未验证 提交 d113eb07 编写于 作者: B Bernard Xiong 提交者: GitHub

Merge pull request #2145 from armink/lts-v3.1.x

Lts v3.1.x
......@@ -265,7 +265,7 @@ int dfs_elm_mkfs(rt_device_t dev_id)
/* [IN] Size of the allocation unit */
/* [-] Working buffer */
/* [IN] Size of working buffer */
result = f_mkfs(logic_nbr, FM_ANY, 0, work, _MAX_SS);
result = f_mkfs(logic_nbr, FM_ANY|FM_SFD, 0, work, _MAX_SS);
rt_free(work); work = RT_NULL;
/* check flag status, we need clear the temp driver stored in disk[] */
......
......@@ -221,7 +221,7 @@ struct dfs_fd *fd_get(int fd)
d = fdt->fds[fd];
/* check dfs_fd valid or not */
if (d->magic != DFS_FD_MAGIC)
if ((d == NULL) || (d->magic != DFS_FD_MAGIC))
{
dfs_unlock();
return NULL;
......
......@@ -890,9 +890,9 @@ int access(const char *path, int amode)
char *getcwd(char *buf, size_t size)
{
#ifdef DFS_USING_WORKDIR
rt_enter_critical();
dfs_lock();
strncpy(buf, working_directory, size);
rt_exit_critical();
dfs_unlock();
#else
rt_kprintf(NO_WORKING_DIR);
#endif
......
......@@ -16,6 +16,12 @@ config RT_USING_SERIAL
select RT_USING_DEVICE
default y
if RT_USING_SERIAL
config RT_SERIAL_USING_DMA
bool "Enable serial DMA mode"
default y
endif
config RT_USING_CAN
bool "Using CAN device drivers"
default n
......@@ -72,6 +78,10 @@ config RT_USING_PIN
bool "Using generic GPIO device drivers"
default y
config RT_USING_ADC
bool "Using ADC device drivers"
default n
config RT_USING_PWM
bool "Using PWM device drivers"
default n
......@@ -118,9 +128,8 @@ config RT_USING_RTC
default n
config RTC_SYNC_USING_NTP
bool "Using NTP auto sync RTC time"
select PKG_USING_NETUTILS
select PKG_NETUTILS_NTP
default n
depends on PKG_NETUTILS_NTP
default y
if RTC_SYNC_USING_NTP
config RTC_NTP_FIRST_SYNC_DELAY
......@@ -165,7 +174,11 @@ config RT_USING_SPI
bool "Using SPI Bus/Device device drivers"
default n
if RT_USING_SPI
if RT_USING_SPI
config RT_USING_QSPI
bool "Enable QSPI mode"
default n
config RT_USING_SPI_MSD
bool "Using SD/TF card driver with spi"
select RT_USING_DFS
......@@ -182,6 +195,11 @@ config RT_USING_SPI
config RT_SFUD_USING_FLASH_INFO_TABLE
bool "Using defined supported flash chip information table"
default y
config RT_SFUD_USING_QSPI
bool "Using QSPI mode support"
select RT_USING_QSPI
default n
config RT_DEBUG_SFUD
bool "Show more SFUD debug information"
......
......@@ -105,8 +105,6 @@ static rt_err_t _audio_dev_init(struct rt_device *dev)
static rt_err_t _audio_dev_open(struct rt_device *dev, rt_uint16_t oflag)
{
rt_err_t result = RT_EOK;
rt_base_t level;
struct rt_audio_device *audio;
RT_ASSERT(dev != RT_NULL);
......@@ -159,7 +157,6 @@ static rt_err_t _audio_dev_open(struct rt_device *dev, rt_uint16_t oflag)
//init pipe for record
{
rt_size_t size = CFG_AUDIO_RECORD_PIPE_SIZE;
rt_uint8_t *buf = rt_malloc(CFG_AUDIO_RECORD_PIPE_SIZE);
if (buf == RT_NULL)
......@@ -170,7 +167,7 @@ static rt_err_t _audio_dev_open(struct rt_device *dev, rt_uint16_t oflag)
return -RT_ENOMEM;
}
rt_audio_pipe_init(&audio_pipe, "recpipe", RT_PIPE_FLAG_FORCE_WR | RT_PIPE_FLAG_BLOCK_RD, buf,
rt_audio_pipe_init(&audio_pipe, "recpipe", (rt_int32_t)(RT_PIPE_FLAG_FORCE_WR | RT_PIPE_FLAG_BLOCK_RD), buf,
CFG_AUDIO_RECORD_PIPE_SIZE);
}
......@@ -536,8 +533,6 @@ void rt_audio_tx_complete(struct rt_audio_device *audio, rt_uint8_t *pbuf)
void rt_audio_rx_done(struct rt_audio_device *audio, rt_uint8_t *pbuf, rt_size_t len)
{
rt_err_t result = RT_EOK;
//save data to record pipe
rt_device_write(RT_DEVICE(RT_DEVICE(&audio_pipe)), 0, pbuf, len);
......
......@@ -188,7 +188,7 @@ static rt_err_t rt_pipe_control(rt_device_t dev, int cmd, void *args)
}
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops audio_pipe_ops
const static struct rt_device_ops audio_pipe_ops =
{
RT_NULL,
RT_NULL,
......@@ -213,7 +213,7 @@ const static struct rt_device_ops audio_pipe_ops
*/
rt_err_t rt_audio_pipe_init(struct rt_audio_pipe *pipe,
const char *name,
enum rt_audio_pipe_flag flag,
rt_int32_t flag,
rt_uint8_t *buf,
rt_size_t size)
{
......@@ -258,7 +258,7 @@ rt_err_t rt_audio_pipe_detach(struct rt_audio_pipe *pipe)
}
#ifdef RT_USING_HEAP
rt_err_t rt_audio_pipe_create(const char *name, enum rt_audio_pipe_flag flag, rt_size_t size)
rt_err_t rt_audio_pipe_create(const char *name, rt_int32_t flag, rt_size_t size)
{
rt_uint8_t *rb_memptr = RT_NULL;
struct rt_audio_pipe *pipe = RT_NULL;
......
......@@ -50,7 +50,7 @@ struct rt_audio_pipe
/* ring buffer in pipe device */
struct rt_ringbuffer ringbuffer;
enum rt_audio_pipe_flag flag;
rt_int32_t flag;
/* suspended list */
rt_list_t suspended_read_list;
......@@ -64,12 +64,12 @@ struct rt_audio_pipe
rt_err_t rt_audio_pipe_init(struct rt_audio_pipe *pipe,
const char *name,
enum rt_audio_pipe_flag flag,
rt_int32_t flag,
rt_uint8_t *buf,
rt_size_t size);
rt_err_t rt_audio_pipe_detach(struct rt_audio_pipe *pipe);
#ifdef RT_USING_HEAP
rt_err_t rt_audio_pipe_create(const char *name, enum rt_audio_pipe_flag flag, rt_size_t size);
rt_err_t rt_audio_pipe_create(const char *name, rt_int32_t flag, rt_size_t size);
void rt_audio_pipe_destroy(struct rt_audio_pipe *pipe);
#endif
#endif
......
定时器设备
===
##功能
---
# 定时器设备
## 功能
* 时间测量
* 周期或单次执行回调函数
##编译
---
## 编译
1. 在rtconfig.h添加 `#define RT_USING_HWTIMER`
##使用流程
---
## 使用流程
1. 以读写方式打开设备
2. 设置超时回调函数(如果需要)
3. 根据需要设置定时模式(单次/周期)
......@@ -19,12 +18,12 @@
5. 写入超时值,定时器随即启动
6. 停止定时器(可选)
7. 关闭设备(如果需要)
应用参考 [hwtimer_test] (/examples/test/hwtimer\_test.c)
##驱动编写指南
---
###操作接口
## 驱动编写指南
### 操作接口
```
struct rt_hwtimer_ops
......@@ -43,8 +42,8 @@ struct rt_hwtimer_ops
* count_get - <读取计数器值>
* control - <设置计数频率 >
###定时器特征信息
### 定时器特征信息
```
struct rt_hwtimer_info
{
......@@ -60,7 +59,8 @@ struct rt_hwtimer_info
* maxcnt <计数器最大计数值>
* cntmode <递增计数/递减计数>
###注册设备
### 注册设备
```
static rt_hwtimer_t _timer0;
int stm32_hwtimer_init(void)
......@@ -73,8 +73,9 @@ int stm32_hwtimer_init(void)
return 0;
}
```
###定时器中断
### 定时器中断
```
void timer_irq_handler(void)
{
......@@ -84,15 +85,13 @@ void timer_irq_handler(void)
}
```
##注意事项
---
<font color="#FF0000">可能出现定时误差</font>
## 注意事项
**可能出现定时误差**
误差原因:
假设计数器最大值0xFFFF,计数频率1Mhz,定时时间1秒又1微秒。
由于定时器一次最多只能计时到65535us,对于1000001us的定时要求。
可以50000us定时20次完成,此时将会出现计算误差1us。
......@@ -153,7 +153,7 @@ static rt_size_t rt_hwtimer_read(struct rt_device *dev, rt_off_t pos, void *buff
cnt = timer->ops->count_get(timer);
if (timer->info->cntmode == HWTIMER_CNTMODE_DW)
{
cnt = timer->info->maxcnt - cnt;
cnt = (timer->freq * timer->period_sec) - cnt;
}
t = timer->overflow * timer->period_sec + cnt/(float)timer->freq;
......
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-05-07 aozima the first version
* 2018-11-16 Ernest Chen add finsh command and update adc function
*/
#ifndef __ADC_H__
#define __ADC_H__
#include <rtthread.h>
struct rt_adc_device;
struct rt_adc_ops
{
rt_err_t (*enabled)(struct rt_adc_device *device, rt_uint32_t channel, rt_bool_t enabled);
rt_err_t (*convert)(struct rt_adc_device *device, rt_uint32_t channel, rt_uint32_t *value);
};
struct rt_adc_device
{
struct rt_device parent;
const struct rt_adc_ops *ops;
};
typedef struct rt_adc_device *rt_adc_device_t;
typedef enum
{
RT_ADC_CMD_ENABLE,
RT_ADC_CMD_DISABLE,
} rt_adc_cmd_t;
rt_err_t rt_hw_adc_register(rt_adc_device_t adc,const char *name, const struct rt_adc_ops *ops, const void *user_data);
rt_uint32_t rt_adc_read(rt_adc_device_t dev, rt_uint32_t channel);
rt_err_t rt_adc_enable(rt_adc_device_t dev, rt_uint32_t channel);
rt_err_t rt_adc_disable(rt_adc_device_t dev, rt_uint32_t channel);
#endif /* __ADC_H__ */
......@@ -100,7 +100,7 @@ struct serial_configure
rt_uint32_t bit_order :1;
rt_uint32_t invert :1;
rt_uint32_t bufsz :16;
rt_uint32_t reserved :4;
rt_uint32_t reserved :6;
};
/*
......
......@@ -45,6 +45,9 @@ extern "C"{
#define RT_SPI_MODE_MASK (RT_SPI_CPHA | RT_SPI_CPOL | RT_SPI_MSB)
#define RT_SPI_BUS_MODE_SPI (1<<0)
#define RT_SPI_BUS_MODE_QSPI (1<<1)
#define RT_SPI_CS_HIGH (1<<4) /* Chipselect active high */
#define RT_SPI_NO_CS (1<<5) /* No chipselect */
#define RT_SPI_3WIRE (1<<6) /* SI/SO pin shared */
......@@ -80,6 +83,7 @@ struct rt_spi_ops;
struct rt_spi_bus
{
struct rt_device parent;
rt_uint8_t mode;
const struct rt_spi_ops *ops;
struct rt_mutex lock;
......@@ -106,6 +110,55 @@ struct rt_spi_device
struct rt_spi_configuration config;
void *user_data;
};
struct rt_qspi_message
{
struct rt_spi_message parent;
/* instruction stage */
struct
{
rt_uint8_t content;
rt_uint8_t qspi_lines;
} instruction;
/* address and alternate_bytes stage */
struct
{
rt_uint32_t content;
rt_uint8_t size;
rt_uint8_t qspi_lines;
} address, alternate_bytes;
/* dummy_cycles stage */
rt_uint32_t dummy_cycles;
/* number of lines in qspi data stage, the other configuration items are in parent */
rt_uint8_t qspi_data_lines;
};
struct rt_qspi_configuration
{
struct rt_spi_configuration parent;
/* The size of medium */
rt_uint32_t medium_size;
/* double data rate mode */
rt_uint8_t ddr_mode;
/* the data lines max width which QSPI bus supported, such as 1, 2, 4 */
rt_uint8_t qspi_dl_width ;
};
struct rt_qspi_device
{
struct rt_spi_device parent;
struct rt_qspi_configuration config;
void (*enter_qspi_mode)(struct rt_qspi_device *device);
void (*exit_qspi_mode)(struct rt_qspi_device *device);
};
#define SPI_DEVICE(dev) ((struct rt_spi_device *)(dev))
/* register a SPI bus */
......@@ -255,6 +308,61 @@ rt_inline void rt_spi_message_append(struct rt_spi_message *list,
message->next = RT_NULL;
}
/**
* This function can set configuration on QSPI device.
*
* @param device the QSPI device attached to QSPI bus.
* @param cfg the configuration pointer.
*
* @return the actual length of transmitted.
*/
rt_err_t rt_qspi_configure(struct rt_qspi_device *device, struct rt_qspi_configuration *cfg);
/**
* This function can register a SPI bus for QSPI mode.
*
* @param bus the SPI bus for QSPI mode.
* @param name The name of the spi bus.
* @param ops the SPI bus instance to be registered.
*
* @return the actual length of transmitted.
*/
rt_err_t rt_qspi_bus_register(struct rt_spi_bus *bus, const char *name, const struct rt_spi_ops *ops);
/**
* This function transmits data to QSPI device.
*
* @param device the QSPI device attached to QSPI bus.
* @param message the message pointer.
*
* @return the actual length of transmitted.
*/
rt_size_t rt_qspi_transfer_message(struct rt_qspi_device *device, struct rt_qspi_message *message);
/**
* This function can send data then receive data from QSPI device
*
* @param device the QSPI device attached to QSPI bus.
* @param send_buf the buffer to be transmitted to QSPI device.
* @param send_length the number of data to be transmitted.
* @param recv_buf the buffer to be recivied from QSPI device.
* @param recv_length the data to be recivied.
*
* @return the status of transmit.
*/
rt_err_t rt_qspi_send_then_recv(struct rt_qspi_device *device, const void *send_buf, rt_size_t send_length,void *recv_buf, rt_size_t recv_length);
/**
* This function can send data to QSPI device
*
* @param device the QSPI device attached to QSPI bus.
* @param send_buf the buffer to be transmitted to QSPI device.
* @param send_length the number of data to be transmitted.
*
* @return the status of transmit.
*/
rt_err_t rt_qspi_send(struct rt_qspi_device *device, const void *send_buf, rt_size_t length);
#ifdef __cplusplus
}
#endif
......
......@@ -84,6 +84,8 @@ rt_size_t rt_rbb_get_buf_size(rt_rbb_t rbb);
rt_rbb_blk_t rt_rbb_blk_alloc(rt_rbb_t rbb, rt_size_t blk_size);
void rt_rbb_blk_put(rt_rbb_blk_t block);
rt_rbb_blk_t rt_rbb_blk_get(rt_rbb_t rbb);
rt_size_t rt_rbb_blk_size(rt_rbb_blk_t block);
rt_uint8_t *rt_rbb_blk_buf(rt_rbb_blk_t block);
void rt_rbb_blk_free(rt_rbb_t rbb, rt_rbb_blk_t block);
/* rbb block queue API */
......
......@@ -99,6 +99,10 @@ extern "C" {
#include "drivers/cputime.h"
#endif
#ifdef RT_USING_ADC
#include "drivers/adc.h"
#endif
#ifdef RT_USING_PWM
#include "drivers/rt_drv_pwm.h"
#endif
......
......@@ -7,7 +7,10 @@ group = []
if GetDepend(['RT_USING_PIN']):
src = src + ['pin.c']
if GetDepend(['RT_USING_ADC']):
src = src + ['adc.c']
if GetDepend(['RT_USING_PWM']):
src = src + ['rt_drv_pwm.c']
......
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-05-07 aozima the first version
* 2018-11-16 Ernest Chen add finsh command and update adc function
*/
#include <rtthread.h>
#include <rtdevice.h>
#include <string.h>
#include <stdlib.h>
#define DBG_ENABLE
#define DBG_SECTION_NAME "adc"
#define DBG_LEVEL DBG_INFO
#define DBG_COLOR
#include <rtdbg.h>
static rt_size_t _adc_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
{
rt_err_t result = RT_EOK;
rt_size_t i;
struct rt_adc_device *adc = (struct rt_adc_device *)dev;
rt_uint32_t *value = (rt_uint32_t *)buffer;
for (i = 0; i < size; i += sizeof(int))
{
result = adc->ops->convert(adc, pos + i, value);
if (result != RT_EOK)
{
return 0;
}
value++;
}
return i;
}
static rt_err_t _adc_control(rt_device_t dev, int cmd, void *args)
{
rt_err_t result = RT_EOK;
rt_adc_device_t adc = (struct rt_adc_device *)dev;
if (adc->ops->enabled == RT_NULL)
{
return -RT_ENOSYS;
}
if (cmd == RT_ADC_CMD_ENABLE)
{
result = adc->ops->enabled(adc, (rt_uint32_t)args, RT_TRUE);
}
else if (cmd == RT_ADC_CMD_DISABLE)
{
result = adc->ops->enabled(adc, (rt_uint32_t)args, RT_FALSE);
}
return result;
}
rt_err_t rt_hw_adc_register(rt_adc_device_t device, const char *name, const struct rt_adc_ops *ops, const void *user_data)
{
rt_err_t result = RT_EOK;
RT_ASSERT(ops != RT_NULL && ops->convert != RT_NULL);
device->parent.type = RT_Device_Class_Miscellaneous;
device->parent.init = RT_NULL;
device->parent.open = RT_NULL;
device->parent.close = RT_NULL;
device->parent.read = _adc_read;
device->parent.write = RT_NULL;
device->parent.control = _adc_control;
device->ops = ops;
device->parent.user_data = (void *)user_data;
result = rt_device_register(&device->parent, name, RT_DEVICE_FLAG_RDWR);
return result;
}
rt_uint32_t rt_adc_read(rt_adc_device_t dev, rt_uint32_t channel)
{
rt_uint32_t value;
RT_ASSERT(dev);
dev->ops->convert(dev, channel, &value);
return value;
}
rt_err_t rt_adc_enable(rt_adc_device_t dev, rt_uint32_t channel)
{
rt_err_t result = RT_EOK;
RT_ASSERT(dev);
if (dev->ops->enabled != RT_NULL)
{
result = dev->ops->enabled(dev, channel, RT_TRUE);
}
else
{
result = -RT_ENOSYS;
}
return result;
}
rt_err_t rt_adc_disable(rt_adc_device_t dev, rt_uint32_t channel)
{
rt_err_t result = RT_EOK;
RT_ASSERT(dev);
if (dev->ops->enabled != RT_NULL)
{
result = dev->ops->enabled(dev, channel, RT_FALSE);
}
else
{
result = -RT_ENOSYS;
}
return result;
}
#ifdef FINSH_USING_MSH
static int adc(int argc, char **argv)
{
int value = 0;
int result = RT_EOK;
static rt_adc_device_t adc_device = RT_NULL;
char *result_str;
if (argc > 1)
{
if (!strcmp(argv[1], "probe"))
{
if (argc == 3)
{
adc_device = (rt_adc_device_t)rt_device_find(argv[2]);
result_str = (adc_device == RT_NULL) ? "failure" : "success";
rt_kprintf("probe %s %s \n", argv[2], result_str);
}
else
{
rt_kprintf("adc probe <adc_name> - probe adc by name\n");
}
}
else
{
if (adc_device == RT_NULL)
{
rt_kprintf("Please using 'adc probe <adc_name>' first\n");
return -RT_ERROR;
}
if (!strcmp(argv[1], "enable"))
{
if (argc == 3)
{
result = rt_adc_enable(adc_device, atoi(argv[2]));
result_str = (result == RT_EOK) ? "success" : "failure";
rt_kprintf("%s channel %d enables %s \n", adc_device->parent.parent.name, atoi(argv[2]), result_str);
}
else
{
rt_kprintf("adc enable <channel> - enable adc channel\n");
}
}
else if (!strcmp(argv[1], "read"))
{
if (argc == 3)
{
value = rt_adc_read(adc_device, atoi(argv[2]));
rt_kprintf("%s channel %d read value is 0x%08X \n", adc_device->parent.parent.name, atoi(argv[2]), value);
}
else
{
rt_kprintf("adc read <channel> - read adc value on the channel\n");
}
}
else if (!strcmp(argv[1], "disable"))
{
if (argc == 3)
{
result = rt_adc_disable(adc_device, atoi(argv[2]));
result_str = (result == RT_EOK) ? "success" : "failure";
rt_kprintf("%s channel %d disable %s \n", adc_device->parent.parent.name, atoi(argv[2]), result_str);
}
else
{
rt_kprintf("adc disable <channel> - disable adc channel\n");
}
}
else
{
rt_kprintf("Unknown command. Please enter 'adc' for help\n");
}
}
}
else
{
rt_kprintf("Usage: \n");
rt_kprintf("adc probe <adc_name> - probe adc by name\n");
rt_kprintf("adc read <channel> - read adc value on the channel\n");
rt_kprintf("adc disable <channel> - disable adc channel\n");
rt_kprintf("adc enable <channel> - enable adc channel\n");
result = -RT_ERROR;
}
return RT_EOK;
}
MSH_CMD_EXPORT(adc, adc function);
#endif /* FINSH_USING_MSH */
......@@ -88,21 +88,36 @@ static rt_size_t _pwm_write(rt_device_t dev, rt_off_t pos, const void *buffer, r
return size;
}
#ifdef RT_USING_DEVICE_OPS
static const struct rt_device_ops pwm_device_ops =
{
RT_NULL,
RT_NULL,
RT_NULL,
_pwm_read,
_pwm_write,
_pwm_control
};
#endif /* RT_USING_DEVICE_OPS */
rt_err_t rt_device_pwm_register(struct rt_device_pwm *device, const char *name, const struct rt_pwm_ops *ops, const void *user_data)
{
rt_err_t result = RT_EOK;
memset(device, 0, sizeof(struct rt_device_pwm));
device->parent.type = RT_Device_Class_Miscellaneous;
device->parent.init = RT_NULL;
device->parent.open = RT_NULL;
device->parent.close = RT_NULL;
device->parent.read = _pwm_read;
device->parent.write = _pwm_write;
device->parent.control = _pwm_control;
#ifdef RT_USING_DEVICE_OPS
device->parent.ops = &pwm_device_ops;
#else
device->parent.init = RT_NULL;
device->parent.open = RT_NULL;
device->parent.close = RT_NULL;
device->parent.read = _pwm_read;
device->parent.write = _pwm_write;
device->parent.control = _pwm_control;
#endif /* RT_USING_DEVICE_OPS */
device->parent.type = RT_Device_Class_Miscellaneous;
device->ops = ops;
device->parent.user_data = (void *)user_data;
......
......@@ -151,11 +151,10 @@ void rt_pm_enter(void)
/* enter sleep and wait to be waken up */
pm->ops->enter(pm);
rt_hw_interrupt_enable(level);
/* exit from low power mode */
rt_pm_exit();
rt_hw_interrupt_enable(level);
return ;
}
}
......
......@@ -21,6 +21,7 @@
* 2017-11-07 JasonJia fix data bits error issue when using tcsetattr.
* 2017-11-15 JasonJia fix poll rx issue when data is full.
* add TCFLSH and FIONREAD support.
* 2018-12-08 Ernest Chen add DMA choice
*/
#include <rthw.h>
......@@ -328,6 +329,7 @@ rt_inline int _serial_int_tx(struct rt_serial_device *serial, const rt_uint8_t *
return size - length;
}
#if defined(RT_USING_POSIX) || defined(RT_SERIAL_USING_DMA)
static rt_size_t _serial_fifo_calc_recved_len(struct rt_serial_device *serial)
{
struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
......@@ -350,7 +352,9 @@ static rt_size_t _serial_fifo_calc_recved_len(struct rt_serial_device *serial)
}
}
}
#endif /* RT_USING_POSIX || RT_SERIAL_USING_DMA */
#ifdef RT_SERIAL_USING_DMA
/**
* Calculate DMA received data length.
*
......@@ -527,6 +531,7 @@ rt_inline int _serial_dma_tx(struct rt_serial_device *serial, const rt_uint8_t *
return 0;
}
}
#endif /* RT_SERIAL_USING_DMA */
/* RT-Thread Device Interface */
/*
......@@ -561,11 +566,13 @@ static rt_err_t rt_serial_open(struct rt_device *dev, rt_uint16_t oflag)
LOG_D("open serial device: 0x%08x with open flag: 0x%04x",
dev, oflag);
#ifdef RT_SERIAL_USING_DMA
/* check device flag with the open flag */
if ((oflag & RT_DEVICE_FLAG_DMA_RX) && !(dev->flag & RT_DEVICE_FLAG_DMA_RX))
return -RT_EIO;
if ((oflag & RT_DEVICE_FLAG_DMA_TX) && !(dev->flag & RT_DEVICE_FLAG_DMA_TX))
return -RT_EIO;
#endif /* RT_SERIAL_USING_DMA */
if ((oflag & RT_DEVICE_FLAG_INT_RX) && !(dev->flag & RT_DEVICE_FLAG_INT_RX))
return -RT_EIO;
if ((oflag & RT_DEVICE_FLAG_INT_TX) && !(dev->flag & RT_DEVICE_FLAG_INT_TX))
......@@ -580,8 +587,27 @@ static rt_err_t rt_serial_open(struct rt_device *dev, rt_uint16_t oflag)
/* initialize the Rx/Tx structure according to open flag */
if (serial->serial_rx == RT_NULL)
{
if (oflag & RT_DEVICE_FLAG_DMA_RX)
{
if (oflag & RT_DEVICE_FLAG_INT_RX)
{
struct rt_serial_rx_fifo* rx_fifo;
rx_fifo = (struct rt_serial_rx_fifo*) rt_malloc (sizeof(struct rt_serial_rx_fifo) +
serial->config.bufsz);
RT_ASSERT(rx_fifo != RT_NULL);
rx_fifo->buffer = (rt_uint8_t*) (rx_fifo + 1);
rt_memset(rx_fifo->buffer, 0, serial->config.bufsz);
rx_fifo->put_index = 0;
rx_fifo->get_index = 0;
rx_fifo->is_full = RT_FALSE;
serial->serial_rx = rx_fifo;
dev->open_flag |= RT_DEVICE_FLAG_INT_RX;
/* configure low level device */
serial->ops->control(serial, RT_DEVICE_CTRL_SET_INT, (void *)RT_DEVICE_FLAG_INT_RX);
}
#ifdef RT_SERIAL_USING_DMA
else if (oflag & RT_DEVICE_FLAG_DMA_RX)
{
if (serial->config.bufsz == 0) {
struct rt_serial_rx_dma* rx_dma;
......@@ -608,24 +634,7 @@ static rt_err_t rt_serial_open(struct rt_device *dev, rt_uint16_t oflag)
}
dev->open_flag |= RT_DEVICE_FLAG_DMA_RX;
}
else if (oflag & RT_DEVICE_FLAG_INT_RX)
{
struct rt_serial_rx_fifo* rx_fifo;
rx_fifo = (struct rt_serial_rx_fifo*) rt_malloc (sizeof(struct rt_serial_rx_fifo) +
serial->config.bufsz);
RT_ASSERT(rx_fifo != RT_NULL);
rx_fifo->buffer = (rt_uint8_t*) (rx_fifo + 1);
rt_memset(rx_fifo->buffer, 0, serial->config.bufsz);
rx_fifo->put_index = 0;
rx_fifo->get_index = 0;
rx_fifo->is_full = RT_FALSE;
serial->serial_rx = rx_fifo;
dev->open_flag |= RT_DEVICE_FLAG_INT_RX;
/* configure low level device */
serial->ops->control(serial, RT_DEVICE_CTRL_SET_INT, (void *)RT_DEVICE_FLAG_INT_RX);
}
#endif /* RT_SERIAL_USING_DMA */
else
{
serial->serial_rx = RT_NULL;
......@@ -633,28 +642,17 @@ static rt_err_t rt_serial_open(struct rt_device *dev, rt_uint16_t oflag)
}
else
{
if (oflag & RT_DEVICE_FLAG_DMA_RX)
dev->open_flag |= RT_DEVICE_FLAG_DMA_RX;
else if (oflag & RT_DEVICE_FLAG_INT_RX)
if (oflag & RT_DEVICE_FLAG_INT_RX)
dev->open_flag |= RT_DEVICE_FLAG_INT_RX;
#ifdef RT_SERIAL_USING_DMA
else if (oflag & RT_DEVICE_FLAG_DMA_RX)
dev->open_flag |= RT_DEVICE_FLAG_DMA_RX;
#endif /* RT_SERIAL_USING_DMA */
}
if (serial->serial_tx == RT_NULL)
{
if (oflag & RT_DEVICE_FLAG_DMA_TX)
{
struct rt_serial_tx_dma* tx_dma;
tx_dma = (struct rt_serial_tx_dma*) rt_malloc (sizeof(struct rt_serial_tx_dma));
RT_ASSERT(tx_dma != RT_NULL);
tx_dma->activated = RT_FALSE;
rt_data_queue_init(&(tx_dma->data_queue), 8, 4, RT_NULL);
serial->serial_tx = tx_dma;
dev->open_flag |= RT_DEVICE_FLAG_DMA_TX;
}
else if (oflag & RT_DEVICE_FLAG_INT_TX)
if (oflag & RT_DEVICE_FLAG_INT_TX)
{
struct rt_serial_tx_fifo *tx_fifo;
......@@ -668,6 +666,21 @@ static rt_err_t rt_serial_open(struct rt_device *dev, rt_uint16_t oflag)
/* configure low level device */
serial->ops->control(serial, RT_DEVICE_CTRL_SET_INT, (void *)RT_DEVICE_FLAG_INT_TX);
}
#ifdef RT_SERIAL_USING_DMA
else if (oflag & RT_DEVICE_FLAG_DMA_TX)
{
struct rt_serial_tx_dma* tx_dma;
tx_dma = (struct rt_serial_tx_dma*) rt_malloc (sizeof(struct rt_serial_tx_dma));
RT_ASSERT(tx_dma != RT_NULL);
tx_dma->activated = RT_FALSE;
rt_data_queue_init(&(tx_dma->data_queue), 8, 4, RT_NULL);
serial->serial_tx = tx_dma;
dev->open_flag |= RT_DEVICE_FLAG_DMA_TX;
}
#endif /* RT_SERIAL_USING_DMA */
else
{
serial->serial_tx = RT_NULL;
......@@ -675,10 +688,12 @@ static rt_err_t rt_serial_open(struct rt_device *dev, rt_uint16_t oflag)
}
else
{
if (oflag & RT_DEVICE_FLAG_DMA_TX)
dev->open_flag |= RT_DEVICE_FLAG_DMA_TX;
else if (oflag & RT_DEVICE_FLAG_INT_TX)
if (oflag & RT_DEVICE_FLAG_INT_TX)
dev->open_flag |= RT_DEVICE_FLAG_INT_TX;
#ifdef RT_SERIAL_USING_DMA
else if (oflag & RT_DEVICE_FLAG_DMA_TX)
dev->open_flag |= RT_DEVICE_FLAG_DMA_TX;
#endif /* RT_SERIAL_USING_DMA */
}
/* set stream flag */
......@@ -710,6 +725,7 @@ static rt_err_t rt_serial_close(struct rt_device *dev)
/* configure low level device */
serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void*)RT_DEVICE_FLAG_INT_RX);
}
#ifdef RT_SERIAL_USING_DMA
else if (dev->open_flag & RT_DEVICE_FLAG_DMA_RX)
{
if (serial->config.bufsz == 0) {
......@@ -732,7 +748,8 @@ static rt_err_t rt_serial_close(struct rt_device *dev)
serial->serial_rx = RT_NULL;
dev->open_flag &= ~RT_DEVICE_FLAG_DMA_RX;
}
#endif /* RT_SERIAL_USING_DMA */
if (dev->open_flag & RT_DEVICE_FLAG_INT_TX)
{
struct rt_serial_tx_fifo* tx_fifo;
......@@ -746,6 +763,7 @@ static rt_err_t rt_serial_close(struct rt_device *dev)
/* configure low level device */
serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void*)RT_DEVICE_FLAG_INT_TX);
}
#ifdef RT_SERIAL_USING_DMA
else if (dev->open_flag & RT_DEVICE_FLAG_DMA_TX)
{
struct rt_serial_tx_dma* tx_dma;
......@@ -757,7 +775,7 @@ static rt_err_t rt_serial_close(struct rt_device *dev)
serial->serial_tx = RT_NULL;
dev->open_flag &= ~RT_DEVICE_FLAG_DMA_TX;
}
#endif /* RT_SERIAL_USING_DMA */
return RT_EOK;
}
......@@ -777,10 +795,12 @@ static rt_size_t rt_serial_read(struct rt_device *dev,
{
return _serial_int_rx(serial, buffer, size);
}
#ifdef RT_SERIAL_USING_DMA
else if (dev->open_flag & RT_DEVICE_FLAG_DMA_RX)
{
return _serial_dma_rx(serial, buffer, size);
}
#endif /* RT_SERIAL_USING_DMA */
return _serial_poll_rx(serial, buffer, size);
}
......@@ -801,10 +821,12 @@ static rt_size_t rt_serial_write(struct rt_device *dev,
{
return _serial_int_tx(serial, buffer, size);
}
#ifdef RT_SERIAL_USING_DMA
else if (dev->open_flag & RT_DEVICE_FLAG_DMA_TX)
{
return _serial_dma_tx(serial, buffer, size);
}
#endif /* RT_SERIAL_USING_DMA */
else
{
return _serial_poll_tx(serial, buffer, size);
......@@ -1181,12 +1203,13 @@ void rt_hw_serial_isr(struct rt_serial_device *serial, int event)
rt_completion_done(&(tx_fifo->completion));
break;
}
#ifdef RT_SERIAL_USING_DMA
case RT_SERIAL_EVENT_TX_DMADONE:
{
const void *data_ptr;
rt_size_t data_size;
const void *last_data_ptr;
struct rt_serial_tx_dma* tx_dma;
struct rt_serial_tx_dma *tx_dma;
tx_dma = (struct rt_serial_tx_dma*) serial->serial_tx;
......@@ -1246,6 +1269,7 @@ void rt_hw_serial_isr(struct rt_serial_device *serial, int event)
}
break;
}
#endif /* RT_SERIAL_USING_DMA */
}
}
......@@ -6,6 +6,9 @@ src = ['spi_core.c', 'spi_dev.c']
CPPPATH = [cwd, cwd + '/../include']
LOCAL_CCFLAGS = ''
if GetDepend('RT_USING_QSPI'):
src += ['qspi_core.c']
src_device = []
if GetDepend('RT_USING_SPI_WIFI'):
......
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-16 zylx first version.
*/
#include <drivers/spi.h>
rt_err_t rt_qspi_configure(struct rt_qspi_device *device, struct rt_qspi_configuration *cfg)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
struct rt_qspi_device *qspi_device = (struct rt_qspi_device *)device;
rt_err_t result = RT_EOK;
/* copy configuration items */
qspi_device->config.parent.mode = cfg->parent.mode;
qspi_device->config.parent.max_hz = cfg->parent.max_hz;
qspi_device->config.parent.data_width = cfg->parent.data_width;
qspi_device->config.parent.reserved = cfg->parent.reserved;
qspi_device->config.medium_size = cfg->medium_size;
qspi_device->config.ddr_mode = cfg->ddr_mode;
qspi_device->config.qspi_dl_width = cfg->qspi_dl_width;
result = rt_spi_configure(&device->parent, &cfg->parent);
return result;
}
rt_err_t rt_qspi_bus_register(struct rt_spi_bus *bus, const char *name, const struct rt_spi_ops *ops)
{
rt_err_t result = RT_EOK;
result = rt_spi_bus_register(bus, name, ops);
if(result == RT_EOK)
{
/* set SPI bus to qspi modes */
bus->mode = RT_SPI_BUS_MODE_QSPI;
}
return result;
}
rt_size_t rt_qspi_transfer_message(struct rt_qspi_device *device, struct rt_qspi_message *message)
{
rt_err_t result;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(message != RT_NULL);
result = rt_mutex_take(&(device->parent.bus->lock), RT_WAITING_FOREVER);
if (result != RT_EOK)
{
rt_set_errno(-RT_EBUSY);
return 0;
}
/* reset errno */
rt_set_errno(RT_EOK);
/* configure SPI bus */
if (device->parent.bus->owner != &device->parent)
{
/* not the same owner as current, re-configure SPI bus */
result = device->parent.bus->ops->configure(&device->parent, &device->parent.config);
if (result == RT_EOK)
{
/* set SPI bus owner */
device->parent.bus->owner = &device->parent;
}
else
{
/* configure SPI bus failed */
rt_set_errno(-RT_EIO);
goto __exit;
}
}
/* transmit each SPI message */
result = device->parent.bus->ops->xfer(&device->parent, &message->parent);
if (result == 0)
{
rt_set_errno(-RT_EIO);
}
__exit:
/* release bus lock */
rt_mutex_release(&(device->parent.bus->lock));
return result;
}
rt_err_t rt_qspi_send_then_recv(struct rt_qspi_device *device, const void *send_buf, rt_size_t send_length, void *recv_buf, rt_size_t recv_length)
{
RT_ASSERT(send_buf);
RT_ASSERT(recv_buf);
RT_ASSERT(send_length != 0);
struct rt_qspi_message message;
unsigned char *ptr = (unsigned char *)send_buf;
rt_size_t count = 0;
rt_err_t result = 0;
message.instruction.content = ptr[0];
message.instruction.qspi_lines = 1;
count++;
/* get address */
if (send_length > 1)
{
if (device->config.medium_size > 0x1000000 && send_length >= 5)
{
/* medium size greater than 16Mb, address size is 4 Byte */
message.address.content = (ptr[1] << 24) | (ptr[2] << 16) | (ptr[3] << 8) | (ptr[4]);
message.address.size = 32;
count += 4;
}
else if (send_length >= 4)
{
/* address size is 3 Byte */
message.address.content = (ptr[1] << 16) | (ptr[2] << 8) | (ptr[3]);
message.address.size = 24;
count += 3;
}
else
{
return -RT_ERROR;
}
message.address.qspi_lines = 1;
}
else
{
/* no address stage */
message.address.content = 0 ;
message.address.qspi_lines = 0;
message.address.size = 0;
}
message.alternate_bytes.content = 0;
message.alternate_bytes.size = 0;
message.alternate_bytes.qspi_lines = 0;
/* set dummy cycles */
if (count != send_length)
{
message.dummy_cycles = (send_length - count) * 8;
}
else
{
message.dummy_cycles = 0;
}
/* set recv buf and recv size */
message.parent.recv_buf = recv_buf;
message.parent.send_buf = RT_NULL;
message.parent.length = recv_length;
message.parent.cs_take = 1;
message.parent.cs_release = 1;
message.qspi_data_lines = 1;
result = rt_qspi_transfer_message(device, &message);
if (result == 0)
{
result = -RT_EIO;
}
else
{
result = recv_length;
}
return result;
}
rt_err_t rt_qspi_send(struct rt_qspi_device *device, const void *send_buf, rt_size_t length)
{
RT_ASSERT(send_buf);
RT_ASSERT(length != 0);
struct rt_qspi_message message;
char *ptr = (char *)send_buf;
rt_size_t count = 0;
rt_err_t result = 0;
message.instruction.content = ptr[0];
message.instruction.qspi_lines = 1;
count++;
/* get address */
if (length > 1)
{
if (device->config.medium_size > 0x1000000 && length >= 5)
{
/* medium size greater than 16Mb, address size is 4 Byte */
message.address.content = (ptr[1] << 24) | (ptr[2] << 16) | (ptr[3] << 8) | (ptr[4]);
message.address.size = 32;
message.address.qspi_lines = 1;
count += 4;
}
else if (length >= 4)
{
/* address size is 3 Byte */
message.address.content = (ptr[1] << 16) | (ptr[2] << 8) | (ptr[3]);
message.address.size = 24;
message.address.qspi_lines = 1;
count += 3;
}
else
{
return -RT_ERROR;
}
}
else
{
/* no address stage */
message.address.content = 0 ;
message.address.qspi_lines = 0;
message.address.size = 0;
}
message.alternate_bytes.content = 0;
message.alternate_bytes.size = 0;
message.alternate_bytes.qspi_lines = 0;
message.dummy_cycles = 0;
/* determine if there is data to send */
if (length - count > 0)
{
message.qspi_data_lines = 1;
}
else
{
message.qspi_data_lines = 0;
}
/* set send buf and send size */
message.parent.send_buf = ptr + count;
message.parent.recv_buf = RT_NULL;
message.parent.length = length - count;
message.parent.cs_take = 1;
message.parent.cs_release = 1;
result = rt_qspi_transfer_message(device, &message);
if (result == 0)
{
result = -RT_EIO;
}
else
{
result = length;
}
return result;
}
......@@ -6,11 +6,13 @@
[SFUD](https://github.com/armink/SFUD) 是一款开源的串行 SPI Flash 通用驱动库。由于现有市面的串行 Flash 种类居多,各个 Flash 的规格及命令存在差异, SFUD 就是为了解决这些 Flash 的差异现状而设计,让我们的产品能够支持不同品牌及规格的 Flash,提高了涉及到 Flash 功能的软件的可重用性及可扩展性,同时也可以规避 Flash 缺货或停产给产品所带来的风险。
- 主要特点:面向对象(同时支持多个 Flash 对象)、可灵活裁剪、扩展性强、支持 4 字节地址
- 主要特点:支持 SPI/QSPI 接口、面向对象(同时支持多个 Flash 对象)、可灵活裁剪、扩展性强、支持 4 字节地址
- 资源占用
- 标准占用:RAM:0.2KB ROM:5.5KB
- 最小占用:RAM:0.1KB ROM:3.6KB
- 设计思路:这里要首先跟大家介绍一个标准: **SFDP** ,它是 JEDEC (固态技术协会)制定的串行 Flash 功能的参数表标准,最新版 V1.6B ([点击这里查看](https://www.jedec.org/standards-documents/docs/jesd216b))。该标准规定了,每个 Flash 中会存在一个参数表,该表中会存放 Flash 容量、写粒度、擦除命令、地址模式等 Flash 规格参数。目前,除了部分厂家旧款 Flash 型号会不支持该标准,其他绝大多数新出厂的 Flash 均已支持 SFDP 标准。所以该库在初始化时会优先读取 SFDP 表参数,如果该 Flash 不支持 SFDP,则查询配置文件 ( [`/sfud/inc/sfud_flash_def.h`](https://github.com/armink/SFUD/blob/master/sfud/inc/sfud_flash_def.h#L110-L122) ) 中提供的 **Flash 参数信息表** 中是否支持该款 Flash。如果不支持,则可以在配置文件中添加该款 Flash 的参数信息(添加方法详细见 [2.5 添加库目前不支持的 Flash](#25-添加库目前不支持的-flash))。获取到了 Flash 的规格参数后,就可以实现对 Flash 的全部操作。
- 设计思路:
- **什么是 SFDP** :它是 JEDEC (固态技术协会)制定的串行 Flash 功能的参数表标准,最新版 V1.6B ([点击这里查看](https://www.jedec.org/standards-documents/docs/jesd216b))。该标准规定了,每个 Flash 中会存在一个参数表,该表中会存放 Flash 容量、写粒度、擦除命令、地址模式等 Flash 规格参数。目前,除了部分厂家旧款 Flash 型号会不支持该标准,其他绝大多数新出厂的 Flash 均已支持 SFDP 标准。所以该库在初始化时会优先读取 SFDP 表参数。
- **不支持 SFDP 怎么办** :如果该 Flash 不支持 SFDP 标准,SFUD 会查询配置文件 ( [`/sfud/inc/sfud_flash_def.h`](https://github.com/armink/SFUD/blob/4bee2d0417a7ce853cc7aa3639b03fe825611fd9/sfud/inc/sfud_flash_def.h#L116-L142) ) 中提供的 **Flash 参数信息表** 中是否支持该款 Flash。如果不支持,则可以在配置文件中添加该款 Flash 的参数信息(添加方法详细见 [2.5 添加库目前不支持的 Flash](#25-添加库目前不支持的-flash))。获取到了 Flash 的规格参数后,就可以实现对 Flash 的全部操作。
## 1、为什么选择 SFUD
......@@ -23,37 +25,43 @@
### 2.1 已支持 Flash
下表为所有在 Demo 平台上进行过真机测试的 Flash。目前 SFUD 提供的 **Flash 参数信息表** 只包括下表中 **不支持** SFDP 标准的 Flash,其他不支持 SFDP 标准的 Flash 需要大家以后 **共同来完善和维护** **([Github](https://github.com/armink/SFUD)|[OSChina](http://git.oschina.net/armink/SFUD)|[Coding](https://coding.net/u/armink/p/SFUD/git))** 。如果觉得这个开源项目很赞,可以点击 [项目主页](https://github.com/armink/SFUD) 右上角的 **Star** ,同时把它推荐给更多有需要的朋友。
|型号|制造商|容量|最高速度|SFDP 标准|备注|
|:--:|:----:|:--:|:--:|:--:|:--:|
|[W25Q40BV](http://microchip.ua/esp8266/W25Q40BV(EOL).pdf)|Winbond|4Mb|50Mhz|不支持|已停产|
|[W25Q80DV](http://www.winbond.com/resource-files/w25q80dv_revg_07212015.pdf)|Winbond|8Mb|104Mhz|支持||
|[W25Q16BV](https://media.digikey.com/pdf/Data%20Sheets/Winbond%20PDFs/W25Q16BV.pdf)|Winbond|16Mb|104Mhz|不支持| by [slipperstree](https://github.com/slipperstree)|
|[W25Q16CV](http://www.winbond.com/resource-files/da00-w25q16cvf1.pdf)|Winbond|16Mb|104Mhz|支持||
|[W25Q16DV](http://www.winbond.com/resource-files/w25q16dv%20revk%2005232016%20doc.pdf)|Winbond|16Mb|104Mhz|支持| by [slipperstree](https://github.com/slipperstree)|
|[W25Q32BV](http://www.winbond.com/resource-files/w25q32bv_revi_100413_wo_automotive.pdf)|Winbond|32Mb|104Mhz|支持||
|[W25Q64CV](http://www.winbond.com/resource-files/w25q64cv_revh_052214[2].pdf)|Winbond|64Mb|80Mhz|支持||
|[W25Q128BV](http://www.winbond.com/resource-files/w25q128bv_revh_100313_wo_automotive.pdf)|Winbond|128Mb|104Mhz|支持||
|[W25Q256FV](http://www.winbond.com/resource-files/w25q256fv%20revi%2002262016%20kms.pdf)|Winbond|256Mb|104Mhz|支持||
|[MX25L3206E](http://www.macronix.com/Lists/DataSheet/Attachments/3199/MX25L3206E,%203V,%2032Mb,%20v1.5.pdf)|Macronix|32Mb|86MHz|支持||
|[KH25L4006E](http://www.macronix.com.hk/Lists/Datasheet/Attachments/117/KH25L4006E.pdf)|Macronix|4Mb|86Mhz|支持| by [JiapengLi](https://github.com/JiapengLi)|
|[KH25L3206E](http://www.macronix.com.hk/Lists/Datasheet/Attachments/131/KH25L3206E.pdf)|Macronix|32Mb|86Mhz|支持||
|[SST25VF016B](http://ww1.microchip.com/downloads/en/DeviceDoc/20005044C.pdf)|Microchip|16Mb|50MHz|不支持| SST 已被 Microchip 收购|
|[M25P40](https://www.micron.com/~/media/documents/products/data-sheet/nor-flash/serial-nor/m25p/m25p40.pdf)|Micron|4Mb|75Mhz|不支持| by [redocCheng](https://github.com/redocCheng)|
|[M25P80](https://www.micron.com/~/media/documents/products/data-sheet/nor-flash/serial-nor/m25p/m25p80.pdf)|Micron|8Mb|75Mhz|不支持| by [redocCheng](https://github.com/redocCheng)|
|[M25P32](https://www.micron.com/~/media/documents/products/data-sheet/nor-flash/serial-nor/m25p/m25p32.pdf)|Micron|32Mb|75Mhz|不支持||
|[EN25Q32B](http://www.kean.com.au/oshw/WR703N/teardown/EN25Q32B%2032Mbit%20SPI%20Flash.pdf)|EON|32Mb|104MHz|不支持||
|[GD25Q16B](http://www.gigadevice.com/product/detail/5/410.html)|GigaDevice|16Mb|120Mhz|不支持| by [TanekLiang](https://github.com/TanekLiang) |
|[GD25Q64B](http://www.gigadevice.com/product/detail/5/364.html)|GigaDevice|64Mb|120Mhz|不支持||
|[S25FL216K](http://www.cypress.com/file/197346/download)|Cypress|16Mb|65Mhz|不支持||
|[S25FL032P](http://www.cypress.com/file/196861/download)|Cypress|32Mb|104Mhz|不支持| by [yc_911](https://gitee.com/yc_911) |
|[S25FL164K](http://www.cypress.com/file/196886/download)|Cypress|64Mb|108Mhz|支持||
|[A25L080](http://www.amictechnology.com/datasheets/A25L080.pdf)|AMIC|8Mb|100Mhz|不支持||
|[A25LQ64](http://www.amictechnology.com/datasheets/A25LQ64.pdf)|AMIC|64Mb|104Mhz|支持||
|[F25L004](http://www.esmt.com.tw/db/manager/upload/f25l004.pdf)|ESMT|4Mb|100Mhz|不支持||
|[PCT25VF016B](http://pctgroup.com.tw/attachments/files/files/248_25VF016B-P.pdf)|PCT|16Mb|80Mhz|不支持|SST 授权许可,会被识别为 SST25VF016B|
|[AT45DB161E](http://www.adestotech.com/wp-content/uploads/doc8782.pdf)|ADESTO|16Mb|85MHz|不支持|ADESTO 收购 Atmel 串行闪存产品线|
下表为所有已在 Demo 平台上进行过真机测试过的 Flash。显示为 **不支持** SFDP 标准的 Flash 已经在 Flash 参数信息表中定义,更多不支持 SFDP 标准的 Flash 需要大家以后 **共同来完善和维护** **([Github](https://github.com/armink/SFUD)|[OSChina](http://git.oschina.net/armink/SFUD)|[Coding](https://coding.net/u/armink/p/SFUD/git))**
如果觉得这个开源项目很赞,可以点击 [项目主页](https://github.com/armink/SFUD) 右上角的 **Star** ,同时把它推荐给更多有需要的朋友。
|型号|制造商|容量|最高速度|SFDP 标准|QSPI 模式|备注|
|:--:|:----:|:--:|:--:|:--:|:--:|----|
|[W25Q40BV](http://microchip.ua/esp8266/W25Q40BV(EOL).pdf)|Winbond|4Mb|50Mhz|不支持|双线|已停产|
|[W25Q80DV](http://www.winbond.com/resource-files/w25q80dv_revg_07212015.pdf)|Winbond|8Mb|104Mhz|支持|双线||
|[W25Q16BV](https://media.digikey.com/pdf/Data%20Sheets/Winbond%20PDFs/W25Q16BV.pdf)|Winbond|16Mb|104Mhz|不支持|双线| by [slipperstree](https://github.com/slipperstree)|
|[W25Q16CV](http://www.winbond.com/resource-files/da00-w25q16cvf1.pdf)|Winbond|16Mb|104Mhz|支持|未测试||
|[W25Q16DV](http://www.winbond.com/resource-files/w25q16dv%20revk%2005232016%20doc.pdf)|Winbond|16Mb|104Mhz|支持|未测试| by [slipperstree](https://github.com/slipperstree)|
|[W25Q32BV](http://www.winbond.com/resource-files/w25q32bv_revi_100413_wo_automotive.pdf)|Winbond|32Mb|104Mhz|支持|双线||
|[W25Q64CV](http://www.winbond.com/resource-files/w25q64cv_revh_052214[2].pdf)|Winbond|64Mb|80Mhz|支持|四线||
|[W25Q128BV](http://www.winbond.com/resource-files/w25q128bv_revh_100313_wo_automotive.pdf)|Winbond|128Mb|104Mhz|支持|四线||
|[W25Q256FV](http://www.winbond.com/resource-files/w25q256fv%20revi%2002262016%20kms.pdf)|Winbond|256Mb|104Mhz|支持|四线||
|[MX25L3206E](http://www.macronix.com/Lists/DataSheet/Attachments/3199/MX25L3206E,%203V,%2032Mb,%20v1.5.pdf)|Macronix|32Mb|86MHz|支持|双线||
|[KH25L4006E](http://www.macronix.com.hk/Lists/Datasheet/Attachments/117/KH25L4006E.pdf)|Macronix|4Mb|86Mhz|支持|未测试| by [JiapengLi](https://github.com/JiapengLi)|
|[KH25L3206E](http://www.macronix.com.hk/Lists/Datasheet/Attachments/131/KH25L3206E.pdf)|Macronix|32Mb|86Mhz|支持|双线||
|[SST25VF016B](http://ww1.microchip.com/downloads/en/DeviceDoc/20005044C.pdf)|Microchip|16Mb|50MHz|不支持|不支持| SST 已被 Microchip 收购|
|[M25P40](https://www.micron.com/~/media/documents/products/data-sheet/nor-flash/serial-nor/m25p/m25p40.pdf)|Micron|4Mb|75Mhz|不支持|未测试| by [redocCheng](https://github.com/redocCheng)|
|[M25P80](https://www.micron.com/~/media/documents/products/data-sheet/nor-flash/serial-nor/m25p/m25p80.pdf)|Micron|8Mb|75Mhz|不支持|未测试| by [redocCheng](https://github.com/redocCheng)|
|[M25P32](https://www.micron.com/~/media/documents/products/data-sheet/nor-flash/serial-nor/m25p/m25p32.pdf)|Micron|32Mb|75Mhz|不支持|不支持||
|[EN25Q32B](http://www.kean.com.au/oshw/WR703N/teardown/EN25Q32B%2032Mbit%20SPI%20Flash.pdf)|EON|32Mb|104MHz|不支持|未测试||
|[GD25Q16B](http://www.gigadevice.com/product/detail/5/410.html)|GigaDevice|16Mb|120Mhz|不支持|未测试| by [TanekLiang](https://github.com/TanekLiang) |
|[GD25Q64B](http://www.gigadevice.com/product/detail/5/364.html)|GigaDevice|64Mb|120Mhz|不支持|双线||
|[S25FL216K](http://www.cypress.com/file/197346/download)|Cypress|16Mb|65Mhz|不支持|双线||
|[S25FL032P](http://www.cypress.com/file/196861/download)|Cypress|32Mb|104Mhz|不支持|未测试| by [yc_911](https://gitee.com/yc_911) |
|[S25FL164K](http://www.cypress.com/file/196886/download)|Cypress|64Mb|108Mhz|支持|未测试||
|[A25L080](http://www.amictechnology.com/datasheets/A25L080.pdf)|AMIC|8Mb|100Mhz|不支持|双线||
|[A25LQ64](http://www.amictechnology.com/datasheets/A25LQ64.pdf)|AMIC|64Mb|104Mhz|支持|支持||
|[F25L004](http://www.esmt.com.tw/db/manager/upload/f25l004.pdf)|ESMT|4Mb|100Mhz|不支持|不支持||
|[PCT25VF016B](http://pctgroup.com.tw/attachments/files/files/248_25VF016B-P.pdf)|PCT|16Mb|80Mhz|不支持|不支持|SST 授权许可,会被识别为 SST25VF016B|
|[AT45DB161E](http://www.adestotech.com/wp-content/uploads/doc8782.pdf)|ADESTO|16Mb|85MHz|不支持|不支持|ADESTO 收购 Atmel 串行闪存产品线|
> 注:QSPI 模式中,双线表示支持双线快读,四线表示支持四线快读。
>
> 一般情况下,支持四线快读的 FLASH 也支持两线快读。
### 2.2 API 说明
......@@ -63,7 +71,7 @@
将会调用 `sfud_device_init` ,初始化 Flash 设备表中的全部设备。如果只有一个 Flash 也可以只使用 `sfud_device_init` 进行单一初始化。
> 注意:初始化完的 SPI Flash 默认都 **已取消写保护** 状态,如需开启写保护,请使用 sfud_write_status 函数修改 SPI Flash 状态。
> **注意**:初始化完的 SPI Flash 默认都 **已取消写保护** 状态,如需开启写保护,请使用 sfud_write_status 函数修改 SPI Flash 状态。
```C
sfud_err sfud_init(void)
......@@ -79,7 +87,24 @@ sfud_err sfud_device_init(sfud_flash *flash)
|:----- |:----|
|flash |待初始化的 Flash 设备|
#### 2.2.3 获取 Flash 设备对象
#### 2.2.3 使能快速读模式(仅当 SFUD 开启 QSPI 模式后可用)
当 SFUD 开启 QSPI 模式后,SFUD 中的 Flash 驱动支持使用 QSPI 总线进行通信。相比传统的 SPI 模式,使用 QSPI 能够加速 Flash 数据的读取,但当数据需要写入时,由于 Flash 本身的数据写入速度慢于 SPI 传输速度,所以 QSPI 模式下的数据写入速度提升并不明显。
所以 SFUD 对于 QSPI 模式的支持仅限于快速读命令。通过该函数可以配置 Flash 所使用的 QSPI 总线的实际支持的数据线最大宽度,例如:1 线(默认值,即传统的 SPI 模式)、2 线、4 线。
设置后,SFUD 会去结合当前设定的 QSPI 总线数据线宽度,去 [QSPI Flash 扩展信息表](https://github.com/armink/SFUD/blob/069d2b409ec239f84d675b2c3d37894e908829e6/sfud/inc/sfud_flash_def.h#L149-L177) 中匹配最合适的、速度最快的快速读命令,之后用户在调用 sfud_read() 时,会使用 QSPI 模式的传输函数发送该命令。
```C
sfud_err sfud_qspi_fast_read_enable(sfud_flash *flash, uint8_t data_line_width)
```
| 参数 | 描述 |
| :-------------- | :------------------------------------------- |
| flash | Flash 设备 |
| data_line_width | QSPI 总线支持的数据线最大宽度,例如:1、2、4 |
#### 2.2.4 获取 Flash 设备对象
在 SFUD 配置文件中会定义 Flash 设备表,负责存放所有将要使用的 Flash 设备对象,所以 SFUD 支持多个 Flash 设备同时驱动。设备表的配置在 `/sfud/inc/sfud_cfg.h``SFUD_FLASH_DEVICE_TABLE` 宏定义,详细配置方法参照 [2.3 配置方法 Flash](#23-配置方法))。本方法通过 Flash 设备位于设备表中索引值来返回 Flash 设备对象,超出设备表范围返回 `NULL`
......@@ -91,7 +116,7 @@ sfud_flash *sfud_get_device(size_t index)
|:----- |:----|
|index |Flash 设备位于 FLash 设备表中的索引值|
#### 2.2.4 读取 Flash 数据
#### 2.2.5 读取 Flash 数据
```C
sfud_err sfud_read(const sfud_flash *flash, uint32_t addr, size_t size, uint8_t *data)
......@@ -104,7 +129,7 @@ sfud_err sfud_read(const sfud_flash *flash, uint32_t addr, size_t size, uint8_t
|size |从起始地址开始读取数据的总大小|
|data |读取到的数据|
#### 2.2.5 擦除 Flash 数据
#### 2.2.6 擦除 Flash 数据
> 注意:擦除操作将会按照 Flash 芯片的擦除粒度(详见 Flash 数据手册,一般为 block 大小。初始化完成后,可以通过 `sfud_flash->chip.erase_gran` 查看)对齐,请注意保证起始地址和擦除数据大小按照 Flash 芯片的擦除粒度对齐,否则执行擦除操作后,将会导致其他数据丢失。
......@@ -118,7 +143,7 @@ sfud_err sfud_erase(const sfud_flash *flash, uint32_t addr, size_t size)
|addr |起始地址|
|size |从起始地址开始擦除数据的总大小|
#### 2.2.6 擦除 Flash 全部数据
#### 2.2.7 擦除 Flash 全部数据
```C
sfud_err sfud_chip_erase(const sfud_flash *flash)
......@@ -128,7 +153,7 @@ sfud_err sfud_chip_erase(const sfud_flash *flash)
|:----- |:----|
|flash |Flash 设备对象|
#### 2.2.7 往 Flash 写数据
#### 2.2.8 往 Flash 写数据
```C
sfud_err sfud_write(const sfud_flash *flash, uint32_t addr, size_t size, const uint8_t *data)
......@@ -141,7 +166,7 @@ sfud_err sfud_write(const sfud_flash *flash, uint32_t addr, size_t size, const u
|size |从起始地址开始写入数据的总大小|
|data |待写入的数据|
#### 2.2.8 先擦除再往 Flash 写数据
#### 2.2.9 先擦除再往 Flash 写数据
> 注意:擦除操作将会按照 Flash 芯片的擦除粒度(详见 Flash 数据手册,一般为 block 大小。初始化完成后,可以通过 `sfud_flash->chip.erase_gran` 查看)对齐,请注意保证起始地址和擦除数据大小按照 Flash 芯片的擦除粒度对齐,否则执行擦除操作后,将会导致其他数据丢失。
......@@ -156,7 +181,7 @@ sfud_err sfud_erase_write(const sfud_flash *flash, uint32_t addr, size_t size, c
|size |从起始地址开始写入数据的总大小|
|data |待写入的数据|
#### 2.2.9 读取 Flash 状态
#### 2.2.10 读取 Flash 状态
```C
sfud_err sfud_read_status(const sfud_flash *flash, uint8_t *status)
......@@ -167,7 +192,7 @@ sfud_err sfud_read_status(const sfud_flash *flash, uint8_t *status)
|flash |Flash 设备对象|
|status |当前状态寄存器值|
#### 2.2.10 写(修改) Flash 状态
#### 2.2.11 写(修改) Flash 状态
```C
sfud_err sfud_write_status(const sfud_flash *flash, bool is_volatile, uint8_t status)
......@@ -234,6 +259,12 @@ enum {
上面定义了两个 Flash 设备(大部分产品一个足以),两个设备的名称为 `"W25Q64CV"``"GD25Q64B"` ,分别对应 `"SPI1"``"SPI3"` 这两个 SPI 设备名称(在移植 SPI 接口时会用到,位于 `/sfud/port/sfud_port.c` ), `SFUD_W25Q16CV_DEVICE_INDEX``SFUD_GD25Q64B_DEVICE_INDEX` 这两个枚举定义了两个设备位于设备表中的索引,可以通过 `sfud_get_device_table()` 方法获取到设备表,再配合这个索引值来访问指定的设备。
#### 2.3.6 QSPI 模式
打开/关闭 `SFUD_USING_QSPI` 宏定义
开启后,SFUD 也将支持使用 QSPI 总线连接的 Flash。
### 2.4 移植说明
移植文件位于 `/sfud/port/sfud_port.c` ,文件中的 `sfud_err sfud_spi_port_init(sfud_flash *flash)` 方法是库提供的移植方法,在里面完成各个设备 SPI 读写驱动(必选)、重试次数(必选)、重试接口(可选)及 SPI 锁(可选)的配置。更加详细的移植内容,可以参考 demo 中的各个平台的移植文件。
......@@ -258,6 +289,7 @@ enum {
|:----- |:----|
|[/demo/stm32f10x_non_os](https://github.com/armink/SFUD/tree/master/demo/stm32f10x_non_os) |STM32F10X 裸机平台|
|[/demo/stm32f2xx_rtt](https://github.com/armink/SFUD/tree/master/demo/stm32f2xx_rtt) |STM32F2XX + [RT-Thread](http://www.rt-thread.org/) 操作系统平台|
|[/demo/stm32l475_non_os_qspi](https://github.com/armink/SFUD/tree/master/demo/stm32l475_non_os_qspi) |STM32L475 + QSPI 模式 裸机平台|
### 2.7 许可
......
/*
* This file is part of the Serial Flash Universal Driver Library.
*
* Copyright (c) 2016, Armink, <armink.ztl@gmail.com>
* Copyright (c) 2016-2018, Armink, <armink.ztl@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
......@@ -75,6 +75,23 @@ size_t sfud_get_device_num(void);
*/
const sfud_flash *sfud_get_device_table(void);
#ifdef SFUD_USING_QSPI
/**
* Enbale the fast read mode in QSPI flash mode. Default read mode is normal SPI mode.
*
* it will find the appropriate fast-read instruction to replace the read instruction(0x03)
* fast-read instruction @see SFUD_FLASH_EXT_INFO_TABLE
*
* @note When Flash is in QSPI mode, the method must be called after sfud_device_init().
*
* @param flash flash device
* @param data_line_width the data lines max width which QSPI bus supported, such as 1, 2, 4
*
* @return result
*/
sfud_err sfud_qspi_fast_read_enable(sfud_flash *flash, uint8_t data_line_width);
#endif /* SFUD_USING_QSPI */
/**
* read flash data
*
......
......@@ -45,6 +45,13 @@
#define SFUD_USING_SFDP
#endif
/**
* SFUD will support QSPI mode.
*/
#ifdef RT_SFUD_USING_QSPI
#define SFUD_USING_QSPI
#endif
/**
* Using probe flash JEDEC ID then query defined supported flash chip information table. @see SFUD_FLASH_CHIP_TABLE
*/
......
/*
* This file is part of the Serial Flash Universal Driver Library.
*
* Copyright (c) 2016, Armink, <armink.ztl@gmail.com>
* Copyright (c) 2016-2018, Armink, <armink.ztl@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
......@@ -78,7 +78,7 @@ if (!(EXPR)) \
else {if (__delay_temp) {__delay_temp();} retry --;}
/* software version number */
#define SFUD_SW_VERSION "1.0.6"
#define SFUD_SW_VERSION "1.1.0"
/*
* all defined supported command
*/
......@@ -118,6 +118,22 @@ if (!(EXPR)) \
#define SFUD_CMD_READ_DATA 0x03
#endif
#ifndef SFUD_CMD_DUAL_OUTPUT_READ_DATA
#define SFUD_CMD_DUAL_OUTPUT_READ_DATA 0x3B
#endif
#ifndef SFUD_CMD_DUAL_IO_READ_DATA
#define SFUD_CMD_DUAL_IO_READ_DATA 0xBB
#endif
#ifndef SFUD_CMD_QUAD_IO_READ_DATA
#define SFUD_CMD_QUAD_IO_READ_DATA 0xEB
#endif
#ifndef SFUD_CMD_QUAD_OUTPUT_READ_DATA
#define SFUD_CMD_QUAD_OUTPUT_READ_DATA 0x6B
#endif
#ifndef SFUD_CMD_MANUFACTURER_DEVICE_ID
#define SFUD_CMD_MANUFACTURER_DEVICE_ID 0x90
#endif
......@@ -183,6 +199,21 @@ typedef enum {
SFUD_ERR_ADDR_OUT_OF_BOUND = 5, /**< address is out of flash bound */
} sfud_err;
#ifdef SFUD_USING_QSPI
/**
* QSPI flash read cmd format
*/
typedef struct {
uint8_t instruction;
uint8_t instruction_lines;
uint8_t address_size;
uint8_t address_lines;
uint8_t alternate_bytes_lines;
uint8_t dummy_cycles;
uint8_t data_lines;
} sfud_qspi_read_cmd_format;
#endif /* SFUD_USING_QSPI */
/* SPI bus write read data function type */
typedef sfud_err (*spi_write_read_func)(const uint8_t *write_buf, size_t write_size, uint8_t *read_buf, size_t read_size);
......@@ -218,7 +249,12 @@ typedef struct __sfud_spi {
char *name;
/* SPI bus write read data function */
sfud_err (*wr)(const struct __sfud_spi *spi, const uint8_t *write_buf, size_t write_size, uint8_t *read_buf,
size_t read_size);
size_t read_size);
#ifdef SFUD_USING_QSPI
/* QSPI fast read function */
sfud_err (*qspi_read)(const struct __sfud_spi *spi, uint32_t addr, sfud_qspi_read_cmd_format *qspi_read_cmd_format,
uint8_t *read_buf, size_t read_size);
#endif
/* lock SPI bus */
void (*lock)(const struct __sfud_spi *spi);
/* unlock SPI bus */
......@@ -243,6 +279,10 @@ typedef struct {
} retry;
void *user_data; /**< some user data */
#ifdef SFUD_USING_QSPI
sfud_qspi_read_cmd_format read_cmd_format; /**< fast read cmd format */
#endif
#ifdef SFUD_USING_SFDP
sfud_sfdp sfdp; /**< serial flash discoverable parameters by JEDEC standard */
#endif
......
/*
* This file is part of the Serial Flash Universal Driver Library.
*
* Copyright (c) 2016-2017, Armink, <armink.ztl@gmail.com>
* Copyright (c) 2016-2018, Armink, <armink.ztl@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
......@@ -59,11 +59,21 @@ typedef struct {
uint8_t type_id; /**< memory type ID */
uint8_t capacity_id; /**< capacity ID */
uint32_t capacity; /**< flash capacity (bytes) */
uint16_t write_mode; /**< write mode @see sfud_write_mode */
uint16_t write_mode; /**< write mode @see sfud_write_mode */
uint32_t erase_gran; /**< erase granularity (bytes) */
uint8_t erase_gran_cmd; /**< erase granularity size block command */
} sfud_flash_chip;
#ifdef SFUD_USING_QSPI
/* QSPI flash chip's extended information compared with SPI flash */
typedef struct {
uint8_t mf_id; /**< manufacturer ID */
uint8_t type_id; /**< memory type ID */
uint8_t capacity_id; /**< capacity ID */
uint8_t read_mode; /**< supported read mode on this qspi flash chip */
} sfud_qspi_flash_ext_info;
#endif
/* SFUD support manufacturer JEDEC ID */
#define SFUD_MF_ID_CYPRESS 0x01
#define SFUD_MF_ID_FUJITSU 0x04
......@@ -131,6 +141,42 @@ typedef struct {
}
#endif /* SFUD_USING_FLASH_INFO_TABLE */
#ifdef SFUD_USING_QSPI
/* This table saves flash read-fast instructions in QSPI mode,
* SFUD can use this table to select the most appropriate read instruction for flash.
* | mf_id | type_id | capacity_id | qspi_read_mode |
*/
#define SFUD_FLASH_EXT_INFO_TABLE \
{ \
/* W25Q40BV */ \
{SFUD_MF_ID_WINBOND, 0x40, 0x13, NORMAL_SPI_READ|DUAL_OUTPUT}, \
/* W25Q80JV */ \
{SFUD_MF_ID_WINBOND, 0x40, 0x14, NORMAL_SPI_READ|DUAL_OUTPUT}, \
/* W25Q16BV */ \
{SFUD_MF_ID_WINBOND, 0x40, 0x15, NORMAL_SPI_READ|DUAL_OUTPUT}, \
/* W25Q32BV */ \
{SFUD_MF_ID_WINBOND, 0x40, 0x16, NORMAL_SPI_READ|DUAL_OUTPUT}, \
/* W25Q64JV */ \
{SFUD_MF_ID_WINBOND, 0x40, 0x17, NORMAL_SPI_READ|DUAL_OUTPUT|DUAL_IO|QUAD_OUTPUT|QUAD_IO}, \
/* W25Q128JV */ \
{SFUD_MF_ID_WINBOND, 0x40, 0x18, NORMAL_SPI_READ|DUAL_OUTPUT|DUAL_IO|QUAD_OUTPUT|QUAD_IO}, \
/* W25Q256FV */ \
{SFUD_MF_ID_WINBOND, 0x40, 0x19, NORMAL_SPI_READ|DUAL_OUTPUT|DUAL_IO|QUAD_OUTPUT|QUAD_IO}, \
/* EN25Q32B */ \
{SFUD_MF_ID_EON, 0x30, 0x16, NORMAL_SPI_READ|DUAL_OUTPUT|QUAD_IO}, \
/* S25FL216K */ \
{SFUD_MF_ID_CYPRESS, 0x40, 0x15, NORMAL_SPI_READ|DUAL_OUTPUT}, \
/* A25L080 */ \
{SFUD_MF_ID_AMIC, 0x30, 0x14, NORMAL_SPI_READ|DUAL_OUTPUT|DUAL_IO}, \
/* A25LQ64 */ \
{SFUD_MF_ID_AMIC, 0x40, 0x17, NORMAL_SPI_READ|DUAL_OUTPUT|DUAL_IO|QUAD_IO}, \
/* MX25L3206E and KH25L3206E */ \
{SFUD_MF_ID_MICRONIX, 0x20, 0x16, NORMAL_SPI_READ|DUAL_OUTPUT}, \
/* GD25Q64B */ \
{SFUD_MF_ID_GIGADEVICE, 0x40, 0x17, NORMAL_SPI_READ|DUAL_OUTPUT}, \
}
#endif /* SFUD_USING_QSPI */
#ifdef __cplusplus
}
#endif
......
/*
* This file is part of the Serial Flash Universal Driver Library.
*
* Copyright (c) 2016, Armink, <armink.ztl@gmail.com>
* Copyright (c) 2016-2018, Armink, <armink.ztl@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
......@@ -46,6 +46,22 @@ static const sfud_mf mf_table[] = SFUD_MF_TABLE;
static const sfud_flash_chip flash_chip_table[] = SFUD_FLASH_CHIP_TABLE;
#endif
#ifdef SFUD_USING_QSPI
/**
* flash read data mode
*/
enum sfud_qspi_read_mode {
NORMAL_SPI_READ = 1 << 0, /**< mormal spi read mode */
DUAL_OUTPUT = 1 << 1, /**< qspi fast read dual output */
DUAL_IO = 1 << 2, /**< qspi fast read dual input/output */
QUAD_OUTPUT = 1 << 3, /**< qspi fast read quad output */
QUAD_IO = 1 << 4, /**< qspi fast read quad input/output */
};
/* QSPI flash chip's extended information table */
static const sfud_qspi_flash_ext_info qspi_flash_ext_info_table[] = SFUD_FLASH_EXT_INFO_TABLE;
#endif /* SFUD_USING_QSPI */
static sfud_err software_init(const sfud_flash *flash);
static sfud_err hardware_init(sfud_flash *flash);
static sfud_err page256_or_1_byte_write(const sfud_flash *flash, uint32_t addr, size_t size, uint16_t write_gran,
......@@ -146,11 +162,89 @@ const sfud_flash *sfud_get_device_table(void) {
return flash_table;
}
#ifdef SFUD_USING_QSPI
static void qspi_set_read_cmd_format(sfud_flash *flash, uint8_t ins, uint8_t ins_lines, uint8_t addr_lines,
uint8_t dummy_cycles, uint8_t data_lines) {
/* if medium size greater than 16Mb, use 4-Byte address, instruction should be added one */
if (flash->chip.capacity <= 0x1000000) {
flash->read_cmd_format.instruction = ins;
flash->read_cmd_format.address_size = 24;
} else {
flash->read_cmd_format.instruction = ins + 1;
flash->read_cmd_format.address_size = 32;
}
flash->read_cmd_format.instruction_lines = ins_lines;
flash->read_cmd_format.address_lines = addr_lines;
flash->read_cmd_format.alternate_bytes_lines = 0;
flash->read_cmd_format.dummy_cycles = dummy_cycles;
flash->read_cmd_format.data_lines = data_lines;
}
/**
* Enbale the fast read mode in QSPI flash mode. Default read mode is normal SPI mode.
*
* it will find the appropriate fast-read instruction to replace the read instruction(0x03)
* fast-read instruction @see SFUD_FLASH_EXT_INFO_TABLE
*
* @note When Flash is in QSPI mode, the method must be called after sfud_device_init().
*
* @param flash flash device
* @param data_line_width the data lines max width which QSPI bus supported, such as 1, 2, 4
*
* @return result
*/
sfud_err sfud_qspi_fast_read_enable(sfud_flash *flash, uint8_t data_line_width) {
size_t i = 0;
uint8_t read_mode = NORMAL_SPI_READ;
sfud_err result = SFUD_SUCCESS;
SFUD_ASSERT(flash);
SFUD_ASSERT(data_line_width == 1 || data_line_width == 2 || data_line_width == 4);
/* get read_mode, If don't found, the default is SFUD_QSPI_NORMAL_SPI_READ */
for (i = 0; i < sizeof(qspi_flash_ext_info_table) / sizeof(sfud_qspi_flash_ext_info); i++) {
if ((qspi_flash_ext_info_table[i].mf_id == flash->chip.mf_id)
&& (qspi_flash_ext_info_table[i].type_id == flash->chip.type_id)
&& (qspi_flash_ext_info_table[i].capacity_id == flash->chip.capacity_id)) {
read_mode = qspi_flash_ext_info_table[i].read_mode;
}
}
/* determine qspi supports which read mode and set read_cmd_format struct */
switch (data_line_width) {
case 1:
qspi_set_read_cmd_format(flash, SFUD_CMD_READ_DATA, 1, 1, 0, 1);
break;
case 2:
if (read_mode & DUAL_IO) {
qspi_set_read_cmd_format(flash, SFUD_CMD_DUAL_IO_READ_DATA, 1, 2, 8, 2);
} else if (read_mode & DUAL_OUTPUT) {
qspi_set_read_cmd_format(flash, SFUD_CMD_DUAL_OUTPUT_READ_DATA, 1, 1, 8, 2);
} else {
qspi_set_read_cmd_format(flash, SFUD_CMD_READ_DATA, 1, 1, 0, 1);
}
break;
case 4:
if (read_mode & QUAD_IO) {
qspi_set_read_cmd_format(flash, SFUD_CMD_QUAD_IO_READ_DATA, 1, 4, 6, 4);
} else if (read_mode & QUAD_OUTPUT) {
qspi_set_read_cmd_format(flash, SFUD_CMD_QUAD_OUTPUT_READ_DATA, 1, 1, 8, 4);
} else {
qspi_set_read_cmd_format(flash, SFUD_CMD_READ_DATA, 1, 1, 0, 1);
}
break;
}
return result;
}
#endif /* SFUD_USING_QSPI */
/**
* hardware initialize
*/
static sfud_err hardware_init(sfud_flash *flash) {
extern sfud_err sfud_spi_port_init(sfud_flash *flash);
extern sfud_err sfud_spi_port_init(sfud_flash * flash);
sfud_err result = SFUD_SUCCESS;
size_t i;
......@@ -162,6 +256,11 @@ static sfud_err hardware_init(sfud_flash *flash) {
return result;
}
#ifdef SFUD_USING_QSPI
/* set default read instruction */
flash->read_cmd_format.instruction = SFUD_CMD_READ_DATA;
#endif /* SFUD_USING_QSPI */
/* SPI write read function must be initialize */
SFUD_ASSERT(flash->spi.wr);
/* if the user don't configure flash chip information then using SFDP parameter or static flash parameter table */
......@@ -315,10 +414,17 @@ sfud_err sfud_read(const sfud_flash *flash, uint32_t addr, size_t size, uint8_t
result = wait_busy(flash);
if (result == SFUD_SUCCESS) {
cmd_data[0] = SFUD_CMD_READ_DATA;
make_adress_byte_array(flash, addr, &cmd_data[1]);
cmd_size = flash->addr_in_4_byte ? 5 : 4;
result = spi->wr(spi, cmd_data, cmd_size, data, size);
#ifdef SFUD_USING_QSPI
if (flash->read_cmd_format.instruction != SFUD_CMD_READ_DATA) {
result = spi->qspi_read(spi, addr, (sfud_qspi_read_cmd_format *)&flash->read_cmd_format, data, size);
} else
#endif
{
cmd_data[0] = SFUD_CMD_READ_DATA;
make_adress_byte_array(flash, addr, &cmd_data[1]);
cmd_size = flash->addr_in_4_byte ? 5 : 4;
result = spi->wr(spi, cmd_data, cmd_size, data, size);
}
}
/* unlock SPI */
if (spi->unlock) {
......@@ -328,7 +434,6 @@ sfud_err sfud_read(const sfud_flash *flash, uint32_t addr, size_t size, uint8_t
return result;
}
/**
* erase all flash data
*
......@@ -498,7 +603,8 @@ static sfud_err page256_or_1_byte_write(const sfud_flash *flash, uint32_t addr,
const uint8_t *data) {
sfud_err result = SFUD_SUCCESS;
const sfud_spi *spi = &flash->spi;
uint8_t cmd_data[5 + SFUD_WRITE_MAX_PAGE_SIZE], cmd_size;
static uint8_t cmd_data[5 + SFUD_WRITE_MAX_PAGE_SIZE];
uint8_t cmd_size;
size_t data_size;
SFUD_ASSERT(flash);
......@@ -715,8 +821,16 @@ static sfud_err reset(const sfud_flash *flash) {
SFUD_ASSERT(flash);
cmd_data[0] = SFUD_CMD_ENABLE_RESET;
result = spi->wr(spi, cmd_data, 1, NULL, 0);
if (result == SFUD_SUCCESS) {
result = wait_busy(flash);
} else {
SFUD_INFO("Error: Flash device reset failed.");
return result;
}
cmd_data[1] = SFUD_CMD_RESET;
result = spi->wr(spi, cmd_data, 2, NULL, 0);
result = spi->wr(spi, &cmd_data[1], 1, NULL, 0);
if (result == SFUD_SUCCESS) {
result = wait_busy(flash);
......
......@@ -34,6 +34,8 @@ rt_err_t rt_spi_bus_register(struct rt_spi_bus *bus,
bus->ops = ops;
/* initialize owner */
bus->owner = RT_NULL;
/* set bus mode */
bus->mode = RT_SPI_BUS_MODE_SPI;
return RT_EOK;
}
......
......@@ -23,11 +23,21 @@
#ifndef RT_SFUD_DEFAULT_SPI_CFG
/* read the JEDEC SFDP command must run at 50 MHz or less */
#define RT_SFUD_DEFAULT_SPI_CFG \
{ \
.mode = RT_SPI_MODE_0 | RT_SPI_MSB, \
.data_width = 8, \
.max_hz = 50 * 1000 * 1000, \
#define RT_SFUD_DEFAULT_SPI_CFG \
{ \
.mode = RT_SPI_MODE_0 | RT_SPI_MSB, \
.data_width = 8, \
.max_hz = 50 * 1000 * 1000, \
}
#endif
#ifdef SFUD_USING_QSPI
#define RT_SFUD_DEFAULT_QSPI_CFG \
{ \
RT_SFUD_DEFAULT_SPI_CFG, \
.medium_size = 0x800000, \
.ddr_mode = 0, \
.qspi_dl_width = 4, \
}
#endif
......@@ -116,31 +126,90 @@ static sfud_err spi_write_read(const sfud_spi *spi, const uint8_t *write_buf, si
sfud_err result = SFUD_SUCCESS;
sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
#ifdef SFUD_USING_QSPI
struct rt_qspi_device *qspi_dev = RT_NULL;
#endif
if (write_size) {
RT_ASSERT(write_buf);
}
if (read_size) {
RT_ASSERT(read_buf);
}
if (write_size && read_size) {
if (rt_spi_send_then_recv(rtt_dev->rt_spi_device, write_buf, write_size, read_buf, read_size) != RT_EOK) {
result = SFUD_ERR_TIMEOUT;
}
} else if (write_size) {
if (rt_spi_send(rtt_dev->rt_spi_device, write_buf, write_size) == 0) {
result = SFUD_ERR_TIMEOUT;
#ifdef SFUD_USING_QSPI
if(rtt_dev->rt_spi_device->bus->mode & RT_SPI_BUS_MODE_QSPI) {
qspi_dev = (struct rt_qspi_device *) (rtt_dev->rt_spi_device);
if (write_size && read_size) {
if (rt_qspi_send_then_recv(qspi_dev, write_buf, write_size, read_buf, read_size) == 0) {
result = SFUD_ERR_TIMEOUT;
}
} else if (write_size) {
if (rt_qspi_send(qspi_dev, write_buf, write_size) == 0) {
result = SFUD_ERR_TIMEOUT;
}
}
} else {
if (rt_spi_recv(rtt_dev->rt_spi_device, read_buf, read_size) == 0) {
result = SFUD_ERR_TIMEOUT;
}
else
#endif
{
if (write_size && read_size) {
if (rt_spi_send_then_recv(rtt_dev->rt_spi_device, write_buf, write_size, read_buf, read_size) != RT_EOK) {
result = SFUD_ERR_TIMEOUT;
}
} else if (write_size) {
if (rt_spi_send(rtt_dev->rt_spi_device, write_buf, write_size) == 0) {
result = SFUD_ERR_TIMEOUT;
}
} else {
if (rt_spi_recv(rtt_dev->rt_spi_device, read_buf, read_size) == 0) {
result = SFUD_ERR_TIMEOUT;
}
}
}
return result;
}
#ifdef SFUD_USING_QSPI
/**
* QSPI fast read data
*/
static sfud_err qspi_read(const struct __sfud_spi *spi, uint32_t addr, sfud_qspi_read_cmd_format *qspi_read_cmd_format, uint8_t *read_buf, size_t read_size) {
struct rt_qspi_message message;
sfud_err result = SFUD_SUCCESS;
sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
struct rt_qspi_device *qspi_dev = (struct rt_qspi_device *) (rtt_dev->rt_spi_device);
/* set message struct */
message.instruction.content = qspi_read_cmd_format->instruction;
message.instruction.qspi_lines = qspi_read_cmd_format->instruction_lines;
message.address.content = addr;
message.address.size = qspi_read_cmd_format->address_size;
message.address.qspi_lines = qspi_read_cmd_format->address_lines;
message.alternate_bytes.content = 0;
message.alternate_bytes.size = 0;
message.alternate_bytes.qspi_lines = 0;
message.dummy_cycles = qspi_read_cmd_format->dummy_cycles;
message.parent.send_buf = RT_NULL;
message.parent.recv_buf = read_buf;
message.parent.length = read_size;
message.parent.cs_release = 1;
message.parent.cs_take = 1;
message.qspi_data_lines = qspi_read_cmd_format->data_lines;
if (rt_qspi_transfer_message(qspi_dev, &message) != read_size) {
result = SFUD_ERR_TIMEOUT;
}
return result;
}
#endif
static void spi_lock(const sfud_spi *spi) {
sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
......@@ -203,6 +272,9 @@ sfud_err sfud_spi_port_init(sfud_flash *flash) {
/* port SPI device interface */
flash->spi.wr = spi_write_read;
#ifdef SFUD_USING_QSPI
flash->spi.qspi_read = qspi_read;
#endif
flash->spi.lock = spi_lock;
flash->spi.unlock = spi_unlock;
flash->spi.user_data = flash;
......@@ -213,8 +285,7 @@ sfud_err sfud_spi_port_init(sfud_flash *flash) {
flash->retry.delay = retry_delay_100us;
/* 60 seconds timeout */
flash->retry.times = 60 * 10000;
return result;
}
......@@ -246,6 +317,10 @@ rt_spi_flash_device_t rt_sfud_flash_probe(const char *spi_flash_dev_name, const
* @note you also can change the SPI to other configuration after initialized finish */
struct rt_spi_configuration cfg = RT_SFUD_DEFAULT_SPI_CFG;
extern sfud_err sfud_device_init(sfud_flash *flash);
#ifdef SFUD_USING_QSPI
struct rt_qspi_configuration qspi_cfg = RT_SFUD_DEFAULT_QSPI_CFG;
struct rt_qspi_device *qspi_dev = RT_NULL;
#endif
RT_ASSERT(spi_flash_dev_name);
RT_ASSERT(spi_dev_name);
......@@ -277,7 +352,17 @@ rt_spi_flash_device_t rt_sfud_flash_probe(const char *spi_flash_dev_name, const
goto error;
}
sfud_dev->spi.name = spi_dev_name_bak;
rt_spi_configure(rtt_dev->rt_spi_device, &cfg);
#ifdef SFUD_USING_QSPI
/* set the qspi line number and configure the QSPI bus */
if(rtt_dev->rt_spi_device->bus->mode &RT_SPI_BUS_MODE_QSPI) {
qspi_dev = (struct rt_qspi_device *)rtt_dev->rt_spi_device;
qspi_cfg.qspi_dl_width = qspi_dev->config.qspi_dl_width;
rt_qspi_configure(qspi_dev, &qspi_cfg);
}
else
#endif
rt_spi_configure(rtt_dev->rt_spi_device, &cfg);
}
/* SFUD flash device initialize */
{
......@@ -296,6 +381,17 @@ rt_spi_flash_device_t rt_sfud_flash_probe(const char *spi_flash_dev_name, const
rtt_dev->geometry.sector_count = sfud_dev->chip.capacity / sfud_dev->chip.erase_gran;
rtt_dev->geometry.bytes_per_sector = sfud_dev->chip.erase_gran;
rtt_dev->geometry.block_size = sfud_dev->chip.erase_gran;
#ifdef SFUD_USING_QSPI
/* reconfigure the QSPI bus for medium size */
if(rtt_dev->rt_spi_device->bus->mode &RT_SPI_BUS_MODE_QSPI) {
qspi_cfg.medium_size = sfud_dev->chip.capacity;
rt_qspi_configure(qspi_dev, &qspi_cfg);
if(qspi_dev->enter_qspi_mode != RT_NULL)
qspi_dev->enter_qspi_mode(qspi_dev);
}
/* set data lines width */
sfud_qspi_fast_read_enable(sfud_dev, qspi_dev->config.qspi_dl_width);
#endif /* SFUD_USING_QSPI */
}
/* register device */
......@@ -402,14 +498,17 @@ static void sf(uint8_t argc, char **argv) {
} else {
char *spi_dev_name = argv[2];
rtt_dev_bak = rtt_dev;
/* delete the old SPI flash device */
if(rtt_dev_bak) {
rt_sfud_flash_delete(rtt_dev_bak);
}
rtt_dev = rt_sfud_flash_probe("sf_cmd", spi_dev_name);
if (!rtt_dev) {
return;
}
/* already probe then delete the old SPI flash device */
if(rtt_dev_bak) {
rt_sfud_flash_delete(rtt_dev_bak);
}
sfud_dev = (sfud_flash_t)rtt_dev->user_data;
if (sfud_dev->chip.capacity < 1024 * 1024) {
rt_kprintf("%d KB %s is current selected device.\n", sfud_dev->chip.capacity / 1024, sfud_dev->name);
......@@ -520,7 +619,7 @@ static void sf(uint8_t argc, char **argv) {
addr = 0;
size = sfud_dev->chip.capacity;
uint32_t start_time, time_cast;
size_t write_size = SFUD_WRITE_MAX_PAGE_SIZE, read_size = 4096;
size_t write_size = SFUD_WRITE_MAX_PAGE_SIZE, read_size = SFUD_WRITE_MAX_PAGE_SIZE;
uint8_t *write_data = rt_malloc(write_size), *read_data = rt_malloc(read_size);
if (write_data && read_data) {
......@@ -561,6 +660,13 @@ static void sf(uint8_t argc, char **argv) {
} else {
result = sfud_read(sfud_dev, addr + i, size - i, read_data);
}
/* data check */
if (memcmp(write_data, read_data, read_size))
{
rt_kprintf("Data check ERROR! Please check you flash by other command.\n");
result = SFUD_ERR_READ;
}
if (result != SFUD_SUCCESS) {
break;
}
......
......@@ -12,6 +12,7 @@
#define _SPI_FLASH_SFUD_H_
#include <rtthread.h>
#include <rtdevice.h>
#include "./sfud/inc/sfud.h"
#include "spi_flash.h"
......
此差异已折叠。
......@@ -18,8 +18,10 @@
* @param rbb ring block buffer object
* @param buf buffer
* @param buf_size buffer size
* @param block_set
* @param blk_max_num
* @param block_set block set
* @param blk_max_num max block number
*
* @note When your application need align access, please make the buffer address is aligned.
*/
void rt_rbb_init(rt_rbb_t rbb, rt_uint8_t *buf, rt_size_t buf_size, rt_rbb_blk_t block_set, rt_size_t blk_max_num)
{
......@@ -123,6 +125,8 @@ static rt_rbb_blk_t find_empty_blk_in_set(rt_rbb_t rbb)
* @param rbb ring block buffer object
* @param blk_size block size
*
* @note When your application need align access, please make the blk_szie is aligned.
*
* @return != NULL: allocated block
* NULL: allocate failed
*/
......@@ -133,7 +137,7 @@ rt_rbb_blk_t rt_rbb_blk_alloc(rt_rbb_t rbb, rt_size_t blk_size)
rt_rbb_blk_t head, tail, new = NULL;
RT_ASSERT(rbb);
RT_ASSERT(blk_size < 1L << 24);
RT_ASSERT(blk_size < (1L << 24));
level = rt_hw_interrupt_disable();
......@@ -277,6 +281,36 @@ __exit:
}
RTM_EXPORT(rt_rbb_blk_get);
/**
* return the block size
*
* @param block the block
*
* @return block size
*/
rt_size_t rt_rbb_blk_size(rt_rbb_blk_t block)
{
RT_ASSERT(block);
return block->size;
}
RTM_EXPORT(rt_rbb_blk_size);
/**
* return the block buffer
*
* @param block the block
*
* @return block buffer
*/
rt_uint8_t *rt_rbb_blk_buf(rt_rbb_blk_t block)
{
RT_ASSERT(block);
return block->buf;
}
RTM_EXPORT(rt_rbb_blk_buf);
/**
* free the block
*
......
......@@ -194,7 +194,18 @@ static rt_err_t _get_descriptor(struct udevice* device, ureq_t setup)
_get_string_descriptor(device, setup);
break;
case USB_DESC_TYPE_DEVICEQUALIFIER:
_get_qualifier_descriptor(device, setup);
/* If a full-speed only device (with a device descriptor version number equal to 0200H) receives a
GetDescriptor() request for a device_qualifier, it must respond with a request error. The host must not make
a request for an other_speed_configuration descriptor unless it first successfully retrieves the
device_qualifier descriptor. */
if(device->dcd->device_is_hs)
{
_get_qualifier_descriptor(device, setup);
}
else
{
rt_usbd_ep0_set_stall(device);
}
break;
case USB_DESC_TYPE_OTHERSPEED:
_get_config_descriptor(device, setup);
......
......@@ -145,7 +145,10 @@ rt_err_t rt_wlan_dev_ap_start(struct rt_wlan_device *device, struct rt_wlan_info
rt_memset(&ap_info, 0, sizeof(struct rt_ap_info));
rt_memcpy(&ap_info.ssid, &info->ssid, sizeof(rt_wlan_ssid_t));
rt_memcpy(ap_info.key.val, password, password_len);
if (password != RT_NULL)
{
rt_memcpy(ap_info.key.val, password, password_len);
}
ap_info.key.len = password_len;
ap_info.hidden = info->hidden;
ap_info.channel = info->channel;
......@@ -184,13 +187,21 @@ rt_err_t rt_wlan_dev_ap_deauth(struct rt_wlan_device *device, rt_uint8_t mac[6])
int rt_wlan_dev_get_rssi(struct rt_wlan_device *device)
{
int rssi = 0;
rt_err_t result = RT_EOK;
if (device == RT_NULL)
{
return -RT_EIO;
rt_set_errno(-RT_EIO);
return 0;
}
result = rt_device_control(RT_DEVICE(device), RT_WLAN_CMD_GET_RSSI, &rssi);
if (result != RT_EOK)
{
rt_set_errno(result);
return 0;
}
rt_device_control(RT_DEVICE(device), RT_WLAN_CMD_GET_RSSI, &rssi);
return rssi;
}
......@@ -235,14 +246,20 @@ rt_err_t rt_wlan_dev_set_powersave(struct rt_wlan_device *device, int level)
int rt_wlan_dev_get_powersave(struct rt_wlan_device *device)
{
int level = 0;
int level = -1;
rt_err_t result = RT_EOK;
if (device == RT_NULL)
{
rt_set_errno(-RT_EIO);
return -1;
}
rt_device_control(RT_DEVICE(device), RT_WLAN_CMD_GET_POWERSAVE, &level);
result = rt_device_control(RT_DEVICE(device), RT_WLAN_CMD_GET_POWERSAVE, &level);
if (result != RT_EOK)
{
rt_set_errno(result);
}
return level;
}
......@@ -432,19 +449,21 @@ rt_err_t rt_wlan_dev_set_channel(struct rt_wlan_device *device, int channel)
return result;
}
rt_err_t rt_wlan_dev_get_channel(struct rt_wlan_device *device)
int rt_wlan_dev_get_channel(struct rt_wlan_device *device)
{
rt_err_t result = RT_EOK;
int channel;
int channel = -1;
if (device == RT_NULL)
{
return -RT_EIO;
rt_set_errno(-RT_EIO);
return -1;
}
result = rt_device_control(RT_DEVICE(device), RT_WLAN_CMD_GET_CHANNEL, &channel);
if (result != RT_EOK)
{
rt_set_errno(result);
return -1;
}
......@@ -466,17 +485,19 @@ rt_err_t rt_wlan_dev_set_country(struct rt_wlan_device *device, rt_country_code_
rt_country_code_t rt_wlan_dev_get_country(struct rt_wlan_device *device)
{
int result = 0;
int result = RT_EOK;
rt_country_code_t country_code = RT_COUNTRY_UNKNOWN;
if (device == RT_NULL)
{
return country_code;
rt_set_errno(-RT_EIO);
return RT_COUNTRY_UNKNOWN;
}
result = rt_device_control(RT_DEVICE(device), RT_WLAN_CMD_GET_COUNTRY, &country_code);
if (result != RT_EOK)
{
rt_set_errno(result);
return RT_COUNTRY_UNKNOWN;
}
......@@ -641,7 +662,7 @@ static rt_err_t _rt_wlan_dev_control(rt_device_t dev, int cmd, void *args)
LOG_D("%s %d cmd[%d]:%s run......", __FUNCTION__, __LINE__, RT_WLAN_CMD_SET_POWERSAVE, "RT_WLAN_CMD_SET_POWERSAVE");
if (wlan->ops->wlan_set_powersave)
wlan->ops->wlan_set_powersave(wlan, level);
err = wlan->ops->wlan_set_powersave(wlan, level);
break;
}
case RT_WLAN_CMD_GET_POWERSAVE:
......@@ -659,7 +680,7 @@ static rt_err_t _rt_wlan_dev_control(rt_device_t dev, int cmd, void *args)
LOG_D("%s %d cmd[%d]:%s run......", __FUNCTION__, __LINE__, RT_WLAN_CMD_CFG_PROMISC, "RT_WLAN_CMD_CFG_PROMISC");
if (wlan->ops->wlan_cfg_promisc)
wlan->ops->wlan_cfg_promisc(wlan, start);
err = wlan->ops->wlan_cfg_promisc(wlan, start);
break;
}
case RT_WLAN_CMD_CFG_FILTER:
......@@ -668,7 +689,7 @@ static rt_err_t _rt_wlan_dev_control(rt_device_t dev, int cmd, void *args)
LOG_D("%s %d cmd[%d]:%s run......", __FUNCTION__, __LINE__, RT_WLAN_CMD_CFG_FILTER, "RT_WLAN_CMD_CFG_FILTER");
if (wlan->ops->wlan_cfg_filter)
wlan->ops->wlan_cfg_filter(wlan, filter);
err = wlan->ops->wlan_cfg_filter(wlan, filter);
break;
}
case RT_WLAN_CMD_SET_CHANNEL:
......@@ -676,7 +697,7 @@ static rt_err_t _rt_wlan_dev_control(rt_device_t dev, int cmd, void *args)
int channel = *(int *)args;
LOG_D("%s %d cmd[%d]:%s run......", __FUNCTION__, __LINE__, RT_WLAN_CMD_SET_CHANNEL, "RT_WLAN_CMD_SET_CHANNEL");
if (wlan->ops->wlan_set_channel)
wlan->ops->wlan_set_channel(wlan, channel);
err = wlan->ops->wlan_set_channel(wlan, channel);
break;
}
case RT_WLAN_CMD_GET_CHANNEL:
......@@ -694,7 +715,7 @@ static rt_err_t _rt_wlan_dev_control(rt_device_t dev, int cmd, void *args)
LOG_D("%s %d cmd[%d]:%s run......", __FUNCTION__, __LINE__, RT_WLAN_CMD_SET_COUNTRY, "RT_WLAN_CMD_SET_COUNTRY");
if (wlan->ops->wlan_set_country)
wlan->ops->wlan_set_country(wlan, country);
err = wlan->ops->wlan_set_country(wlan, country);
break;
}
case RT_WLAN_CMD_GET_COUNTRY:
......@@ -711,7 +732,7 @@ static rt_err_t _rt_wlan_dev_control(rt_device_t dev, int cmd, void *args)
LOG_D("%s %d cmd[%d]:%s run......", __FUNCTION__, __LINE__, RT_WLAN_CMD_SET_MAC, "RT_WLAN_CMD_SET_MAC");
if (wlan->ops->wlan_set_mac)
wlan->ops->wlan_set_mac(wlan, mac);
err = wlan->ops->wlan_set_mac(wlan, mac);
break;
}
case RT_WLAN_CMD_GET_MAC:
......@@ -720,7 +741,7 @@ static rt_err_t _rt_wlan_dev_control(rt_device_t dev, int cmd, void *args)
LOG_D("%s %d cmd[%d]:%s run......", __FUNCTION__, __LINE__, RT_WLAN_CMD_GET_MAC, "RT_WLAN_CMD_GET_MAC");
if (wlan->ops->wlan_get_mac)
wlan->ops->wlan_get_mac(wlan, mac);
err = wlan->ops->wlan_get_mac(wlan, mac);
break;
}
default:
......@@ -733,22 +754,16 @@ static rt_err_t _rt_wlan_dev_control(rt_device_t dev, int cmd, void *args)
return err;
}
struct rt_wlan_device *rt_wlan_dev_register(const char *name, const struct rt_wlan_dev_ops *ops, rt_uint32_t flag, void *user_data)
rt_err_t rt_wlan_dev_register(struct rt_wlan_device *wlan, const char *name, const struct rt_wlan_dev_ops *ops, rt_uint32_t flag, void *user_data)
{
struct rt_wlan_device *wlan;
rt_err_t err = RT_EOK;
if (name == RT_NULL || ops == RT_NULL)
if ((wlan == RT_NULL) || (name == RT_NULL) || (ops == RT_NULL))
{
LOG_E("F:%s L:%d parameter Wrongful", __FUNCTION__, __LINE__);
return RT_NULL;
}
wlan = rt_malloc(sizeof(struct rt_wlan_device));
if (wlan == RT_NULL)
{
LOG_E("F:%s L:%d", __FUNCTION__, __LINE__);
return RT_NULL;
}
rt_memset(wlan, 0, sizeof(struct rt_wlan_device));
wlan->device.init = _rt_wlan_dev_init;
......@@ -765,9 +780,9 @@ struct rt_wlan_device *rt_wlan_dev_register(const char *name, const struct rt_wl
wlan->user_data = user_data;
wlan->flags = flag;
rt_device_register(&wlan->device, name, RT_DEVICE_FLAG_RDWR);
err = rt_device_register(&wlan->device, name, RT_DEVICE_FLAG_RDWR);
LOG_D("F:%s L:%d run", __FUNCTION__, __LINE__);
return wlan;
return err;
}
......@@ -559,7 +559,7 @@ rt_err_t rt_wlan_dev_cfg_filter(struct rt_wlan_device *device, struct rt_wlan_fi
* wlan device channel interface
*/
rt_err_t rt_wlan_dev_set_channel(struct rt_wlan_device *device, int channel);
rt_err_t rt_wlan_dev_get_channel(struct rt_wlan_device *device);
int rt_wlan_dev_get_channel(struct rt_wlan_device *device);
/*
* wlan device country interface
......@@ -576,7 +576,8 @@ rt_err_t rt_wlan_dev_report_data(struct rt_wlan_device *device, void *buff, int
/*
* wlan device register interface
*/
struct rt_wlan_device *rt_wlan_dev_register(const char *name, const struct rt_wlan_dev_ops *ops, rt_uint32_t flag, void *user_data);
rt_err_t rt_wlan_dev_register(struct rt_wlan_device *wlan, const char *name,
const struct rt_wlan_dev_ops *ops, rt_uint32_t flag, void *user_data);
#ifdef __cplusplus
}
......
......@@ -1320,7 +1320,10 @@ rt_err_t rt_wlan_start_ap_adv(struct rt_wlan_info *info, const char *password)
return -RT_EIO;
}
RT_WLAN_LOG_D("%s is run", __FUNCTION__);
password_len = rt_strlen(password);
if (password != RT_NULL)
{
password_len = rt_strlen(password);
}
if (password_len > RT_WLAN_PASSWORD_MAX_LENGTH)
{
RT_WLAN_LOG_E("key is to long! len:%d", password_len);
......@@ -1358,16 +1361,16 @@ rt_err_t rt_wlan_start_ap_adv(struct rt_wlan_info *info, const char *password)
return err;
}
int rt_wlan_ap_is_active(void)
rt_bool_t rt_wlan_ap_is_active(void)
{
int _active = 0;
rt_bool_t _active = RT_FALSE;
if (_ap_is_null())
{
return 0;
return RT_FALSE;
}
_active = _ap_mgnt.state & RT_WLAN_STATE_ACTIVE ? 1 : 0;
_active = _ap_mgnt.state & RT_WLAN_STATE_ACTIVE ? RT_TRUE : RT_FALSE;
RT_WLAN_LOG_D("%s is run active:%s", __FUNCTION__, _active ? "Active" : "Inactive");
return _active;
}
......
......@@ -97,7 +97,7 @@ int rt_wlan_get_rssi(void);
*/
rt_err_t rt_wlan_start_ap(const char *ssid, const char *password);
rt_err_t rt_wlan_start_ap_adv(struct rt_wlan_info *info, const char *password);
int rt_wlan_ap_is_active(void);
rt_bool_t rt_wlan_ap_is_active(void);
rt_err_t rt_wlan_ap_stop(void);
rt_err_t rt_wlan_ap_get_info(struct rt_wlan_info *info);
int rt_wlan_ap_get_sta_num(void);
......
......@@ -199,7 +199,7 @@ long list_sem(void)
return _list_sem(&info->object_list);
}
FINSH_FUNCTION_EXPORT(list_sem, list semaphone in system);
FINSH_FUNCTION_EXPORT(list_sem, list semaphore in system);
MSH_CMD_EXPORT(list_sem, list semaphore in system);
#endif
......
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
*/
#ifndef SYS_ERRNO_H__
#define SYS_ERRNO_H__
#include <rtthread.h>
#endif
......@@ -21,6 +21,11 @@ config RT_USING_SAL
bool "Support AT Commands stack"
default y
depends on AT_USING_SOCKET
config SAL_USING_TLS
bool "Support MbedTLS protocol"
default y
depends on PKG_USING_MBEDTLS
endmenu
endif
......
......@@ -622,8 +622,20 @@ int at_recvfrom(int socket, void *mem, size_t len, int flags, struct sockaddr *f
goto __exit;
}
sock->state = AT_SOCKET_CONNECT;
/* set AT socket receive data callback function */
at_dev_ops->at_set_event_cb(AT_SOCKET_EVT_RECV, at_recv_notice_cb);
at_dev_ops->at_set_event_cb(AT_SOCKET_EVT_CLOSED, at_closed_notice_cb);
}
/* receive packet list last transmission of remaining data */
rt_mutex_take(sock->recv_lock, RT_WAITING_FOREVER);
if((recv_len = at_recvpkt_get(&(sock->recvpkt_list), (char *)mem, len)) > 0)
{
rt_mutex_release(sock->recv_lock);
goto __exit;
}
rt_mutex_release(sock->recv_lock);
/* socket passively closed, receive function return 0 */
if (sock->state == AT_SOCKET_CLOSED)
{
......@@ -637,15 +649,6 @@ int at_recvfrom(int socket, void *mem, size_t len, int flags, struct sockaddr *f
goto __exit;
}
/* receive packet list last transmission of remaining data */
rt_mutex_take(sock->recv_lock, RT_WAITING_FOREVER);
if((recv_len = at_recvpkt_get(&(sock->recvpkt_list), (char *)mem, len)) > 0)
{
rt_mutex_release(sock->recv_lock);
goto __exit;
}
rt_mutex_release(sock->recv_lock);
/* non-blocking sockets receive data */
if (flags & MSG_DONTWAIT)
{
......
......@@ -15,10 +15,13 @@ if GetDepend('SAL_USING_LWIP'):
if GetDepend('SAL_USING_AT'):
src += Glob('impl/af_inet_at.c')
if GetDepend('SAL_USING_LWIP') or GetDepend('SAL_USING_AT'):
CPPPATH += [cwd + '/impl']
if GetDepend('SAL_USING_TLS'):
src += Glob('impl/proto_mbedtls.c')
if GetDepend('SAL_USING_POSIX'):
CPPPATH += [cwd + '/include/dfs_net']
src += Glob('socket/net_sockets.c')
......
......@@ -62,7 +62,7 @@ static int at_poll(struct dfs_fd *file, struct rt_pollreq *req)
}
#endif
static const struct proto_ops at_inet_stream_ops =
static const struct sal_socket_ops at_socket_ops =
{
at_socket,
at_closesocket,
......@@ -90,25 +90,30 @@ static int at_create(struct sal_socket *socket, int type, int protocol)
//TODO Check type & protocol
socket->ops = &at_inet_stream_ops;
socket->ops = &at_socket_ops;
return 0;
}
static const struct proto_family at_inet_family_ops = {
"at",
AF_AT,
AF_INET,
at_create,
static struct sal_proto_ops at_proto_ops =
{
at_gethostbyname,
NULL,
at_freeaddrinfo,
at_getaddrinfo,
at_freeaddrinfo,
};
static const struct sal_proto_family at_inet_family =
{
AF_AT,
AF_INET,
at_create,
&at_proto_ops,
};
int at_inet_init(void)
{
sal_proto_family_register(&at_inet_family_ops);
sal_proto_family_register(&at_inet_family);
return 0;
}
......
......@@ -259,7 +259,8 @@ static int inet_poll(struct dfs_fd *file, struct rt_pollreq *req)
}
#endif
static const struct proto_ops lwip_inet_stream_ops = {
static const struct sal_socket_ops lwip_socket_ops =
{
inet_socket,
lwip_close,
lwip_bind,
......@@ -286,25 +287,30 @@ static int inet_create(struct sal_socket *socket, int type, int protocol)
//TODO Check type & protocol
socket->ops = &lwip_inet_stream_ops;
socket->ops = &lwip_socket_ops;
return 0;
}
static const struct proto_family lwip_inet_family_ops = {
"lwip",
AF_INET,
AF_INET,
inet_create,
static struct sal_proto_ops lwip_proto_ops =
{
lwip_gethostbyname,
lwip_gethostbyname_r,
lwip_freeaddrinfo,
lwip_getaddrinfo,
lwip_freeaddrinfo,
};
static const struct sal_proto_family lwip_inet_family =
{
AF_INET,
AF_INET,
inet_create,
&lwip_proto_ops,
};
int lwip_inet_init(void)
{
sal_proto_family_register(&lwip_inet_family_ops);
sal_proto_family_register(&lwip_inet_family);
return 0;
}
......
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-12 ChenYong First version
*/
#include <rtthread.h>
#ifdef RT_USING_DFS
#include <dfs_posix.h>
#endif
#ifdef SAL_USING_TLS
#include <sal_tls.h>
#endif
#include <netdb.h>
#include <sal.h>
#ifdef SAL_USING_TLS
#if !defined(MBEDTLS_CONFIG_FILE)
#include <mbedtls/config.h>
#else
#include MBEDTLS_CONFIG_FILE
#endif
#include <tls_certificate.h>
#include <tls_client.h>
#ifndef SAL_MEBDTLS_BUFFER_LEN
#define SAL_MEBDTLS_BUFFER_LEN 1024
#endif
static void *mebdtls_socket(int socket)
{
MbedTLSSession *session = RT_NULL;
char *pers = "mbedtls";
if (socket < 0)
{
return RT_NULL;
}
session = (MbedTLSSession *) tls_calloc(1, sizeof(MbedTLSSession));
if (session == RT_NULL)
{
return RT_NULL;
}
session->buffer_len = SAL_MEBDTLS_BUFFER_LEN;
session->buffer = tls_calloc(1, session->buffer_len);
if (session->buffer == RT_NULL)
{
tls_free(session);
session = RT_NULL;
return RT_NULL;
}
/* initialize TLS Client sesison */
if (mbedtls_client_init(session, (void *) pers, rt_strlen(pers)) != RT_EOK)
{
mbedtls_client_close(session);
return RT_NULL;
}
session->server_fd.fd = socket;
return (void *)session;
}
int mbedtls_net_send_cb(void *ctx, const unsigned char *buf, size_t len)
{
struct sal_socket *sock;
int socket, ret;
RT_ASSERT(ctx);
RT_ASSERT(buf);
socket = ((mbedtls_net_context *) ctx)->fd;
sock = sal_get_socket(socket);
if (sock == RT_NULL)
{
return -1;
}
/* Register scoket sendto option to TLS send data callback */
ret = sock->ops->sendto((int) sock->user_data, (void *)buf, len, 0, RT_NULL, RT_NULL);
if (ret < 0)
{
#ifdef RT_USING_DFS
if ((fcntl(socket, F_GETFL) & O_NONBLOCK) == O_NONBLOCK)
return MBEDTLS_ERR_SSL_WANT_WRITE;
#endif
if (errno == ECONNRESET)
return MBEDTLS_ERR_NET_CONN_RESET;
if ( errno == EINTR)
return MBEDTLS_ERR_SSL_WANT_READ;
return MBEDTLS_ERR_NET_SEND_FAILED ;
}
return ret;
}
int mbedtls_net_recv_cb( void *ctx, unsigned char *buf, size_t len)
{
struct sal_socket *sock;
int socket, ret;
RT_ASSERT(ctx);
RT_ASSERT(buf);
socket = ((mbedtls_net_context *) ctx)->fd;
sock = sal_get_socket(socket);
if (sock == RT_NULL)
{
return -1;
}
/* Register scoket recvfrom option to TLS recv data callback */
ret = sock->ops->recvfrom((int) sock->user_data, (void *)buf, len, 0, RT_NULL, RT_NULL);
if (ret < 0)
{
#ifdef RT_USING_DFS
if ((fcntl(socket, F_GETFL) & O_NONBLOCK) == O_NONBLOCK)
return MBEDTLS_ERR_SSL_WANT_WRITE;
#endif
if (errno == ECONNRESET)
return MBEDTLS_ERR_NET_CONN_RESET;
if ( errno == EINTR)
return MBEDTLS_ERR_SSL_WANT_READ;
return MBEDTLS_ERR_NET_RECV_FAILED ;
}
return ret;
}
static int mbedtls_connect(void *sock)
{
MbedTLSSession *session = RT_NULL;
int ret = 0;
RT_ASSERT(sock);
session = (MbedTLSSession *) sock;
/* Set the SSL Configure infromation */
ret = mbedtls_client_context(session);
if (ret < 0)
{
goto __exit;
}
/* Set the underlying BIO callbacks for write, read and read-with-timeout. */
mbedtls_ssl_set_bio(&session->ssl, &session->server_fd, mbedtls_net_send_cb, mbedtls_net_recv_cb, RT_NULL);
while ((ret = mbedtls_ssl_handshake(&session->ssl)) != 0)
{
if (ret != MBEDTLS_ERR_SSL_WANT_READ && ret != MBEDTLS_ERR_SSL_WANT_WRITE)
{
goto __exit;
}
}
/* Return the result of the certificate verification */
ret = mbedtls_ssl_get_verify_result(&session->ssl);
if (ret != 0)
{
rt_memset(session->buffer, 0x00, session->buffer_len);
mbedtls_x509_crt_verify_info((char *)session->buffer, session->buffer_len, " ! ", ret);
goto __exit;
}
return ret;
__exit:
if (session)
{
mbedtls_client_close(session);
}
return ret;
}
static int mbedtls_closesocket(void *sock)
{
struct sal_socket *ssock;
int socket;
if (sock == RT_NULL)
{
return 0;
}
socket = ((MbedTLSSession *) sock)->server_fd.fd;
ssock = sal_get_socket(socket);
if (ssock == RT_NULL)
{
return -1;
}
/* Close TLS client session, and clean user-data in SAL socket */
mbedtls_client_close((MbedTLSSession *) sock);
ssock->user_data_tls = RT_NULL;
return 0;
}
static const struct sal_proto_tls_ops mbedtls_proto_ops=
{
RT_NULL,
mebdtls_socket,
mbedtls_connect,
(int (*)(void *sock, const void *data, size_t size)) mbedtls_client_write,
(int (*)(void *sock, void *mem, size_t len)) mbedtls_client_read,
mbedtls_closesocket,
};
static const struct sal_proto_tls mbedtls_proto =
{
"mbedtls",
&mbedtls_proto_ops,
};
int sal_mbedtls_proto_init(void)
{
/* register MbedTLS protocol options to SAL */
sal_proto_tls_register(&mbedtls_proto);
return 0;
}
INIT_COMPONENT_EXPORT(sal_mbedtls_proto_init);
#endif /* SAL_USING_TLS */
......@@ -25,7 +25,7 @@ extern "C" {
typedef uint32_t socklen_t;
#endif
/* sal socket magic word */
/* SAL socket magic word */
#define SAL_SOCKET_MAGIC 0x5A10
/* The maximum number of sockets structure */
......@@ -38,12 +38,12 @@ typedef uint32_t socklen_t;
#define SAL_PROTO_FAMILIES_NUM 4
#endif
/* sal socket offset */
/* SAL socket offset */
#ifndef SAL_SOCKET_OFFSET
#define SAL_SOCKET_OFFSET 0
#endif
struct proto_ops
struct sal_socket_ops
{
int (*socket) (int domain, int type, int protocol);
int (*closesocket)(int s);
......@@ -64,30 +64,38 @@ struct proto_ops
#endif
};
struct sal_proto_ops
{
struct hostent* (*gethostbyname) (const char *name);
int (*gethostbyname_r)(const char *name, struct hostent *ret, char *buf, size_t buflen, struct hostent **result, int *h_errnop);
int (*getaddrinfo) (const char *nodename, const char *servname, const struct addrinfo *hints, struct addrinfo **res);
void (*freeaddrinfo) (struct addrinfo *ai);
};
struct sal_socket
{
uint32_t magic; /* sal socket magic word */
uint32_t magic; /* SAL socket magic word */
int socket; /* sal socket descriptor */
int socket; /* SAL socket descriptor */
int domain;
int type;
int protocol;
const struct proto_ops *ops; /* socket options */
void *user_data; /* specific sal socket data */
const struct sal_socket_ops *ops; /* socket options */
void *user_data; /* user-specific data */
#ifdef SAL_USING_TLS
void *user_data_tls; /* user-specific TLS data */
#endif
};
struct proto_family
struct sal_proto_family
{
char name[RT_NAME_MAX];
int family; /* primary protocol families type */
int sec_family; /* secondary protocol families type */
int (*create)(struct sal_socket *sal_socket, int type, int protocol); /* register socket options */
int (*create)(struct sal_socket *sal_socket, int type, int protocol); /* register socket options */
struct hostent* (*gethostbyname) (const char *name);
int (*gethostbyname_r)(const char *name, struct hostent *ret, char *buf, size_t buflen, struct hostent **result, int *h_errnop);
void (*freeaddrinfo) (struct addrinfo *ai);
int (*getaddrinfo) (const char *nodename, const char *servname, const struct addrinfo *hints, struct addrinfo **res);
struct sal_proto_ops *ops; /* protocol family options */
};
/* SAL(Socket Abstraction Layer) initialize */
......@@ -95,10 +103,11 @@ int sal_init(void);
struct sal_socket *sal_get_socket(int sock);
/* protocol family register and unregister operate */
int sal_proto_family_register(const struct proto_family *pf);
int sal_proto_family_unregister(const struct proto_family *pf);
struct proto_family *sal_proto_family_find(const char *name);
/* SAL protocol family register and unregister operate */
int sal_proto_family_register(const struct sal_proto_family *pf);
int sal_proto_family_unregister(int family);
rt_bool_t sal_proto_family_is_registered(int family);
struct sal_proto_family *sal_proto_family_find(int family);
#ifdef __cplusplus
}
......
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-10 ChenYong First version
*/
#ifndef __SAL_TLS_H__
#define __SAL_TLS_H__
#ifdef __cplusplus
extern "C" {
#endif
#include <rtthread.h>
/* Protocol level for TLS.
* Here, the same socket protocol level for TLS as in Linux was used.
*/
#define SOL_TLS 282
/* Socket options for TLS */
/* Socket option to select TLS credentials to use. */
#define TLS_CRET_LIST 1
/* Socket option to set select ciphersuites to use. */
#define TLS_CIPHERSUITE_LIST 2
/* Socket option to set peer verification level for TLS connection. */
#define TLS_PEER_VERIFY 3
/* Socket option to set role for DTLS connection. */
#define TLS_DTLS_ROLE 4
/* Protocol numbers for TLS protocols */
#define PROTOCOL_TLS 256
#define PROTOCOL_DTLS 257
struct sal_proto_tls_ops
{
int (*init)(void);
void* (*socket)(int socket);
int (*connect)(void *sock);
int (*send)(void *sock, const void *data, size_t size);
int (*recv)(void *sock, void *mem, size_t len);
int (*closesocket)(void *sock);
int (*set_cret_list)(void *sock, const void *cert, size_t size); /* Set TLS credentials */
int (*set_ciphersurite)(void *sock, const void* ciphersurite, size_t size); /* Set select ciphersuites */
int (*set_peer_verify)(void *sock, const void* peer_verify, size_t size); /* Set peer verification */
int (*set_dtls_role)(void *sock, const void *dtls_role, size_t size); /* Set role for DTLS */
};
struct sal_proto_tls
{
char name[RT_NAME_MAX]; /* TLS protocol name */
const struct sal_proto_tls_ops *ops; /* SAL TLS protocol options */
};
/* SAL TLS protocol register */
int sal_proto_tls_register(const struct sal_proto_tls *pt);
#ifdef __cplusplus
}
#endif
#endif /* __SAL_TLS_H__ */
......@@ -14,6 +14,9 @@
#include <rtthread.h>
#include <sal_socket.h>
#ifdef SAL_USING_TLS
#include <sal_tls.h>
#endif
#ifdef __cplusplus
extern "C" {
......
......@@ -6,6 +6,7 @@
* Change Logs:
* Date Author Notes
* 2018-05-23 ChenYong First version
* 2018-11-12 ChenYong Add TLS support
*/
#include <rtthread.h>
......@@ -13,6 +14,9 @@
#include <sal_socket.h>
#include <sal_netdb.h>
#ifdef SAL_USING_TLS
#include <sal_tls.h>
#endif
#include <sal.h>
#define DBG_ENABLE
......@@ -30,13 +34,32 @@ struct sal_socket_table
struct sal_socket **sockets;
};
#ifdef SAL_USING_TLS
/* The global TLS protocol options */
static struct sal_proto_tls *proto_tls;
#endif
/* The global array of available protocol families */
static struct proto_family proto_families[SAL_PROTO_FAMILIES_NUM];
static struct sal_proto_family proto_families[SAL_PROTO_FAMILIES_NUM];
/* The global socket table */
static struct sal_socket_table socket_table;
static struct rt_mutex sal_core_lock;
static rt_bool_t init_ok = RT_FALSE;
#define IS_SOCKET_PROTO_TLS(sock) (((sock)->protocol == PROTOCOL_TLS) || \
((sock)->protocol == PROTOCOL_DTLS))
#define SAL_SOCKOPS_PROTO_TLS_VALID(sock, name) (proto_tls && (proto_tls->ops->name) && IS_SOCKET_PROTO_TLS(sock))
#define SAL_SOCKOPT_PROTO_TLS_EXEC(sock, name, optval, optlen) \
do \
{ \
if (SAL_SOCKOPS_PROTO_TLS_VALID(sock, name)) \
{ \
return proto_tls->ops->name((sock)->user_data_tls, (optval), (optlen)); \
} \
}while(0) \
/**
* SAL (Socket Abstraction Layer) initialize.
*
......@@ -47,7 +70,7 @@ int sal_init(void)
{
int cn;
if(init_ok)
if (init_ok)
{
LOG_D("Socket Abstraction Layer is already initialized.");
return 0;
......@@ -73,15 +96,32 @@ int sal_init(void)
}
INIT_COMPONENT_EXPORT(sal_init);
/**
* This function will register TLS protocol to the global TLS protocol.
*
* @param pt TLS protocol object
*
* @return 0: TLS protocol object register success
*/
#ifdef SAL_USING_TLS
int sal_proto_tls_register(const struct sal_proto_tls *pt)
{
RT_ASSERT(pt);
proto_tls = (struct sal_proto_tls *) pt;
return 0;
}
#endif
/**
* This function will register protocol family to the global array of protocol families.
*
* @param pf protocol family object
*
* @return 0 : protocol family object register success
* -1 : the global array of available protocol families is full
* @return 0: protocol family object register success
* -1: the global array of available protocol families is full
*/
int sal_proto_family_register(const struct proto_family *pf)
int sal_proto_family_register(const struct sal_proto_family *pf)
{
rt_base_t level;
int idx;
......@@ -92,11 +132,11 @@ int sal_proto_family_register(const struct proto_family *pf)
/* check protocol family is already registered */
for(idx = 0; idx < SAL_PROTO_FAMILIES_NUM; idx++)
{
if(rt_strcmp(proto_families[idx].name, pf->name) == 0)
if (proto_families[idx].family == pf->family && proto_families[idx].create)
{
/* enable interrupt */
rt_hw_interrupt_enable(level);
LOG_E("%s protocol family is already registered!", pf->name);
LOG_E("%s protocol family is already registered!", pf->family);
return -1;
}
}
......@@ -105,22 +145,22 @@ int sal_proto_family_register(const struct proto_family *pf)
for(idx = 0; idx < SAL_PROTO_FAMILIES_NUM && proto_families[idx].create; idx++);
/* can't find an empty protocol family entry */
if(idx == SAL_PROTO_FAMILIES_NUM)
if (idx == SAL_PROTO_FAMILIES_NUM)
{
/* enable interrupt */
rt_hw_interrupt_enable(level);
return -1;
}
rt_strncpy(proto_families[idx].name, pf->name, rt_strlen(pf->name));
proto_families[idx].family = pf->family;
proto_families[idx].sec_family = pf->sec_family;
proto_families[idx].create = pf->create;
proto_families[idx].gethostbyname = pf->gethostbyname;
proto_families[idx].gethostbyname_r = pf->gethostbyname_r;
proto_families[idx].freeaddrinfo = pf->freeaddrinfo;
proto_families[idx].getaddrinfo = pf->getaddrinfo;
proto_families[idx].ops = pf->ops;
proto_families[idx].ops->gethostbyname = pf->ops->gethostbyname;
proto_families[idx].ops->gethostbyname_r = pf->ops->gethostbyname_r;
proto_families[idx].ops->freeaddrinfo = pf->ops->freeaddrinfo;
proto_families[idx].ops->getaddrinfo = pf->ops->getaddrinfo;
/* enable interrupt */
rt_hw_interrupt_enable(level);
......@@ -136,17 +176,17 @@ int sal_proto_family_register(const struct proto_family *pf)
* @return >=0 : unregister protocol family index
* -1 : unregister failed
*/
int sal_proto_family_unregister(const struct proto_family *pf)
int sal_proto_family_unregister(int family)
{
int idx = 0;
RT_ASSERT(pf != RT_NULL);
RT_ASSERT(family > 0 && family < AF_MAX);
for(idx = 0; idx < SAL_PROTO_FAMILIES_NUM; idx++)
{
if(rt_strcmp(proto_families[idx].name, pf->name) == 0)
if (proto_families[idx].family == family && proto_families[idx].create)
{
rt_memset(&proto_families[idx], 0x00, sizeof(struct proto_family));
rt_memset(&proto_families[idx], 0x00, sizeof(struct sal_proto_family));
return idx;
}
......@@ -156,21 +196,46 @@ int sal_proto_family_unregister(const struct proto_family *pf)
}
/**
* This function will get protocol family by name.
* This function will judge whether protocol family is registered
*
* @param name protocol family name
* @param family protocol family number
*
* @return 1: protocol family is registered
* 0: protocol family is not registered
*/
rt_bool_t sal_proto_family_is_registered(int family)
{
int idx = 0;
RT_ASSERT(family > 0 && family < AF_MAX);
for (idx = 0; idx < SAL_PROTO_FAMILIES_NUM; idx++)
{
if (proto_families[idx].family == family && proto_families[idx].create)
{
return RT_TRUE;
}
}
return RT_FALSE;
}
/**
* This function will get protocol family object by family number.
*
* @param family protocol family number
*
* @return protocol family object
*/
struct proto_family *sal_proto_family_find(const char *name)
struct sal_proto_family *sal_proto_family_find(int family)
{
int idx = 0;
RT_ASSERT(name != RT_NULL);
RT_ASSERT(family > 0 && family < AF_MAX);
for (idx = 0; idx < SAL_PROTO_FAMILIES_NUM; idx++)
{
if (rt_strcmp(proto_families[idx].name, name) == 0)
if (proto_families[idx].family == family && proto_families[idx].create)
{
return &proto_families[idx];
}
......@@ -238,7 +303,7 @@ static void sal_unlock(void)
*
* @return protocol family structure address
*/
static struct proto_family *get_proto_family(int family)
static struct sal_proto_family *get_proto_family(int family)
{
int idx;
......@@ -278,7 +343,7 @@ static struct proto_family *get_proto_family(int family)
static int socket_init(int family, int type, int protocol, struct sal_socket **res)
{
struct sal_socket *sock;
struct proto_family *pf;
struct sal_proto_family *pf;
if (family < 0 || family > AF_MAX)
{
......@@ -383,6 +448,11 @@ static int socket_new(void)
sock = st->sockets[idx];
sock->socket = idx + SAL_SOCKET_OFFSET;
sock->magic = SAL_SOCKET_MAGIC;
sock->ops = RT_NULL;
sock->user_data = RT_NULL;
#ifdef SAL_USING_TLS
sock->user_data_tls = RT_NULL;
#endif
__result:
sal_unlock();
......@@ -474,6 +544,15 @@ int sal_shutdown(int socket, int how)
if (sock->ops->shutdown((int) sock->user_data, how) == 0)
{
#ifdef SAL_USING_TLS
if (SAL_SOCKOPS_PROTO_TLS_VALID(sock, closesocket))
{
if (proto_tls->ops->closesocket(sock->user_data_tls) < 0)
{
return -1;
}
}
#endif
rt_free(sock);
socket_table.sockets[socket] = RT_NULL;
return 0;
......@@ -551,12 +630,46 @@ int sal_setsockopt(int socket, int level, int optname, const void *optval, sockl
return -RT_ENOSYS;
}
#ifdef SAL_USING_TLS
if (level == SOL_TLS)
{
switch (optname)
{
case TLS_CRET_LIST:
SAL_SOCKOPT_PROTO_TLS_EXEC(sock, set_cret_list, optval, optlen);
break;
case TLS_CIPHERSUITE_LIST:
SAL_SOCKOPT_PROTO_TLS_EXEC(sock, set_ciphersurite, optval, optlen);
break;
case TLS_PEER_VERIFY:
SAL_SOCKOPT_PROTO_TLS_EXEC(sock, set_peer_verify, optval, optlen);
break;
case TLS_DTLS_ROLE:
SAL_SOCKOPT_PROTO_TLS_EXEC(sock, set_dtls_role, optval, optlen);
break;
default:
return -1;
}
return 0;
}
else
{
return sock->ops->setsockopt((int) sock->user_data, level, optname, optval, optlen);
}
#else
return sock->ops->setsockopt((int) sock->user_data, level, optname, optval, optlen);
#endif /* SAL_USING_TLS */
}
int sal_connect(int socket, const struct sockaddr *name, socklen_t namelen)
{
struct sal_socket *sock;
int ret;
sock = sal_get_socket(socket);
if (!sock)
......@@ -569,7 +682,20 @@ int sal_connect(int socket, const struct sockaddr *name, socklen_t namelen)
return -RT_ENOSYS;
}
return sock->ops->connect((int) sock->user_data, name, namelen);
ret = sock->ops->connect((int) sock->user_data, name, namelen);
#ifdef SAL_USING_TLS
if (ret >= 0 && SAL_SOCKOPS_PROTO_TLS_VALID(sock, connect))
{
if (proto_tls->ops->connect(sock->user_data_tls) < 0)
{
return -1;
}
return ret;
}
#endif
return ret;
}
int sal_listen(int socket, int backlog)
......@@ -606,7 +732,24 @@ int sal_recvfrom(int socket, void *mem, size_t len, int flags,
return -RT_ENOSYS;
}
#ifdef SAL_USING_TLS
if (SAL_SOCKOPS_PROTO_TLS_VALID(sock, recv))
{
int ret;
if ((ret = proto_tls->ops->recv(sock->user_data_tls, mem, len)) < 0)
{
return -1;
}
return ret;
}
else
{
return sock->ops->recvfrom((int) sock->user_data, mem, len, flags, from, fromlen);
}
#else
return sock->ops->recvfrom((int) sock->user_data, mem, len, flags, from, fromlen);
#endif
}
int sal_sendto(int socket, const void *dataptr, size_t size, int flags,
......@@ -625,7 +768,24 @@ int sal_sendto(int socket, const void *dataptr, size_t size, int flags,
return -RT_ENOSYS;
}
#ifdef SAL_USING_TLS
if (SAL_SOCKOPS_PROTO_TLS_VALID(sock, send))
{
int ret;
if ((ret = proto_tls->ops->send(sock->user_data_tls, dataptr, size)) < 0)
{
return -1;
}
return ret;
}
else
{
return sock->ops->sendto((int) sock->user_data, dataptr, size, flags, to, tolen);
}
#else
return sock->ops->sendto((int) sock->user_data, dataptr, size, flags, to, tolen);
#endif
}
int sal_socket(int domain, int type, int protocol)
......@@ -657,8 +817,17 @@ int sal_socket(int domain, int type, int protocol)
proto_socket = sock->ops->socket(domain, type, protocol);
if (proto_socket >= 0)
{
#ifdef SAL_USING_TLS
if (SAL_SOCKOPS_PROTO_TLS_VALID(sock, socket))
{
sock->user_data_tls = proto_tls->ops->socket(proto_socket);
if (sock->user_data_tls == RT_NULL)
{
return -1;
}
}
#endif
sock->user_data = (void *) proto_socket;
return sock->socket;
}
......@@ -682,6 +851,15 @@ int sal_closesocket(int socket)
if (sock->ops->closesocket((int) sock->user_data) == 0)
{
#ifdef SAL_USING_TLS
if (SAL_SOCKOPS_PROTO_TLS_VALID(sock, closesocket))
{
if (proto_tls->ops->closesocket(sock->user_data_tls) < 0)
{
return -1;
}
}
#endif
rt_free(sock);
socket_table.sockets[socket] = RT_NULL;
return 0;
......@@ -736,9 +914,9 @@ struct hostent *sal_gethostbyname(const char *name)
for (i = 0; i < SAL_PROTO_FAMILIES_NUM; ++i)
{
if (proto_families[i].gethostbyname)
if (proto_families[i].ops && proto_families[i].ops->gethostbyname)
{
hst = proto_families[i].gethostbyname(name);
hst = proto_families[i].ops->gethostbyname(name);
if (hst != RT_NULL)
{
return hst;
......@@ -756,9 +934,9 @@ int sal_gethostbyname_r(const char *name, struct hostent *ret, char *buf,
for (i = 0; i < SAL_PROTO_FAMILIES_NUM; ++i)
{
if (proto_families[i].gethostbyname_r)
if (proto_families[i].ops && proto_families[i].ops->gethostbyname_r)
{
res = proto_families[i].gethostbyname_r(name, ret, buf, buflen, result, h_errnop);
res = proto_families[i].ops->gethostbyname_r(name, ret, buf, buflen, result, h_errnop);
if (res == 0)
{
return res;
......@@ -769,20 +947,6 @@ int sal_gethostbyname_r(const char *name, struct hostent *ret, char *buf,
return -1;
}
void sal_freeaddrinfo(struct addrinfo *ai)
{
int i;
for (i = 0; i < SAL_PROTO_FAMILIES_NUM; ++i)
{
if (proto_families[i].freeaddrinfo)
{
proto_families[i].freeaddrinfo(ai);
return;
}
}
}
int sal_getaddrinfo(const char *nodename,
const char *servname,
const struct addrinfo *hints,
......@@ -792,9 +956,9 @@ int sal_getaddrinfo(const char *nodename,
for (i = 0; i < SAL_PROTO_FAMILIES_NUM; ++i)
{
if (proto_families[i].getaddrinfo)
if (proto_families[i].ops && proto_families[i].ops->getaddrinfo)
{
ret = proto_families[i].getaddrinfo(nodename, servname, hints, res);
ret = proto_families[i].ops->getaddrinfo(nodename, servname, hints, res);
if (ret == 0)
{
return ret;
......@@ -804,3 +968,17 @@ int sal_getaddrinfo(const char *nodename,
return -1;
}
void sal_freeaddrinfo(struct addrinfo *ai)
{
int i;
for (i = 0; i < SAL_PROTO_FAMILIES_NUM; ++i)
{
if (proto_families[i].ops && proto_families[i].ops->freeaddrinfo)
{
proto_families[i].ops->freeaddrinfo(ai);
return;
}
}
}
......@@ -230,4 +230,8 @@ config RT_USING_ULOG
sfotware module version number
endif
config RT_USING_UTEST
bool "Enable utest (RT-Thread test framework)"
default n
endmenu
......@@ -45,6 +45,7 @@ void ulog_deinit(void);
#define LOG_I(...) ulog_i(LOG_TAG, __VA_ARGS__)
#define LOG_D(...) ulog_d(LOG_TAG, __VA_ARGS__)
#define LOG_RAW(...) ulog_raw(__VA_ARGS__)
#define LOG_HEX(name, width, buf, size) ulog_hex(name, width, buf, size)
/*
* backend register and unregister
......
......@@ -94,6 +94,12 @@ extern "C" {
#define ulog_e(TAG, ...)
#endif /* (LOG_LVL >= LOG_LVL_ERROR) && (ULOG_OUTPUT_LVL >= LOG_LVL_ERROR) */
#if (LOG_LVL >= LOG_LVL_DBG) && (ULOG_OUTPUT_LVL >= LOG_LVL_DBG)
#define ulog_hex(TAG, width, buf, size) ulog_hexdump(TAG, width, buf, size)
#else
#define ulog_hex(TAG, width, buf, size)
#endif /* (LOG_LVL >= LOG_LVL_DBG) && (ULOG_OUTPUT_LVL >= LOG_LVL_DBG) */
/* assert for developer. */
#ifdef ULOG_ASSERT_ENABLE
#define ULOG_ASSERT(EXPR) \
......@@ -132,6 +138,7 @@ extern "C" {
#define log_d LOG_D
#define log_v LOG_D
#define log_raw LOG_RAW
#define log_hex LOG_HEX
#define ELOG_LVL_ASSERT LOG_LVL_ASSERT
#define ELOG_LVL_ERROR LOG_LVL_ERROR
#define ELOG_LVL_WARN LOG_LVL_WARNING
......
from building import *
cwd = GetCurrentDir()
src = Glob('*.c')
CPPPATH = [cwd]
group = DefineGroup('utest', src, depend = ['RT_USING_UTEST'], CPPPATH = CPPPATH)
Return('group')
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-19 MurphyZhao the first version
*/
#include "utest.h"
#include <rtthread.h>
#include <finsh.h>
#undef DBG_SECTION_NAME
#undef DBG_LEVEL
#undef DBG_COLOR
#undef DBG_ENABLE
#define DBG_ENABLE
#define DBG_SECTION_NAME "utest"
#ifdef UTEST_DEBUG
#define DBG_LEVEL DBG_LOG
#else
#define DBG_LEVEL DBG_INFO
#endif
#define DBG_COLOR
#include <rtdbg.h>
#if RT_CONSOLEBUF_SIZE < 256
#error "RT_CONSOLEBUF_SIZE is less than 256!"
#endif
static utest_tc_export_t tc_table = RT_NULL;
static rt_size_t tc_num;
static struct utest local_utest = {UTEST_PASSED, 0, 0};
#if defined(__ICCARM__) || defined(__ICCRX__) /* for IAR compiler */
#pragma section="UtestTcTab"
#endif
int utest_init(void)
{
/* initialize the utest commands table.*/
#if defined(__CC_ARM) /* ARM C Compiler */
extern const int UtestTcTab$$Base;
extern const int UtestTcTab$$Limit;
tc_table = (utest_tc_export_t)&UtestTcTab$$Base;
tc_num = (utest_tc_export_t)&UtestTcTab$$Limit - tc_table;
#elif defined (__ICCARM__) || defined(__ICCRX__) /* for IAR Compiler */
tc_table = (utest_tc_export_t)__section_begin("UtestTcTab");
tc_num = (utest_tc_export_t)__section_end("UtestTcTab") - tc_table;
#elif defined (__GNUC__) /* for GCC Compiler */
extern const int __rt_utest_tc_tab_start;
extern const int __rt_utest_tc_tab_end;
tc_table = (utest_tc_export_t)&__rt_utest_tc_tab_start;
tc_num = (utest_tc_export_t) &__rt_utest_tc_tab_end - tc_table;
#endif /* defined(__CC_ARM) */
LOG_I("utest is initialize success.");
LOG_I("total utest testcase num: (%d)", tc_num);
return tc_num;
}
INIT_COMPONENT_EXPORT(utest_init);
static void utest_tc_list(void)
{
rt_size_t i = 0;
LOG_I("Commands list : ");
for (i = 0; i < tc_num; i++)
{
LOG_I("[testcase name]:%s; [run timeout]:%d", tc_table[i].name, tc_table[i].run_timeout);
}
}
MSH_CMD_EXPORT_ALIAS(utest_tc_list, utest_list, output all utest testcase);
static const char *file_basename(const char *file)
{
char *end_ptr = RT_NULL;
char *rst = RT_NULL;
if (!((end_ptr = strrchr(file, '\\')) != RT_NULL || \
(end_ptr = strrchr(file, '/')) != RT_NULL) || \
(rt_strlen(file) < 2))
{
rst = (char *)file;
}
else
{
rst = (char *)(end_ptr + 1);
}
return (const char *)rst;
}
static void utest_run(const char *utest_name)
{
rt_size_t i = 0;
LOG_I("[==========] [ utest ] started");
while(i < tc_num)
{
if (utest_name && rt_strcmp(utest_name, tc_table[i].name))
{
i++;
continue;
}
LOG_I("[----------] [ testcase ] (%s) started", tc_table[i].name);
if (tc_table[i].init != RT_NULL)
{
if (tc_table[i].init() != RT_EOK)
{
LOG_I("[ FAILED ] [ result ] testcase (%s)", tc_table[i].name);
goto __tc_continue;
}
}
if (tc_table[i].tc != RT_NULL)
{
tc_table[i].tc();
if (local_utest.failed_num == 0)
{
LOG_I("[ PASSED ] [ result ] testcase (%s)", tc_table[i].name);
}
else
{
LOG_I("[ FAILED ] [ result ] testcase (%s)", tc_table[i].name);
}
}
else
{
LOG_I("[ FAILED ] [ result ] testcase (%s)", tc_table[i].name);
}
if (tc_table[i].cleanup != RT_NULL)
{
if (tc_table[i].cleanup() != RT_EOK)
{
LOG_I("[ FAILED ] [ result ] testcase (%s)", tc_table[i].name);
goto __tc_continue;
}
}
__tc_continue:
LOG_I("[----------] [ testcase ] (%s) finished", tc_table[i].name);
i++;
}
LOG_I("[==========] [ utest ] finished");
}
static void utest_testcase_run(int argc, char** argv)
{
char utest_name[UTEST_NAME_MAX_LEN];
if (argc == 1)
{
utest_run(RT_NULL);
}
else if (argc == 2)
{
rt_memset(utest_name, 0x0, sizeof(utest_name));
rt_strncpy(utest_name, argv[1], sizeof(utest_name) -1);
utest_run(utest_name);
}
else
{
LOG_E("[ error ] at (%s:%d), in param error.", __func__, __LINE__);
}
}
MSH_CMD_EXPORT_ALIAS(utest_testcase_run, utest_run, utest_run [testcase name]);
utest_t utest_handle_get(void)
{
return (utest_t)&local_utest;
}
void utest_unit_run(test_unit_func func, const char *unit_func_name)
{
// LOG_I("[==========] utest unit name: (%s)", unit_func_name);
local_utest.error = UTEST_PASSED;
local_utest.passed_num = 0;
local_utest.failed_num = 0;
if (func != RT_NULL)
{
func();
}
}
void utest_assert(int value, const char *file, int line, const char *func, const char *msg)
{
if (!(value))
{
local_utest.error = UTEST_FAILED;
local_utest.failed_num ++;
LOG_E("[ ASSERT ] [ unit ] at (%s); func: (%s:%d); msg: (%s)", file_basename(file), func, line, msg);
}
else
{
LOG_D("[ OK ] [ unit ] (%s:%d) is passed", func, line);
local_utest.error = UTEST_PASSED;
local_utest.passed_num ++;
}
}
void utest_assert_string(const char *a, const char *b, rt_bool_t equal, const char *file, int line, const char *func, const char *msg)
{
if (a == RT_NULL || b == RT_NULL)
{
utest_assert(0, file, line, func, msg);
}
if (equal)
{
if (rt_strcmp(a, b) == 0)
{
utest_assert(1, file, line, func, msg);
}
else
{
utest_assert(0, file, line, func, msg);
}
}
else
{
if (rt_strcmp(a, b) == 0)
{
utest_assert(0, file, line, func, msg);
}
else
{
utest_assert(1, file, line, func, msg);
}
}
}
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-19 MurphyZhao the first version
*/
#ifndef __UTEST_H__
#define __UTEST_H__
#include <rtthread.h>
#include "utest_log.h"
/**
* utest_error
*
* @brief Test result.
*
* @member UTEST_PASSED Test success.
* @member UTEST_FAILED Test failed.
* @member UTEST_PASSED Test skipped.
*
*/
enum utest_error
{
UTEST_PASSED = 0,
UTEST_FAILED = 1,
UTEST_SKIPPED = 2
};
typedef enum utest_error utest_err_e;
/**
* utest
*
* @brief utest data structure.
*
* @member error Error number from enum `utest_error`.
* @member passed_num Total number of tests passed.
* @member failed_num Total number of tests failed.
*
*/
struct utest
{
utest_err_e error;
uint32_t passed_num;
uint32_t failed_num;
};
typedef struct utest *utest_t;
/**
* utest_tc_export
*
* @brief utest testcase data structure.
* Will export the data to `UtestTcTab` section in flash.
*
* @member name Testcase name.
* @member run_timeout Testcase maximum test time.
* @member init Necessary initialization before executing the test case function.
* @member tc Total number of tests failed.
* @member cleanup Total number of tests failed.
*
*/
struct utest_tc_export {
const char *name;
uint32_t run_timeout;
rt_err_t (*init)(void);
void (*tc)(void);
rt_err_t (*cleanup)(void);
};
typedef struct utest_tc_export *utest_tc_export_t;
/**
* test_unit_func
*
* @brief Unit test handler function pointer.
*
*/
typedef void (*test_unit_func)(void);
/**
* utest_unit_run
*
* @brief Unit test function executor.
* No need for the user to call this function directly
*
* @param func Unit test function.
* @param unit_func_name Unit test function name.
*
* @return void
*
*/
void utest_unit_run(test_unit_func func, const char *unit_func_name);
/**
* utest_handle_get
*
* @brief Get the utest data structure handle.
* No need for the user to call this function directly
*
* @param void
*
* @return utest_t type. (struct utest *)
*
*/
utest_t utest_handle_get(void);
/**
* UTEST_NAME_MAX_LEN
*
* @brief Testcase name maximum length.
*
*/
#define UTEST_NAME_MAX_LEN (128u)
/**
* UTEST_TC_EXPORT
*
* @brief Export testcase function to `UtestTcTab` section in flash.
* Used in application layer.
*
* @param testcase The testcase function.
* @param name The testcase name.
* @param init The initialization function of the test case.
* @param cleanup The cleanup function of the test case.
* @param timeout Testcase maximum test time.
*
* @return None
*
*/
#define UTEST_TC_EXPORT(testcase, name, init, cleanup, timeout) \
RT_USED static const struct utest_tc_export _utest_testcase \
SECTION("UtestTcTab") = \
{ \
name, \
timeout, \
init, \
testcase, \
cleanup \
}
/**
* UTEST_UNIT_RUN
*
* @brief Unit test function executor.
* Used in `testcase` function in application.
*
* @param test_unit_func Unit test function
*
* @return None
*
*/
#define UTEST_UNIT_RUN(test_unit_func) \
utest_unit_run(test_unit_func, #test_unit_func); \
if(utest_handle_get()->failed_num != 0) return;
#endif /* __UTEST_H__ */
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-19 MurphyZhao the first version
*/
#ifndef __UTEST_ASSERT_H__
#define __UTEST_ASSERT_H__
#include "utest.h"
#include <rtthread.h>
/* No need for the user to use this function directly */
void utest_assert(int value, const char *file, int line, const char *func, const char *msg);
/* No need for the user to use this function directly */
void utest_assert_string(const char *a, const char *b, rt_bool_t equal, const char *file, int line, const char *func, const char *msg);
/* No need for the user to use this macro directly */
#define __utest_assert(value, msg) utest_assert(value, __FILE__, __LINE__, __func__, msg)
/**
* uassert_x macros
*
* @brief Get the utest data structure handle.
* No need for the user to call this function directly.
*
* @macro uassert_true if @value is true, not assert, means passing.
* @macro uassert_false if @value is false, not assert, means passing.
* @macro uassert_null if @value is null, not assert, means passing.
* @macro uassert_not_null if @value is not null, not assert, means passing.
* @macro uassert_int_equal if @a equal to @b, not assert, means passing. Integer type test.
* @macro uassert_int_not_equal if @a not equal to @b, not assert, means passing. Integer type test.
* @macro uassert_str_equal if @a equal to @b, not assert, means passing. String type test.
* @macro uassert_str_not_equal if @a not equal to @b, not assert, means passing. String type test.
* @macro uassert_in_range if @value is in range of min and max, not assert, means passing.
* @macro uassert_not_in_range if @value is not in range of min and max, not assert, means passing.
*
*/
#define uassert_true(value) __utest_assert(value, "(" #value ") is false")
#define uassert_false(value) __utest_assert(!(value), "(" #value ") is true")
#define uassert_null(value) __utest_assert((const char *)(value) == NULL, "(" #value ") is not null")
#define uassert_not_null(value) __utest_assert((const char *)(value) != NULL, "(" #value ") is null")
#define uassert_int_equal(a, b) __utest_assert((a) == (b), "(" #a ") not equal to (" #b ")")
#define uassert_int_not_equal(a, b) __utest_assert((a) != (b), "(" #a ") equal to (" #b ")")
#define uassert_str_equal(a, b) utest_assert_string((const char*)(a), (const char*)(b), RT_TRUE, __FILE__, __LINE__, __func__, "string not equal")
#define uassert_str_not_equal(a, b) utest_assert_string((const char*)(a), (const char*)(b), RT_FALSE, __FILE__, __LINE__, __func__, "string equal")
#define uassert_in_range(value, min, max) __utest_assert(((value >= min) && (value <= max)), "(" #value ") not in range("#min","#max")")
#define uassert_not_in_range(value, min, max) __utest_assert(!((value >= min) && (value <= max)), "(" #value ") in range("#min","#max")")
#endif /* __UTEST_ASSERT_H__ */
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-19 MurphyZhao the first version
*/
#ifndef __UTEST_LOG_H__
#define __UTEST_LOG_H__
#define UTEST_DEBUG
#undef DBG_SECTION_NAME
#undef DBG_LEVEL
#undef DBG_COLOR
#undef DBG_ENABLE
#define DBG_ENABLE
#define DBG_SECTION_NAME "testcase"
#ifdef UTEST_DEBUG
#define DBG_LEVEL DBG_LOG
#else
#define DBG_LEVEL DBG_INFO
#endif
#define DBG_COLOR
#include <rtdbg.h>
#endif /* __UTEST_LOG_H__ */
......@@ -48,7 +48,7 @@ static int timer_app_init(void)
return -1;
}
}
INIT_EXPORT_APP(timer_app_init);
INIT_APP_EXPORT(timer_app_init);
#endif /* RT_USING_PM */
......@@ -8,7 +8,7 @@
static rt_err_t timer_timeout_cb(rt_device_t dev, rt_size_t size)
{
rt_kprintf("HT %d\n", rt_tick_get());
rt_kprintf("enter hardware timer isr\n");
return 0;
}
......@@ -35,7 +35,7 @@ int hwtimer(void)
return -1;
}
rt_device_set_rx_indicate(dev, timer_timeout_cb);
/* 时间测量 */
/* 计数时钟设置(默认1Mhz或支持的最小计数频率) */
err = rt_device_control(dev, HWTIMER_CTRL_FREQ_SET, &freq);
if (err != RT_EOK)
......@@ -69,12 +69,34 @@ int hwtimer(void)
rt_device_read(dev, 0, &val, sizeof(val));
rt_kprintf("Read: Sec = %d, Usec = %d\n", val.sec, val.usec);
/* 定时执行回调函数 -- 单次模式 */
/* 设置超时回调函数 */
rt_device_set_rx_indicate(dev, timer_timeout_cb);
/* 单次模式 */
mode = HWTIMER_MODE_PERIOD;
err = rt_device_control(dev, HWTIMER_CTRL_MODE_SET, &mode);
/* 设置定时器超时值并启动定时器 */
val.sec = t;
val.usec = 0;
rt_kprintf("SetTime: Sec %d, Usec %d\n", val.sec, val.usec);
if (rt_device_write(dev, 0, &val, sizeof(val)) != sizeof(val))
{
rt_kprintf("SetTime Fail\n");
goto EXIT;
}
/* 等待回调函数执行 */
rt_thread_delay((t + 1)*RT_TICK_PER_SECOND);
EXIT:
err = rt_device_close(dev);
rt_kprintf("Close %s\n", TIMER);
return err;
}
FINSH_FUNCTION_EXPORT(hwtimer, "Test hardware timer");
#ifdef FINSH_USING_MSH
MSH_CMD_EXPORT(hwtimer, "Test hardware timer");
#endif
#endif /* RT_USING_HWTIMER */
......@@ -77,7 +77,7 @@ typedef rt_base_t rt_off_t; /**< Type for offset */
#define RT_TRUE 1 /**< boolean true */
#define RT_FALSE 0 /**< boolean fails */
/*@}*/
/**@}*/
/* maximum value of base type */
#define RT_UINT8_MAX 0xff /**< Maxium number of UINT8 */
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册