

openEuler
20.03 LTS

Virtualization User Guide

Date 2020-04-07

openEuler

Virtualization User Guide Contents

2020-04-07 ii

Contents

Terms of Use ... v

About This Document ... vi

1 Introduction to Virtualization .. 7

2 Installation Guide ... 11

2.1 Minimum Hardware Requirements ... 11

2.2 Installing Core Virtualization Components ... 11

2.2.1 Installation Methods .. 11

2.2.2 Verifying the Installation ... 12

3 User and Administrator Guide... 14

3.1 Environment Preparation.. 14

3.1.1 Preparing a VM Image .. 14

3.1.2 Preparing the VM Network ... 16

3.1.3 Preparing Boot Firmware .. 20

3.2 VM Configuration... 21

3.2.1 Introduction .. 21

3.2.2 VM Description ... 22

3.2.3 vCPU and Virtual Memory ... 23

3.2.4 Virtual Device Configuration .. 23

3.2.4.1 Storage Devices .. 23

3.2.4.2 Network Device .. 25

3.2.4.3 Bus Configuration... 27

3.2.4.4 Other Common Devices ... 29

3.2.5 Configurations Related to the System Architecture .. 31

3.2.6 Other Common Configuration Items .. 32

3.2.7 XML Configuration File Example.. 32

3.3 Managing VMs ... 35

3.3.1 VM Life Cycle ... 35

3.3.1.1 Introduction ... 35

3.3.1.2 Management Commands.. 37

3.3.1.3 Example... 38

3.3.2 Modify VM Configurations Online .. 39

openEuler

Virtualization User Guide Contents

2020-04-07 iii

3.3.3 Querying VM Information .. 39

3.3.4 Logging In to a VM ... 42

3.3.4.1 Logging In Using VNC Passwords ... 42

3.3.4.2 Configuring VNC TLS Login .. 43

3.4 VM Live Migration... 45

3.4.1 Introduction .. 45

3.4.2 Application Scenarios .. 46

3.4.3 Precautions and Restrictions ... 46

3.4.4 Live Migration Operations .. 47

3.5 System Resource Management .. 49

3.5.1 Managing vCPU .. 49

3.5.1.1 CPU Shares ... 49

3.5.1.2 Binding the QEMU Process to a Physical CPU ... 50

3.5.1.3 Adjusting the vCPU Binding Relationship ... 51

3.5.2 Managing Virtual Memory .. 52

3.5.2.1 Introduction to NUMA ... 52

3.5.2.2 Configuring Host NUMA .. 53

3.5.2.3 Configuring Guest NUMA... 54

3.6 Managing Devices .. 55

3.6.1 Configuring a PCIe Controller for a VM ... 55

3.6.2 Managing Virtual Disks... 56

3.6.3 Managing vNICs .. 57

3.6.4 Configuring a Virtual Serial Port .. 57

3.6.5 Managing Device Passthrough ... 58

3.6.5.1 PCI Passthrough.. 58

3.6.5.2 SR-IOV Passthrough .. 60

3.6.6 Managing VM USB ... 63

3.6.6.1 Configuring USB Controllers .. 63

3.6.6.2 Configuring a USB Passthrough Device ... 64

3.6.7 Storing Snapshots .. 66

3.7 Best Practices .. 66

3.7.1 Performance Best Practices ... 66

3.7.1.1 Halt-Polling ... 66

3.7.1.2 I/O Thread Configuration ... 67

3.7.1.3 Raw Device Mapping ... 68

3.7.1.4 kworker Isolation and Binding .. 69

3.7.1.5 HugePage Memory ... 69

3.7.2 Security Best Practices .. 70

3.7.2.1 Libvirt Authentication .. 70

3.7.2.2 qemu-ga ... 72

3.7.2.3 sVirt Protection ... 73

openEuler

Virtualization User Guide Contents

2020-04-07 iv

A Appendix ... 75

A.1 Terminology & Acronyms and Abbreviations ... 75

openEuler

Virtualization User Guide Terms of Use

2020-04-07 v

Terms of Use

Copyright © 2020Huawei Technologies Co., Ltd.

Your replication, use, modification, and distribution of this document are governed by the

Creative Commons License Attribution-ShareAlike 4.0 International Public License (CC

BY-SA 4.0). You can visit https://creativecommons.org/licenses/by-sa/4.0/ to view a summary

of (and not a substitute for) CC BY-SA 4.0. For the complete CC BY-SA 4.0, visit

https://creativecommons.org/licenses/by-sa/4.0/legalcode.

Trademarks and Permissions

openEuler is a trademark or registered trademark of Huawei Technologies Co., Ltd. All other

trademarks and trade names mentioned in this document are the property of their respective

holders.

Disclaimer

This document is used only as a guide. Unless otherwise specified by applicable laws or

agreed by both parties in written form, all statements, information, and recommendations in

this document are provided "AS IS" without warranties, guarantees or representations of any

kind, including but not limited to non-infringement, timeliness, and specific purposes.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/legalcode

openEuler

Virtualization User Guide About This Document

2020-04-07 vi

About This Document

Overview
This document describes virtualization, installation method and usage of openEuler-based

virtualization, and guidance for users and administrators to install and use virtualization.

Symbol Conventions
The symbols that may be found in this document are defined as follows.

Symbol Description

Indicates a potentially hazardous situation which, if not avoided, could

result in equipment damage, data loss, performance deterioration, or

unanticipated results.

NOTICE is used to address practices not related to personal injury.

 Supplements the important information in the main text.

NOTE is used to address information not related to personal injury,

equipment damage, and environment deterioration.

openEuler

Virtualization User Guide 1 Introduction to Virtualization

2020-04-07 7

1 Introduction to Virtualization

Overview

In computer technologies, virtualization is a resource management technology. It abstracts

various physical resources (such as processors, memory, disks, and network adapters) of a

computer, converts the resources, and presents the resources for segmentation and

combination into one or more computer configuration environments. This resource

management technology breaks the inseparable barrier of the physical structure, and makes

these resources not restricted by the architecture, geographical or physical configuration of the

existing resources after virtualization. In this way, users can better leverage the computer

hardware resources and maximize the resource utilization.

Virtualization enables multiple virtual machines (VMs) to run on a physical server. The VMs

share the processor, memory, and I/O resources of the physical server, but are logically

isolated from each other. In the virtualization technology, the physical server is called a host

machine, the VM running on the host machine is called a guest, and the operating system (OS)

running on the VM is called a guest OS. A layer of software, called the virtualization layer,

exists between a host machine and a VM to simulate virtual hardware. This virtualization

layer is called a VM monitor, as shown in the following figure.

openEuler

Virtualization User Guide 1 Introduction to Virtualization

2020-04-07 8

Figure 1-1 Virtualized architecture

Virtualized Architecture

Currently, mainstream virtualization technologies are classified into two types based on the

implementation structure of the Virtual Machine Monitor (VMM):

 Hypervisor model

In this model, VMM is considered as a complete operating system (OS) and has the

virtualization function. VMM directly manages all physical resources, including

processors, memory, and I/O devices.

 Host model

In this model, physical resources are managed by a host OS, which is a traditional OS,

such as Linux and Windows. The host OS does not provide the virtualization capability.

The VMM that provides the virtualization capability runs on the host OS as a driver or

software of the system. The VMM invokes the host OS service to obtain resources and

simulate the processor, memory, and I/O devices. The virtualization implementation of

this model includes KVM and Virtual Box.

Kernel-based Virtual Machine (KVM) is a kernel module of Linux. It makes Linux a

hypervisor. Figure 1-2 shows the KVM architecture. KVM does not simulate any hardware

device. It is used to enable virtualization capabilities provided by the hardware, such as Intel

VT-x, AMD-V, Arm virtualization extensions. The user-mode QEMU simulates the

mainboard, memory, and I/O devices. The user-mode QEMU works with the kernel KVM

module to simulate VM hardware. The guest OS runs on the hardware simulated by the

QEMU and KVM.

openEuler

Virtualization User Guide 1 Introduction to Virtualization

2020-04-07 9

Figure 1-2 KVM architecture

Virtualization Components

Virtualization components provided in the openEuler software package:

 KVM: provides the core virtualization infrastructure to make the Linux system a

hypervisor. Multiple VMs can run on the same host at the same time.

 QEMU: simulates a processor and provides a set of device models to work with KVM to

implement hardware-based virtualization simulation acceleration.

 Libvirt: provides a tool set for managing VMs, including unified, stable, and open

application programming interfaces (APIs), daemon process (libvirtd), and default

command line management tool (virsh).

 Open vSwitch: provides a virtual network tool set for VMs, supports programming

extension and standard management interfaces and protocols (such as NetFlow, sFlow,

IPFIX, RSPAN, CLI, LACP, and 802.1ag).

Virtualization Characteristics

Virtualization has the following characteristics:

 Partition

Virtualization can logically divide software on a physical server to run multiple VMs

(virtual servers) with different specifications.

 Isolation

Virtualization can simulate virtual hardware and provide hardware conditions for VMs to

run complete OSs. The OSs of each VM are independent and isolated from each other.

openEuler

Virtualization User Guide 1 Introduction to Virtualization

2020-04-07 10

For example, if the OS of a VM breaks down due to a fault or malicious damage, the

OSs and applications of other VMs are not affected.

 Encapsulation

Encapsulation is performed on a per VM basis. The excellent encapsulation capability

makes VMs more flexible than physical machines. Functions such as live migration,

snapshot, and cloning of VMs can be realized, implementing quick deployment and

automatic O&M of data centers.

 Hardware-irrelevant

After being abstracted by the virtualization layer, VMs are not directly bound to

underlying hardware and can run on other servers without being modified.

Virtualization Advantages

Virtualization brings the following benefits to infrastructure of the data center:

 Flexibility and scalability

Users can dynamically allocate and reclaim resources based to meet dynamic service

requirements. In addition, users can plan different VM specifications based on product

requirements and adjust the scale without changing the physical resource configuration.

 Higher availability and better O&M methods

Virtualization provides O&M methods such as live migration, snapshot, live upgrade,

and automatic DR. Physical resources can be deleted, upgraded, or changed without

affecting users, improving service continuity and implementing automatic O&M.

 Security hardening

Virtualization provides OS-level isolation and hardware-based processor operation

privilege-level control. Compared with simple sharing mechanisms, virtualization

provides higher security and implements controllable and secure access to data and

services.

 High resource utilization

Virtualization supports dynamic sharing of physical resources and resource pools,

improving resource utilization.

openEuler Virtualization

openEuler provides KVM virtualization components that support the AArch64 and x86_64

processor architectures.

openEuler

Virtualization User Guide 2 Installation Guide

2020-04-07 11

2 Installation Guide

This chapter describes how to install virtualization components in openEuler.

2.1 Minimum Hardware Requirements

2.2 Installing Core Virtualization Components

2.1 Minimum Hardware Requirements

The minimum hardware requirements for installing virtualization components on openEuler

are as follows:

 AArch64 processor architecture: ARMv8 or later, supporting virtualization expansion

 x86_64 processor architecture, supporting VT-x

 2-core CPU

 4 GB memory

 16 GB available disk space

2.2 Installing Core Virtualization Components

2.2.1 Installation Methods

Prerequisites
 The yum source has been configured. For details, see openEuler 20.03 LTS

Administrator Guide.

 Only the administrator has permission to perform the installation.

Procedure

Step 1 Install the QEMU component.

yum install -y qemu

Step 2 Install the libvirt component.

openEuler

Virtualization User Guide 2 Installation Guide

2020-04-07 12

yum install -y libvirt

Step 3 Start the libvirtd service.

systemctl start libvirtd

----End

The KVM module is integrated in the openEuler kernel and does not need to be installed separately.

2.2.2 Verifying the Installation

Step 1 Check whether the kernel supports KVM virtualization, that is, check whether the /dev/kvm

and /sys/module/kvm files exist. The command and output are as follows:

ls /dev/kvm

/dev/kvm

ls /sys/module/kvm

parameters uevent

If the preceding files exist, the kernel supports KVM virtualization. If the preceding files do

not exist, KVM virtualization is not enabled during kernel compilation. In this case, you need

to use the Linux kernel that supports KVM virtualization.

Step 2 Check whether QEMU is successfully installed. If the installation is successful, the QEMU

software package information is displayed. The command and output are as follows:

rpm -qi qemu

Name : qemu

Epoch : 2

Version : 4.0.1

Release : 10

Architecture: aarch64

Install Date: Wed 24 Jul 2019 04:04:47 PM CST

Group : Unspecified

Size : 16869484

License : GPLv2 and BSD and MIT and CC-BY

Signature : (none)

Source RPM : qemu-4.0.0-1.src.rpm

Build Date : Wed 24 Jul 2019 04:03:52 PM CST

Build Host : localhost

Relocations : (not relocatable)

URL : http://www.qemu.org

Summary : QEMU is a generic and open source machine emulator and virtualizer

Description :

QEMU is a generic and open source processor emulator which achieves a good

emulation speed by using dynamic translation. QEMU has two operating modes:

 * Full system emulation. In this mode, QEMU emulates a full system (for

 example a PC), including a processor and various peripherials. It can be

 used to launch different Operating Systems without rebooting the PC or

 to debug system code.

 * User mode emulation. In this mode, QEMU can launch Linux processes compiled

 for one CPU on another CPU.

openEuler

Virtualization User Guide 2 Installation Guide

2020-04-07 13

As QEMU requires no host kernel patches to run, it is safe and easy to use.

Step 3 Check whether libvirt is successfully installed. If the installation is successful, the libvirt

software package information is displayed. The command and output are as follows:

rpm -qi libvirt

Name : libvirt

Version : 5.5.0

Release : 1

Architecture: aarch64

Install Date: Tue 30 Jul 2019 04:56:21 PM CST

Group : Unspecified

Size : 0

License : LGPLv2+

Signature : (none)

Source RPM : libvirt-5.5.0-1.src.rpm

Build Date : Mon 29 Jul 2019 08:14:57 PM CST

Build Host : 71e8c1ce149f

Relocations : (not relocatable)

URL : https://libvirt.org/

Summary : Library providing a simple virtualization API

Description :

Libvirt is a C toolkit to interact with the virtualization capabilities

of recent versions of Linux (and other OSes). The main package includes

the libvirtd server exporting the virtualization support.

Step 4 Check whether the libvirt service is started successfully. If the service is in the Active state,

the service is started successfully. You can use the virsh command line tool provided by the

libvirt. The command and output are as follows:

systemctl status libvirtd

● libvirtd.service - Virtualization daemon

 Loaded: loaded (/usr/lib/systemd/system/libvirtd.service; enabled; vendor preset:

enabled)

 Active: active (running) since Tue 2019-08-06 09:36:01 CST; 5h 12min ago

 Docs: man:libvirtd(8)

 https://libvirt.org

 Main PID: 40754 (libvirtd)

 Tasks: 20 (limit: 32768)

 Memory: 198.6M

 CGroup: /system.slice/libvirtd.service

 ─40754 /usr/sbin/libvirtd

----End

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 14

3 User and Administrator Guide

This chapter describes how to create VMs on the virtualization platform, manage VM life

cycles, and query information.

3.1 Environment Preparation

3.2 VM Configuration

3.3 Managing VMs

3.4 VM Live Migration

3.5 System Resource Management

3.6 Managing Devices

3.7 Best Practices

3.1 Environment Preparation

3.1.1 Preparing a VM Image

Overview

A VM image is a file that contains a virtual disk that has been installed and can be used to

start the OS. VM images are in different formats, such as raw and qcow2. Compared with the

raw format, the qcow2 format occupies less space and supports features such as snapshot,

copy-on-write, AES encryption, and zlib compression. However, the performance of the

qcow2 format is slightly lower than that of the raw format. The qemu-img tool is used to

create image files. This section uses the qcow2 image file as an example to describe how to

create a VM image.

Creating an Image

To create a qcow2 image file, perform the following steps:

Step 1 Install the qemu-img software package.

yum install -y qemu-img

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 15

Step 2 Run the create command of the qemu-img tool to create an image file. The command format

is as follows:

$ qemu-img create -f <imgFormat> -o <fileOption> <fileName> <diskSize>

The parameters are described as follows:

 imgFormat: Image format. The value can be raw or qcow2.

 fileOption: File option, which is used to set features of an image file, such as specifying a

backend image file, compression, and encryption.

 fileName: File name.

 diskSize: Disk size, which specifies the size of a block disk. The unit can be K, M, G, or

T, indicating KiB, MiB, GiB, or TiB.

For example, to create an image file openEuler-imge.qcow2 whose disk size is 4 GB and

format is qcow2, the command and output are as follows:

$ qemu-img create -f qcow2 openEuler-image.qcow2 4G

Formatting 'openEuler-image.qcow2', fmt=qcow2 size=4294967296 cluster_size=65536

lazy_refcounts=off refcount_bits=16

----End

Changing the Image Disk Space

If a VM requires larger disk space, you can use the qemu-img tool to change the disk space of

the VM image. The method is as follows:

Step 1 Run the following command to query the disk space of the VM image:

qemu-img info <imgFiLeName>

For example, if the command and output for querying the disk space of the

openEuler-image.qcow2 image are as follows, the disk space of the image is 4 GiB.

qemu-img info openEuler-image.qcow2

image: openEuler-image.qcow2

file format: qcow2

virtual size: 4.0G (4294967296 bytes)

disk size: 196K

cluster_size: 65536

Format specific information:

 compat: 1.1

 lazy refcounts: false

 refcount bits: 16

 corrupt: false

Step 2 Run the following command to change the image disk space. In the command, imgFiLeName

indicates the image name, and + and - indicate the image disk space to be increased and

decreased, respectively. The unit is KB, MB, GB, and T, indicating KiB, MiB, GiB, and TiB,

respectively.

qemu-img resize <imgFiLeName> [+|-]<size>

For example, to expand the disk space of the openEuler-image.qcow2 image to 24 GiB, that is,

to add 20 GiB to the original 4 GiB, the command and output are as follows:

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 16

qemu-img resize openEuler-image.qcow2 +20G

Image resized.

Step 3 Run the following command to check whether the image disk space is changed successfully:

qemu-img info <imgFiLeName>

For example, if the openEuler-image.qcow2 image disk space has been expanded to 24 GiB,

the command and output are as follows:

qemu-img info openEuler-image.qcow2

image: openEuler-image.qcow2

file format: qcow2

virtual size: 24G (25769803776 bytes)

disk size: 200K

cluster_size: 65536

Format specific information:

 compat: 1.1

 lazy refcounts: false

 refcount bits: 16

 corrupt: false

----End

3.1.2 Preparing the VM Network

Overview

To enable the VM to communicate with external networks, you need to configure the network

environment for the VM. KVM virtualization supports multiple types of bridges, such as

Linux bridge and Open vSwitch bridge. As shown in Figure 3-1, the data transmission path is

VM > virtual NIC device > Linux bridge or Open vSwitch bridge > physical NIC. In

addition to configuring virtual NICs (vNICs) for VMs, creating a bridge for a host is the key

to connecting to a virtualized network.

This section describes how to set up a Linux bridge and an Open vSwitch bridge to connect a

VM to the network. You can select a bridge type based on the site requirements.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 17

Figure 3-1 Virtual network structure

Setting Up a Linux Bridge

The following describes how to bind the physical NIC eth0 to the Linux bridge br0.

Step 1 Install the bridge-utils software package.

The Linux bridge is managed by the brctl tool. The corresponding installation package is

bridge-utils. The installation command is as follows:

yum install -y bridge-utils

Step 2 Create bridge br0.

brctl addbr br0

Step 3 Bind the physical NIC eth0 to the Linux bridge.

brctl addif br0 eth0

Step 4 After eth0 is connected to the bridge, the IP address of eth0 is set to 0.0.0.0.

ifconfig eth0 0.0.0.0

Step 5 Set the IP address of br0.

 If a DHCP server is available, set a dynamic IP address through the dhclient.

dhclient br0

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 18

 If no DHCP server is available, configure a static IP address for br0. For example, set the

static IP address to 192.168.1.2 and subnet mask to 255.255.255.0.

ifconfig br0 192.168.1.2 netmask 255.255.255.0

----End

Setting Up an Open vSwitch Bridge

The Open vSwitch bridge provides more convenient automatic orchestration capabilities. This

section describes how to install network virtualization components to set up an Open vSwitch

bridge.

1. Install the Open vSwitch component.

If the Open vSwitch is used to provide virtual network, you need to install the Open vSwitch

network virtualization component.

Step 1 Install the Open vSwitch component.

yum install -y openvswitch-kmod

yum install -y openvswitch

Step 2 Start the Open vSwitch service.

systemctl start openvswitch

----End

2. Check whether the installation is successful.

Check whether the Open vSwitch components, openvswitch-kmod and openvswitch, are

successfully installed.

Step 1 Check whether the openvswitch-kmod component is successfully installed. If the installation

is successful, the software package information is displayed. The command and output are as

follows:

rpm -qi openvswitch-kmod

Name : openvswitch-kmod

Version : 2.11.1

Release : 1.oe3

Architecture: aarch64

Install Date: Thu 15 Aug 2019 05:07:49 PM CST

Group : System Environment/Daemons

Size : 15766774

License : GPLv2

Signature : (none)

Source RPM : openvswitch-kmod-2.11.1-1.oe3.src.rpm

Build Date : Thu 08 Aug 2019 04:33:08 PM CST

Build Host : armbuild10b175b113b44

Relocations : (not relocatable)

Vendor : OpenSource Security Ralf Spenneberg <ralf@os-s.net>

URL : http://www.openvswitch.org/

Summary : Open vSwitch Kernel Modules

Description :

Open vSwitch provides standard network bridging functions augmented with

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 19

support for the OpenFlow protocol for remote per-flow control of

traffic. This package contains the kernel modules.

Step 2 Check whether the openvswitch component is successfully installed. If the installation is

successful, the software package information is displayed. The command and output are as

follows:

rpm -qi openvswitch

Name : openvswitch

Version : 2.11.1

Release : 1

Architecture: aarch64

Install Date: Thu 15 Aug 2019 05:08:35 PM CST

Group : System Environment/Daemons

Size : 6051185

License : ASL 2.0

Signature : (none)

Source RPM : openvswitch-2.11.1-1.src.rpm

Build Date : Thu 08 Aug 2019 05:24:46 PM CST

Build Host : armbuild10b247b121b105

Relocations : (not relocatable)

Vendor : Nicira, Inc.

URL : http://www.openvswitch.org/

Summary : Open vSwitch daemon/database/utilities

Description :

Open vSwitch provides standard network bridging functions and

support for the OpenFlow protocol for remote per-flow control of

traffic.

Step 3 Check whether the Open vSwitch service is started successfully. If the service is in the Active

state, the service is started successfully. You can use the command line tool provided by the

Open vSwitch. The command and output are as follows:

systemctl status openvswitch

● openvswitch.service - LSB: Open vSwitch switch

 Loaded: loaded (/etc/rc.d/init.d/openvswitch; generated)

 Active: active (running) since Sat 2019-08-17 09:47:14 CST; 4min 39s ago

 Docs: man:systemd-sysv-generator(8)

 Process: 54554 ExecStart=/etc/rc.d/init.d/openvswitch start (code=exited,

status=0/SUCCESS)

 Tasks: 4 (limit: 9830)

 Memory: 22.0M

 CGroup: /system.slice/openvswitch.service

 ├─54580 ovsdb-server: monitoring pid 54581 (healthy)

 ├─54581 ovsdb-server /etc/openvswitch/conf.db -vconsole:emer -vsyslog:err

-vfile:info --remote=punix:/var/run/openvswitch/db.sock

--private-key=db:Open_vSwitch,SSL,private_key --certificate>

 ├─54602 ovs-vswitchd: monitoring pid 54603 (healthy)

 └─54603 ovs-vswitchd unix:/var/run/openvswitch/db.sock -vconsole:emer

-vsyslog:err -vfile:info --mlockall --no-chdir

--log-file=/var/log/openvswitch/ovs-vswitchd.log --pidfile=/var/run/open>

----End

3. Set up an Open vSwitch bridge

The following describes how to set up an Open vSwitch layer-1 bridge br0.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 20

Step 1 Create the Open vSwitch bridge br0.

ovs-vsctl add-br br0

Step 2 Add the physical NIC eth0 to br0.

ovs-vsctl add-port br0 eth0

Step 3 After eth0 is connected to the bridge, the IP address of eth0 is set to 0.0.0.0.

ifconfig eth0 0.0.0.0

Step 4 Assign an IP address to OVS bridge br0.

 If a DHCP server is available, set a dynamic IP address through the dhclient.

dhclient br0

 If no DHCP server is available, configure a static IP address for br0, for example,

192.168.1.2.

ifconfig br0 192.168.1.2

----End

3.1.3 Preparing Boot Firmware

Overview

The boot mode varies depending on the architecture. x86 servers support the Unified

Extensible Firmware Interface (UFEI) and BIOS boot modes, and AArch64 servers support

only the UFEI boot mode. By default, boot files corresponding to the BIOS mode have been

installed on openEuler. No additional operations are required. This section describes how to

install boot files corresponding to the UEFI mode.

The Unified Extensible Firmware Interface (UEFI) is a new interface standard used for

power-on auto check and OS boot. It is an alternative to the traditional BIOS. EDK II is a set

of open source code that implements the UEFI standard. In virtualization scenarios, the EDK

II tool set is used to start a VM in UEFI mode. Before using the EDK II tool, you need to

install the corresponding software package before starting a VM. This section describes how

to install the EDK II tool.

Installation Methods

If the UEFI mode is used, the tool set EDK II needs to be installed. The installation package

for the AArch64 architecture is edk2-aarch64, and that for the x86 architecture is edk2-ovmf.

This section uses the AArch64 architecture as an example to describe the installation method.

For the x86 architecture, you only need to replace edk2-aarch64 with edk2-ovmf.

Step 1 Run the following command to install the edk software package:

In the AArch64 architecture, the edk2 package name is edk2-aarch64.

yum install -y edk2-aarch64

In the x86_64 architecture, the edk2 package name is edk2-ovmf.

yum install -y edk2-ovmf

Step 2 Run the following command to check whether the edk software package is successfully

installed:

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 21

In the AArch64 architecture, the command is as follows:

rpm -qi edk2-aarch64

If information similar to the following is displayed, the edk software package is successfully

installed:

Name : edk2-aarch64

Version : 20180815gitcb5f4f45ce

Release : 1.oe3

Architecture: noarch

Install Date: Mon 22 Jul 2019 04:52:33 PM CST

Group : Applications/Emulators

In the x86_64 architecture, the command is as follows:

rpm -qi edk2-ovmf

If information similar to the following is displayed, the edk software package is successfully

installed:

Name : edk2-ovmf

Version : 201908

Release : 6.oe1

Architecture: noarch

Install Date: Thu 19 Mar 2020 09:09:06 AM CST

----End

3.2 VM Configuration

3.2.1 Introduction

Overview

Libvirt tool uses XML files to describe a VM feature, including the VM name, CPU, memory,

disk, NIC, mouse, and keyboard. You can manage a VM by modifying configuration files.

This section describes the elements in the XML configuration file to help users configure

VMs.

Format

The VM XML configuration file uses domain as the root element, which contains multiple

other elements. Some elements in the XML configuration file can contain corresponding

attributes and attribute values to describe VM information in detail. Different attributes of the

same element are separated by spaces.

The basic format of the XML configuration file is as follows. In the format, label indicates the

label name, attribute indicates the attribute, and value indicates the attribute value. Change

them based on the site requirements.

<domain type='kvm'>

 <name>VMName</name>

 <memory attribute='value'>8</memory>

 <vcpu>4</vcpu>

 <os>

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 22

 <label attribute='value' attribute='value'>

 ...

 </label>

 </os>

 <label attribute='value' attribute='value'>

 ...

 </label>

</domain>

Process

1. Create an XML configuration file with domain root element.

2. Use the name tag to specify a unique VM name based on the naming rule.

3. Configure system resources such as the virtual CPU (vCPU) and virtual memory.

4. Configure virtual devices.

a. Configure storage devices.

b. Configure network devices.

c. Configure the external bus structure.

d. Configure external devices such as the mouse.

5. Save the XML configuration file.

3.2.2 VM Description

Overview

This section describes how to configure the VM domain root element and VM name.

Elements
 domain: Root element of a VM XML configuration file, which is used to configure the

type of the hypervisor that runs the VM.

type: Type of a domain in virtualization. In the openEuler virtualization, the attribute

value is kvm.

 name: VM name.

The VM name is a unique character string on the same host. The VM name can contain

only digits, letters, underscores (_), hyphens (-), and colons (:), but cannot contain only

digits. The VM name can contain a maximum of 64 characters.

Configuration Example

For example, if the VM name is openEuler, the configuration is as follows:

<domain type='kvm'>

 <name>openEuler</name>

 ...

</domain>

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 23

3.2.3 vCPU and Virtual Memory

Overview

This section describes how to configure the vCPU and virtual memory.

Elements
 vcpu: The number of virtual processors.

 memory: The size of the virtual memory.

unit: The memory unit. The value can be KiB (210 bytes), MiB (220 bytes), GiB (230

bytes), or TiB (240 bytes).

 cpu: The mode of the virtual processor.

mode: The mode of the vCPU. The host-passthrough indicates that the architecture and

features of the virtual CPU are the same as those of the host.

Sub-element topology: A sub-element of the element cpu, used to describe the topology

structure of a vCPU mode.

− The attributes socket, cores, and threads of the sub-element topology describe the

number of CPU sockets of a VM, the number of processor cores included in each

CPU socket, and the number of hyperthreads included in each processor core,

respectively. The attribute value is a positive integer, and a product of the three

values is equal to the number of of vCPUs.

Configuration Example

For example, if the number of vCPUs is 4, the processing mode is host-passthrough, the

virtual memory is 8 GiB, the four CPUs are distributed in two CPU sockets, and

hyperthreading is not supported, the configuration is as follows:

<domain type='kvm'>

 ...

 <vcpu>4</vcpu>

 <memory unit='GiB'>8</memory>

 <cpu mode='host-passthrough'>

 <topology sockets='2' cores='2' threads='1'/>

 </cpu>

...

</domain>

3.2.4 Virtual Device Configuration

The VM XML configuration file uses the devices elements to configure virtual devices,

including storage devices, network devices, buses, and mouse devices. This section describes

how to configure common virtual devices.

3.2.4.1 Storage Devices

Overview

This section describes how to configure virtual storage devices, including floppy disks, disks,

and CD-ROMs and their storage types.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 24

Elements

The XML configuration file uses the disk element to configure storage devices. Table 3-1

describes common disk attributes. Table 3-2 describes common subelements and their

attributes.

Table 3-1 Common attributes of the disk element

Ele
me
nt

Attrib
ute

Description Attribute Value and Description

disk type Specifies the type

of the backend

storage medium.

block: block device

file: file device

dir: directory path

device Specifies the

storage medium

to be presented to

the VM.

disk: disk (default)

floppy: floppy disk

cdrom: CD-ROM

Table 3-2 Common subelements and attributes of the disk element

Subele
ment

Subelement
Description

Attribute Description

source Specifies the

backend storage

medium, which

corresponds to

the type specified

by the type

attribute of the

disk element.

file: file type. The value is the fully qualified path of the

corresponding file.

dev: block type. The value is the fully qualified path of the

corresponding host device.

dir: directory type. The value is the fully qualified path of

the disk directory.

driver Details about the

specified

backend driver

type: disk format type. The value can be raw or qcow2,

which must be the same as that of source.

io: disk I/O mode. The options are native and threads.

cache: disk cache mode. The value can be none,

writethrough, writeback, or directsync.

iothread: I/O thread allocated to the disk.

target The bus and

device that a disk

presents to a

VM.

dev: specifies the logical device name of a disk, for

example, sd[a-p] for SCSI, SATA, and USB buses and

hd[a-d] for IDE disks.

bus: specifies the type of a disk. Common types include

scsi, usb, sata, and virtio.

boot The disk can be

used as the boot

disk.

order: specifies the disk startup sequence.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 25

Subele
ment

Subelement
Description

Attribute Description

readonly The disk is

read-only and

cannot be

modified by the

VM. Generally,

it is used

together with the

CD-ROM drive.

-

Configuration Example

After the VM image is prepared according to 3.1.1 Preparing a VM Image, you can use the

following XML configuration file to configure the virtual disk for the VM.

In this example, two I/O threads, one block disk device and one CD, are configured for the

VM, and the first I/O thread is allocated to the block disk device for use. The backend

medium of the disk device is in qcow2 format and is used as the preferred boot disk.

<domain type='kvm'>

 ...

 <iothreads>2</iothreads>

 <devices>

 <disk type='file' device='disk'>

 <driver name='qemu' type='qcow2' cache='none' io='native' iothread="1"/>

 <source file='/mnt/openEuler-image.qcow2'/>

 <target dev='vda' bus='virtio'/>

 <boot order='1'/>

 </disk>

 <disk type='file' device='cdrom'>

 <driver name='qemu' type='raw' cache='none' io='native'/>

 <source file='/mnt/openEuler-20.03-LTS-aarch64-dvd.iso'/>

 <target dev='sdb' bus='scsi'/>

 <readonly/>

 <boot order='2'/>

 </disk>

 ...

 </devices>

</domain>

3.2.4.2 Network Device

Overview

The XML configuration file can be used to configure virtual network devices, including the

ethernet mode, bridge mode, and vhostuser mode. This section describes how to configure

vNICs.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 26

Elements

In the XML configuration file, the element interface is used, and its attribute type indicates

the mode of the vNIC. The options are ethernet, bridge, and vhostuser. The following uses

the vNIC in bridge mode as an example to describe its subelements and attributes.

Table 3-3 Common subelements of a vNIC in bridge mode

Subele
ment

Subelement
Description

Attribute and Description

mac The mac address

of the vNIC.

address: specifies the mac address. If this parameter is not

set, the system automatically generates a mac address.

target Name of the

backend vNIC.

dev: name of the created backend tap device.

source Specify the

backend of the

vNIC.

bridge: used together with the bridge mode. The value is

the bridge name.

boot The NIC can be

used for remote

startup.

order: specifies the startup sequence of NICs.

model Indicates the type

of a vNIC.

type: virtio is usually used for the NIC in bridge mode.

virtualpor

t

Port type type: If an OVS bridge is used, set this parameter to

openvswitch.

driver Backend driver

type

name: driver name. The value is vhost.

queues: the number of NIC queues.

Configuration Example
 After creating the Linux bridge br0 by referring to 3.1.2 Preparing the VM Network,

configure a vNIC of the VirtIO type bridged on the br0 bridge. The corresponding XML

configuration is as follows:

<domain type='kvm'>

 ...

 <devices>

 <interface type='bridge'>

 <source bridge='br0'/>

 <model type='virtio'/>

 </interface>

 ...

 </devices>

</domain>

 If an OVS network bridge is created according to 3.1.2 Preparing the VM Network,

configure a VirtIO vNIC device that uses the vhost driver and has four queues.

<domain type='kvm'>

 ...

 <devices>

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 27

 <interface type='bridge'>

 <source bridge='br0'/>

 <virtualport type='openvswitch'/>

 <model type='virtio'/>

 <driver name='vhost' queues='4'/>

 </interface>

 ...

 </devices>

</domain>

3.2.4.3 Bus Configuration

Overview

The bus is a channel for information communication between components of a computer. An

external device needs to be mounted to a corresponding bus, and each device is assigned a

unique address (specified by the subelement address). Information exchange with another

device or a central processing unit (CPU) is completed through the bus network. Common

device buses include the ISA bus, PCI bus, USB bus, SCSI bus, and PCIe bus.

The PCIe bus is a typical tree structure and has good scalability. The buses are associated with

each other by using a controller. The following uses the PCIe bus as an example to describe

how to configure a bus topology for a VM.

The bus configuration is complex. If the device topology does not need to be precisely controlled, the
default bus configuration automatically generated by libvirt can be used.

Elements

In the XML configuration of libvirt, each controller element (controller) represents a bus, and

one or more controllers or devices can be mounted to one controller depending on the VM

architecture. This topic describes common attributes and subelements.

controller: controller element, which indicates a bus.

 Attribute type: bus type, which is mandatory for the controller. The common values are

pci, usb, scsi, virtio-serial, fdc, and ccid.

 Attribute index: bus number of the controller (the number starts from 0), which is

mandatory for the controller. This attribute can be used in the address element.

 Attribute model: specific model of the controller, which is mandatory for the controller.

The available values are related to the value of type. For details about the mapping and

description, see Table 3-4.

 Subelement address: mount location of a device or controller on the bus network.

− Attribute type: device address type. The common values are pci, usb, or drive. The

attribute varies according to the type of the address. For details about the common

type attribute value and the corresponding address attribute, see Table 3-5.

 Subelement model: name of a controller model.

− Attribute name: name of a controller model, which corresponds to the model

attribute in the parent element controller.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 28

Table 3-4 Mapping between the common values of type and model for the controller.

Value of
Type

Value of Model Introduction

pci pcie-root PCIe root node, which can be used to mount PCIe

devices or controllers.

pcie-root-port Only one slot can be used to mount a PCIe device

or controller.

pcie-to-pci-bridge PCIe-to-PCI bridge controller, which can be used

to mount PCI devices.

usb ehci USB 2.0 controller, which can be used to mount

USB 2.0 devices.

nec-xhci USB 3.0 controller, which can be used to mount

USB 3.0 devices.

scsi virtio-scsi VirtIO SCSI controller, which can be used to

mount block devices, such as disks and

CD-ROMs.

virtio-serial virtio-serial VirtIO serial port controller, which can be used to

mount serial port devices, such as a pty serial

port.

Table 3-5 Attributes of the address element in different devices.

Value of
Type

Description Address

pci The address type

is PCI address,

indicating the

mount location of

the device on the

PCI bus network.

domain: domain ID of the PCI device.

bus: bus number of the PCI device.

slot: device number of the PCI device.

function: function number of the PCI device.

multifunction: (optional) specifies whether to enable

the multifunction function.

usb The address type

is USB address,

indicating the

location of the

device on the USB

bus.

bus: bus number of the USB device.

port: port number of the USB device.

drive The address type

is storage device

address, indicating

the owning disk

controller and its

position on the bus.

controller: the number of the owning controller.

bus: channel number of the device output.

target: target number of the storage device.

unit: lun number of the storage device.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 29

Configuration Example

This example shows the topology of a PCIe bus. Three PCIe-Root-Port controllers are

mounted to the PCIe root node (BUS 0). The multifunction function is enabled for the first

PCIe-Root-Port controller (BUS 1). A PCIe-to-PCI-bridge controller is mounted to the first

PCIe-Root-Port controller to form a PCI bus (BUS 3). A virtio-serial device and a USB 2.0

controller are mounted to the PCI bus. A SCSI controller is mounted to the second

PCIe-Root-Port controller (BUS 2). No device is mounted to the third PCIe-Root-Port

controller (BUS 0). The configuration details are as follows:

<domain type='kvm'>

 ...

 <devices>

 <controller type='pci' index='0' model='pcie-root'/>

 <controller type='pci' index='1' model='pcie-root-port'>

 <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x0'

multifunction='on'/>

 </controller>

 <controller type='pci' index='2' model='pcie-root-port'>

 <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x1'/>

 </controller>

 <controller type='pci' index='3' model='pcie-to-pci-bridge'>

 <model name='pcie-pci-bridge'/>

 <address type='pci' domain='0x0000' bus='0x01' slot='0x00' function='0x0'/>

 </controller>

 <controller type='pci' index='4' model='pcie-root-port'>

 <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x2'/>

 </controller>

 <controller type='scsi' index='0' model='virtio-scsi'>

 <address type='pci' domain='0x0000' bus='0x02' slot='0x00' function='0x0'/>

 </controller>

 <controller type='virtio-serial' index='0'>

 <address type='pci' domain='0x0000' bus='0x03' slot='0x02' function='0x0'/>

 </controller>

 <controller type='usb' index='0' model='ehci'>

 <address type='pci' domain='0x0000' bus='0x03' slot='0x01' function='0x0'/>

 </controller>

 ...

 </devices>

</domain>

3.2.4.4 Other Common Devices

Overview

In addition to storage devices and network devices, some external devices need to be specified

in the XML configuration file. This section describes how to configure these elements.

Elements
 serial: serial port device

Attribute type: specifies the serial port type. The common attribute values are pty, tcp,

pipe, and file.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 30

 video: media device

type attribute: media device type The common attribute value of the AArch architecture

is virtio, and that of the x86_64 architecture is vga or cirrus.

Subelement model: subelement of video, which is used to specify the media device type.

In the subelement model, if type is set to vga, a Video Graphics Array (VGA) video card

is configured. vram indicates the size of the video RAM, in KB by default.

For example, if a 16 MB VGA video card is configured for an x86_64 VM, configuration

in the XML file is as follows. In the example, the value of vram is the size of video

RAM, in KB by default.

<video>

 <model type='vga' vram='16384' heads='1' primary='yes'/>

</video>

 input: output device

type attribute: specifies the type of the output device. The common attribute values are

tabe and keyboard, indicating that the output device is the tablet and keyboard

respectively.

bus: specifies the bus to be mounted. The common attribute value is USB.

 emulator: emulator application path

 graphics: graphics device

type attribute: specifies the type of a graphics device. The common attribute value is

vnc.

listen attribute: specifies the IP address to be listened to.

Configuration Example

For example, in the following example, the VM emulator path, pty serial port, VirtIO media

device, USB tablet, USB keyboard, and VNC graphics device are configured.

When type of graphics is set to VNC, you are advised to set the passwd attribute, that is, the password
for logging in to the VM using VNC.

<domain type='kvm'>

 ...

 <devices>

 <emulator>/usr/libexec/qemu-kvm</emulator>

 <console type='pty'/>

 <video>

 <model type='virtio'/>

 </video>

 <input type='tablet' bus='usb'/>

 <input type='keyboard' bus='usb'/>

 <graphics type='vnc' listen='0.0.0.0' passwd='n8VfjbFK'/>

 ...

 </devices>

</domain>

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 31

3.2.5 Configurations Related to the System Architecture

Overview

The XML configuration file contain configurations related to the system architecture, which

cover the mainboard, CPU, and some features related to the architecture. This section

describes meanings of these configurations.

Elements
 os: defines VM startup parameters.

Subelement type: specifies the VM type. The attribute arch indicates the architecture

type, for example, AArch64. The attribute machine indicates the type of VM chipset.

Supported chipset type can be queried by running the qemu-kvm -machine ? command.

For example, the AArch64 architecture supports the virt type.

Subelement loader: specifies the firmware to be loaded, for example, the UEFI file

provided by the EDK. The readonly attribute indicates whether the file is read-only. The

value can be yes or no. The type attribute indicates the loader type. The common values

are rom and pflash.

Subelement nvram: specifies the path of the nvram file, which is used to store the UEFI

startup configuration.

 features: Hypervisor controls some VM CPU/machine features, such as the advanced

configuration and power interface (ACPI) and the GICv3 interrupt controller specified

by the ARM processor.

Example for AArch64 Architecture

The VM is of the aarch64 type and uses virt chipset. The VM configuration started using

UEFI is as follows:

<domain type='kvm'>

 ...

 <os>

 <type arch='aarch64' machine='virt'>hvm</type>

 <loader readonly='yes'

type='pflash'>/usr/share/edk2/aarch64/QEMU_EFI-pflash.raw</loader>

 <nvram>/var/lib/libvirt/qemu/nvram/openEulerVM.fd</nvram>

 </os>

 ...

</domain>

Configure ACPI and GIC V3 interrupt controller features for the VM.

<features>

 <acpi/>

 <gic version='3'/>

</features>

Example for x86_64 Architecture

The x86_64 architecture supports both BIOS and UEFI boot modes. If loader is not

configured, the default BIOS boot mode is used. The following is a configuration example in

which the UEFI boot mode and Q35 chipsets are used.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 32

<domain type='kvm'>

 ...

 <os>

 <type arch='x86_64' machine='q35'>hvm</type>

 <loader type='rom'>/usr/share/edk2/ovmf/OVMF.fd</loader>

 </os>

 ...

</domain>

3.2.6 Other Common Configuration Items

Overview

In addition to system resources and virtual devices, other elements need to be configured in

the XML configuration file. This section describes how to configure these elements.

Elements
 iothreads: specifies the number of iothread, which can be used to accelerate storage

device performance.

 on_poweroff: action taken when a VM is powered off.

 on_reboot: action taken when a VM is rebooted.

 on_crash: action taken when a VM is on crash.

 clock: indicates the clock type.

offset attribute: specifies the VM clock synchronization type. The value can be localtime,

utc, timezone, or variable.

Configuration Example

Configure two iothread for the VM to accelerate storage device performance.

<iothreads>2</iothreads>

Destroy the VM when it is powered off.

<on_poweroff>destroy</on_poweroff>

Restart the VM.

<on_reboot>restart</on_reboot>

Restart the VM when it is crashed.

<on_crash>restart</on_crash>

The clock uses the utc synchronization mode.

<clock offset='utc'/>

3.2.7 XML Configuration File Example

Overview

This section provides XML configuration files of a basic AArch64 VM and a x86_64 VM as

two examples for reference.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 33

Example 1

An XML configuration file of AArch64 VM, which contains basic elements. The following is

a configuration example:

<domain type='kvm'>

 <name>openEulerVM</name>

 <memory unit='GiB'>8</memory>

 <vcpu>4</vcpu>

 <os>

 <type arch='aarch64' machine='virt'>hvm</type>

 <loader readonly='yes'

type='pflash'>/usr/share/edk2/aarch64/QEMU_EFI-pflash.raw</loader>

 <nvram>/var/lib/libvirt/qemu/nvram/openEulerVM.fd</nvram>

 </os>

 <features>

 <acpi/>

 <gic version='3'/>

 </features>

 <cpu mode='host-passthrough'>

 <topology sockets='2' cores='2' threads='1'/>

 </cpu>

 <iothreads>1</iothreads>

 <clock offset='utc'/>

 <on_poweroff>destroy</on_poweroff>

 <on_reboot>restart</on_reboot>

 <on_crash>restart</on_crash>

 <devices>

 <emulator>/usr/libexec/qemu-kvm</emulator>

 <disk type='file' device='disk'>

 <driver name='qemu' type='qcow2' iothread="1"/>

 <source file='/mnt/openEuler-image.qcow2'/>

 <target dev='vda' bus='virtio'/>

 <boot order='1'/>

 </disk>

 <disk type='file' device='cdrom'>

 <driver name='qemu' type='raw'/>

 <source file='/mnt/openEuler-20.03-LTS-aarch64-dvd.iso'/>

 <readonly/>

 <target dev='sdb' bus='scsi'/>

 <boot order='2'/>

 </disk>

 <interface type='bridge'>

 <source bridge='br0'/>

 <model type='virtio'/>

 </interface>

 <console type='pty'/>

 <video>

 <model type='virtio'/>

 </video>

 <controller type='scsi' index='0' model='virtio-scsi'/>

 <controller type='usb' model='ehci'/>

 <input type='tablet' bus='usb'/>

 <input type='keyboard' bus='usb'/>

 <graphics type='vnc' listen='0.0.0.0' passwd='n8VfjbFK'/>

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 34

 </devices>

</domain>

Example 2

An XML configuration file of x86_64 VM, which contains basic elements and bus elements.

The following is a configuration example:

<domain type='kvm'>

 <name>openEulerVM</name>

 <memory unit='KiB'>8388608</memory>

 <currentMemory unit='KiB'>8388608</currentMemory>

 <vcpu placement='static'>4</vcpu>

 <iothreads>1</iothreads>

 <os>

 <type arch='x86_64' machine='pc-i440fx-4.0'>hvm</type>

 </os>

 <features>

 <acpi/>

 </features>

 <cpu mode='host-passthrough' check='none'>

 <topology sockets='2' cores='2' threads='1'/>

 </cpu>

 <clock offset='utc'/>

 <on_poweroff>destroy</on_poweroff>

 <on_reboot>restart</on_reboot>

 <on_crash>restart</on_crash>

 <devices>

 <emulator>/usr/libexec/qemu-kvm</emulator>

 <disk type='file' device='disk'>

 <driver name='qemu' type='qcow2' iothread='1'/>

 <source file='/mnt/openEuler-image.qcow2'/>

 <target dev='vda' bus='virtio'/>

 <boot order='1'/>

 <address type='pci' domain='0x0000' bus='0x00' slot='0x08' function='0x0'/>

 </disk>

 <controller type='scsi' index='0' model='virtio-scsi'>

 </controller>

 <controller type='virtio-serial' index='0'>

 </controller>

 <controller type='usb' index='0' model='ehci'>

 </controller>

 <controller type='sata' index='0'>

 </controller>

 <controller type='pci' index='0' model='pci-root'/>

 <interface type='bridge'>

 <mac address='52:54:00:c1:c4:23'/>

 <source bridge='virbr0'/>

 <model type='virtio'/>

 </interface>

 <serial type='pty'>

 <target type='isa-serial' port='0'>

 <model name='isa-serial'/>

 </target>

 </serial>

 <console type='pty'>

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 35

 <target type='serial' port='0'/>

 </console>

 <input type='tablet' bus='usb'>

 <address type='usb' bus='0' port='1'/>

 </input>

 <input type='keyboard' bus='usb'>

 <address type='usb' bus='0' port='2'/>

 </input>

 <input type='mouse' bus='ps2'/>

 <input type='keyboard' bus='ps2'/>

 <graphics type='vnc' port='-1' autoport='yes' listen='0.0.0.0'>

 <listen type='address' address='0.0.0.0'/>

 </graphics>

 <video>

 <model type='vga' vram='16384' heads='1' primary='yes'/>

 <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>

 </video>

 <memballoon model='virtio'>

 </memballoon>

 </devices>

</domain>

3.3 Managing VMs

3.3.1 VM Life Cycle

3.3.1.1 Introduction

Overview

To leverage hardware resources and reduce costs, users need to properly manage VMs. This

section describes basic operations during the VM lifecycle, such as creating, using, and

deleting VMs.

VM Status

A VM can be in one of the following status:

 undefined: The VM is not defined or created. That is, libvirt considers that the VM does

not exist.

 shut off: The VM has been defined but is not running, or the VM is terminated.

 running: The VM is running.

 paused: The VM is suspended and its running status is temporarily stored in the memory.

The VM can be restored to the running status.

 saved: Similar to the paused status, the running state is stored in a persistent storage

medium and can be restored to the running status.

 crashed: The VM crashes due to an internal error and cannot be restored to the running

status.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 36

Status Transition

VMs in different status can be converted, but certain rules must be met. Figure 3-2 describes

the common rules for transiting the VM status.

Figure 3-2 Status transition diagram

VM ID

In libvirt, a created VM instance is called a domain, which describes the configuration

information of resources such as the CPU, memory, network device, and storage device of the

VM. On a host, each domain has a unique ID, which is represented by the VM Name, UUID,

and Id. For details, see Table 3-6. During the VM lifecycle, an operation can be performed on

a specific VM by using a VM ID.

Table 3-6 Domain ID description

ID Description

Name VM name

UUID Universally unique identifier

Id VM running ID

NOTE

The ID is not displayed for a powered off VM.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 37

Run the virsh command to query the VM ID and UUID. For details, see 3.3.3 Querying VM
Information.

3.3.1.2 Management Commands

Overview

You can use the virsh command tool to manage the VM lifecycle. This section describes the

commands related to the lifecycle.

Prerequisites
 Before performing operations on a VM, you need to query the VM status to ensure that

the operations can be performed. For details about the conversion between status, see

Status Transition in 3.3.1.1 Introduction.

 You have administrator rights.

 The VM XML configuration files are prepared.

Command Usage

You can run the virsh command to manage the VM lifecycle. The command format is as

follows:

virsh <operate> <obj> <options>

The parameters are described as follows:

 operate: manages VM lifecycle operations, such as creating, deleting, and starting VMs.

 obj: specifies the operation object, for example, the VM to be operated.

 options: command option. This parameter is optional.

Table 3-7 describes the commands used for VM lifecycle management. VMInstanse indicates

the VM name, VM ID, or VM UUID, XMLFile indicates the XML configuration file of the

VM, and DumpFile indicates the dump file. Change them based on the site requirements.

Table 3-7 VM Lifecycle Management Commands

Command Description

virsh define <XMLFile> Define a persistent VM. After the definition is complete, the

VM is shut down and is considered as a domain instance.

virsh create <XMLFile> Create a temporary VM. After the VM is created, it is in the

running status.

virsh start <VMInstanse> Start the VM.

virsh shutdown

<VMInstanse>

Shut down the VM. Start the VM shutdown process. If the

VM fails to be shut down, forcibly stop it.

virsh destroy

<VMInstanse>

Forcibly stop the VM.

virsh reboot Reboot the VM.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 38

Command Description

<VMInstanse>

virsh save

<VMInstanse>

<DumpFile>

Dump the VM running status to a file.

virsh restore <DumpFile> Restore the VM from the VM status dump file.

virsh suspend

<VMInstanse>

Suspend the VM to make the VM in the paused status.

virsh resume

<VMInstanse>

Resume the VM and restore the VM in the paused status to

the running status.

virsh undefine

<VMInstanse>

After a persistent VM is destroyed, the VM lifecycle ends

and no more operations can be performed on the VM.

3.3.1.3 Example

This section provides examples of commands related to VM life cycle management.

 Create a VM.

The VM XML configuration file is openEulerVM.xml. The command and output are as

follows:

virsh define openEulerVM.xml

Domain openEulerVM defined from openEulerVM.xml

 Start a VM.

Run the following command to start the openEulerVM:

virsh start openEulerVM

Domain openEulerVM started

 Reboot a VM.

Run the following command to reboot the openEulerVM:

virsh reboot openEulerVM

Domain openEulerVM is being rebooted

 Shut down a VM.

Run the following command to shut down the openEulerVM:

virsh shutdown openEulerVM

Domain openEulerVM is being shutdown

 Destroy a VM.

− If the nvram file is not used during the VM startup, run the following command to

destroy the VM:

virsh undefine <VMInstanse>

− If the nvram file is used during the VM startup, run the following command to

specify the nvram processing policy when destroying the VM:

virsh undefine <VMInstanse> <strategy>

strategy indicates the policy for destroying a VM. The values can be:

--nvram: delete the corresponding nvram file when destroying a VM.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 39

--keep-nvram: destroy a VM but retain the corresponding nvram file.

For example, to delete the openEulerVM and its nvram file, run the following

command:

virsh undefine openEulerVM --nvram

Domain openEulerVM has been undefined

3.3.2 Modify VM Configurations Online

Overview

After a VM is created, users can modify VM configurations. This process is called online

modification of VM configuration. After the configuration is modified online, the new VM

configuration file is persistent and takes effect after the VM is shut down and restarted.

The format of the command for modifying VM configuration is as follows:

virsh edit <VMInstance>

The virsh edit command is used to edit the XML configuration file corresponding to domain

to update VM configuration. virsh edit uses the vi program as the default editor. You can

specify the editor type by modifying the environment variable EDITOR or VISUAL. By

default, virsh edit preferentially uses the text editor specified by the environment variable

VISUAL.

Procedure

Step 1 (Optional) Set the editor of the virsh edit command to vim.

export VISUAL=vim

Step 2 Run the virsh edit command to open the XML configuration file of the openEulerVM.

virsh edit openEulerVM

Step 3 Modify the VM configuration file.

Step 4 Save the VM configuration file and exit.

Step 5 Reboot the VM for the configuration to take effect.

virsh reboot openEulerVM

----End

3.3.3 Querying VM Information

Overview

The libvirt provides a set of command line tools to query VM information. This section

describes how to use commands to obtain VM information.

Prerequisites

To query VM information, the following requirements must be met:

 The libvirtd service is running.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 40

 Only the administrator has the permission to execute command line.

Querying VM Information on a Host.
 Query the list of running and paused VMs on a host.

virsh list

For example, the following command output indicates that three VMs exist on the host.

openEulerVM01 and openEulerVM02 are running, and openEulerVM03 is paused.

 Id Name State

--

 39 openEulerVM01 running

 40 openEulerVM02 running

 69 openEulerVM03 paused

 Query the list of VM information defined on a host.

virsh list --all

For example, the following command output indicates that four VMs are defined on the

current host. openEulerVM01 is running, openEulerVM02 is paused, and

openEulerVM03 and openEulerVM04 are shut down.

 Id Name State

--

 39 openEulerVM01 running

 69 openEulerVM02 paused

 - openEulerVM03 shut off

 - openEulerVM04 shut off

Querying Basic VM Information

Libvirt component provides a group of commands for querying the VM status, including the

VM running status, device information, and scheduling attributes. For details, see Table 3-8.

Table 3-8 Querying basic VM information

Informatio
n to be
queried

Command line Description

Basic

information

virsh dominfo <VMInstance> The information includes the VM ID,

UUID, and VM specifications.

Current

status

virsh domstate <VMInstance> You can use the --reason option to

query the reason why the VM changes

to the current status.

Scheduling

information

virsh schedinfo <VMInstance> The information includes the vCPU

share.

Number of

vCPUs

virsh vcpucount

<VMInstance>

Number of vCPUs of the VM.

Virtual

block device

status

virsh domblkstat

<VMInstance>

To query the name of a block device,

run the virsh domblklist command.

vNIC status virsh domifstat <VMInstance> To query the NIC name, run the virsh

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 41

Informatio
n to be
queried

Command line Description

domiflist command.

I/O thread virsh iothreadinfo

<VMInstance>

VM I/O thread and CPU affinity.

Example
 Run the virsh dominfo command to query the basic information about a created VM.

The query result shows that the VM ID is 5, UUID is

ab472210-db8c-4018-9b3e-fc5319a769f7, memory size is 8 GiB, and the number of

vCPUs is 4.

virsh dominfo openEulerVM

Id: 5

Name: openEulerVM

UUID: ab472210-db8c-4018-9b3e-fc5319a769f7

OS Type: hvm

State: running

CPU(s): 4

CPU time: 6.8s

Max memory: 8388608 KiB

Used memory: 8388608 KiB

Persistent: no

Autostart: disable

Managed save: no

Security model: none

Security DOI: 0

 Run the virsh domstate command to query the VM status. The query result shows that

VM openEulerVM is running.

virsh domstate openEulerVM

running

 Run virsh schedinfo to query the VM scheduling information. The query result shows

that the CPU reservation share of the VM is 1024.

virsh schedinfo openEulerVM

Scheduler : posix

cpu_shares : 1024

vcpu_period : 100000

vcpu_quota : -1

emulator_period: 100000

emulator_quota : -1

global_period : 100000

global_quota : -1

iothread_period: 100000

iothread_quota : -1

 Run the virsh vcpucount command to query the number of vCPUs. The query result

shows that the VM has four CPUs.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 42

virsh vcpucount openEulerVM

maximum live 4

current live 4

 Run the virsh domblklist command to query the VM disk information. The query result

shows that the VM has two disks. sda is a virtual disk in qcow2 format, and sdb is a

cdrom device.

 # virsh domblklist openEulerVM

 Target Source

 sda /home/openeuler/vm/openEuler_aarch64.qcow2

 sdb /home/openeuler/vm/openEuler-20.03-LTS-aarch64-dvd.iso

 Run the virsh domiflist command to query the VM NIC information. The query result

shows that the VM has one NIC, the backend is vnet0, which is on the br0 bridge of the

host. The MAC address is 00:05:fe:d4:f1:cc.

virsh domiflist openEulerVM

Interface Type Source Model MAC

vnet0 bridge br0 virtio 00:05:fe:d4:f1:cc

 Run the virsh iothreadinfo command to query the VM I/O thread information. The

query result shows that the VM has five I/O threads, which are scheduled on physical

CPUs 7-10.

virsh iothreadinfo openEulerVM

 IOThread ID CPU Affinity

 3 7-10

 4 7-10

 5 7-10

 1 7-10

 2 7-10

3.3.4 Logging In to a VM

This section describes how to log in to a VM using VNC.

3.3.4.1 Logging In Using VNC Passwords

Overview

After the OS is installed on a VM, you can remotely log in to the VM using VNC to manage

the VM.

Prerequisites

Before logging in to a VM using a client, such as RealVNC or TightVNC, ensure that:

 You have obtained the IP address of the host where the VM resides.

 The environment where the client resides can access the network of the host.

 You have obtained the VNC listening port of the VM. This port is automatically

allocated when the client is started. Generally, the port number is 5900 + x (x is a

positive integer and increases in ascending order based on the VM startup sequence.

5900 is invisible to users.)

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 43

 If a password has been set for the VNC, you also need to obtain the VNC password of

the VM.

To set a password for the VM VNC, edit the XML configuration file of the VM. That is, add the passwd
attribute to the graphics element and set the attribute value to the password to be configured. For
example, to set the VNC password of the VM to n8VfjbFK, configure the XML file as follows:

 <graphics type='vnc' port='5900' autoport='yes' listen='0.0.0.0' keymap='en-us'

passwd='n8VfjbFK'>

 <listen type='address' address='0.0.0.0'/>

 </graphics>

Procedure

Step 1 Query the VNC port number used by the VM. For example, if the VM name is openEulerVM,

run the following command:

virsh vncdisplay openEulerVM

:3

To log in to the VNC, you need to configure firewall rules to allow the connection of the VNC port. The
reference command is as follows, where X is 5900 + Port number, for example, 5903.

firewall-cmd --zone=public --add-port=X/tcp

Step 2 Start the VncViewer software and enter the IP address and port number of the host. The

format is host IP address:port number, for example, 10.133.205.53:3.

Step 3 Click OK and enter the VNC password (optional) to log in to the VM VNC.

----End

3.3.4.2 Configuring VNC TLS Login

Overview

By default, the VNC server and client transmit data in plaintext. Therefore, the

communication content may be intercepted by a third party. To improve security, openEuler

allows the VNC server to configure the Transport Layer Security (TLS) mode for encryption

and authentication. TLS implements encrypted communication between the VNC server and

client to prevent communication content from being intercepted by third parties.

 To use the TLS encryption authentication mode, the VNC client must support the TLS mode (for

example, TigerVNC). Otherwise, the VNC client cannot be connected.

 The TLS encryption authentication mode is configured at the host level. After this feature is enabled,
the TLS encryption authentication mode is enabled for the VNC clients of all VMs running on the
host.

Procedure

To enable the TLS encryption authentication mode for the VNC, perform the following steps:

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 44

Step 1 Log in to the host where the VNC server resides, and edit the corresponding configuration

items in the /etc/libvirt/qemu.conf configuration file of the server. The configuration is as

follows:

vnc_listen = "x.x.x.x" # "x.x.x.x" indicates the listening IP address

of the VNC. Set this parameter based on the site requirements. The VNC server allows

only the connection requests from clients whose IP addresses are in this range.

vnc_tls = 1 # If this parameter is set to 1, VNC TLS is enabled.

vnc_tls_x509_cert_dir = "/etc/pki/libvirt-vnc" # Specify

/etc/pki/libvirt-vnc as the path for storing the certificate.

vnc_tls_x509_verify = 1 #If this parameter is set to 1, the

X509 certificate is used for TLS authentication.

Step 2 Create a certificate and a private key file for the VNC. The following uses GNU TLS as an

example.

To use GNU TLS, install the gnu-utils software package in advance.

1. Create a certificate file issued by the Certificate Authority (CA).

certtool --generate-privkey > ca-key.pem

2. Create a self-signed public and private key for the CA certificate. Your organization

name indicates the organization name, which is specified by the user.

cat > ca.info<<EOF

cn = Your organization name

ca

cert_signing_key

EOF

certtool --generate-self-signed \

 --load-privkey ca-key.pem \

 --template ca.info \

 --outfile ca-cert.pem

In the preceding generated file, ca-cert.pem is the generated CA public key, and

ca-key.pem is the generated CA private key. The CA must keep them properly to prevent

disclosure.

3. Issue a certificate to the VNC server. Client Organization Name indicates the actual

service name, for example, cleint.foo.com. Set this parameter based on the site

requirements.

cat > server.info<<EOF

cn = Server Organization Name

tls_www_server

encryption_key

signing_key

EOF

certtool --generate-privkey > server-key.pem

certtool --generate-certificate \

 --load-ca-certificate ca-cert.pem \

 --load-ca-privkey ca-key.pem \

 --load-privkey server-key.pem \

 --template server.info \

 --outfile server-cert.pem

In the preceding generated file, server-key.pem is the private key of the VNC server,

and server-cert.pem is the public key of the VNC server.

4. Issue a certificate to the VNC client.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 45

cat > client.info<<EOF

cn = Client Organization Name

tls_www_client

encryption_key

signing_key

EOF

certtool --generate-privkey > client-key.pem

certtool --generate-certificate \

 --load-ca-certificate ca-cert.pem \

 --load-ca-privkey ca-key.pem \

 --load-privkey client-key.pem \

 --template client.info \

 --outfile client-cert.pem

In the preceding generated file, client-key.pem is the private key of the VNC client, and

client-cert.pem is the public key of the VNC client. The generated public and private

key pairs need to be copied to the VNC client.

Step 3 Shut down the VM to be logged in to and restart the libvirtd service on the host where the

VNC server resides.

systemctl restart libvirtd

Step 4 Save the generated server certificate to the specified directory on the VNC server and grant

the read and write permissions on the certificate only to the current user.

sudo mkdir -m 750 /etc/pki/libvirt-vnc

cp ca-cert.pem /etc/pki/libvirt-vnc/ca-cert.pem

cp server-cert.pem /etc/pki/libvirt-vnc/server-cert.pem

cp server-key.pem /etc/pki/libvirt-vnc/server-key.pem

chmod 0600 /etc/pki/libvirt-vnc/*

Step 5 Copy the generated client certificates ca-cert.pem, client-cert.pem, and client-key.pem to

the VNC client. After the TLS certificate of the VNC client is configured, you can use VNC

TLS to log in to the VM.

 For details about how to configure the VNC client certificate, see the usage description of each

client.

 For details about how to log in to the VM, see Logging In Using VNC Passwords.

----End

3.4 VM Live Migration

3.4.1 Introduction

Overview

When a VM is running on a physical machine, the physical machine may be overloaded or

underloaded due to uneven resource allocation. In addition, operations such as hardware

replacement, software upgrade, networking adjustment, and troubleshooting are performed on

the physical machine. Therefore, it is important to complete these operations without

interrupting services. The VM live migration technology implements load balancing or the

preceding operations on the premise of service continuity, improving user experience and

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 46

work efficiency. VM live migration is to save the running status of the entire VM and quickly

restore the VM to the original or even different hardware platforms. After the VM is restored,

it can still run smoothly without any difference to users. Because the VM data can be stored

on the current host or a shared remote storage device, openEuler supports shared and

non-shared storage live migration.

3.4.2 Application Scenarios

Shared and non-shared storage live migration applies to the following scenarios:

 When a physical machine is faulty or overloaded, you can migrate the running VM to

another physical machine to prevent service interruption and ensure normal service

running.

 When most physical machines are underloaded, migrate and integrate VMs to reduce the

number of physical machines and improve resource utilization.

 When the hardware of a physical server becomes a bottleneck, such as the CPU, memory,

and hard disk, replace the hardware with better performance or add devices. However,

you cannot stop the VM or stop services.

 Server software upgrade, such as virtualization platform upgrade, allows the VM to be

live migrated from the old virtualization platform to the new one.

Non-shared storage live migration can also be used in the following scenarios:

 If a physical machine is faulty and the storage space is insufficient, migrate the running

VM to another physical machine to prevent service interruption and ensure normal

service running.

 When the storage device of the physical machine is aged, the performance cannot

support the current service data processing and becomes the bottleneck of the system

performance. In this case, a storage device with higher performance needs to be used, but

the VM cannot be shut down or stopped. The running VM needs to be migrated to a

physical machine with better performance.

3.4.3 Precautions and Restrictions

 During the live migration, ensure that the network is in good condition. If the network is

interrupted, live migration is suspended until the network is recovered. If the network

connection times out, live migration fails.

 During the migration, do not perform operations such as VM life cycle management and

VM hardware device management.

 During VM migration, ensure that the source and destination servers are not powered off

or restarted unexpectedly. Otherwise, the live migration fails or the VM may be powered

off.

 Do not shut down, restart, or restore the VM during the migration. Otherwise, the live

migration may fail. If you perform live migration when the VM is rebooted in ACPI

mode, the VM will be shut down.

 Only homogeneous live migration is supported. That is, the CPU models of the source

and destination must be the same.

 A VM can be successfully migrated across service network segments. However, network

exceptions may occur after the VM is migrated to the destination. To prevent this

problem, ensure that the service network segments to be migrated are the same.

 If the number of vCPUs on the source VM is greater than that on the destination physical

machine, the VM performance will be affected after the migration. Ensure that the

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 47

number of vCPUs on the destination physical machine is greater than or equal to that on

the source VM.

Precautions for live migration of non-shared storage:

 The source and destination cannot be the same disk image file. You need to perform

special processing on such migration to prevent image damage caused by data

overwriting.

 Shared disks cannot be migrated. You need to perform foolproof operations on such

migration.

 The destination image supports only files and does not support raw devices. You need to

perform foolproof processing on the migration of raw devices.

 The size and number of disk images created on the destination must be the same as those

on the source. Otherwise, the migration fails.

 In hybrid migration scenarios, the disks to be migrated must not include shared and

read-only disks.

3.4.4 Live Migration Operations

Prerequisites
 Before live migration, ensure that the source and destination hosts can communicate with

each other and have the same resource permissions. That is, the source and destination

hosts can access the same storage and network resources.

 Before VM live migration, perform a health check on the VM and ensure that the

destination host has sufficient CPU, memory, and storage resources.

(Optional) Setting Live Migration Parameters

Before live migration, run the virsh migrate-setmaxdowntime command to specify the

maximum tolerable downtime during VM live migration. This is an optional configuration

item.

For example, to set the maximum downtime of the VM named openEulerVM to 500 ms, run

the following command:

virsh migrate-setmaxdowntime openEulerVM 500

In addition, you can run the virsh migrate-setspeed command to limit the bandwidth

occupied by VM live migration. This prevents VM live migration from occupying too much

bandwidth and affecting other VMs or services on the host. This operation is also optional for

live migration.

For example, to set the live migration bandwidth of the VM named openEulerVM to 500

Mbit/s, run the following command:

virsh migrate-setspeed openEulerVM --bandwidth 500

You can run the migrate-getspeed command to query the maximum bandwidth during VM

live migration.

virsh migrate-getspeed openEulerVM

500

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 48

Live Migration Operations (Shared Storage Scenario)

Step 1 Check whether the storage device is shared.

virsh domblklist <VMInstanse>

 Target Source

--

sda /dev/mapper/open_euleros_disk

sdb /mnt/nfs/images/openeuler-test.qcow2

Run the virsh domblklist command to query the storage device information of the VM. For

example, the preceding query result shows that the VM is configured with two storage devices:

sda and sdb. Then, check whether the backend storage of the two devices is local storage or

remote storage, if all storage devices are on the remote shared storage, the VM is a shared

storage VM. Otherwise, the VM is a non-shared storage VM.

Step 2 Run the following command for VM live migration:

For example, run the virsh migrate command to migrate VM openEulerVM to the

destination host.

virsh migrate --live --unsafe openEulerVM qemu+ssh://<destination-host-ip>/system

<destination-host-ip> indicates the IP address of the destination host. Before live migration,

SSH authentication must be performed to obtain the source host management permission.

In addition, the virsh migrate command has the --auto-converge and --timeout sub-options

to ensure successful migration.

Related sub-options:

The --unsafe command forcibly performs live migration and skips the security check step.

The --auto-converge command reduces the CPU frequency to ensure that the live migration

process can be converged.

The --timeout command specifies the live migration timeout period. If the live migration

exceeds the specified period, the VM is forcibly suspended to reduce the live migration.

Step 3 After the live migration is complete, the VM is running properly on the destination host.

----End

Live Migration Operations (Non-Shared Storage Scenario)

Step 1 Query the VM storage device list to ensure that the VM uses non-shared storage.

For example, the virsh domblklist command output shows that the VM to be migrated has a

disk sda in qcow2 format. The XML configuration of sda is as follows:

 <disk type='file' device='disk'>

 <driver name='qemu' type='qcow2' cache='none' io='native'/>

 <source file='/mnt/sdb/openeuler/openEulerVM.qcow2'/>

 <target dev='sda' bus='scsi'/>

 <address type='drive' controller='0' bus='0' target='0' unit='0'/>

 </disk>

Before live migration, create a virtual disk file in the same disk directory on the destination

host. Ensure that the disk format and size are the same.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 49

qemu-img create -f qcow2 /mnt/sdb/openeuler/openEulerVM.qcow2 20G

Step 2 Run the virsh migrate command on the source to perform live migration. During the

migration, the storage is also migrated to the destination.

virsh migrate --live --unsafe --copy-storage-all --migrate-disks sda \

openEulerVM qemu+ssh://<dest-host-ip>/system

Step 3 After the live migration is complete, the command output indicates that the VM is running

properly on the destination host and the storage device is migrated to the destination host.

----End

3.5 System Resource Management
The libvirt command manages VM system resources, such as vCPU and virtual memory

resources.

Before you start:

 Ensure that the libvirtd daemon is running on the host.

 Run the virsh list --all command to check that the VM has been defined.

3.5.1 Managing vCPU

3.5.1.1 CPU Shares

Overview

In a virtualization environment, multiple VMs on the same host compete for physical CPUs.

To prevent some VMs from occupying too many physical CPU resources and affecting the

performance of other VMs on the same host, you need to balance the vCPU scheduling of

VMs to prevent excessive competition for physical CPUs.

The CPU share indicates the total capability of a VM to compete for physical CPU computing

resources. You can set cpu_shares to specify the VM capacity to preempt physical CPU

resources. The value of cpu_shares is a relative value without a unit. The CPU computing

resources obtained by a VM are the available computing resources of physical CPUs

(excluding reserved CPUs) allocated to VMs based on the CPU shares. Adjust the CPU shares

to ensure the service quality of VM CPU computing resources.

Procedure

Change the value of cpu_shares allocated to the VM to balance the scheduling between

vCPUs.

 Check the current CPU share of the VM.

virsh schedinfo <VMInstance>

Scheduler : posix

cpu_shares : 1024

vcpu_period : 100000

vcpu_quota : -1

emulator_period: 100000

emulator_quota : -1

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 50

global_period : 100000

global_quota : -1

iothread_period: 100000

iothread_quota : -1

 Online modification: Run the virsh schedinfo command with the --live parameter to

modify the CPU share of a running VM.

virsh schedinfo <VMInstance> --live cpu_shares=<number>

For example, to change the CPU share of the running openEulerVM from 1024 to 2048,

run the following commands:

virsh schedinfo openEulerVM --live cpu_shares=2048

Scheduler : posix

cpu_shares : 2048

vcpu_period : 100000

vcpu_quota : -1

emulator_period: 100000

emulator_quota : -1

global_period : 100000

global_quota : -1

iothread_period: 100000

iothread_quota : -1

The modification of the cpu_shares value takes effect immediately. The running time of

the openEulerVM is twice the original running time. However, the modification will

become invalid after the VM is shut down and restarted.

 Permanent modification: Run the virsh schedinfo command with the --config parameter

to change the CPU share of the VM in the libvirt internal configuration.

virsh schedinfo <VMInstance> --config cpu_shares=<number>

For example, run the following command to change the CPU share of openEulerVM

from 1024 to 2048:

virsh schedinfo openEulerVM --config cpu_shares=2048

Scheduler : posix

cpu_shares : 2048

vcpu_period : 0

vcpu_quota : 0

emulator_period: 0

emulator_quota : 0

global_period : 0

global_quota : 0

iothread_period: 0

iothread_quota : 0

The modification on cpu_shares does not take effect immediately. Instead, the

modification takes effect after the openEulerVM is started next time and takes effect

permanently. The running time of the openEulerVM is twice that of the original VM.

3.5.1.2 Binding the QEMU Process to a Physical CPU

Overview

You can bind the QEMU main process to a specific physical CPU range, ensuring that VMs

running different services do not interfere with adjacent VMs. For example, in a typical cloud

computing scenario, multiple VMs run on one physical machine, and they carry diversified

services, causing different degrees of resource occupation. To avoid interference of a VM with

dense-storage I/O to an adjacent VM, storage processes that process I/O of different VMs

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 51

need to be completely isolated. The QEMU main process handles frontend and backend

services. Therefore, isolation needs to be implemented.

Procedure

Run the virsh emulatorpin command to bind the QEMU main process to a physical CPU.

 Check the range of the physical CPU bound to the QEMU process:

virsh emulatorpin openEulerVM

emulator: CPU Affinity

 *: 0-63

This indicates that the QEMU main process corresponding to VM openEulerVM can be

scheduled on all physical CPUs of the host.

 Online binding: Run the vcpu emulatorpin command with the --live parameter to

modify the binding relationship between the QEMU process and the running VM.

virsh emulatorpin openEulerVM --live 2-3

virsh emulatorpin openEulerVM

emulator: CPU Affinity

 *: 2-3

The preceding commands bind the QEMU process corresponding to VM openEulerVM

to physical CPUs 2 and 3. That is, the QEMU process is scheduled only on the two

physical CPUs. The binding relationship takes effect immediately but becomes invalid

after the VM is shut down and restarted.

 Permanent binding: Run the virsh emulatorpin command with the --config parameter to

modify the binding relationship between the VM and the QEMU process in the libvirt

internal configuration.

virsh emulatorpin openEulerVM --config 0-3,^1

virsh emulatorpin euler

emulator: CPU Affinity

 *: 0,2-3

The preceding commands bind the QEMU process corresponding to VM openEulerVM

to physical CPUs 0, 2 and 3. That is, the QEMU process is scheduled only on the three

physical CPUs. The modification of the binding relationship does not take effect

immediately. Instead, the modification takes effect after the next startup of the VM and

takes effect permanently.

3.5.1.3 Adjusting the vCPU Binding Relationship

Overview

The vCPU of a VM is bound to a physical CPU. That is, the vCPU is scheduled only on the

bound physical CPU to improve VM performance in specific scenarios. For example, in a

NUMA system, vCPUs are bound to the same NUMA node to prevent cross-node memory

access and VM performance deterioration. If the vCPU is not bound, by default, the vCPU

can be scheduled on any physical CPU. The specific binding policy is determined by the user.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 52

Procedure

Run the virsh vcpupin command to adjust the binding relationship between vCPUs and

physical CPUs.

 View the vCPU binding information of the VM.

 # virsh vcpupin openEulerVM

 VCPU CPU Affinity

 0 0-63

 1 0-63

 2 0-63

 3 0-63

This indicates that all vCPUs of VM openEulerVM can be scheduled on all physical

CPUs of the host.

 Online adjustment: Run the vcpu vcpupin command with the --live parameter to modify

the vCPU binding relationship of a running VM.

 # virsh vcpupin openEulerVM --live 0 2-3

 # virsh vcpupin euler

 VCPU CPU Affinity

 0 2-3

 1 0-63

 2 0-63

 3 0-63

The preceding commands bind vCPU 0 of VM openEulerVM to pCPU 2 and pCPU 3.

That is, vCPU 0 is scheduled only on the two physical CPUs. The binding relationship

takes effect immediately but becomes invalid after the VM is shut down and restarted.

 Permanent adjustment: Run the virsh vcpupin command with the --config parameter to

modify the vCPU binding relationship of the VM in the libvirt internal configuration.

 # virsh vcpupin openEulerVM --config 0 0-3,^1

 # virsh vcpupin openEulerVM

 VCPU CPU Affinity

 0 0,2-3

 1 0-63

 2 0-63

 3 0-63

The preceding commands bind vCPU 0 of VM openEulerVM to physical CPUs 0, 2,

and 3. That is, vCPU 0 is scheduled only on the three physical CPUs. The modification

of the binding relationship does not take effect immediately. Instead, the modification

takes effect after the next startup of the VM and takes effect permanently.

3.5.2 Managing Virtual Memory

3.5.2.1 Introduction to NUMA

Traditional multi-core computing uses the symmetric multi-processor (SMP) mode. Multiple

processors are connected to a centralized memory and I/O bus. All processors can access only

the same physical memory. Therefore, the SMP system is also referred to as a uniform

memory access (UMA) system. Uniformity means that a processor can only maintain or share

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 53

a unique value for each data record in memory at any time. Obviously, the disadvantage of

SMP is its limited scalability, because when the memory and the I/O interface are saturated,

adding a processor cannot obtain higher performance.

The non-uniform memory access architecture (NUMA) is a distributed memory access mode.

In this mode, a processor can access different memory addresses at the same time, which

greatly improves concurrency. With this feature, a processor is divided into multiple nodes,

each of which is allocated a piece of local memory space. The processors of all nodes can

access all physical memories, but the time required for accessing the memory on the local

node is much shorter than that on a remote node.

3.5.2.2 Configuring Host NUMA

To improve VM performance, you can specify NUMA nodes for a VM using the VM XML

configuration file before the VM is started so that the VM memory is allocated to the

specified NUMA nodes. This feature is usually used together with the vCPU to prevent the

vCPU from remotely accessing the memory.

Procedure
 Check the NUMA topology of the host.

 # numactl -H

available: 4 nodes (0-3)

node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

node 0 size: 31571 MB

node 0 free: 17095 MB

node 1 cpus: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

node 1 size: 32190 MB

node 1 free: 28057 MB

node 2 cpus: 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

node 2 size: 32190 MB

node 2 free: 10562 MB

node 3 cpus: 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

node 3 size: 32188 MB

node 3 free: 272 MB

node distances:

node 0 1 2 3

 0: 10 15 20 20

 1: 15 10 20 20

 2: 20 20 10 15

 3: 20 20 15 10

 Add the numatune field to the VM XML configuration file to create and start the VM.

For example, to allocate NUMA node 0 on the host to the VM, configure parameters as

follows:

 <numatune>

 <memory mode="strict" nodeset="0"/>

 </numatune>

If the vCPU of the VM is bound to the physical CPU of node 0, the performance

deterioration caused by the vCPU accessing the remote memory can be avoided.

 The sum of memory allocated to the VM cannot exceed the remaining available memory of the

NUMA node. Otherwise, the VM may fail to start.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 54

 You are advised to bind the VM memory and vCPU to the same NUMA node to avoid the
performance deterioration caused by vCPU access to the remote memory. For example, bind the
vCPU to NUMA node 0 as well.

3.5.2.3 Configuring Guest NUMA

Many service software running on VMs is optimized for the NUMA architecture, especially

for large-scale VMs. openEuler provides the Guest NUMA feature to display the NUMA

topology in VMs. You can identify the structure to optimize the performance of service

software and ensure better service running.

When configuring guest NUMA, you can specify the location of vNode memory on the host

to implement memory block binding and vCPU binding so that the vCPU and memory on the

vNode are on the same physical NUMA node.

Procedure

After Guest NUMA is configured in the VM XML configuration file, you can view the

NUMA topology on the VM. <numa> is mandatory for Guest NUMA.

 <cputune>

 <vcpupin vcpu='0' cpuset='0-3'/>

 <vcpupin vcpu='1' cpuset='0-3'/>

 <vcpupin vcpu='2' cpuset='16-19'/>

 <vcpupin vcpu='3' cpuset='16-19'/>

 </cputune>

 <numatune>

 <memnode cellid="0" mode="strict" nodeset="0"/>

 <memnode cellid="1" mode="strict" nodeset="1"/>

 </numatune>

 [...]

 <cpu>

 <numa>

 <cell id='0' cpus='0-1' memory='2097152'/>

 <cell id='1' cpus='2-3' memory='2097152'/>

 </numa>

 </cpu>

 <numa> provides the NUMA topology function for VMs. cell id indicates the vNode ID, cpus

indicates the vCPU ID, and memory indicates the memory size on the vNode.

 If you want to use Guest NUMA to provide better performance, configure <numatune> and
<cputune> so that the vCPU and memory are distributed on the same physical NUMA node.

 cellid in <numatune> corresponds to cell id in <numa>. mode can be set to strict (apply for
memory from a specified node strictly. If the memory is insufficient, the application fails.),
preferred (apply for memory from a node first. If the memory is insufficient, apply for memory
from another node), or interleave (apply for memory from a specified node in cross mode).; nodeset
indicates the specified physical NUMA node.

 In <cputune>, you need to bind the vCPU in the same cell id to the physical NUMA node that is the
same as the memnode.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 55

3.6 Managing Devices

3.6.1 Configuring a PCIe Controller for a VM

Overview

Thr NIC, disk controller, and PCIe pass-through devices in a VM must be mounted to a PCIe

root port. Each root port corresponds to a PCIe slot. The devices mounted to the root port

support hot swap, but the root port does not support hot swap. Therefore, users need to

consider the hot swap requirements and plan the maximum number of PCIe root ports

reserved for the VM. Before the VM is started, the root port is statically configured.

Configuring the PCIe Root, PCIe Root Port, and PCIe-PCI-Bridge

The VM PCIe controller is configured using the XML file. The model corresponding to PCIe

root, PCIe root port, and PCIe-PCI-bridge in the XML file are pcie-root, pcie-root-port, and

pcie-to-pci-bridge, respectively.

 Simplified configuration method

Add the following contents to the XML file of the VM. Other attributes of the controller

are automatically filled by libvirt.

 <controller type='pci' index='0' model='pcie-root'/>

 <controller type='pci' index='1' model='pcie-root-port'/>

 <controller type='pci' index='2' model='pcie-to-pci-bridge'/>

 <controller type='pci' index='3' model='pcie-root-port'/>

 <controller type='pci' index='4' model='pcie-root-port'/>

 <controller type='pci' index='5' model='pcie-root-port'/>

The pcie-root and pcie-to-pci-bridge occupy one index respectively. Therefore, the

final index is the number of required root ports + 1.

 Complete configuration method

Add the following contents to the XML file of the VM:

 <controller type='pci' index='0' model='pcie-root'/>

 <controller type='pci' index='1' model='pcie-root-port'>

 <model name='pcie-root-port'/>

 <target chassis='1' port='0x8'/>

 <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x0'

multifunction='on'/>

 </controller>

 <controller type='pci' index='2' model='pcie-to-pci-bridge'>

 <model name='pcie-pci-bridge'/>

 <address type='pci' domain='0x0000' bus='0x01' slot='0x00' function='0x0'/>

 </controller>

 <controller type='pci' index='3' model='pcie-root-port'>

 <model name='pcie-root-port'/>

 <target chassis='3' port='0x9'/>

 <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x1'/>

 </controller>

 <controller type='pci' index='3' model='pcie-root-port'>

In the preceding contents:

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 56

− The chassis and port attributes of the root port must be in ascending order. Because

a PCIe-PCI-bridge is inserted in the middle, the chassis number skips 2, but the

port numbers are still consecutive.

− The address function of the root port ranges from 0*0 to 0*7.

− A maximum of eight functions can be mounted to each slot. When the slot is full,

the slot number increases.

The complete configuration method is complex. Therefore, the simplified one is

recommended.

3.6.2 Managing Virtual Disks

Overview

Virtual disk types include virtio-blk, virtio-scsi, and vhost-scsi. virtio-blk simulates a block

device, and virtio-scsi and vhost-scsi simulate SCSI devices.

 virtio-blk: It can be used for common system disk and data disk. In this configuration,

the virtual disk is presented as vd[a-z] or vd[a-z][a-z] in the VM.

 virtio-scsi: It is recommended for common system disk and data disk. In this

configuration, the virtual disk is presented as sd[a-z] or sd[a-z][a-z] in the VM.

 vhost-scsi: It is recommended for the virtual disk that has high performance requirements.

In this configuration, the virtual disk is presented as sd[a-z] or sd[a-z][a-z] on the VM.

Procedure

For details about how to configure a virtual disk, see 3.2.4.1 Storage Devices. This section

uses the virtio-scsi disk as an example to describe how to attach and detach a virtual disk.

 Attach a virtio-scsi disk.

Run the virsh attach-device command to attach the virtio-scsi virtual disk.

 # virsh attach-device <VMInstance> <attach-device.xml>

The preceding command can be used to attach a disk to a VM online. The disk

information is specified in the attach-device.xml file. The following is an example of

the attach-device.xml file:

attach-device.xml ###

 <disk type='file' device='disk'>

 <driver name='qemu' type='qcow2' cache='none' io='native'/>

 <source file='/path/to/another/qcow2-file'/>

 <backingStore/>

 <target dev='sdb' bus='scsi'/>

 <address type='drive' controller='0' bus='0' target='1' unit='0'/>

 </disk>

The disk attached by running the preceding commands becomes invalid after the VM is

shut down and restarted. If you need to permanently attach a virtual disk to a VM, run

the virsh attach-device command with the --config parameter.

 Detach a virtio-scsi disk.

If a disk attached online is no longer used, run the virsh detach command to

dynamically detach it.

 # virsh detach-device <VMInstance> <detach-device.xml>

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 57

detach-device.xml specifies the XML information of the disk to be detached, which

must be the same as the XML information during dynamic attachment.

3.6.3 Managing vNICs

Overview

The vNIC types include virtio-net, vhost-net, and vhost-user. After creating a VM, you may

need to attach or detach a vNIC. openEuler supports NIC hot swap, which can change the

network throughput and improve system flexibility and scalability.

Procedure

For details about how to configure a virtual NIC, see 3.2.4.2 Network Device. This section

uses the vhost-net NIC as an example to describe how to attach and detach a vNIC.

 Attach the vhost-net NIC.

Run the virsh attach-device command to attach the vhost-net vNIC.

 # virsh attach-device <VMInstance> <attach-device.xml>

The preceding command can be used to attach a vhost-net NIC to a running VM. The

NIC information is specified in the attach-device.xml file. The following is an example

of the attach-device.xml file:

attach-device.xml ###

 <interface type='bridge'>

 <mac address='52:54:00:76:f2:bb'/>

 <source bridge='br0'/>

 <virtualport type='openvswitch'/>

 <model type='virtio'/>

 <driver name='vhost' queues='2'/>

 </interface>

The vhost-net NIC attached using the preceding commands becomes invalid after the

VM is shut down and restarted. If you need to permanently attach a vNIC to a VM, run

the virsh attach-device command with the --config parameter.

 Detach the vhost-net NIC.

If a NIC attached online is no longer used, run the virsh detach command to

dynamically detach it.

 # virsh detach-device <VMInstance> <detach-device.xml>

detach-device.xml specifies the XML information of the vNIC to be detached, which

must be the same as the XML information during dynamic attachment.

3.6.4 Configuring a Virtual Serial Port

Overview

In a virtualization environment, VMs and host machines need to communicate with each other

to meet management and service requirements. However, in the complex network architecture

of the cloud management system, services running on the management plane and VMs

running on the service plane cannot communicate with each other at layer 3. As a result,

service deployment and information collection are not fast enough. Therefore, a virtual serial

port is required for communication between VMs and host machines. You can add serial port

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 58

configuration items to the XML configuration file of a VM to implement communication

between VMs and host machines.

Procedure

The Linux VM serial port console is a pseudo terminal device connected to the host machine

through the serial port of the VM. It implements interactive operations on the VM through the

host machine. In this scenario, the serial port needs to be configured in the pty type. This

section describes how to configure a pty serial port.

 Add the following virtual serial port configuration items under the devices node in the

XML configuration file of the VM:

 <serial type='pty'>

 </serial>

 <console type='pty'>

 <target type='serial'/>

 </console>

 Run the virsh console command to connect to the pty serial port of the running VM.

virsh console <VMInstance>

 To ensure that no serial port message is missed, use the --console option to connect to

the serial port when starting the VM.

virsh start --console <VMInstance>

3.6.5 Managing Device Passthrough

The device passthrough technology enables VMs to directly access physical devices. The I/O

performance of VMs can be improved in this way.

Currently, the VFIO passthrough is used. It can be classified into PCI passthrough and

SR-IOV passthrough based on device type.

3.6.5.1 PCI Passthrough

PCI passthrough directly assigns a physical PCI device on the host to a VM. The VM can

directly access the device. PCI passthrough uses the VFIO device passthrough mode. The PCI

passthrough configuration file in XML format for a VM is as follows:

<hostdev mode='subsystem' type='pci' managed='yes'>

 <driver name='vfio'/>

 <source>

 <address domain='0x0000' bus='0x04' slot='0x10' function='0x01'/>

 </source>

 <rom bar='off'/>

 <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>

</hostdev>

Table 3-9 Device configuration items for PCI passthrough

Parameter Description Value

hostdev.source.address.dom

ain

Domain ID of the PCI

device on the host OS.

≥ 0

hostdev.source.address.bus Bus ID of the PCI device on ≥ 1

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 59

Parameter Description Value

the host OS.

hostdev.source.address.slot Device ID of the PCI device

on the host OS.

≥ 0

hostdev.source.address.funct

ion

Function ID of the PCI

device on the host OS.

≥ 0

hostdev.driver.name Backend driver of PCI

passthrough. This parameter

is optional.

vfio (default value)

hostdev.rom Specifies whether the VM

can access the ROM of the

passthrough device.

This parameter can be set to

on or off. The default value

is on.

 on: indicates that the

VM can access the ROM

of the passthrough

device. For example, if a

VM with a passthrough

NIC needs to boot from

the preboot execution

environment (PXE), or a

VM with a passthrough

Host Bus Adapter (HBA)

card needs to boot from

the ROM, you can set

this parameter to on.

 off: indicates that the

VM cannot access the

ROM of the passthrough

device.

hostdev.address type Bus, Device, and Function

(BDF) IDs on the guest OS

displayed on the PCI device.

[0x03–0x1e] (range of slot

ID)

Note:

 domain indicates the

domain information, bus

indicates the bus ID, slot

indicates the slot ID, and

function indicates the

function.

 Except for slot, default

values of these

parameters are 0.

 The first slot 0x00 is

occupied by the system,

the second slot 0x01 is

occupied by the IDE

controller and USB

controller, and the third

slot 0x02 is occupied by

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 60

Parameter Description Value

the video.

 The last slot 0x1f is

occupied by the PV

channel.

VFIO passthrough is implemented by IOMMU group. Devices are divided to IOMMU groups based on
access control services (ACS) on hardware. Devices in the same IOMMU group can be assigned to only
one VM. If multiple functions on a PCI device belong to the same IOMMU group, they can be directly
assigned to only one VM as well.

3.6.5.2 SR-IOV Passthrough

Overview

Single Root I/O Virtualization (SR-IOV) is a hardware-based virtualization solution. With the

SR-IOV technology, a physical function (PF) can provide multiple virtual functions (VFs),

and each VF can be directly assigned to a VM. This greatly improves hardware resource

utilization and I/O performance of VMs. A typical application scenario is SR-IOV

passthrough for NICs. With the SR-IOV technology, a physical NIC (PF) can function as

multiple VF NICs, and then the VFs can be directly assigned to VMs.

 SR-IOV requires the support of physical hardware. Before using SR-IOV, ensure that the hardware

device to be directly assigned supports SR-IOV and the device driver on the host OS works in
SR-IOV mode.

 The following describes how to query the NIC model:

In the following command output, values in the first column indicate the PCI numbers of NICs, and
19e5:1822 indicates the vendor ID and device ID of the NIC.

lspci | grep Ether

05:00.0 Ethernet controller: Device 19e5:1822 (rev 45)

07:00.0 Ethernet controller: Device 19e5:1822 (rev 45)

09:00.0 Ethernet controller: Device 19e5:1822 (rev 45)

0b:00.0 Ethernet controller: Device 19e5:1822 (rev 45)

81:00.0 Ethernet controller: Intel Corporation 82599ES 10-Gigabit SFI/SFP+ Network

Connection (rev 01)

81:00.1 Ethernet controller: Intel Corporation 82599ES 10-Gigabit SFI/SFP+ Network

Connection (rev 01)

Procedure

To configure SR-IOV passthrough for a NIC, perform the following steps:

1. Enable the SR-IOV mode for the NIC.

a. Ensure that VF driver support provided by the NIC supplier exists on the guest OS.

Otherwise, VFs in the guest OS cannot work properly.

b. Enable the SMMU/IOMMU support in the BIOS of the host OS. The enabling

method varies depending on the servers of different vendors. For details, see the

help documents of the servers.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 61

c. Configure the host driver to enable the SR-IOV VF mode. The following uses the

Hi1822 NIC as an example to describe how to enable 16 VFs.

echo 16 > /sys/class/net/ethX/device/sriov_numvfs

2. Obtain the PCI BDF information of PFs and VFs.

a. Run the following command to obtain the NIC resource list on the current board:

lspci | grep Eth

03:00.0 Ethernet controller: Huawei Technologies Co., Ltd. Hi1822 Family

(4*25GE) (rev 45)

04:00.0 Ethernet controller: Huawei Technologies Co., Ltd. Hi1822 Family

(4*25GE) (rev 45)

05:00.0 Ethernet controller: Huawei Technologies Co., Ltd. Hi1822 Family

(4*25GE) (rev 45)

06:00.0 Ethernet controller: Huawei Technologies Co., Ltd. Hi1822 Family

(4*25GE) (rev 45)

7d:00.0 Ethernet controller: Huawei Technologies Co., Ltd. Device a222 (rev

20)

7d:00.1 Ethernet controller: Huawei Technologies Co., Ltd. Device a222 (rev

20)

7d:00.2 Ethernet controller: Huawei Technologies Co., Ltd. Device a221 (rev

20)

7d:00.3 Ethernet controller: Huawei Technologies Co., Ltd. Device a221 (rev

20)

b. Run the following command to view the PCI BDF information of VFs:

lspci | grep "Virtual Function"

03:00.1 Ethernet controller: Huawei Technologies Co., Ltd. Hi1822 Family

Virtual Function (rev 45)

03:00.2 Ethernet controller: Huawei Technologies Co., Ltd. Hi1822 Family

Virtual Function (rev 45)

03:00.3 Ethernet controller: Huawei Technologies Co., Ltd. Hi1822 Family

Virtual Function (rev 45)

03:00.4 Ethernet controller: Huawei Technologies Co., Ltd. Hi1822 Family

Virtual Function (rev 45)

03:00.5 Ethernet controller: Huawei Technologies Co., Ltd. Hi1822 Family

Virtual Function (rev 45)

03:00.6 Ethernet controller: Huawei Technologies Co., Ltd. Hi1822 Family

Virtual Function (rev 45)

03:00.7 Ethernet controller: Huawei Technologies Co., Ltd. Hi1822 Family

Virtual Function (rev 45)

03:01.0 Ethernet controller: Huawei Technologies Co., Ltd. Hi1822 Family

Virtual Function (rev 45)

03:01.1 Ethernet controller: Huawei Technologies Co., Ltd. Hi1822 Family

Virtual Function (rev 45)

03:01.2 Ethernet controller: Huawei Technologies Co., Ltd. Hi1822 Family

Virtual Function (rev 45)

c. Select an available VF and write its configuration to the VM configuration file

based on its BDF information. For example, the bus ID of the device 03:00.1 is 03,

its slot ID is 00, and its function ID is 1.

3. Identify and manage the mapping between PFs and VFs.

a. Identify VFs corresponding to a PF. The following uses PF 03.00.0 as an example:

ls -l /sys/bus/pci/devices/0000\:03\:00.0/

The following symbolic link information is displayed. You can obtain the VF IDs

(virtfnX) and PCI BDF IDs based on the information.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 62

b. Identify the PF corresponding to a VF. The following uses VF 03:00.1 as an

example:

ls -l /sys/bus/pci/devices/0000\:03\:00.1/

The following symbolic link information is displayed. You can obtain PCI BDF IDs

of the PF based on the information.

lrwxrwxrwx 1 root root 0 Mar 28 22:44 physfn -> ../0000:03:00.0

c. Obtain names of NICs corresponding to the PFs or VFs. For example:

ls /sys/bus/pci/devices/0000:03:00.0/net

eth0

d. Set the MAC address, VLAN, and QoS information of VFs to ensure that the VFs

are in the Up state before passthrough. The following uses VF 03:00.1 as an

example. The PF is eth0 and the VF ID is 0.

ip link set eth0 vf 0 mac 90:E2:BA:21:XX:XX #Sets the MAC address.

ifconfig eth0 up

ip link set eth0 vf 0 rate 100 #Sets the VF outbound rate, in

Mbit/s.

ip link show eth0 #Views the MAC address, VLAN ID,

and QoS information to check whether the configuration is successful.

4. Mount the SR-IOV NIC to the VM.

When creating a VM, add the SR-IOV passthrough configuration item to the VM

configuration file.

<interface type='hostdev' managed='yes'>

 <mac address='fa:16:3e:0a:xx:xx'/>

 <source>

 <address type='pci' domain='0x0000' bus='0x06' slot='0x11' function='0x6'/>

 </source>

 <vlan>

 <tag id='1'/>

 </vlan>

</interface>

Table 3-10 SR-IOV configuration options

Parameter Description Value

hostdev.managed Two modes for libvirt to

process PCI devices.

no: default value. The

passthrough device is

managed by the user.

yes: The passthrough device

is managed by libvirt. Set

this parameter to yes in the

SR-IOV passthrough

scenario.

hostdev.source.address.bus Bus ID of the PCI device on

the host OS.

≥ 1

hostdev.source.address.slot Device ID of the PCI device

on the host OS.

≥ 0

hostdev.source.address.funct

ion

Function ID of the PCI

device on the host OS.

≥ 0

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 63

Disabling the SR-IOV function:

To disable the SR-IOV function after the VM is stopped and no VF is in use, run the following
command:

The following uses the Hi1822 NIC (corresponding network interface name: eth0) as an example:

echo 0 > /sys/class/net/eth0/device/sriov_numvfs

3.6.6 Managing VM USB

To facilitate the use of USB devices such as USB key devices and USB mass storage devices

on VMs, openEuler provides the USB device passthrough function. Through USB

passthrough and hot-swappable interfaces, you can configure USB passthrough devices for

VMs, or hot swap USB devices when VMs are running.

3.6.6.1 Configuring USB Controllers

Overview

A USB controller is a virtual controller that provides specific USB functions for USB devices

on VMs. To use USB devices on a VM, you must configure USB controllers for the VM.

Currently, openEuler supports the following types of USB controllers:

 Universal host controller interface (UHCI): also called the USB 1.1 host controller

specification.

 Enhanced host controller interface (EHCI): also called the USB 2.0 host controller

specification.

 Extensible host controller interface (xHCI): also called the USB 3.0 host controller

specification.

Precautions
 The host server must have USB controller hardware and modules that support USB 1.1,

USB 2.0, and USB 3.0 specifications.

 You need to configure USB controllers for the VM by following the order of USB 1.1,

USB 2.0, and USB 3.0.

 An xHCI controller has eight ports and can be mounted with a maximum of four USB

3.0 devices and four USB 2.0 devices. An EHCI controller has six ports and can be

mounted with a maximum of six USB 2.0 devices. A UHCI controller has two ports and

can be mounted with a maximum of two USB 1.1 devices.

 On each VM, only one USB controller of the same type can be configured.

 USB controllers cannot be hot swapped.

 If the USB 3.0 driver is not installed on a VM, the xHCI controller may not be identified.

For details about how to download and install the USB 3.0 driver, refer to the official

description provided by the corresponding OS distributor.

 To ensure the compatibility of the OS, set the bus ID of the USB controller to 0 when

configuring a USB tablet for the VM. The tablet is mounted to the USB 1.1 controller by

default.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 64

Configuration Methods

The following describes the configuration items of USB controllers for a VM. You are

advised to configure USB 1.1, USB 2.0, and USB 3.0 to ensure the VM is compatible with

three types of devices.

The configuration item of the USB 1.1 controller (UHCI) in the XML configuration file is as

follows:

<controller type='usb' index='0' model='piix3-uhci'>

</controller>

The configuration item of the USB 2.0 controller (EHCI) in the XML configuration file is as

follows:

<controller type='usb' index='1' model='ehci'>

</controller>

The configuration item of the USB 3.0 controller (xHCI) in the XML configuration file is as

follows:

<controller type='usb' index='2' model='nec-xhci'>

</controller>

3.6.6.2 Configuring a USB Passthrough Device

Overview

After USB controllers are configured for a VM, a physical USB device on the host can be

mounted to the VM through device passthrough for the VM to use. In the virtualization

scenario, in addition to static configuration, hot swapping the USB device is supported. That

is, the USB device can be mounted or unmounted when the VM is running.

Precautions
 A USB device can be assigned to only one VM.

 A VM with a USB passthrough device does not support live migration.

 VM creation fails if no USB passthrough devices exist in the VM configuration file.

 Forcibly hot removing a USB storage device that is performing read or write operation

may damage files in the USB storage device.

Configuration Description

The following describes the configuration items of a USB device for a VM.

Description of the USB device in the XML configuration file:

<hostdev mode='subsystem' type='usb' managed='yes'>

 <source>

 <address bus='m' device='n'/>

 </source>

 <address type='usb' bus='x' port='y'/>

</hostdev>

 <address bus='m'device='n'/>: m indicates the USB bus address on the host, and n

indicates the device ID.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 65

 <address type='usb'bus='x'port='y'>: indicates that the USB device is to be mounted

to the USB controller specified on the VM. x indicates the controller ID, which

corresponds to the index number of the USB controller configured on the VM. y

indicates the port address. When configuring a USB passthrough device, you need to set

this parameter to ensure that the controller to which the device is mounted is as expected.

Configuration Methods

To configure USB passthrough, perform the following steps:

1. Configure USB controllers for the VM. For details, see 3.6.6.1 Configuring USB

Controllers.

2. Query information about the USB device on the host.

Run the lsusb command (the usbutils software package needs to be installed) to query

the USB device information on the host, including the bus address, device address,

device vendor ID, device ID, and product description. For example:

lsusb

Bus 008 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub

Bus 007 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

Bus 006 Device 002: ID 0bda:0411 Realtek Semiconductor Corp.

Bus 006 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub

Bus 005 Device 003: ID 136b:0003 STEC

Bus 005 Device 002: ID 0bda:5411 Realtek Semiconductor Corp.

Bus 005 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 001 Device 003: ID 12d1:0003 Huawei Technologies Co., Ltd.

Bus 001 Device 002: ID 0bda:5411 Realtek Semiconductor Corp.

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

3. Prepare the XML description file of the USB device. Before hot removing the device,

ensure that the USB device is not in use. Otherwise, data may be lost.

4. Run the hot swapping commands.

Take a VM whose name is openEulerVM as an example. The corresponding

configuration file is usb.xml.

− Hot adding of the USB device takes effect only for the current running VM. After

the VM is restarted, hot add the USB device again.

virsh attach-device openEulerVM usb.xml --live

− Complete persistency configurations for hot adding of the USB device. After the

VM is restarted, the USB device is automatically assigned to the VM.

virsh attach-device openEulerVM usb.xml --config

− Hot removing of the USB device takes effect only for the current running VM.

After the VM is restarted, the USB device with persistency configurations is

automatically assigned to the VM.

virsh detach-device openEulerVM usb.xml --live

− Complete persistency configurations for hot removing of the USB device.

virsh detach-device openEulerVM usb.xml --config

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 66

3.6.7 Storing Snapshots

Overview

The VM system may be damaged due to virus damage, system file deletion by mistake, or

incorrect formatting. As a result, the system cannot be started. To quickly restore a damaged

system, openEuler provides the storage snapshot function. openEuler can create a snapshot

that records the VM status at specific time points without informing users (usually within a

few seconds). The snapshot can be used to restore the VM to the status when the snapshots

were taken. For example, a damaged system can be quickly restored with the help of

snapshots, which improves system reliability.

Currently, storage snapshots can be QCOW2 and RAW images only. Block devices are not supported.

Procedure

To create VM storage snapshots, perform the following steps:

1. Log in to the host and run the virsh domblklist command to query the disk used by the

VM.

virsh domblklist openEulerVM

 Target Source

 vda /mnt/openEuler-image.qcow2

2. Run the following command to create the VM disk snapshot

openEuler-snapshot1.qcow2:

virsh snapshot-create-as --domain openEulerVM --disk-only --diskspec

vda,snapshot=external,file=/mnt/openEuler-snapshot1.qcow2 --atomic

Domain snapshot 1582605802 created

3. Run the following command to query disk snapshots:

virsh snapshot-list openEulerVM

 Name Creation Time State

 1582605802 2020-02-25 12:43:22 +0800 disk-snapshot

3.7 Best Practices

3.7.1 Performance Best Practices

3.7.1.1 Halt-Polling

Overview

If compute resources are sufficient, the halt-polling feature can be used to enable VMs to

obtain performance similar to that of physical machines. If the halt-polling feature is not

enabled, the host allocates CPU resources to other processes when the vCPU exits due to idle

timeout. When the halt-polling feature is enabled on the host, the vCPU of the VM performs

polling when it is idle. The polling duration depends on the actual configuration. If the vCPU

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 67

is woken up during the polling, the vCPU can continue to run without being scheduled from

the host. This reduces the scheduling overhead and improves the VM system performance.

The halt-polling mechanism ensures that the vCPU thread of the VM responds in a timely manner.
However, when the VM has no load, the host also performs polling. As a result, the host detects that the
CPU usage of the vCPU is high, but the actual CPU usage of the VM is not high.

Instructions

The halt-polling feature is enabled by default. You can dynamically change the halt-polling

time of vCPU by modifying the halt_poll_ns file. The default value is 500000, in ns.

For example, to set the polling duration to 400,000 ns, run the following command:

echo 400000 > /sys/module/kvm/parameters/halt_poll_ns

3.7.1.2 I/O Thread Configuration

Overview

By default, QEMU main threads handle backend VM read and write operations on the KVM.

This causes the following issues:

 VM I/O requests are processed by a QEMU main thread. Therefore, the single-thread

CPU usage becomes the bottleneck of VM I/O performance.

 The QEMU global lock (qemu_global_mutex) is used when VM I/O requests are

processed by the QEMU main thread. If the I/O processing takes a long time, the QEMU

main thread will occupy the global lock for a long time. As a result, the VM vCPU

cannot be scheduled properly, affecting the overall VM performance and user

experience.

You can configure the I/O thread attribute for the virtio-blk disk or virtio-scsi controller. At

the QEMU backend, an I/O thread is used to process read and write requests of a virtual disk.

The mapping relationship between the I/O thread and the virtio-blk disk or virtio-scsi

controller can be a one-to-one relationship to minimize the impact on the QEMU main thread,

enhance the overall I/O performance of the VM, and improve user experience.

Configuration Description

To use I/O threads to process VM disk read and write requests, you need to modify VM

configurations as follows:

 Configure the total number of high-performance virtual disks on the VM. For example,

set <iothreads> to 4 to control the total number of I/O threads.

<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>

 <name>VMName</name>

 <memory>4194304</memory>

 <currentMemory>4194304</currentMemory>

 <vcpu>4</vcpu>

 <iothreads>4</iothreads>

 Configure the I/O thread attribute for the virtio-blk disk. <iothread> indicates I/O thread

IDs. The IDs start from 1 and each ID must be unique. The maximum ID is the value of

<iothreads>. For example, to allocate I/O thread 2 to the virtio-blk disk, set parameters

as follows:

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 68

<disk type='file' device='disk'>

 <driver name='qemu' type='raw' cache='none' io='native' iothread='2'/>

 <source file='/path/test.raw'/>

 <target dev='vdb' bus='virtio'/>

 <address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>

</disk>

 Configure the I/O thread attribute for the virtio-scsi controller. For example, to allocate

I/O thread 2 to the virtio-scsi controller, set parameters as follows:

<controller type='scsi' index='0' model='virtio-scsi'>

 <driver iothread='2'/>

 <alias name='scsi0'/>

 <address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/>

</controller>

 Bind I/O threads to a physical CPU.

Binding I/O threads to specified physical CPUs does not affect the resource usage of

vCPU threads. <iothread> indicates I/O thread IDs, and <cpuset> indicates IDs of the

bound physical CPUs.

<cputune>

<iothreadpin iothread='1' cpuset='1-3,5,7-12' />

<iothreadpin iothread='2' cpuset='1-3,5,7-12' />

</cputune>

3.7.1.3 Raw Device Mapping

Overview

When configuring VM storage devices, you can use configuration files to configure virtual

disks for VMs, or connect block devices (such as physical LUNs and LVs) to VMs for use to

improve storage performance. The latter configuration method is called raw device mapping

(RDM). Through RDM, a virtual disk is presented as a small computer system interface

(SCSI) device to the VM and supports most SCSI commands.

RDM can be classified into virtual RDM and physical RDM based on backend

implementation features. Compared with virtual RDM, physical RDM provides better

performance and more SCSI commands. However, for physical RDM, the entire SCSI disk

needs to be mounted to a VM for use. If partitions or logical volumes are used for

configuration, the VM cannot identify the disk.

Configuration Example

VM configuration files need to be modified for RDM. The following is a configuration

example.

 Virtual RDM

The following is an example of mounting the SCSI disk /dev/sdc on the host to the VM

as a virtual raw device:

<domain type='kvm'>

 <devices>

 ...

 <controller type='scsi' model='virtio-scsi' index='0'/>

 <disk type='block' device='disk'>

 <driver name='qemu' type='raw' cache='none' io='native'/>

 <source dev='/dev/sdc'/>

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 69

 <target dev='sdc' bus='scsi'/>

 <address type='drive' controller='0' bus='0' target='0' unit='0'/>

 </disk>

 ...

 </devices>

</domain>

 Physical RDM

The following is an example of mounting the SCSI disk /dev/sdc on the host to the VM

as a physical raw device:

<domain type='kvm'>

 <devices>

 ...

 <controller type='scsi' model='virtio-scsi' index='0'/>

 <disk type='block' device='lun' rawio='yes'>

 <driver name='qemu' type='raw' cache='none' io='native'/>

 <source dev='/dev/sdc'/>

 <target dev='sdc' bus='scsi'/>

 <address type='drive' controller='0' bus='0' target='0' unit='0'/>

 </disk>

 ...

 </devices>

</domain>

3.7.1.4 kworker Isolation and Binding

Overview

kworker is a per-CPU thread implemented by the Linux kernel. It is used to execute

workqueue requests in the system. kworker threads will compete for physical core resources

with vCPU threads, resulting in virtualization service performance jitter. To ensure that the

VM can run stably and reduce the interference of kworker threads on the VM, you can bind

kworker threads on the host to a specific CPU.

Instructions

You can modify the /sys/devices/virtual/workqueue/cpumask file to bind tasks in the

workqueue to the CPU specified by cpumasks. Masks in cpumask are in hexadecimal format.

For example, if you need to bind kworker to CPU0 to CPU7, run the following command to

change the mask to ff:

echo ff > /sys/devices/virtual/workqueue/cpumask

3.7.1.5 HugePage Memory

Overview

Compared with traditional 4 KB memory paging, openEuler also supports 2 MB/1 GB

memory paging. HugePage memory can effectively reduce TLB misses and significantly

improve the performance of memory-intensive services. openEuler uses two technologies to

implement HugePage memory.

 Static HugePages

The static HugePage requires that a static HugePage pool be reserved before the host OS

is loaded. When creating a VM, you can modify the XML configuration file to specify

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 70

that the VM memory is allocated from the static HugePage pool. The static HugePage

ensures that all memory of a VM exists on the host as the HugePage to ensure physical

continuity. However, the deployment difficulty is increased. After the page size of the

static HugePage pool is changed, the host needs to be restarted for the change to take

effect. The size of a static HugePage can be 2 MB or 1 GB.

 THP

If the transparent HugePage (THP) mode is enabled, the VM automatically selects

available 2 MB consecutive pages and automatically splits and combines HugePages

when allocating memory. When no 2 MB consecutive pages are available, the VM

selects available 64 KB (AArch64 architecture) or 4 KB (x86_64 architecture) pages for

allocation. By using THP, users do not need to be aware of it and 2 MB HugePages can

be used to improve memory access performance.

If VMs use static HugePages, you can disable THP to reduce the overhead of the host OS and

ensure stable VM performance.

Instructions
 Configure static HugePages.

Before creating a VM, modify the XML file to configure a static HugePage for the VM.

 <memoryBacking>

 <hugepages>

 <page size='1' unit='GiB'/>

 </hugepages>

 </memoryBacking>

The preceding XML segment indicates that a 1 GB static HugePage is configured for the

VM.

 <memoryBacking>

 <hugepages>

 <page size='2' unit='MiB'/>

 </hugepages>

 </memoryBacking>

The preceding XML segment indicates that a 2 MB static HugePage is configured for the

VM.

 Configure transparent HugePage.

Dynamically enable the THP through sysfs.

echo always > /sys/kernel/mm/transparent_hugepage/enabled

Dynamically disable the THP.

echo never > /sys/kernel/mm/transparent_hugepage/enabled

3.7.2 Security Best Practices

3.7.2.1 Libvirt Authentication

Overview

When a user uses libvirt remote invocation but no authentication is performed, any third-party

program that connects to the host's network can operate VMs through the libvirt remote

invocation mechanism. This poses security risks. To improve system security, openEuler

provides the libvirt authentication function. That is, users can remotely invoke a VM through

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 71

libvirt only after identity authentication. Only specified users can access the VM, thereby

protecting VMs on the network.

Enabling Libvirt Authentication

By default, the libvirt remote invocation function is disabled on openEuler. This following

describes how to enable the libvirt remote invocation and libvirt authentication functions.

1. Log in to the host.

2. Modify the libvirt service configuration file /etc/libvirt/libvirtd.conf to enable the

libvirt remote invocation and libvirt authentication functions. For example, to enable the

TCP remote invocation that is based on the Simple Authentication and Security Layer

(SASL) framework, configure parameters by referring to the following:

#Transport layer security protocol. The value 0 indicates that the protocol is

disabled, and the value 1 indicates that the protocol is enabled. You can set the

value as needed.

listen_tls = 0

#Enable the TCP remote invocation. To enable the libvirt remote invocation and libvirt

authentication functions, set the value to 1.

listen_tcp = 1

#User-defined protocol configuration for TCP remote invocation. The following uses

sasl as an example.

auth_tcp = "sasl"

3. Modify the /etc/sasl2/libvirt.conf configuration file to set the SASL mechanism and

SASLDB.

#Authentication mechanism of the SASL framework.

mech_list: digest-md5

#Database for storing usernames and passwords

sasldb_path: /etc/libvirt/passwd.db

4. Add the user for SASL authentication and set the password. Take the user userName as

an example. The command is as follows:

saslpasswd2 -a libvirt userName

Password:

Again (for verification):

5. Modify the /etc/sysconfig/libvirtd configuration file to enable the libvirt listening

option.

LIBVIRTD_ARGS="--listen"

6. Restart the libvirtd service to make the modification to take effect.

systemctl restart libvirtd

7. Check whether the authentication function for libvirt remote invocation takes effect.

Enter the username and password as prompted. If the libvirt service is successfully

connected, the function is successfully enabled.

virsh -c qemu+tcp://192.168.0.1/system

Please enter your authentication name: openeuler

Please enter your password:

Welcome to virsh, the virtualization interactive terminal.

Type: 'help' for help with commands

 'quit' to quit

virsh #

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 72

Managing SASL

The following describes how to manage SASL users.

 Query an existing user in the database.

sasldblistusers2 -f /etc/libvirt/passwd.db

user@localhost.localdomain: userPassword

 Delete a user from the database.

saslpasswd2 -a libvirt -d user

3.7.2.2 qemu-ga

Overview

QEMU guest agent (qemu-ga) is a daemon running within VMs. It allows users on a host OS

to perform various management operations on the guest OS through outband channels

provided by QEMU. The operations include file operations (open, read, write, close, seek, and

flush), internal shutdown, VM suspend (suspend-disk, suspend-ram, and suspend-hybrid), and

obtaining of VM internal information (including the memory, CPU, NIC, and OS

information).

In some scenarios with high security requirements, qemu-ga provides the blacklist function to

prevent internal information leakage of VMs. You can use a blacklist to selectively shield

some functions provided by qemu-ga.

The qemu-ga installation package is qemu-guest-agent-xx.rpm. It is not installed on openEuler by
default. xx indicates the actual version number.

Procedure

To add a qemu-ga blacklist, perform the following steps:

1. Log in to the VM and ensure that the qemu-guest-agent service exists and is running.

systemctl status qemu-guest-agent |grep Active

 Active: active (running) since Wed 2018-03-28 08:17:33 CST; 9h ago

2. Query which qemu-ga commands can be added to the blacklist:

qemu-ga --blacklist ?

guest-sync-delimited

guest-sync

guest-ping

guest-get-time

guest-set-time

guest-info

...

3. Set the blacklist. Add the commands to be shielded to --blacklist in the

/usr/lib/systemd/system/qemu-guest-agent.service file. Use spaces to separate different

commands. For example, to add the guest-file-open and guest-file-close commands to

the blacklist, configure the file by referring to the following:

[Service]

ExecStart=-/usr/bin/qemu-ga \

 --blacklist=guest-file-open guest-file-close

4. Restart the qemu-guest-agent service.

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 73

systemctl daemon-reload

systemctl restart qemu-guest-agent

5. Check whether the qemu-ga blacklist function takes effect on the VM, that is, whether

the --blacklist parameter configured for the qemu-ga process is correct.

ps -ef|grep qemu-ga|grep -E "blacklist=|b="

root 727 1 0 08:17 ? 00:00:00 /usr/bin/qemu-ga

--method=virtio-serial --path=/dev/virtio-ports/org.qemu.guest_agent.0

--blacklist=guest-file-open guest-file-close guest-file-read guest-file-write

guest-file-seek guest-file-flush -F/etc/qemu-ga/fsfreeze-hook

For more information about qemu-ga, visit https://wiki.qemu.org/Features/GuestAgent.

3.7.2.3 sVirt Protection

Overview

In a virtualization environment that uses the discretionary access control (DAC) policy only,

malicious VMs running on hosts may attack the hypervisor or other VMs. To improve security

in virtualization scenarios, openEuler uses sVirt for protection. sVirt is a security protection

technology based on SELinux. It is applicable to KVM virtualization scenarios. A VM is a

common process on the host OS. In the hypervisor, the sVirt mechanism labels QEMU

processes corresponding to VMs with SELinux labels. In addition to types which are used to

label virtualization processes and files, different categories are used to label different VMs.

Each VM can access only file devices of the same category. This prevents VMs from

accessing files and devices on unauthorized hosts or other VMs, thereby preventing VM

escape and improving host and VM security.

Enabling sVirt Protection

Step 1 Enable SELinux on the host.

1. Log in to the host.

2. Enable the SELinux function on the host.

a. Modify the system startup parameter file grub.cfg to set selinux to 1.

selinux=1

b. Modify /etc/selinux/config to set the SELINUX to enforcing.

SELINUX=enforcing

3. Restart the host.

reboot

Step 2 Create a VM where the sVirt function is enabled.

1. Add the following information to the VM configuration file:

<seclabel type='dynamic' model='selinux' relabel='yes'/>

Or check whether the following configuration exists in the file:

<seclabel type='none' model='selinux'/>

2. Create a VM.

virsh define openEulerVM.xml

Step 3 Check whether sVirt is enabled.

https://wiki.qemu.org/Features/GuestAgent

openEuler

Virtualization User Guide 3 User and Administrator Guide

2020-04-07 74

Run the following command to check whether sVirt protection has been enabled for the

QEMU process of the running VM. If svirt_t:s0:c exists, sVirt protection has been enabled.

ps -eZ|grep qemu |grep "svirt_t:s0:c"

system_u:system_r:svirt_t:s0:c200,c947 11359 ? 00:03:59 qemu-kvm

system_u:system_r:svirt_t:s0:c427,c670 13790 ? 19:02:07 qemu-kvm

----End

openEuler

Virtualization User Guide A Appendix

2020-04-07 75

A Appendix

A.1 Terminology & Acronyms and Abbreviations
For the terminology & acronyms and abbreviation used in this document, see Table A-1 and

Table A-2.

Table A-1 Terminology

Term Description

AArch64 AArch64 is an execution state of the ARMv8 architecture. AArch64 is not

only an extension of the 32-bit ARM architecture, but also a brand new

architecture in ARMv8 that uses the brand new A64 instruction set.

Domain A collection of configurable resources, including memory, vCPUs, network

devices, and disk devices. Run the VM in the domain. A domain is allocated

with virtual resources and can be independently started, stopped, and

restarted.

Libvirt A set of tools used to manage virtualization platforms, including KVM,

QEMU, Xen, and other virtualization platforms.

Guest OS The OS running on the VM.

Host OS The OS of the virtual physical machine.

Hypervisor Virtual machine monitor (VMM), is an intermediate software layer that runs

between a basic physical server and an OS. It allows multiple OSs and

applications to share hardware.

VM A complete virtual computer system that is constructed by using the

virtualization technology and simulating the functions of a complete

computer hardware system through software.

openEuler

Virtualization User Guide A Appendix

2020-04-07 76

Table A-2 Acronyms and abbreviations

Acro
nyms
and
abbr
eviat
ions

Full spelling Full name Description

NUM

A

Non-Uniform Memory

Access Architecture

Non

Uniform

Memory

Access

Architectur

e

NUMA is a memory architecture

designed for multi-processor computers.

Under NUMA, a processor accesses its

own local memory faster than accessing

non-local memory (the memory is located

on another processor, or the memory

shared between processors).

KVM Kernel-based Virtual

Machine

Kernel-base

d VM

KVM is a kernel-based VM. It is a kernel

module of Linux and makes Linux a

hypervisor.

OVS Open vSwitch Open

vSwitch

OVS is a high-quality multi-layer

vSwitch that uses the open-source Apache

2.0 license protocol.

QEM

U

Quick Emulator Quick

Emulator

QEMU is a general-purpose, open-source

emulator that implements hardware

virtualization.

SMP Symmetric

Multi-Processor

Symmetric

Multi-Proce

ssor

SMP is a multi-processor computer

hardware architecture. Currently, most

processor systems use a symmetric

multi-processor architecture. The

architecture system has multiple

processors, each processor shares the

memory subsystem and bus structure.

UEFI Unified Extensible

Firmware Interface

Unified

Extensible

Firmware

Interface

A standard that describes new interfaces

in detail. This interface is used by the OS

to automatically load the prestart

operation environment to an OS.

VM Virtual Machine VM A complete virtual computer system that

is constructed by using the virtualization

technology and simulating the functions

of a complete computer hardware system

through software.

VMM Virtual Machine

Monitor

VM

Monitor

An intermediate software layer that runs

between a basic physical server and an

OS. It allows multiple OSs and

applications to share hardware.

