加入CODE CHINA

· 不限速    · 不限空间    · 不限人数    · 私仓免费

免费加入
README.md

Towards Accurate Scene Text Recognition with Semantic Reasoning Networks

Unofficial PyTorch implementation of the paper, which integrates not only global semantic reasoning module but also parallel visual attention module and visual-semantic fusion decoder.the semanti reasoning network(SRN) can be trained end-to-end.

At present, the accuracy of the paper cannot be achieved. And i borrowed code from deep-text-recognition-benchmark

model

result

IIIT5k_3000 SVT IC03_860 IC03_867 IC13_857 IC13_1015 IC15_1811 IC15_2077 SVTP CUTE80
84.600 83.617 92.907 92.849 90.315 88.177 71.010 68.064 71.008 68.641

total_accuracy: 80.597


Feature

  • predict the character at once time
  • DistributedDataParallel training

Requirements

Pytorch >= 1.1.0

Test

  1. download the evaluation data from deep-text-recognition-benchmark

  2. download the pretrained model from Baidu, Password: d2qn

  3. test on the evaluation data

python test.py --eval_data path-to-data --saved_model path-to-model

Train

  1. download the training data from deep-text-recognition-benchmark

  2. training from scratch

python train.py --train_data path-to-train-data --valid-data path-to-valid-data

Reference

  1. bert_ocr.pytorch
  2. deep-text-recognition-benchmark
  3. 2D Attentional Irregular Scene Text Recognizer
  4. Towards Accurate Scene Text Recognition with Semantic Reasoning Networks

difference with the origin paper

  • use resnet for 1D feature not resnetFpn 2D feature
  • use add not gated unit for visual-semanti fusion decoder

other

It is difficult to achieve the accuracy of the paper, hope more people to try and share

项目简介

🚀 Github 镜像仓库 🚀

源项目地址

https://github.com/chenjun2hao/srn.pytorch

发行版本

当前项目没有发行版本

贡献者 2

开发语言

  • Python 100.0 %