/* * Copyright 2008-2009 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package java.dyn; //import sun.dyn.*; import sun.dyn.Access; import sun.dyn.MethodHandleImpl; import static java.dyn.MethodHandles.invokers; // package-private API import static sun.dyn.MemberName.newIllegalArgumentException; // utility /** * A method handle is a typed reference to the entry point of a method. *

* Method handles are strongly typed according to signature. * They are not distinguished by method name or enclosing class. * A method handle must be invoked under a signature which exactly matches * the method handle's own type. *

* Every method handle confesses its type via the type accessor. * The structure of this type is a series of classes, one of which is * the return type of the method (or void.class if none). *

* Every method handle appears as an object containing a method named * invoke, whose signature exactly matches * the method handle's type. * A Java method call expression, which compiles to an * invokevirtual instruction, * can invoke this method from Java source code. *

* Every call to a method handle specifies an intended method type, * which must exactly match the type of the method handle. * (The type is specified in the invokevirtual instruction, * via a {@code CONSTANT_NameAndType} constant pool entry.) * The call looks within the receiver object for a method * named invoke of the intended method type. * The call fails with a {@link WrongMethodTypeException} * if the method does not exist, even if there is an invoke * method of a closely similar signature. * As with other kinds * of methods in the JVM, signature matching during method linkage * is exact, and does not allow for language-level implicit conversions * such as {@code String} to {@code Object} or {@code short} to {@code int}. *

* A method handle is an unrestricted capability to call a method. * A method handle can be formed on a non-public method by a class * that has access to that method; the resulting handle can be used * in any place by any caller who receives a reference to it. Thus, access * checking is performed when the method handle is created, not * (as in reflection) every time it is called. Handles to non-public * methods, or in non-public classes, should generally be kept secret. * They should not be passed to untrusted code. *

* Bytecode in an extended JVM can directly call a method handle's * invoke from an invokevirtual instruction. * The receiver class type must be MethodHandle and the method name * must be invoke. The signature of the invocation * (after resolving symbolic type names) must exactly match the method type * of the target method. *

* Every invoke method always throws {@link Exception}, * which is to say that there is no static restriction on what a method handle * can throw. Since the JVM does not distinguish between checked * and unchecked exceptions (other than by their class, of course), * there is no particular effect on bytecode shape from ascribing * checked exceptions to method handle invocations. But in Java source * code, methods which perform method handle calls must either explicitly * throw {@code Exception}, or else must catch all checked exceptions locally. *

* Bytecode in an extended JVM can directly obtain a method handle * for any accessible method from a ldc instruction * which refers to a CONSTANT_Methodref or * CONSTANT_InterfaceMethodref constant pool entry. *

* All JVMs can also use a reflective API called MethodHandles * for creating and calling method handles. *

* A method reference may refer either to a static or non-static method. * In the non-static case, the method handle type includes an explicit * receiver argument, prepended before any other arguments. * In the method handle's type, the initial receiver argument is typed * according to the class under which the method was initially requested. * (E.g., if a non-static method handle is obtained via ldc, * the type of the receiver is the class named in the constant pool entry.) *

* When a method handle to a virtual method is invoked, the method is * always looked up in the receiver (that is, the first argument). *

* A non-virtual method handles to a specific virtual method implementation * can also be created. These do not perform virtual lookup based on * receiver type. Such a method handle simulates the effect of * an invokespecial instruction to the same method. *

* Here are some examples of usage: *

 * Object x, y; String s; int i;
 * MethodType mt; MethodHandle mh;
 * MethodHandles.Lookup lookup = MethodHandles.lookup();
 * // mt is {(char,char) => String}
 * mt = MethodType.make(String.class, char.class, char.class);
 * mh = lookup.findVirtual(String.class, "replace", mt);
 * // (Ljava/lang/String;CC)Ljava/lang/String;
 * s = mh.<String>invoke("daddy",'d','n');
 * assert(s.equals("nanny"));
 * // weakly typed invocation (using MHs.invoke)
 * s = (String) MethodHandles.invoke(mh, "sappy", 'p', 'v');
 * assert(s.equals("savvy"));
 * // mt is {Object[] => List}
 * mt = MethodType.make(java.util.List.class, Object[].class);
 * mh = lookup.findStatic(java.util.Arrays.class, "asList", mt);
 * // mt is {(Object,Object,Object) => Object}
 * mt = MethodType.makeGeneric(3);
 * mh = MethodHandles.collectArguments(mh, mt);
 * // mt is {(Object,Object,Object) => Object}
 * // (Ljava/lang/Object;Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;
 * x = mh.invoke((Object)1, (Object)2, (Object)3);
 * assert(x.equals(java.util.Arrays.asList(1,2,3)));
 * // mt is { => int}
 * mt = MethodType.make(int.class);
 * mh = lookup.findVirtual(java.util.List.class, "size", mt);
 * // (Ljava/util/List;)I
 * i = mh.<int>invoke(java.util.Arrays.asList(1,2,3));
 * assert(i == 3);
 * 
* Each of the above calls generates a single invokevirtual instruction * with the name {@code invoke} and the type descriptors indicated in the comments. * The argument types are taken directly from the actual arguments, * while the return type is taken from the type parameter. * (This type parameter may be a primitive, and it defaults to {@code Object}.) *

* A note on generic typing: Method handles do not represent * their function types in terms of Java parameterized (generic) types, * because there are three mismatches between function types and parameterized * Java types. *

    *
  1. Method types range over all possible arities, * from no arguments to an arbitrary number of arguments. * Generics are not variadic, and so cannot represent this.
  2. *
  3. Method types can specify arguments of primitive types, * which Java generic types cannot range over.
  4. *
  5. Higher order functions over method handles (combinators) are * often generic across a wide range of function types, including * those of multiple arities. It is impossible to represent such * genericity with a Java type parameter.
  6. *
* * @see MethodType * @see MethodHandles * @author John Rose, JSR 292 EG */ public abstract class MethodHandle // Note: This is an implementation inheritance hack, and will be removed // with a JVM change which moves the required hidden state onto this class. extends MethodHandleImpl { private static Access IMPL_TOKEN = Access.getToken(); // interface MethodHandle // { MethodType type(); public R invoke(A...) throws X; } private MethodType type; /** * Report the type of this method handle. * Every invocation of this method handle must exactly match this type. * @return the method handle type */ public final MethodType type() { return type; } /** * The constructor for MethodHandle may only be called by privileged code. * Subclasses may be in other packages, but must possess * a token which they obtained from MH with a security check. * @param token non-null object which proves access permission * @param type type (permanently assigned) of the new method handle */ protected MethodHandle(Access token, MethodType type) { super(token); Access.check(token); this.type = type; } private void initType(MethodType type) { type.getClass(); // elicit NPE if (this.type != null) throw new InternalError(); this.type = type; } static { // This hack allows the implementation package special access to // the internals of MethodHandle. In particular, the MTImpl has all sorts // of cached information useful to the implementation code. MethodHandleImpl.setMethodHandleFriend(IMPL_TOKEN, new MethodHandleImpl.MethodHandleFriend() { public void initType(MethodHandle mh, MethodType type) { mh.initType(type); } }); } /** The string of a direct method handle is the simple name of its target method. * The string of an adapter or bound method handle is the string of its * target method handle. * The string of a Java method handle is the string of its entry point method, * unless the Java method handle overrides the toString method. */ @Override public String toString() { return MethodHandleImpl.getNameString(IMPL_TOKEN, this); } //// First draft of the "Method Handle Kernel API" discussed at the JVM Language Summit, 9/2009. //// Implementations here currently delegate to statics in MethodHandles. Some of those statics //// will be deprecated. Others will be kept as "algorithms" to supply degrees of freedom //// not present in the Kernel API. /** * PROVISIONAL API, WORK IN PROGRESS: * Perform an exact invocation. The signature at the call site of {@code invokeExact} must * exactly match this method handle's {@code type}. * No conversions are allowed on arguments or return values. * This is not yet implemented, pending required compiler and JVM support. */ public final T invokeExact(Object... arguments) throws Throwable { // This is an approximate implementation, which discards the caller's signature and refuses the call. throw new InternalError("not yet implemented"); } /** * PROVISIONAL API, WORK IN PROGRESS: * Perform a generic invocation. The signature at the call site of {@code invokeExact} must * have the same arity as this method handle's {@code type}. * The same conversions are allowed on arguments or return values as are supported by * by {@link MethodHandles#convertArguments}. * If the call site signature exactly matches this method handle's {@code type}, * the call proceeds as if by {@link #invokeExact}. * This is not fully implemented, pending required compiler and JVM support. */ // This is an approximate implementation, which discards the caller's signature. // When it is made signature polymorphic, the overloadings will disappear. public final T invokeGeneric() throws Throwable { MethodHandle invoker = invokers(this.type()).genericInvoker(); return invoker.invoke(this); } public final T invokeGeneric(Object a0) throws Throwable { MethodHandle invoker = invokers(this.type()).genericInvoker(); return invoker.invoke(this, a0); } public final T invokeGeneric(Object a0, Object a1) throws Throwable { MethodHandle invoker = invokers(this.type()).genericInvoker(); return invoker.invoke(this, a0, a1); } public final T invokeGeneric(Object a0, Object a1, Object a2) throws Throwable { MethodHandle invoker = invokers(this.type()).genericInvoker(); return invoker.invoke(this, a0, a1, a2); } public final T invokeGeneric(Object a0, Object a1, Object a2, Object a3) throws Throwable { MethodHandle invoker = invokers(this.type()).genericInvoker(); return invoker.invoke(this, a0, a1, a2, a3); } public final T invokeGeneric(Object a0, Object a1, Object a2, Object a3, Object a4) throws Throwable { MethodHandle invoker = invokers(this.type()).genericInvoker(); return invoker.invoke(this, a0, a1, a2, a3, a4); } public final T invokeGeneric(Object a0, Object a1, Object a2, Object a3, Object a4, Object a5) throws Throwable { MethodHandle invoker = invokers(this.type()).genericInvoker(); return invoker.invoke(this, a0, a1, a2, a3, a4, a5); } public final T invokeGeneric(Object a0, Object a1, Object a2, Object a3, Object a4, Object a5, Object a6) throws Throwable { MethodHandle invoker = invokers(this.type()).genericInvoker(); return invoker.invoke(this, a0, a1, a2, a3, a4, a5, a6); } public final T invokeGeneric(Object a0, Object a1, Object a2, Object a3, Object a4, Object a5, Object a6, Object a7) throws Throwable { MethodHandle invoker = invokers(this.type()).genericInvoker(); return invoker.invoke(this, a0, a1, a2, a3, a4, a5, a6, a7); } public final T invokeGeneric(Object a0, Object a1, Object a2, Object a3, Object a4, Object a5, Object a6, Object a7, Object a8) throws Throwable { MethodHandle invoker = invokers(this.type()).genericInvoker(); return invoker.invoke(this, a0, a1, a2, a3, a4, a5, a6, a7, a8); } public final T invokeGeneric(Object a0, Object a1, Object a2, Object a3, Object a4, Object a5, Object a6, Object a7, Object a8, Object a9) throws Throwable { MethodHandle invoker = invokers(this.type()).genericInvoker(); return invoker.invoke(this, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9); } /** * PROVISIONAL API, WORK IN PROGRESS: * Perform a varargs invocation, passing the arguments in the given array * to the method handle, as if via {@link #invokeGeneric} from a call site * which mentions only the type {@code Object}, and whose arity is the length * of the argument array. *

* The length of the arguments array must equal the parameter count * of the target's type. * The arguments array is spread into separate arguments. *

* In order to match the type of the target, the following argument * conversions are applied as necessary: *

    *
  • reference casting *
  • unboxing *
* The following conversions are not applied: *
    *
  • primitive conversions (e.g., {@code byte} to {@code int} *
  • varargs conversions other than the initial spread *
  • any application-specific conversions (e.g., string to number) *
* The result returned by the call is boxed if it is a primitive, * or forced to null if the return type is void. *

* This call is equivalent to the following code: *

     *   MethodHandle invoker = MethodHandles.genericInvoker(this.type(), 0, true);
     *   Object result = invoker.invoke(this, arguments);
     * 
* @param arguments the arguments to pass to the target * @return the result returned by the target * @see MethodHandles#genericInvoker */ public final Object invokeVarargs(Object[] arguments) throws Throwable { int argc = arguments == null ? 0 : arguments.length; MethodType type = type(); if (argc <= 10) { MethodHandle invoker = MethodHandles.invokers(type).genericInvoker(); switch (argc) { case 0: return invoker.invoke(this); case 1: return invoker.invoke(this, arguments[0]); case 2: return invoker.invoke(this, arguments[0], arguments[1]); case 3: return invoker.invoke(this, arguments[0], arguments[1], arguments[2]); case 4: return invoker.invoke(this, arguments[0], arguments[1], arguments[2], arguments[3]); case 5: return invoker.invoke(this, arguments[0], arguments[1], arguments[2], arguments[3], arguments[4]); case 6: return invoker.invoke(this, arguments[0], arguments[1], arguments[2], arguments[3], arguments[4], arguments[5]); case 7: return invoker.invoke(this, arguments[0], arguments[1], arguments[2], arguments[3], arguments[4], arguments[5], arguments[6]); case 8: return invoker.invoke(this, arguments[0], arguments[1], arguments[2], arguments[3], arguments[4], arguments[5], arguments[6], arguments[7]); case 9: return invoker.invoke(this, arguments[0], arguments[1], arguments[2], arguments[3], arguments[4], arguments[5], arguments[6], arguments[7], arguments[8]); case 10: return invoker.invoke(this, arguments[0], arguments[1], arguments[2], arguments[3], arguments[4], arguments[5], arguments[6], arguments[7], arguments[8], arguments[9]); } } // more than ten arguments get boxed in a varargs list: MethodHandle invoker = MethodHandles.invokers(type).varargsInvoker(0); return invoker.invoke(this, arguments); } /** Equivalent to {@code invokeVarargs(arguments.toArray())}. */ public final Object invokeVarargs(java.util.List arguments) throws Throwable { return invokeVarargs(arguments.toArray()); } /* --- this is intentionally NOT a javadoc yet --- * PROVISIONAL API, WORK IN PROGRESS: * Produce an adapter method handle which adapts the type of the * current method handle to a new type by pairwise argument conversion. * The original type and new type must have the same number of arguments. * The resulting method handle is guaranteed to confess a type * which is equal to the desired new type. *

* If the original type and new type are equal, returns {@code this}. *

* The following conversions are applied as needed both to * arguments and return types. Let T0 and T1 be the differing * new and old parameter types (or old and new return types) * for corresponding values passed by the new and old method types. * Given those types T0, T1, one of the following conversions is applied * if possible: *

    *
  • If T0 and T1 are references, and T1 is not an interface type, * then a cast to T1 is applied. * (The types do not need to be related in any particular way.) *
  • If T0 and T1 are references, and T1 is an interface type, * then the value of type T0 is passed as a T1 without a cast. * (This treatment of interfaces follows the usage of the bytecode verifier.) *
  • If T0 and T1 are primitives, then a Java casting * conversion (JLS 5.5) is applied, if one exists. *
  • If T0 and T1 are primitives and one is boolean, * the boolean is treated as a one-bit unsigned integer. * (This treatment follows the usage of the bytecode verifier.) * A conversion from another primitive type behaves as if * it first converts to byte, and then masks all but the low bit. *
  • If T0 is a primitive and T1 a reference, a boxing * conversion is applied if one exists, possibly followed by * an reference conversion to a superclass. * T1 must be a wrapper class or a supertype of one. * If T1 is a wrapper class, T0 is converted if necessary * to T1's primitive type by one of the preceding conversions. * Otherwise, T0 is boxed, and its wrapper converted to T1. *
  • If T0 is a reference and T1 a primitive, an unboxing * conversion is applied if one exists, possibly preceded by * a reference conversion to a wrapper class. * T0 must be a wrapper class or a supertype of one. * If T0 is a wrapper class, its primitive value is converted * if necessary to T1 by one of the preceding conversions. * Otherwise, T0 is converted directly to the wrapper type for T1, * which is then unboxed. *
  • If the return type T1 is void, any returned value is discarded *
  • If the return type T0 is void and T1 a reference, a null value is introduced. *
  • If the return type T0 is void and T1 a primitive, a zero value is introduced. *
*

*/ /** * PROVISIONAL API, WORK IN PROGRESS: * Produce an adapter method handle which adapts the type of the * current method handle to a new type by pairwise argument conversion. * The original type and new type must have the same number of arguments. * The resulting method handle is guaranteed to confess a type * which is equal to the desired new type. *

* If the original type and new type are equal, returns {@code this}. *

* This method is equivalent to {@link MethodHandles#convertArguments}. * @param newType the expected type of the new method handle * @return a method handle which delegates to {@code this} after performing * any necessary argument conversions, and arranges for any * necessary return value conversions * @throws IllegalArgumentException if the conversion cannot be made * @see MethodHandles#convertArguments */ public final MethodHandle asType(MethodType newType) { return MethodHandles.convertArguments(this, newType); } /** * PROVISIONAL API, WORK IN PROGRESS: * Produce a method handle which adapts, as its target, * the current method handle. The type of the adapter will be * the same as the type of the target, except that all but the first * {@code keepPosArgs} parameters of the target's type are replaced * by a single array parameter of type {@code Object[]}. * Thus, if {@code keepPosArgs} is zero, the adapter will take all * arguments in a single object array. *

* When called, the adapter replaces a trailing array argument * by the array's elements, each as its own argument to the target. * (The order of the arguments is preserved.) * They are converted pairwise by casting and/or unboxing * (as if by {@link MethodHandles#convertArguments}) * to the types of the trailing parameters of the target. * Finally the target is called. * What the target eventually returns is returned unchanged by the adapter. *

* Before calling the target, the adapter verifies that the array * contains exactly enough elements to provide a correct argument count * to the target method handle. * (The array may also be null when zero elements are required.) * @param keepPosArgs the number of leading positional arguments to preserve * @return a new method handle which spreads its final argument, * before calling the original method handle * @throws IllegalArgumentException if target does not have at least * {@code keepPosArgs} parameter types */ public final MethodHandle asSpreader(int keepPosArgs) { MethodType oldType = type(); int nargs = oldType.parameterCount(); MethodType newType = oldType.dropParameterTypes(keepPosArgs, nargs); newType = newType.insertParameterTypes(keepPosArgs, Object[].class); return MethodHandles.spreadArguments(this, newType); } /** * PROVISIONAL API, WORK IN PROGRESS: * Produce a method handle which adapts, as its target, * the current method handle. The type of the adapter will be * the same as the type of the target, except that a single trailing * array parameter of type {@code Object[]} is replaced by * {@code spreadArrayArgs} parameters of type {@code Object}. *

* When called, the adapter replaces its trailing {@code spreadArrayArgs} * arguments by a single new {@code Object} array, whose elements * comprise (in order) the replaced arguments. * Finally the target is called. * What the target eventually returns is returned unchanged by the adapter. *

* (The array may also be a shared constant when {@code spreadArrayArgs} is zero.) * @param spreadArrayArgs the number of arguments to spread from the trailing array * @return a new method handle which collects some trailing argument * into an array, before calling the original method handle * @throws IllegalArgumentException if the last argument of the target * is not {@code Object[]} * @throws IllegalArgumentException if {@code spreadArrayArgs} is not * a legal array size * @deprecated Provisional and unstable; use {@link MethodHandles#collectArguments}. */ public final MethodHandle asCollector(int spreadArrayArgs) { MethodType oldType = type(); int nargs = oldType.parameterCount(); MethodType newType = oldType.dropParameterTypes(nargs-1, nargs); newType = newType.insertParameterTypes(nargs-1, MethodType.genericMethodType(spreadArrayArgs).parameterArray()); return MethodHandles.collectArguments(this, newType); } /** * PROVISIONAL API, WORK IN PROGRESS: * Produce a method handle which binds the given argument * to the current method handle as target. * The type of the bound handle will be * the same as the type of the target, except that a single leading * reference parameter will be omitted. *

* When called, the bound handle inserts the given value {@code x} * as a new leading argument to the target. The other arguments are * also passed unchanged. * What the target eventually returns is returned unchanged by the bound handle. *

* The reference {@code x} must be convertible to the first parameter * type of the target. * @param x the value to bind to the first argument of the target * @return a new method handle which collects some trailing argument * into an array, before calling the original method handle * @throws IllegalArgumentException if the target does not have a * leading parameter type that is a reference type * @throws ClassCastException if {@code x} cannot be converted * to the leading parameter type of the target * @deprecated Provisional and unstable; use {@link MethodHandles#insertArguments}. */ public final MethodHandle bindTo(Object x) { return MethodHandles.insertArguments(this, 0, x); } }