaging as Debian:

    $ sudo apt-get install ripgrep

    (N.B. Various snaps for ripgrep on Ubuntu are also available, but none of them seem to work right and generate a number of very strange bug reports that I don't know how to fix and don't have the time to fix. Therefore, it is no longer a recommended installation option.)

    If you're a FreeBSD user, then you can install ripgrep from the official ports:

    # pkg install ripgrep

    If you're an OpenBSD user, then you can install ripgrep from the official ports:

    $ doas pkg_add ripgrep

    If you're a NetBSD user, then you can install ripgrep from pkgsrc:

    # pkgin install ripgrep

    If you're a Haiku x86_64 user, then you can install ripgrep from the official ports:

    $ pkgman install ripgrep

    If you're a Haiku x86_gcc2 user, then you can install ripgrep from the same port as Haiku x86_64 using the x86 secondary architecture build:

    $ pkgman install ripgrep_x86

    If you're a Rust programmer, ripgrep can be installed with cargo.

    • Note that the minimum supported version of Rust for ripgrep is 1.34.0, although ripgrep may work with older versions.
    • Note that the binary may be bigger than expected because it contains debug symbols. This is intentional. To remove debug symbols and therefore reduce the file size, run strip on the binary.
    $ cargo install ripgrep


    ripgrep is written in Rust, so you'll need to grab a Rust installation in order to compile it. ripgrep compiles with Rust 1.34.0 (stable) or newer. In general, ripgrep tracks the latest stable release of the Rust compiler.

    To build ripgrep:

    $ git clone
    $ cd ripgrep
    $ cargo build --release
    $ ./target/release/rg --version

    If you have a Rust nightly compiler and a recent Intel CPU, then you can enable additional optional SIMD acceleration like so:

    RUSTFLAGS="-C target-cpu=native" cargo build --release --features 'simd-accel'

    The simd-accel feature enables SIMD support in certain ripgrep dependencies (responsible for transcoding). They are not necessary to get SIMD optimizations for search; those are enabled automatically. Hopefully, some day, the simd-accel feature will similarly become unnecessary. WARNING: Currently, enabling this option can increase compilation times dramatically.

    Finally, optional PCRE2 support can be built with ripgrep by enabling the pcre2 feature:

    $ cargo build --release --features 'pcre2'

    (Tip: use --features 'pcre2 simd-accel' to also include compile time SIMD optimizations, which will only work with a nightly compiler.)

    Enabling the PCRE2 feature works with a stable Rust compiler and will attempt to automatically find and link with your system's PCRE2 library via pkg-config. If one doesn't exist, then ripgrep will build PCRE2 from source using your system's C compiler and then statically link it into the final executable. Static linking can be forced even when there is an available PCRE2 system library by either building ripgrep with the MUSL target or by setting PCRE2_SYS_STATIC=1.

    ripgrep can be built with the MUSL target on Linux by first installing the MUSL library on your system (consult your friendly neighborhood package manager). Then you just need to add MUSL support to your Rust toolchain and rebuild ripgrep, which yields a fully static executable:

    $ rustup target add x86_64-unknown-linux-musl
    $ cargo build --release --target x86_64-unknown-linux-musl

    Applying the --features flag from above works as expected. If you want to build a static executable with MUSL and with PCRE2, then you will need to have musl-gcc installed, which might be in a separate package from the actual MUSL library, depending on your Linux distribution.

    Running tests

    ripgrep is relatively well-tested, including both unit tests and integration tests. To run the full test suite, use:

    $ cargo test --all

    from the repository root.

    Vulnerability reporting

    For reporting a security vulnerability, please contact Andrew Gallant, which has my email address and PGP public key if you wish to send an encrypted message.


    The following is a list of known translations of ripgrep's documentation. These are unofficially maintained and may not be up to date.


    🚀 Github 镜像仓库 🚀


    发行版本 66



    贡献者 321



    • Rust 94.2 %
    • Python 3.2 %
    • Shell 2.5 %
    • Ruby 0.1 %
    • Dockerfile 0.0 %