加入CODE CHINA

· 不限速    · 不限空间    · 不限人数    · 私仓免费

免费加入
README.md

pylof

Build Status

Python implementation of Local Outlier Factor algorithm by Markus M. Breunig.

Examples

Example 1

The following example illustrates the simple use case of computing LOF values of several instances (e.g. [0,0],[5,5],[10,10] and [-8,-8]) based on the instances variable that we pass to the LOF constructor.

instances = [
 (-4.8447532242074978, -5.6869538132901658),
 (1.7265577109364076, -2.5446963280374302),
 (-1.9885982441038819, 1.705719643962865),
 (-1.999050026772494, -4.0367551415711844),
 (-2.0550860126898964, -3.6247409893236426),
 (-1.4456945632547327, -3.7669258809535102),
 (-4.6676062022635554, 1.4925324371089148),
 (-3.6526420667796877, -3.5582661345085662),
 (6.4551493172954029, -0.45434966683144573),
 (-0.56730591589443669, -5.5859532963153349),
 (-5.1400897823762239, -1.3359248994019064),
 (5.2586932439960243, 0.032431285797532586),
 (6.3610915734502838, -0.99059648246991894),
 (-0.31086913190231447, -2.8352818694180644),
 (1.2288582719783967, -1.1362795178325829),
 (-0.17986204466346614, -0.32813130288006365),
 (2.2532002509929216, -0.5142311840491649),
 (-0.75397166138399296, 2.2465141276038754),
 (1.9382517648161239, -1.7276112460593251),
 (1.6809250808549676, -2.3433636210337503),
 (0.68466572523884783, 1.4374914487477481),
 (2.0032364431791514, -2.9191062023123635),
 (-1.7565895138024741, 0.96995712544043267),
 (3.3809644295064505, 6.7497121359292684),
 (-4.2764152718650896, 5.6551328734397766),
 (-3.6347215445083019, -0.85149861984875741),
 (-5.6249411288060385, -3.9251965527768755),
 (4.6033708001912093, 1.3375110154658127),
 (-0.685421751407983, -0.73115552984211407),
 (-2.3744241805625044, 1.3443896265777866)]

from lof import LOF
lof = LOF(instances)

for instance in [[0,0],[5,5],[10,10],[-8,-8]]:
    value = lof.local_outlier_factor(5, instance)
    print value, instance

The output should be:

0.901765248682 [0, 0]
1.36792777562  [5, 5]
2.28926007995  [10, 10]
1.91195816119  [-8, -8]

This example is also visualized on the following figure, where blue dots represent instances passed to LOF constructor, green dots are instances that are not outliers (lof value <= 1) and red dots are instances that are outliers (lof value > 1). The size or red dots represents the lof value, meaning that greater lof values result in larger dots. Plot Code used for plotting the above plot (matplotlib is required):

from matplotlib import pyplot as p

x,y = zip(*instances)
p.scatter(x,y, 20, color="#0000FF")

for instance in [[0,0],[5,5],[10,10],[-8,-8]]:
    value = lof.local_outlier_factor(3, instance)
    color = "#FF0000" if value > 1 else "#00FF00"
    p.scatter(instance[0], instance[1], color=color, s=(value-1)**2*10+20)

p.show()

Example 2

Pylof also has a helper function to identify outliers in a given instances dataset.

instances = [
 (-4.8447532242074978, -5.6869538132901658),
 (1.7265577109364076, -2.5446963280374302),
 (-1.9885982441038819, 1.705719643962865),
 (-1.999050026772494, -4.0367551415711844),
 (-2.0550860126898964, -3.6247409893236426),
 (-1.4456945632547327, -3.7669258809535102),
 (-4.6676062022635554, 1.4925324371089148),
 (-3.6526420667796877, -3.5582661345085662),
 (6.4551493172954029, -0.45434966683144573),
 (-0.56730591589443669, -5.5859532963153349),
 (-5.1400897823762239, -1.3359248994019064),
 (5.2586932439960243, 0.032431285797532586),
 (6.3610915734502838, -0.99059648246991894),
 (-0.31086913190231447, -2.8352818694180644),
 (1.2288582719783967, -1.1362795178325829),
 (-0.17986204466346614, -0.32813130288006365),
 (2.2532002509929216, -0.5142311840491649),
 (-0.75397166138399296, 2.2465141276038754),
 (1.9382517648161239, -1.7276112460593251),
 (1.6809250808549676, -2.3433636210337503),
 (0.68466572523884783, 1.4374914487477481),
 (2.0032364431791514, -2.9191062023123635),
 (-1.7565895138024741, 0.96995712544043267),
 (3.3809644295064505, 6.7497121359292684),
 (-4.2764152718650896, 5.6551328734397766),
 (-3.6347215445083019, -0.85149861984875741),
 (-5.6249411288060385, -3.9251965527768755),
 (4.6033708001912093, 1.3375110154658127),
 (-0.685421751407983, -0.73115552984211407),
 (-2.3744241805625044, 1.3443896265777866)]

from lof import outliers
lof = outliers(5, instances)

for outlier in lof:
    print outlier["lof"],outlier["instance"]

The output should be:

2.20484969217 (3.3809644295064505, 6.749712135929268)
1.79484408482 (-4.27641527186509, 5.6551328734397766)
1.50121865848 (6.455149317295403, -0.45434966683144573)
1.47940253262 (6.361091573450284, -0.9905964824699189)
1.37216956549 (5.258693243996024, 0.032431285797532586)
1.29100195101 (4.603370800191209, 1.3375110154658127)
1.20274006333 (-4.844753224207498, -5.686953813290166)
1.18718018398 (-5.6249411288060385, -3.9251965527768755)
1.10898567816 (0.6846657252388478, 1.4374914487477481)
1.05728304007 (-4.667606202263555, 1.4925324371089148)
1.04216295935 (-5.140089782376224, -1.3359248994019064)
1.02801167935 (-0.5673059158944367, -5.585953296315335)

This example is also visualized on the following figure, where blue dots represent instances passed to LOF constructor, green dots are instances that are not outliers (lof value <= 1) and red dots are instances that are outliers (lof value > 1). The size or red dots represents the lof value, meaning that greater lof values result in larger dots. Plot Code used for plotting the above plot (matplotlib is required):

from matplotlib import pyplot as p

x,y = zip(*instances)
p.scatter(x,y, 20, color="#0000FF")

for outlier in lof:
    value = outlier["lof"]
    instance = outlier["instance"]
    color = "#FF0000" if value > 1 else "#00FF00"
    p.scatter(instance[0], instance[1], color=color, s=(value-1)**2*10+20)

p.show()

TODO

  • Increase the unit test coverage

项目简介

🚀 Github 镜像仓库 🚀

源项目地址

https://github.com/wangyibo360/pylof

发行版本

当前项目没有发行版本

贡献者 6

W wangyibo @wangyibo
B Bostjan Kaluza @Bostjan Kaluza
D Damjan Kužnar @Damjan Kužnar
D damjankuznar @damjankuznar
G Gary Verhaegen @Gary Verhaegen
P Paulo Nuin @Paulo Nuin

开发语言

  • Python 100.0 %