

openEuler
20.03 LTS

Container User Guide

Date 2020-04-01

openEuler

Container User Guide Contents

2020-04-01 ii

Contents

Terms of Use ... viii

About This Document .. ix

1 iSulad Container Engine ... 11

1.1 Overview ... 11

1.2 Installation and Deployment .. 12

1.2.1 Installation Methods .. 12

1.2.2 Upgrade Methods... 12

1.2.3 Deployment Configuration.. 13

1.2.3.1 Deployment Mode .. 13

1.2.3.2 Storage Description .. 21

1.2.3.3 Constraints .. 22

1.2.3.4 Daemon Multi-Port Binding .. 23

1.2.3.5 Configuring TLS Authentication and Enabling Remote Access ... 24

1.2.3.6 devicemapper Storage Driver Configuration .. 27

1.2.4 Uninstallation ... 29

1.3 Application Scenarios ... 29

1.3.1 Container Management ... 29

1.3.1.1 Creating a Container ... 29

1.3.1.2 Starting a Container .. 33

1.3.1.3 Running a Container ... 34

1.3.1.4 Stopping a Container .. 39

1.3.1.5 Forcibly Stopping a Container ... 40

1.3.1.6 Removing a Container .. 41

1.3.1.7 Attaching to a Container... 42

1.3.1.8 Renaming a Container .. 43

1.3.1.9 Executing a Command in a Running Container ... 43

1.3.1.10 Querying Information About a Single Container ... 46

1.3.1.11 Querying Information About All Containers .. 49

1.3.1.12 Restarting a Container .. 50

1.3.1.13 Waiting for a Container to Exit .. 51

1.3.1.14 Viewing Process Information in a Container .. 51

1.3.1.15 Displaying Resource Usage Statistics of a Container .. 52

openEuler

Container User Guide Contents

2020-04-01 iii

1.3.1.16 Obtaining Container Logs .. 53

1.3.1.17 Copying Data Between a Container and a Host ... 53

1.3.1.18 Pausing a Container .. 55

1.3.1.19 Resuming a Container .. 55

1.3.1.20 Obtaining Event Messages from the Server in Real Time ... 56

1.3.2 Interconnection with the CNI Network .. 56

1.3.2.1 Overview ... 56

1.3.2.2 Common CNIs .. 57

1.3.2.2.1 CNI Network Configuration Description... 58

1.3.2.2.2 Adding a Pod to the CNI Network List .. 58

1.3.2.2.3 Removing a Pod from the CNI Network List .. 58

1.3.2.3 Usage Restrictions .. 58

1.3.3 Container Resource Management ... 59

1.3.3.1 Sharing Resources .. 59

1.3.3.2 Restricting CPU Resources of a Running Container.. 60

1.3.3.3 Restricting the Memory Usage of a Running Container .. 61

1.3.3.4 Restricting I/O Resources of a Running Container .. 62

1.3.3.5 Restricting the Rootfs Storage Space of a Container ... 63

1.3.3.6 Restricting the Number of File Handles in a Container ... 67

1.3.3.7 Restricting the Number of Processes or Threads that Can Be Created in a Container .. 68

1.3.3.8 Configuring the ulimit Value in a Container ... 69

1.3.4 Privileged Container .. 71

1.3.4.1 Scenarios ... 71

1.3.4.2 Usage Restrictions .. 71

1.3.4.3 Usage Guide .. 73

1.3.5 CRI.. 73

1.3.5.1 Description .. 73

1.3.5.2 APIs ... 74

1.3.5.2.1 Runtime Service .. 88

1.3.5.2.2 Image Service ..101

1.3.5.3 Constraints ..104

1.3.6 Image Management ...105

1.3.6.1 Docker Image Management ...105

1.3.6.1.1 Logging In to a Registry ...105

1.3.6.1.2 Logging Out of a Registry ..106

1.3.6.1.3 Pulling Images from a Registry ..106

1.3.6.1.4 Deleting Images ...106

1.3.6.1.5 Loading Images ...107

1.3.6.1.6 Listing Images ...107

1.3.6.1.7 Inspecting Images ..108

1.3.6.1.8 Two-Way Authentication...108

1.3.6.2 Embedded Image Management ... 110

openEuler

Container User Guide Contents

2020-04-01 iv

1.3.6.2.1 Loading Images ... 110

1.3.6.2.2 Listing Images ... 110

1.3.6.2.3 Inspecting Images .. 110

1.3.6.2.4 Deleting Images ... 111

1.3.7 Checking the Container Health Status .. 111

1.3.7.1 Scenarios ... 111

1.3.7.2 Configuration Methods .. 111

1.3.7.3 Check Rules .. 112

1.3.7.4 Usage Restrictions .. 113

1.3.8 Querying Information .. 113

1.3.8.1 Querying the Service Version .. 113

1.3.8.2 Querying System-level Information .. 114

1.3.9 Security Features ... 115

1.3.9.1 Seccomp Security Configuration ... 115

1.3.9.1.1 Scenarios .. 115

1.3.9.1.2 Usage Restrictions ... 115

1.3.9.1.3 Usage Guide... 115

1.3.9.2 capabilities Security Configuration ... 117

1.3.9.2.1 Scenarios .. 117

1.3.9.2.2 Usage Restrictions ... 118

1.3.9.2.3 Usage Guide... 118

1.3.9.3 SELinux Security Configuration ... 118

1.3.9.3.1 Scenarios .. 118

1.3.9.3.2 Usage Restrictions ... 118

1.3.9.3.3 Usage Guide... 119

1.3.10 Supporting OCI hooks ... 119

1.3.10.1 Description .. 119

1.3.10.2 APIs ...120

1.3.10.3 Usage Restrictions ..121

1.4 Appendix ...121

1.4.1 Command Line Parameters ...121

1.4.2 CNI Parameters ..123

2 System Container .. 128

2.1 Overview ...128

2.2 Installation Guideline ...128

2.3 Usage Guide ..129

2.3.1 Introduction ..129

2.3.2 Specifying Rootfs to Create a Container ..129

2.3.3 Using systemd to Start a Container ..130

2.3.4 Reboot or Shutdown in a Container ...132

2.3.5 Configurable Cgroup Path...133

openEuler

Container User Guide Contents

2020-04-01 v

2.3.6 Writable Namespace Kernel Parameters ..134

2.3.7 Shared Memory Channels ...136

2.3.8 Dynamically Loading the Kernel Module..137

2.3.9 Environment Variable Persisting ..139

2.3.10 Maximum Number of Handles ...139

2.3.11 Security and Isolation ..140

2.3.11.1 Many-to-Many User Namespaces ...140

2.3.11.2 User Permission Control ..142

2.3.11.3 proc File System Isolation (Lxcfs) ..145

2.3.12 Dynamically Managing Container Resources (syscontainer-tools) ...147

2.3.12.1 Device Management ...148

2.3.12.2 NIC Management ...151

2.3.12.3 Route Management...153

2.3.12.4 Volume Mounting Management ..155

2.4 Appendix ...157

2.4.1 Command Line Interface List ...157

3 Secure Container.. 160

3.1 Overview ...160

3.2 Installation and Deployment ..162

3.2.1 Installation Methods ..162

3.2.2 Deployment Configuration..163

3.2.2.1 Configuring the Docker Engine ...163

3.2.2.2 iSulad Configuration ..163

3.2.2.3 Configuration.toml ...164

3.3 Application Scenarios ...164

3.3.1 Managing the Lifecycle of a Secure Container ...164

3.3.1.1 Starting a Secure Container..164

3.3.1.2 Stopping a Secure Container ..165

3.3.1.3 Deleting a Secure Container ..165

3.3.1.4 Running a New Command in the Container ...166

3.3.2 Configuring Resources for a Secure Container ...166

3.3.2.1 Sharing Resources ..166

3.3.2.2 Limiting CPU Resources..166

3.3.2.3 Limiting Memory Resources ...169

3.3.2.4 Limiting Block I/O Resources ...171

3.3.2.5 Limiting File Descriptor Resources...172

3.3.3 Configuring Networking for a Secure Container...172

3.3.4 Monitoring Secure Containers ..177

3.4 Appendix ...180

3.4.1 configuration.toml ...180

3.4.2 APIs ..182

openEuler

Container User Guide Contents

2020-04-01 vi

4 Docker Container .. 188

4.1 Overview ...188

4.2 Installation and Deployment ..188

4.2.1 Installation Configurations and Precautions ..188

4.2.1.1 Precautions ..188

4.2.1.2 Basic Installation Configuration ..189

4.2.1.2.1 Daemon Parameter Configuration ..189

4.2.1.2.2 Daemon Running Directory Configuration ...189

4.2.1.2.3 Daemon Network Configuration ..189

4.2.1.2.4 Daemon umask Configuration ..190

4.2.1.2.5 Daemon Start Time ..190

4.2.1.2.6 Journald Component ...190

4.2.1.2.7 Firewalld Component ..191

4.2.1.2.8 Iptables Component...191

4.2.1.2.9 Audit Component...191

4.2.1.2.10 Security Configuration seccomp ..192

4.2.1.2.11 Do Not Modify Private Directory of Docker Daemon..192

4.2.1.2.12 Precautions for Common Users in the Scenario Where a Large Number of Containers Are Deployed..........192

4.2.1.3 Storage Driver Configuration ..193

4.2.1.3.1 overlay2 Storage Driver Configuration ..193

4.2.1.3.2 devicemapper Storage Driver Configuration ...195

4.2.1.4 Impact of Forcibly Killing Docker Background Processes ...196

4.2.1.4.1 Semaphores May Be Residual ..196

4.2.1.4.2 NICs May Be Residual..197

4.2.1.4.3 Failed to Restart a Container ..197

4.2.1.4.4 Failed to Restart the Docker Service ..198

4.2.1.5 Impact of System Power-off ..198

4.3 Container Management ..198

4.3.1 Creating a Container ..198

4.3.2 Creating Containers Using hook-spec ..205

4.3.3 Configuring Health Check During Container Creation...208

4.3.4 Stopping and Deleting a Container ... 211

4.3.5 Querying Container Information ..213

4.3.6 Modification Operations ...213

4.4 Image Management ..214

4.4.1 Creating an Image ..214

4.4.2 Viewing Images ...216

4.4.3 Deleting Images ...216

4.5 Command Reference ..216

4.5.1 Container Engine ...216

4.5.2 Container Management ...220

4.5.2.1 attach ...222

openEuler

Container User Guide Contents

2020-04-01 vii

4.5.2.2 commit ...223

4.5.2.3 cp ...223

4.5.2.4 create ...223

4.5.2.5 diff ...228

4.5.2.6 exec ..229

4.5.2.7 export ...229

4.5.2.8 inspect..229

4.5.2.9 logs ..230

4.5.2.10 pause/unpause ...231

4.5.2.11 port ...232

4.5.2.12 ps..232

4.5.2.13 rename ...233

4.5.2.14 restart ...233

4.5.2.15 rm ...233

4.5.2.16 run ..234

4.5.2.17 start ..234

4.5.2.18 stats ..235

4.5.2.19 stop ..235

4.5.2.20 top ..235

4.5.2.21 update ..236

4.5.2.22 wait ..237

4.5.3 Image Management ...238

4.5.3.1 build ...238

4.5.3.2 history ..241

4.5.3.3 images..241

4.5.3.4 import ..242

4.5.3.5 load ..242

4.5.3.6 login ...242

4.5.3.7 logout ...243

4.5.3.8 pull ...243

4.5.3.9 push..243

4.5.3.10 rmi..244

4.5.3.11 save ..244

4.5.3.12 search ...244

4.5.3.13 tag ..245

4.5.4 Statistics..245

4.5.4.1 events ...245

4.5.4.2 info ...246

4.5.4.3 version ...246

openEuler

Container User Guide Terms of Use

2020-04-01 viii

Terms of Use

Copyright © Huawei Technologies Co., Ltd. 2020. All rights reserved.

Your replication, use, modification, and distribution of this document are governed by the

Creative Commons License Attribution-ShareAlike 4.0 International Public License (CC

BY-SA 4.0). You can visit https://creativecommons.org/licenses/by-sa/4.0/ to view a

human-readable summary of (and not a substitute for) CC BY-SA 4.0. For the complete CC

BY-SA 4.0, visit https://creativecommons.org/licenses/by-sa/4.0/legalcode.

Trademarks and Permissions

openEuler is a trademark or registered trademark of Huawei Technologies Co., Ltd. All other

trademarks and registered trademarks mentioned in this document are the property of their

respective holders.

Disclaimer

This document is used only as a guide. Unless otherwise specified by applicable laws or

agreed by both parties in written form, all statements, information, and recommendations in

this document are provided "AS IS" without warranties, guarantees or representations of any

kind, including but not limited to non-infringement, timeliness, and specific purposes.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/legalcode

openEuler

Container User Guide About This Document

2020-04-01 ix

About This Document

Overview
The openEuler software package provides iSula, the basic platform for running containers.

iSula is a brand of Huawei's container technology solution. It originally means a kind of ant.

This ant is also known as "bullet ant" due to the extremely painful sting, which has been

compared to being shot by a bullet. In the eyes of Brazilian natives living in the Amazon

jungle in Central and South America, iSula is one of the most powerful insects in the world.

Huawei names the container technology solution brand based on its meaning.

The basic container platform iSula provides both Docker engine and lightweight container

engine iSulad. You can select either of them as required.

In addition, the following container forms are provided on different application scenarios:

 Common containers applicable to most common scenarios

 Secure containers applicable to strong isolation and multi-tenant scenarios

 System containers applicable to scenarios where the systemd is used to manage services

This document describes how to install and use the container engines and how to deploy and

use containers in different forms.

Intended Audience
This document is intended for openEuler users who need to install containers. You can better

understand this document if you:

 Be familiar with basic Linux operations.

 Have a basic understanding of containers.

Symbol Conventions
The symbols that may be found in this document are defined as follows.

Symbol Description

Indicates a potentially hazardous situation which, if not avoided, could

result in equipment damage, data loss, performance deterioration, or

unanticipated results.

NOTICE is used to address practices not related to personal injury.

openEuler

Container User Guide About This Document

2020-04-01 x

Symbol Description

 Supplements the important information in the main text.

NOTE is used to address information not related to personal injury,

equipment damage, and environment deterioration.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 11

1 iSulad Container Engine

1.1 Overview

1.2 Installation and Deployment

1.3 Application Scenarios

1.4 Appendix

1.1 Overview

Compared with Docker, iSulad is a new container solution with a unified architecture design

to meet different requirements in the CT and IT fields. Lightweight containers are

implemented using C/C++. They are smart, fast, and not restricted by hardware and

architecture. With less noise floor overhead, the containers can be widely used.

Figure 1-1 shows the unified container architecture.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 12

Figure 1-1 Unified container architecture

1.2 Installation and Deployment

1.2.1 Installation Methods

iSulad can be installed by running the yum or rpm command. The yum command is

recommended because dependencies can be installed automatically.

This section describes two installation methods.

 (Recommended) Run the following command to install iSulad:

$ sudo yum install -y iSulad

 If the rpm command is used to install iSulad, you need to download and manually install

the RMP packages of iSulad and all its dependencies. To install the RPM package of a

single iSulad (the same for installing dependency packages), run the following

command:

$ sudo rpm -ihv iSulad-xx.xx.xx-YYYYmmdd.HHMMSS.gitxxxxxxxx.aarch64.rpm

1.2.2 Upgrade Methods

 For an upgrade between patch versions of a major version, for example, upgrading 2.x.x

to 2.x.x, run the following command:

$ sudo yum update -y iSulad

 For an upgrade between major versions, for example, upgrading 1.x.x to 2.x.x, save the

current configuration file /etc/isulad/daemon.json, uninstall the existing iSulad software

package, install the iSulad software package to be upgraded, and restore the

configuration file.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 13

 You can run the sudo rpm -qa |grep iSulad or isula version command to check the iSulad version.

 If you want to manually perform upgrade between patch versions of a major version, run the
following command to download the RPM packages of iSulad and all its dependent libraries:

$ sudo rpm -Uhv iSulad-xx.xx.xx-YYYYmmdd.HHMMSS.gitxxxxxxxx.aarch64.rpm

If the upgrade fails, run the following command to forcibly perform the upgrade:

$ sudo rpm -Uhv --force iSulad-xx.xx.xx-YYYYmmdd.HHMMSS.gitxxxxxxxx.aarch64.rpm

1.2.3 Deployment Configuration

1.2.3.1 Deployment Mode

The iSulad server daemon isulad can be configured with a configuration file or by running the

isulad --xxx command. The priority in descending order is as follows: CLI > configuration

file > default configuration in code.

If systemd is used to manage the iSulad process, modify the OPTIONS field in the
/etc/sysconfig/iSulad file, which functions the same as using the CLI.

 CLI

During service startup, configure iSulad using the CLI. To view the configuration

options, run the following command:

$ isulad --help

lightweight container runtime daemon

Usage: isulad [global options]

GLOBAL OPTIONS:

 --authorization-plugin Use authorization plugin

 --cgroup-parent Set parent cgroup for all containers

 --cni-bin-dir The full path of the directory in which to search

for CNI plugin binaries. Default: /opt/cni/bin

 --cni-conf-dir The full path of the directory in which to

search for CNI config files. Default: /etc/cni/net.d

 --default-ulimit Default ulimits for containers (default [])

 -e, --engine Select backend engine

 -g, --graph Root directory of the iSulad runtime

 -G, --group Group for the unix socket(default is isulad)

 --help Show help

 --hook-spec Default hook spec file applied to all containers

 -H, --host The socket name used to create gRPC server

 --image-layer-check Check layer intergrity when needed

 --image-opt-timeout Max timeout(default 5m) for image operation

 --insecure-registry Disable TLS verification for the given

registry

 --insecure-skip-verify-enforce Force to skip the insecure verify(default

false)

 --log-driver Set daemon log driver, such as: file

 -l, --log-level Set log level, the levels can be: FATAL ALERT

CRIT ERROR WARN NOTICE INFO DEBUG TRACE

 --log-opt Set daemon log driver options, such as:

log-path=/tmp/logs/ to set directory where to store daemon logs

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 14

 --native.umask Default file mode creation mask (umask) for

containers

 --network-plugin Set network plugin, default is null, suppport

null and cni

 -p, --pidfile Save pid into this file

 --pod-sandbox-image The image whose network/ipc namespaces

containers in each pod will use. (default

"rnd-dockerhub.huawei.com/library/pause-${machine}:3.0")

 --registry-mirrors Registry to be prepended when pulling

unqualified images, can be specified multiple times

 --start-timeout timeout duration for waiting on a container to

start before it is killed

 -S, --state Root directory for execution state files

 --storage-driver Storage driver to use(default overlay2)

 -s, --storage-opt Storage driver options

 --tls Use TLS; implied by --tlsverify

 --tlscacert Trust certs signed only by this CA (default

"/root/.iSulad/ca.pem")

 --tlscert Path to TLS certificate file (default

"/root/.iSulad/cert.pem")

 --tlskey Path to TLS key file (default

"/root/.iSulad/key.pem")

 --tlsverify Use TLS and verify the remote

 --use-decrypted-key Use decrypted private key by default(default

true)

 -V, --version Print the version

 --websocket-server-listening-port CRI websocket streaming service listening

port (default 10350)

Example: Start iSulad and change the log level to DEBUG.

$ isulad -l DEBUG

 Configuration file

The iSulad configuration file is /etc/isulad/daemon.json. The parameters in the file are

described as follows:

Paramete
r

Example Description Remarks

-e,

--engine

"engine": "lcr" iSulad runtime,

which is Icr by

default.

None

-G,

--group

"group": "isulad" Socket group. None

--hook-spe

c

"hook-spec":

"/etc/default/isulad/hooks/d

efault.json"

Default hook

configuration file

for all

containers.

None

-H, --host "hosts":

"unix:///var/run/isulad.sock"

Communication

mode.

In addition to the local

socket, the tcp://ip:port

mode is supported. The

port number ranges from 0

to 65535, excluding

occupied ports.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 15

Paramete
r

Example Description Remarks

--log-drive

r

"log-driver": "file" Log driver

configuration.

None

-l,

--log-level

"log-level": "ERROR" Log output level. None

--log-opt "log-opts": {

"log-file-mode": "0600",

"log-path": "/var/lib/isulad",

"max-file": "1",

"max-size": "30KB"

}

Log-related

configuration.

You can specify max-file,

max-size, and log-path.

max-file indicates the

number of log files.

max-size indicates the

threshold for triggering

log anti-explosion. If

max-file is 1, max-size is

invalid. log-path specifies

the path for storing log

files. The log-file-mode

command is used to set

the permissions to read

and write log files. The

value must be in octal

format, for example, 0666.

--start-time

out

"start-timeout": "2m" Time required

for starting a

container.

None

--runtime "default-runtime": "lcr" Container

runtime, which is

lcr by default.

If neither the CLI nor the

configuration file specifies

the runtime, lcr is used by

default. The priorities of

the three specifying

methods are as follows:

CLI > configuration file >

default value lcr.

Currently, lcr and

kata-runtime are

supported.

None "runtimes": {

 "kata-runtime": {

 "path":

"/usr/bin/kata-runtime",

 "runtime-args": [

 "--kata-config",

"/usr/share/defaults/kat

a-containers/configurati

on.toml"

]

 }

}

When starting a

container, set

this parameter to

specify multiple

runtimes.

Runtimes in this

set are valid for

container startup.

Runtime whitelist of a

container. The customized

runtimes in this set are

valid. kata-runtime is

used as the example.

-p, "pidfile": File for storing This parameter is required

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 16

Paramete
r

Example Description Remarks

--pidfile "/var/run/isulad.pid" PIDs. only when more than two

container engines need to

be started. -g, --graph "graph": "/var/lib/isulad" Root directory

for iSulad

runtimes.

-S, --state "state": "/var/run/isulad" Root directory of

the execution

file.

--storage-d

river

"storage-driver": "overlay2" Image storage

driver, which is

overlay2 by

default.

Only overlay2 is

supported.

-s,

--storage-o

pt

"storage-opts":

["overlay2.override_kernel

_check=true"]

Image storage

driver

configuration

options.

The options are as

follows:

overlay2.override_kerne

l_check=true #Ignore the

kernel version check.

overlay2.size=${size}

#Set the rootfs quota to

${size}.

overlay2.basesize=${siz

e} #It is equivalent to

overlay2.size.

--image-op

t-timeout

"image-opt-timeout": "5m" Image operation

timeout interval,

which is 5m by

default.

The value -1 indicates that

the timeout interval is not

limited.

--registry-

mirrors

"registry-mirrors":

["docker.io"]

Registry address. None

--insecure-

registry

"insecure-registries": [] Registry without

TLS verification.

None

--native.u

mask

"native.umask": "secure" Container umask

policy. The

default value is

secure. The

value normal

indicates

insecure

configuration.

Set the container umask

value.

The value can be null

(0027 by default),

normal, or secure.

normal #The umask value

of the started container

is 0022.

secure #The umask value

of the started container

is 0027 (default value).

--pod-sand

box-image

"pod-sandbox-image":

"rnd-dockerhub.huawei.co

m/library/pause-aarch64:3.0

By default, the

pod uses the

image. The

default value is

None

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 17

Paramete
r

Example Description Remarks

" rnd-dockerhub.

huawei.com/libr

ary/pause-${ma

chine}:3.0.

--network-

plugin

"network-plugin": "" Specifies a

network plug-in.

The value is a

null character by

default,

indicating that no

network

configuration is

available and the

created sandbox

has only the loop

NIC.

The CNI and null

characters are supported.

Other invalid values will

cause iSulad startup

failure.

--cni-bin-d

ir

"cni-bin-dir": "" Specifies the

storage location

of the binary file

on which the

CNI plug-in

depends.

The default value is

/opt/cni/bin.

--cni-conf-

dir

"cni-conf-dir": "" Specifies the

storage location

of the CNI

network

configuration

file.

The default value is

/etc/cni/net.d.

--image-la

yer-check=

false

"image-layer-check": false Image layer

integrity check.

To enable the

function, set it to

true; otherwise,

set it to false. It

is disabled by

default.

When iSulad is started, the

image layer integrity is

checked. If the image

layer is damaged, the

related images are

unavailable. iSulad cannot

verify empty files,

directories, and link files.

Therefore, if the preceding

files are lost due to a

power failure, the integrity

check of iSulad image

data may fail to be

identified. When the

iSulad version changes,

check whether the

parameter is supported. If

not, delete it from the

configuration file.

--insecure-

skip-verify

"insecure-skip-verify-enforc Indicates

whether to

The default value is false

(not skipped). Note:

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 18

Paramete
r

Example Description Remarks

-enforce=f

alse

e": false forcibly skip the

verification of

the certificate

host

name/domain

name. The value

is of the Boolean

type, and the

default value is

false. If this

parameter is set

to true, the

verification of

the certificate

host

name/domain

name is skipped.

Restricted by the YAJL

JSON parsing library, if a

non-Boolean value that

meets the JSON format

requirements is configured

in the

/etc/isulad/daemon.json

configuration file, the

default value used by

iSulad is false.

--use-decr

ypted-key

=true

"use-decrypted-key": true Specifies

whether to use

an unencrypted

private key. The

value is of the

Boolean type. If

this parameter is

set to true, an

unencrypted

private key is

used. If this

parameter is set

to false, the

encrypted private

key is used, that

is, two-way

authentication is

required.

The default value is true,

indicating that an

unencrypted private key is

used. Note: Restricted by

the YAJL JSON parsing

library, if a non-Boolean

value that meets the JSON

format requirements is

configured in the

/etc/isulad/daemon.json

configuration file, the

default value used by

iSulad is true.

--tls "tls":false Specifies

whether to use

TLS. The value

is of the Boolean

type.

This parameter is used

only in -H tcp://IP:PORT

mode. The default value is

false.

--tlsverify "tlsverify":false Specifies

whether to use

TLS and verify

remote access.

The value is of

the Boolean

type.

This parameter is used

only in -H tcp://IP:PORT

mode.

--tlscacert

--tlscert

"tls-config": {

"CAFile":

TLS

certificate-relate

This parameter is used

only in -H tcp://IP:PORT

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 19

Paramete
r

Example Description Remarks

--tlskey "/root/.iSulad/ca.pem",

"CertFile":

"/root/.iSulad/server-cert.pe

m",

"KeyFile":"/root/.iSulad/ser

ver-key.pem"

}

d configuration. mode.

--authoriza

tion-plugin

"authorization-plugin":

"authz-broker"

User permission

authentication

plugin.

Only authz-broker is

supported.

--cgroup-p

arent

"cgroup-parent":

"lxc/mycgroup"

Default cgroup

parent path of a

container, which

is of the string

type.

Specifies the cgroup

parent path of a container.

If --cgroup-parent is

specified on the client, the

client parameter prevails.

Note: If container A is

started before container B,

the cgroup parent path of

container B is specified as

the cgroup path of

container A. When

deleting a container, you

need to delete container B

and then container A in

sequence. Otherwise,

residual cgroup resources

exist.

--default-u

limits

"default-ulimits": {

"nofile": {

"Name": "nofile",

"Hard": 6400,

"Soft": 3200

}

}

Specifies the

ulimit restriction

type, soft value,

and hard value.

Specifies the restricted

resource type, for

example, nofile. The two

field names must be the

same, that is, nofile.

Otherwise, an error is

reported. The value of

Hard must be greater than

or equal to that of Soft. If

the Hard or Soft field is

not set, the default value 0

is used.

--websock

et-server-li

stening-po

rt

"websocket-server-listening

-port": 10350

Specifies the

listening port of

the CRI

WebSocket

streaming

service. The

default port

number is 10350.

Specifies the listening port

of the CRI websocket

streaming service.

If the client specifies

--websocket-server-listen

ing-port, the specified

value is used. The port

number ranges from 1024

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 20

Paramete
r

Example Description Remarks

to 49151.

Example:

$ cat /etc/isulad/daemon.json

{

 "group": "isulad",

 "default-runtime": "lcr",

 "graph": "/var/lib/isulad",

 "state": "/var/run/isulad",

 "engine": "lcr",

 "log-level": "ERROR",

 "pidfile": "/var/run/isulad.pid",

 "log-opts": {

 "log-file-mode": "0600",

 "log-path": "/var/lib/isulad",

 "max-file": "1",

 "max-size": "30KB"

 },

 "log-driver": "stdout",

 "hook-spec": "/etc/default/isulad/hooks/default.json",

 "start-timeout": "2m",

 "storage-driver": "overlay2",

 "storage-opts": [

 "overlay2.override_kernel_check=true"

],

 "registry-mirrors": [

 "docker.io"

],

 "insecure-registries": [

 "rnd-dockerhub.huawei.com"

],

 "pod-sandbox-image": "",

 "image-opt-timeout": "5m",

 "native.umask": "secure",

 "network-plugin": "",

 "cni-bin-dir": "",

 "cni-conf-dir": "",

 "image-layer-check": false,

 "use-decrypted-key": true,

 "insecure-skip-verify-enforce": false

}

The default configuration file /etc/isulad/daemon.json is for reference only. Configure it

based on site requirements.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 21

1.2.3.2 Storage Description

File Directory Description

* /etc/default/isulad/ Stores the OCI

configuration file and hook

template file of iSulad. The

file configuration

permission is set to 0640,

and the sysmonitor check

permission is set to 0550.

* /etc/isulad/ Default configuration files

of iSulad and seccomp.

isulad.sock /var/run/ Pipe communication file,

which is used for the

communication between the

client and iSulad.

isulad.pid /var/run/ File for storing the iSulad

PIDs. It is also a file lock to

prevent multiple iSulad

instances from being started.

* /run/lxc/ Lock file, which is created

during iSulad running.

* /var/run/isulad/ Real-time communication

cache file, which is created

during iSulad running.

* /var/run/isula/ Real-time communication

cache file, which is created

during iSulad running.

* /var/lib/lcr/ Temporary directory of the

LCR component.

* /var/lib/isulad/ Root directory where iSulad

runs, which stores the

created container

configuration, default log

path, database file, and

mount point.

/var/lib/isulad/mnt/: mount

point of the container rootfs.

/var/lib/isulad/engines/lcr/:

directory for storing LCR

container configurations.

Each container has a

directory named after the

container.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 22

1.2.3.3 Constraints

 In high concurrency scenarios (200 containers are concurrently started), the memory

management mechanism of Glibc may cause memory holes and large virtual memory

(for example, 10 GB). This problem is caused by the restriction of the Glibc memory

management mechanism in the high concurrency scenario, but not by memory leakage.

Therefore, the memory consumption does not increase infinitely. You can set

MALLOC_ARENA_MAX to reducevirtual memory error and increase the rate of

reducing physical memory. However, this environment variable will cause the iSulad

concurrency performance to deteriorate. Set this environment variable based on the site

requirements.

To balance performance and memory usage, set MALLOC_ARENA_MAX to 4. (The iSulad

performance on the ARM64 server is affected by less than 10%.)

Configuration method:

1. To manually start iSulad, run the export MALLOC_ARENA_MAX=4 command and then start

iSulad.

2. If systemd manages iSulad, you can modify the /etc/sysconfig/iSulad file by adding

MALLOC_ARENA_MAX=4.

 Precautions for specifying the daemon running directories

Take --root as an example. When /new/path/ is used as the daemon new root directory,

if a file exists in /new/path/ and the directory or file name conflicts with that required by

iSulad (for example, engines and mnt), iSulad may update the original directory or file

attributes including the owner and permission.

Therefore, please note the impact of re-specifying various running directories and files

on their attributes. You are advised to specify a new directory or file for iSulad to avoid

file attribute changes and security issues caused by conflicts.

 Log file management:

Log function interconnection: logs are managed by systemd as iSulad is and then transmitted

to rsyslogd. By default, rsyslog restricts the log writing speed. You can add the configuration

item $imjournalRatelimitInterval 0 to the /etc/rsyslog.conf file and restart the rsyslogd

service.

 Restrictions on command line parameter parsing

When the iSulad command line interface is used, the parameter parsing mode is slightly

different from that of Docker. For flags with parameters in the command line, regardless

of whether a long or short flag is used, only the first space after the flag or the character

string after the equal sign (=) directly connected to the flag is used as the flag parameter.

The details are as follows:

a. When a short flag is used, each character in the character string connected to the

hyphen (-) is considered as a short flag. If there is an equal sign (=), the character

string following the equal sign (=) is considered as the parameter of the short flag

before the equal sign (=).

isula run -du=root busybox is equivalent to isula run -du root busybox, isula

run -d -u=root busybox, or isula run -d -u root busybox. When isula run

-du:root is used, as -: is not a valid short flag, an error is reported. The preceding

command is equivalent to isula run -ud root busybox. However, this method is not

recommended because it may cause semantic problems.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 23

b. When a long flag is used, the character string connected to -- is regarded as a long

flag. If the character string contains an equal sign (=), the character string before the

equal sign (=) is a long flag, and the character string after the equal sign (=) is a

parameter.

isula run --user=root busybox

or

isula run --user root busybox

 After an iSulad container is started, you cannot run the isula run -i/-t/-ti and isula

attach/exec commands as a non-root user.

 When iSulad connects to an OCI container, only kata-runtime can be used to start the

OCI container.

1.2.3.4 Daemon Multi-Port Binding

Description

The daemon can bind multiple UNIX sockets or TCP ports and listen on these ports. The

client can interact with the daemon through these ports.

Port

Users can configure one or more ports in the hosts field in the /etc/isulad/daemon.json file,

or choose not to specify hosts.

{

 "hosts": [

 "unix:///var/run/isulad.sock",

 "tcp://localhost:5678",

 "tcp://127.0.0.1:6789"

]

}

Users can also run the -H or --host command in the /etc/sysconfig/iSulad file to configure a

port, or choose not to specify hosts.

OPTIONS='-H unix:///var/run/isulad.sock --host tcp://127.0.0.1:6789'

If hosts are not specified in the daemon.json file and iSulad, the daemon listens on

unix:///var/run/isulad.sock by default after startup.

Restrictions
 Users cannot specify hosts in the /etc/isulad/daemon.json and /etc/sysconfig/iSuald

files at the same time. Otherwise, an error will occur and iSulad cannot be started.

unable to configure the isulad with file /etc/isulad/daemon.json: the following

directives are specified both as a flag and in the configuration file: hosts: (from

flag: [unix:///var/run/isulad.sock tcp://127.0.0.1:6789], from file:

[unix:///var/run/isulad.sock tcp://localhost:5678 tcp://127.0.0.1:6789])

 If the specified host is a UNIX socket, the socket must start with unix:// followed by a

valid absolute path.

 If the specified host is a TCP port, the TCP port number must start with tcp:// followed

by a valid IP address and port number. The IP address can be that of the local host.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 24

 A maximum of 10 valid ports can be specified. If more than 10 ports are specified, an

error will occur and iSulad cannot be started.

1.2.3.5 Configuring TLS Authentication and Enabling Remote Access

Description

iSulad is designed in C/S mode. By default, the iSulad daemon process listens only on the

local/var/run/isulad.sock. Therefore, you can run commands to operate containers only on the

local client iSula. To enable iSula's remote access to the container, the iSulad daemon process

needs to listen on the remote access port using TCP/IP. However, listening is performed only

by simply configuring tcp ip:port. In this case, all IP addresses can communicate with iSulad

by calling isula -H tcp://remote server IP address:port, which may cause security problems.

Therefore, it is recommended that a more secure version, namely Transport Layer Security

(TLS), be used for remote access.

Generating TLS Certificate
 Example of generating a plaintext private key and certificate

#!/bin/bash

set -e

echo -n "Enter pass phrase:"

read password

echo -n "Enter public network ip:"

read publicip

echo -n "Enter host:"

read HOST

echo " => Using hostname: $publicip, You MUST connect to iSulad using this host!"

mkdir -p $HOME/.iSulad

cd $HOME/.iSulad

rm -rf $HOME/.iSulad/*

echo " => Generating CA key"

openssl genrsa -passout pass:$password -aes256 -out ca-key.pem 4096

echo " => Generating CA certificate"

openssl req -passin pass:$password -new -x509 -days 365 -key ca-key.pem -sha256 -out

ca.pem -subj

"/C=CN/ST=zhejiang/L=hangzhou/O=Huawei/OU=iSulad/CN=iSulad@huawei.com"

echo " => Generating server key"

openssl genrsa -passout pass:$password -out server-key.pem 4096

echo " => Generating server CSR"

openssl req -passin pass:$password -subj /CN=$HOST -sha256 -new -key server-key.pem

-out server.csr

echo subjectAltName = DNS:$HOST,IP:$publicip,IP:127.0.0.1 >> extfile.cnf

echo extendedKeyUsage = serverAuth >> extfile.cnf

echo " => Signing server CSR with CA"

openssl x509 -req -passin pass:$password -days 365 -sha256 -in server.csr -CA ca.pem

-CAkey ca-key.pem -CAcreateserial -out server-cert.pem -extfile extfile.cnf

echo " => Generating client key"

openssl genrsa -passout pass:$password -out key.pem 4096

echo " => Generating client CSR"

openssl req -passin pass:$password -subj '/CN=client' -new -key key.pem -out

client.csr

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 25

echo " => Creating extended key usage"

echo extendedKeyUsage = clientAuth > extfile-client.cnf

echo " => Signing client CSR with CA"

openssl x509 -req -passin pass:$password -days 365 -sha256 -in client.csr -CA ca.pem

-CAkey ca-key.pem -CAcreateserial -out cert.pem -extfile extfile-client.cnf

rm -v client.csr server.csr extfile.cnf extfile-client.cnf

chmod -v 0400 ca-key.pem key.pem server-key.pem

chmod -v 0444 ca.pem server-cert.pem cert.pem

 Example of generating an encrypted private key and certificate request file

#!/bin/bash

echo -n "Enter public network ip:"

read publicip

echo -n "Enter pass phrase:"

read password

remove certificates from previous execution.

rm -f *.pem *.srl *.csr *.cnf

generate CA private and public keys

echo 01 > ca.srl

openssl genrsa -aes256 -out ca-key.pem -passout pass:$password 2048

openssl req -subj

'/C=CN/ST=zhejiang/L=hangzhou/O=Huawei/OU=iSulad/CN=iSulad@huawei.com' -new

-x509 -days $DAYS -passin pass:$password -key ca-key.pem -out ca.pem

create a server key and certificate signing request (CSR)

openssl genrsa -aes256 -out server-key.pem -passout pass:$PASS 2048

openssl req -new -key server-key.pem -out server.csr -passin pass:$password -subj

'/CN=iSulad'

echo subjectAltName = DNS:iSulad,IP:${publicip},IP:127.0.0.1 > extfile.cnf

echo extendedKeyUsage = serverAuth >> extfile.cnf

sign the server key with our CA

openssl x509 -req -days $DAYS -passin pass:$password -in server.csr -CA ca.pem -CAkey

ca-key.pem -out server-cert.pem -extfile extfile.cnf

create a client key and certificate signing request (CSR)

openssl genrsa -aes256 -out key.pem -passout pass:$password 2048

openssl req -subj '/CN=client' -new -key key.pem -out client.csr -passin

pass:$password

create an extensions config file and sign

echo extendedKeyUsage = clientAuth > extfile.cnf

openssl x509 -req -days 365 -passin pass:$password -in client.csr -CA ca.pem -CAkey

ca-key.pem -out cert.pem -extfile extfile.cnf

remove the passphrase from the client and server key

openssl rsa -in server-key.pem -out server-key.pem -passin pass:$password

openssl rsa -in key.pem -out key.pem -passin pass:$password

remove generated files that are no longer required

rm -f ca-key.pem ca.srl client.csr extfile.cnf server.csr

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 26

APIs

{

 "tls": true,

 "tls-verify": true,

 "tls-config": {

 "CAFile": "/root/.iSulad/ca.pem",

 "CertFile": "/root/.iSulad/server-cert.pem",

 "KeyFile":"/root/.iSulad/server-key.pem"

 }

}

Restrictions

The server supports the following modes:

 Mode 1 (client verified): tlsverify, tlscacert, tlscert, tlskey

 Mode 2 (client not verified): tls, tlscert, tlskey

The client supports the following modes:

 Mode 1 (verify the identity based on the client certificate, and verify the server based on

the specified CA): tlsverify, tlscacert, tlscert, tlskey

 Mode 2 (server verified): tlsverify, tlscacert

Mode 1 is used for the server, and mode 2 for the client if the two-way authentication mode is

used for communication.

Mode 2 is used for the server and the client if the unidirectional authentication mode is used

for communication.

 If RPM is used for installation, the server configuration can be modified in the

/etc/isulad/daemon.json and /etc/sysconfig/iSulad files.

 Two-way authentification is recommended as it is more secure than non-authentication or

unidirectional authentication.

 GRPC open-source component logs are not taken over by iSulad. To view gRPC logs, set

the environment variables gRPC_VERBOSITY and gRPC_TRACE as required.

Example

On the server:

 isulad -H=tcp://0.0.0.0:2376 --tlsverify --tlscacert ~/.iSulad/ca.pem --tlscert

~/.iSulad/server-cert.pem --tlskey ~/.iSulad/server-key.pem

On the client:

 isula version -H=tcp://$HOSTIP:2376 --tlsverify --tlscacert ~/.iSulad/ca.pem

--tlscert ~/.iSulad/cert.pem --tlskey ~/.iSulad/key.pem

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 27

1.2.3.6 devicemapper Storage Driver Configuration

To use the devicemapper storage driver, you need to configure a thinpool device which

requires an independent block device with sufficient free space. Take the independent block

device /dev/xvdf as an example. The configuration method is as follows:

1. Configuring a thinpool

1. Stop the iSulad service.

systemctl stop isulad

2. Create a logical volume manager (LVM) volume based on the block device.

pvcreate /dev/xvdf

3. Create a volume group based on the created physical volume.

vgcreate isula /dev/xvdf

Volume group "isula" successfully created:

4. Create two logical volumes named thinpool and thinpoolmeta.

lvcreate --wipesignatures y -n thinpool isula -l 95%VG

Logical volume "thinpool" created.

lvcreate --wipesignatures y -n thinpoolmeta isula -l 1%VG

Logical volume "thinpoolmeta" created.

5. Convert the two logical volumes into a thinpool and the metadata used by the thinpool.

lvconvert -y --zero n -c 512K --thinpool isula/thinpool --poolmetadata

isula/thinpoolmeta

WARNING: Converting logical volume isula/thinpool and isula/thinpoolmeta to

thin pool's data and metadata volumes with metadata wiping.

THIS WILL DESTROY CONTENT OF LOGICAL VOLUME (filesystem etc.)

Converted isula/thinpool to thin pool.

2. Modifying the iSulad configuration files

6. If iSulad has been used in the environment, back up the running data first.

mkdir /var/lib/isulad.bk

mv /var/lib/isulad/* /var/lib/isulad.bk

7. Modify configuration files.

Two configuration methods are provided. Select one based on site requirements.

− Edit the /etc/isulad/daemon.json file, set storage-driver to devicemapper, and set

parameters related to the storage-opts field. For details about related parameters,

see Parameter Description. The following lists the configuration reference:

{

 "storage-driver": "devicemapper"

 "storage-opts": [

 "dm.thinpooldev=/dev/mapper/isula-thinpool",

 "dm.fs=ext4",

 "dm.min_free_space=10%"

]

}

− You can also edit /etc/sysconfig/iSulad to explicitly specify related iSulad startup

parameters. For details about related parameters, see Parameter Description. The

following lists the configuration reference:

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 28

OPTIONS="--storage-driver=devicemapper --storage-opt

dm.thinpooldev=/dev/mapper/isula-thinpool --storage-opt dm.fs=ext4

--storage-opt dm.min_free_space=10%"

8. Start iSulad for the settings to take effect.

systemctl start isulad

Parameter Description

For details about parameters supported by storage-opts, see Table 1-1.

Table 1-1 Parameter description

Parameter Mandat
ory or
Not

Description

dm.fs Yes Specifies the type of the file system used by a

container. This parameter must be set to ext4,

that is, dm.fs=ext4.

dm.basesize No Specifies the maximum storage space of a

single container. The unit can be k, m, g, t, or

p. An uppercase letter can also be used, for

example, dm.basesize=50G. This parameter is

valid only during the first initialization.

dm.mkfsarg No Specifies the additional mkfs parameters when

a basic device is created. For example:

dm.mkfsarg=-O ^has_journal

dm.mountopt No Specifies additional mount parameters when a

container is mounted. For example:

dm.mountopt=nodiscard

dm.thinpooldev No Specifies the thinpool device used for container

or image storage.

dm.min_free_space No Specifies minimum percentage of reserved

space. For example, dm.min_free_space=10%

indicates that storage-related operations such as

container creation will fail when the remaining

storage space falls below 10%.

Precautions
 When configuring devicemapper, if the system does not have sufficient space for

automatic capacity expansion of thinpool, disable the automatic capacity expansion

function.

To disable automatic capacity expansion, set both thin_pool_autoextend_threshold and

thin_pool_autoextend_percent in the /etc/lvm/profile/isula-thinpool.profile file to

100.

activation {

 thin_pool_autoextend_threshold=100

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 29

 thin_pool_autoextend_percent=100

}

 When devicemapper is used, use Ext4 as the container file system. You need to add

--storage-opt dm.fs=ext4 to the iSulad configuration parameters.

 If graphdriver is devicemapper and the metadata files are damaged and cannot be

restored, you need to manually restore the metadata files. Do not directly operate or

tamper with metadata of the devicemapper storage driver in Docker daemon.

 When the devicemapper LVM is used, if the devicemapper thinpool is damaged due to

abnormal power-off, you cannot ensure the data integrity or whether the damaged

thinpool can be restored. Therefore, you need to rebuild the thinpool.

Precautions for Switching the devicemapper Storage Pool When the User Namespace

Feature Is Enabled on iSula

 Generally, the path of the deviceset-metadata file is

/var/lib/isulad/devicemapper/metadata/deviceset-metadata during container startup.

 If user namespaces are used, the path of the deviceset-metadata file is

/var/lib/isulad/userNSUID.GID/devicemapper/metadata/deviceset-metadata.

 When you use the devicemapper storage driver and the container is switched between the

user namespace scenario and common scenario, the BaseDeviceUUID content in the

corresponding deviceset-metadata file needs to be cleared. In the thinpool capacity

expansion or rebuild scenario, you also need to clear the BaseDeviceUUID content in

the deviceset-metadata file. Otherwise, the iSulad service fails to be restarted.

1.2.4 Uninstallation

To uninstall iSulad, perform the following operations:

1. Uninstall iSulad and its dependent software packages.

− If the yum command is used to install iSulad, run the following command to

uninstall iSulad:

$ sudo yum remove iSulad

− If the rpm command is used to install iSulad, uninstall iSulad and its dependent

software packages. Run the following command to uninstall an RPM package.

sudo rpm -e iSulad-xx.xx.xx-YYYYmmdd.HHMMSS.gitxxxxxxxx.aarch64.rpm

2. Images, containers, volumes, and related configuration files are not automatically deleted.

The reference command is as follows:

$ sudo rm -rf /var/lib/iSulad

1.3 Application Scenarios

1.3.1 Container Management

1.3.1.1 Creating a Container

Description

To create a container, run the isula create command. The container engine will use the

specified container image to create a read/write layer, or use the specified local rootfs as the

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 30

running environment of the container. After the creation is complete, the container ID is

output as standard output. You can run the isula start command to start the container. The

new container is in the inited state.

Usage

isula create [OPTIONS] IMAGE [COMMAND] [ARG...]

Parameters

The following table lists the parameters supported by the create command.

Table 1-2 Parameter description

Command Parameter Description

create

--annotation Sets annotations for the container.

For example, set the native.umask

parameter.

--annotation native.umask=normal

#The umask value of the started

container is 0022.

--annotation native.umask=secure

#The umask value of the started

container is 0027.

If this parameter is not set, the umask

configuration in iSulad is used.

--cap-drop Deletes Linux permissions.

--cgroup-parent Specifies the cgroup parent path of

the container.

--cpuset-cpus Allowed CPUs (for example, 0-3, 0,

1).

--cpu-shares CPU share (relative weight).

--cpu-quota Limits the CPU CFS quota.

--device=[] Adds a device to the container.

--dns Adds a DNS server.

--dns-opt Adds DNS options.

--dns-search Sets the search domain of a container.

-e, --env Sets environment variables.

--env-file Configures environment variables

using a file.

--entrypoint Entry point to run when the container

is started.

--external-rootfs=PATH Specifies a rootfs (a folder or block

device) that is not managed by iSulad

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 31

for the container.

--files-limit Limits the number of file handles that

can be opened in a container. The

value -1 indicates no limit.

--group-add=[] Adds additional user groups to the

container.

--help Displays help information.

--health-cmd Command executed in a container.

--health-exit-on-unhealthy Determines whether to kill a

container when the container is

detected unhealthy.

--health-interval Interval between two consecutive

command executions.

--health-retries Maximum number of health check

retries.

--health-start-period Container initialization interval.

--health-timeout Maximum time for executing a single

check command.

--hook-spec Hook configuration file.

-H, --host Specifies the iSulad socket file path

to be accessed.

-h, --hostname Container host name.

-i, --interactive Enables the standard input of the

container even if it is not connected

to the standard input of the container.

--hugetlb-limit=[] Limits the size of huge-page files, for

example, --hugetlb-limit

2MB:32MB.

--log-opt=[] Log driver option. By default, the

container serial port log function is

disabled. You can run the --log-opt

disable-log=false command to enable

it.

-l,--label Sets a label for a container.

--lablel-file Sets container labels using files.

-m, --memory Memory limit.

--memory-reservation Sets the container memory limit. The

default value is the same as that of

--memory. --memory is a hard limit,

and --memory-reservation is a soft

limit. When the memory usage

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 32

exceeds the preset value, the memory

usage is dynamically adjusted (the

system attempts to reduce the

memory usage to a value less than the

preset value when reclaiming the

memory). However, the memory

usage may exceed the preset value.

Generally, this parameter can be used

together with --memory. The value

must be less than the preset value of

--memory. The minimum value is 4

MB.

--memory-swap Memory swap space, which should

be a positive integer. The value -1

indicates no limit.

--memory-swappiness The value of swappiness is a positive

integer ranging from 0 to 100. The

smaller the value is, the less the swap

partition is used and the more the

memory is used in the Linux system.

The larger the value is, the more the

swap space is used by the kernel. The

default value is –1, indicating that the

default system value is used.

--mount Mounts a host directory to a

container.

--no-healthcheck Disables the health check

configuration.

--name=NAME Container name.

--net=none Connects a container to a network.

--pids-limit Limits the number of processes that

can be executed in the container. The

value -1 indicates no limit.

--privileged Grants container extension privileges.

-R, --runtime Container runtime. The parameter

value can be lcr, which is case

insensitive. Therefore, LCR and lcr

are equivalent.

--read-only Sets the rootfs of a container to

read-only.

--restart Restart policy upon container exit.

For a system container, --restart

on-reboot is supported.

--storage-opt Configures the storage driver option

for a container.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 33

-t, --tty Allocates a pseudo terminal.

--ulimit Sets the ulimit for a container.

-u, --user User name or UID, in the format of

[<name|uid>][:<group|gid>].

-v, --volume=[] Mounts a volume.

Constraints
 When the --user or --group-add parameter is used to verify the user or group during

container startup, if the container uses an OCI image, the verification is performed in the

etc/passwd and etc/group files of the actual rootfs of the image. If a folder or block

device is used as the rootfs of the container, the etc/passwd and etc/group files in the

host are verified. The rootfs ignores mounting parameters such as -v and --mount. That

is, when these parameters are used to attempt to overwrite the etc/passwd and etc/group

files, the parameters do not take effect during the search and take effect only when the

container is started. The generated configuration is saved in the iSulad root

directory/engine/container ID/start_generate_config.json file. The file format is as

follows:

{

 "uid": 0,

 "gid": 8,

 "additionalGids": [

 1234,

 8

]

}

Example

Create a container.

$ isula create busybox

fd7376591a9c3d8ee9a14f5d2c2e5255b02cc44cddaabca82170efd4497510e1

$ isula ps -a

STATUS PID IMAGE COMMAND EXIT_CODE RESTART_COUNT STARTAT FINISHAT RUNTIME ID

NAMES inited - busybox "sh" 0

0 - - lcr fd7376591a9c fd7376591a9c4521...

1.3.1.2 Starting a Container

Description

To start one or more containers, run the isula start command.

Usage

isula start [OPTIONS] CONTAINER [CONTAINER...]

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 34

Parameters

The following table lists the parameters supported by the start command.

Table 1-3 Parameter description

Command Parameter Description

start -H, --host Specifies the iSulad socket file path

to be accessed.

-R, --runtime Container runtime. The parameter

value can be lcr, which is case

insensitive. Therefore, LCR and lcr

are equivalent.

Example

Start a new container.

$ isula start fd7376591a9c3d8ee9a14f5d2c2e5255b02cc44cddaabca82170efd4497510e1

1.3.1.3 Running a Container

Description

To create and start a container, run the isula run command. You can use a specified container

image to create a container read/write layer and prepare for running the specified command.

After the container is created, run the specified command to start the container. The run

command is equivalent to creating and starting a container.

Usage

isula run [OPTIONS] ROOTFS|IMAGE [COMMAND] [ARG...]

Parameters

The following table lists the parameters supported by the run command.

Table 1-4 Parameter description

Command Parameter Description

run --annotation Sets annotations for the container.

For example, set the native.umask

option.

--annotation native.umask=normal

#The umask value of the started

container is 0022.

--annotation native.umask=secure

#The umask value of the started

container is 0027.

If this parameter is not set, the umask

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 35

configuration in iSulad is used.

--cap-add Adds Linux functions.

--cap-drop Deletes Linux functions.

--cgroup-parent Specifies the cgroup parent path of

the container.

--cpuset-cpus Allowed CPUs (for example, 0-3, 0,

1).

--cpu-shares CPU share (relative weight).

--cpu-quota Limits the CPU CFS quota.

-d, --detach Runs the container in the background

and displays the container ID.

--device=[] Adds a device to the container.

--dns Adds a DNS server.

--dns-opt Adds DNS options.

--dns-search Sets the search domain of a container.

-e, --env Sets environment variables.

--env-file Configures environment variables

using a file.

--entrypoint Entry point to run when the container

is started.

--external-rootfs=PATH Specifies a rootfs (a folder or block

device) that is not managed by iSulad

for the container.

--files-limit Limits the number of file handles that

can be opened in the container. The

value -1 indicates no limit.

--group-add=[] Adds additional user groups to the

container.

--help Displays help information.

--health-cmd Command executed in a container.

--health-exit-on-unhealthy Determines whether to kill a

container when the container is

detected unhealthy.

--health-interval Interval between two consecutive

command executions.

--health-retries Maximum number of health check

retries.

--health-start-period Container initialization interval.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 36

--health-timeout Maximum time for executing a single

check command.

--hook-spec Hook configuration file.

-H, --host Specifies the iSulad socket file path

to be accessed.

-h, --hostname Container host name.

--hugetlb-limit=[] Limits the size of huge-page files, for

example, --hugetlb-limit

2MB:32MB.

-i, --interactive Enables the standard input of the

container even if it is not connected

to the standard input of the container.

--log-opt=[] Log driver option. By default, the

container serial port log function is

disabled. You can run the --log-opt

disable-log=false command to enable

it.

-m, --memory Memory limit.

--memory-reservation Sets the container memory limit. The

default value is the same as that of

--memory. --memory is a hard limit,

and --memory-reservation is a soft

limit. When the memory usage

exceeds the preset value, the memory

usage is dynamically adjusted (the

system attempts to reduce the

memory usage to a value less than the

preset value when reclaiming the

memory). However, the memory

usage may exceed the preset value.

Generally, this parameter can be used

together with --memory. The value

must be less than the preset value of

--memory. The minimum value is 4

MB.

--memory-swap Memory swap space, which should

be a positive integer. The value -1

indicates no limit.

--memory-swappiness The value of swappiness is a positive

integer ranging from 0 to 100. The

smaller the value is, the less the swap

partition is used and the more the

memory is used in the Linux system.

The larger the value is, the more the

swap space is used by the kernel. The

default value is –1, indicating that the

default system value is used.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 37

--mount Mounts a host directory to a

container.

--no-healthcheck Disables the health check

configuration.

--name=NAME Container name.

--net=none Connects a container to a network.

--pids-limit Limits the number of processes that

can be executed in the container. The

value -1 indicates no limit.

--privileged Grants container extension privileges.

-R, --runtime Container runtime. The parameter

value can be lcr, which is case

insensitive. Therefore, LCR and lcr

are equivalent.

--read-only Sets the rootfs of a container to

read-only.

--restart Restart policy upon container exit.

For a system container, --restart

on-reboot is supported.

--rm Automatically clears a container upon

exit.

--storage-opt Configures the storage driver option

for a container.

-t, --tty Allocates a pseudo terminal.

--ulimit Sets the ulimit for a container.

-u, --user User name or UID, in the format of

[<name|uid>][:<group|gid>].

-v, --volume=[] Mounts a volume.

Constraints
 When the parent process of a container exits, the corresponding container automatically

exits.

 When a common container is created, the parent process cannot be initiated because the

permission of common containers is insufficient. As a result, the container does not

respond when you run the attach command though it is created successfully.

 If --net is not specified when the container is running, the default host name is localhost.

 If the --files-limit parameter is to transfer a small value, for example, 1, when the

container is started, iSulad creates a cgroup, sets the files.limit value, and writes the PID

of the container process to the cgroup.procs file of the cgroup. At this time, the

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 38

container process has opened more than one handle. As a result, a write error is reported,

and the container fails to be started.

 If both --mount and --volume exist and their destination paths conflict, --mount will be

run after --volume (that is, the mount point in --volume will be overwritten).

Note: The value of the type parameter of lightweight containers can be bind or squashfs.

When type is set to squashfs, src is the image path. The value of the type parameter of

the native Docker can be bind, volume, and tmpfs.

 The restart policy does not support unless-stopped.

 The values returned for Docker and lightweight containers are 127 and 125 respectively

in the following three scenarios:

The host device specified by --device does not exist.

The hook JSON file specified by --hook-spec does not exist.

The entry point specified by --entrypoint does not exist.

 When the --volume parameter is used, /dev/ptmx will be deleted and recreated during

container startup. Therefore, do not mount the /dev directory to that of the container. Use

--device to mount the devices in /dev of the container.

 Do not use the echo option to input data to the standard input of the run command.

Otherwise, the client will be suspended. The echo value should be directly transferred to

the container as a command line parameter.

[root@localhost ~]# echo ls | isula run -i busybox /bin/sh

^C

[root@localhost ~]#

The client is suspended when the preceding command is executed because the preceding

command is equivalent to input ls to stdin. Then EOF is read and the client does not

send data and waits for the server to exit. However, the server cannot determine whether

the client needs to continue sending data. As a result, the server is suspended in reading

data, and both parties are suspended.

The correct execution method is as follows:

[root@localhost ~]# isula run -i busybox ls

bin

dev

etc

home

proc

root

sys

tmp

usr

var

[root@localhost ~]#

 If the root directory (/) of the host is used as the file system of the container, the

following situations may occur during the mounting:

Table 1-5 Mounting scenarios

Host Path (Source) Container Path (Destination)

/home/test1 /mnt/

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 39

Host Path (Source) Container Path (Destination)

/home/test2 /mnt/abc

Scenario 1: Mount /home/test1 and then /home/test2. In this case, the content in /home/test1

overwrites the content in /mnt. As a result, the abc directory does not exist in /mnt, and

mounting /home/test2 to /mnt/abc fails.

Scenario 2: Mount /home/test2 and then /home/test1. In this case, the content of /mnt is

replaced with the content of /home/test1 during the second mounting. In this way, the content

mounted during the first mounting from /home/test2 to /mnt/abc is overwritten.

The first scenario is not supported. For the second scenario, users need to understand the risk

of data access failures.

 In high concurrency scenarios (200 containers are concurrently started), the memory

management mechanism of Glibc may cause memory holes and large virtual memory (for

example, 10 GB). This problem is caused by the restriction of the Glibc memory

management mechanism in the high concurrency scenario, but not by memory leakage.

Therefore, the memory consumption does not increase infinitely. You can set the

MALLOC_ARENA_MAX environment variable to reduce the virtual memory and

increase the probability of reducing the physical memory. However, this environment

variable will cause the iSulad concurrency performance to deteriorate. Set this

environment variable based on the site requirements.

To balance performance and memory usage, set MALLOC_ARENA_MAX to 4. (The iSulad

performance deterioration on the ARM64 server is controlled by less than 10%.)

Configuration method:

1. To manually start iSulad, run the export MALLOC_ARENA_MAX=4 command and then start

the iSulad.

2. If systemd manages iSulad, you can modify the /etc/sysconfig/iSulad file by adding

MALLOC_ARENA_MAX=4.

Example

Run a new container.

$ isula run -itd busybox

9c2c13b6c35f132f49fb7ffad24f9e673a07b7fe9918f97c0591f0d7014c713b

1.3.1.4 Stopping a Container

Description

To stop a container, run the isula stop command. The SIGTERM signal is sent to the first

process in the container. If the container is not stopped within the specified time (10s by

default), the SIGKILL signal is sent.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 40

Usage

isula stop [OPTIONS] CONTAINER [CONTAINER...]

Parameters

The following table lists the parameters supported by the stop command.

Table 1-6 Parameter description

Command Parameter Description

stop -f, --force Forcibly stops a running container.

-H, --host Specifies the iSulad socket file path

to be accessed.

-t, --time Time for graceful stop. If the time

exceeds the value of this parameter,

the container is forcibly stopped.

Constraints
 If the t parameter is specified and the value of t is less than 0, ensure that the application

in the container can process the stop signal.

Principle of the Stop command: Send the SIGTERM signal to the container, and then

wait for a period of time (t entered by the user). If the container is still running after the

period of time, the SIGKILL signal is sent to forcibly kill the container.

 The meaning of the input parameter t is as follows:

t < 0: Wait for graceful stop. This setting is preferred when users are assured that their

applications have a proper stop signal processing mechanism.

t = 0: Do not wait and send kill -9 to the container immediately.

t > 0: Wait for a specified period and send kill -9 to the container if the container does

not stop within the specified period.

Therefore, if t is set to a value less than 0 (for example, t = -1), ensure that the container

application correctly processes the SIGTERM signal. If the container ignores this signal,

the container will be suspended when the isula stop command is run.

Example

Stop a container.

$ isula stop fd7376591a9c3d8ee9a14f5d2c2e5255b02cc44cddaabca82170efd4497510e1

fd7376591a9c3d8ee9a14f5d2c2e5255b02cc44cddaabca82170efd4497510e1

1.3.1.5 Forcibly Stopping a Container

Description

To forcibly stop one or more running containers, run the isula kill command.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 41

Usage

isula kill [OPTIONS] CONTAINER [CONTAINER...]

Parameters

The following table lists the parameters supported by the kill command.

Table 1-7 Parameter description

Command Parameter Description

kill -H, --host Specifies the iSulad socket file path

to be accessed.

-s, --signal Signal sent to the container.

Example

Kill a container.

$ isula kill fd7376591a9c3d8ee9a14f5d2c2e5255b02cc44cddaabca82170efd4497510e1

fd7376591a9c3d8ee9a14f5d2c2e5255b02cc44cddaabca82170efd4497510e1

1.3.1.6 Removing a Container

Description

To remove a container, run the isula rm command.

Usage

isula rm [OPTIONS] CONTAINER [CONTAINER...]

Parameters

The following table lists the parameters supported by the rm command.

Table 1-8 Parameter description

Command Parameter Description

rm -f, --force Forcibly removes a running

container.

-H, --host Specifies the iSulad socket file path

to be accessed.

-v, --volume Removes a volume mounted to a

container. (Note: Currently, iSulad

does not use this function.)

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 42

Constraints
 In normal I/O scenarios, it takes T1 to delete a running container in an empty

environment (with only one container). In an environment with 200 containers (without a

large number of I/O operations and with normal host I/O), it takes T2 to delete a running

container. The specification of T2 is as follows: T2 = max {T1 x 3, 5}s.

Example

Delete a stopped container.

$ isula rm fd7376591a9c3d8ee9a14f5d2c2e5255b02cc44cddaabca82170efd4497510e1

fd7376591a9c3d8ee9a14f5d2c2e5255b02cc44cddaabca82170efd4497510e1

1.3.1.7 Attaching to a Container

Description

To attach standard input, standard output, and standard error of the current terminal to a

running container, run the isula attach command. Only containers whose runtime is of the

LCR type are supported.

Usage

isula attach [OPTIONS] CONTAINER

Parameters

The following table lists the parameters supported by the attach command.

Table 1-9 Parameter description

Command Parameter Description

attach --help Displays help information.

-H, --host Specifies the iSulad socket file path

to be accessed.

-D, --debug Enables the debug mode.

Constraints
 For the native Docker, running the attach command will directly enter the container. For

the iSulad container, you have to run the attach command and press Enter to enter the

container.

Example

Attach to a running container.

$ isula attach fd7376591a9c3d8ee9a14f5d2c2e5255b02cc44cddaabca82170efd4497510e1

/ #

/ #

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 43

1.3.1.8 Renaming a Container

Description

To rename a container, run the isula rename command.

Usage

isula rename [OPTIONS] OLD_NAME NEW_NAME

Parameters

The following table lists the parameters supported by the rename command.

Table 1-10 Parameter description

Command Parameter Description

rename -H, --host Renames a container.

Example

Rename a container.

$ isula rename my_container my_new_container

1.3.1.9 Executing a Command in a Running Container

Description

To execute a command in a running container, run the isula exec command. This command is

executed in the default directory of the container. If a user-defined directory is specified for

the basic image, the user-defined directory is used.

Usage

isula exec [OPTIONS] CONTAINER COMMAND [ARG...]

Parameters

The following table lists the parameters supported by the exec command.

Table 1-11 Parameter description

Command Parameter Description

exec

-d, --detach Runs a command in the background.

-e, --env Sets environment variables. (Note:

Currently, iSulad does not use this

function.)

-H, --host Specifies the iSulad socket file path

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 44

to be accessed.

-i, --interactive Enables the standard input though no

connection is set up. (Note:

Currently, iSulad does not use this

function.)

-t, --tty Allocates a pseudo terminal. (Note:

Currently, iSulad does not use this

function.)

-u, --user Logs in to the container as a specified

user.

Constraints
 If no parameter is specified in the isula exec command, the -it parameter is used by

default, indicating that a pseudo terminal is allocated and the container is accessed in

interactive mode.

 When you run the isula exec command to execute a script and run a background process

in the script, you need to use the nohup flag to ignore the SIGHUP signal.

When you run the isula exec command to execute a script and run a background process

in the script, you need to use the nohup flag. Otherwise, the kernel sends the SIGHUP

signal to the process executed in the background when the process (first process of the

session) exits. As a result, the background process exits and zombie processes occur.

 After running the isula exec command to access the container process, do not run

background programs. Otherwise, the system will be suspended.

To run the isula exec command to execute a background process, perform the following

steps:

a. Run the isula exec container_name bash command to access the container.

b. After entering the container, run the script & command.

c. Run the exit command. The terminal stops responding.

After the isula exec command is executed to enter the container, the background

program stops responding because the isula exec command is executed to enter the

container and run the background while1 program. When the bash command is run to

exit the process, the while1 program does not exit and becomes an orphan process,

which is taken over by process 1.

The while1 process is executed by the initial bash process fork &exec of the container.

The while1 process copies the file handle of the bash process. As a result, the handle

is not completely closed when the bash process exits.

The console process cannot receive the handle closing event, epoll_wait stops

responding, and the process does not exit.

 Do not run the isula exec command in the background. Otherwise, the system may be

suspended.

Run the isula exec command in the background as follows:

Run the isula exec script & command in the background, for example, isula exec

container_name script &,isula exec. The command is executed in the background. The

script continuously displays a file by running the cat command. Normally, there is output

on the current terminal. If you press Enter on the current terminal, the client exits the

stdout read operation due to the I/O read failure. As a result, the terminal does not output

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 45

data. The server continues to write data to the buffer of the FIFO because the process is

still displaying files by running the cat command. When the buffer is full, the process in

the container is suspended in the write operation.

 When a lightweight container uses the exec command to execute commands with pipe

operations, you are advised to run the /bin/bash -c command.

Typical application scenarios:

Run the isula exec container_name -it ls /test | grep "xx" | wc -l command to count the

number of xx files in the test directory. The output is processed by grep and wc through

the pipe because ls /test is executed with exec. The output of ls /test executed by exec

contains line breaks. When the output is processed, the result is incorrect.

Cause: Run the ls /test command using exec. The command output contains a line feed

character. Run the | grep "xx" | wc -l command for the output. The processing result is 2

(two lines).

[root@localhost ~]# isula exec -it container ls /test

xx xx10 xx12 xx14 xx3 xx5 xx7 xx9

xx1 xx11 xx13 xx2 xx4 xx6 xx8

[root@localhost ~]#

Suggestion: When running the run/exec command to perform pipe operations, run the

/bin/bash -c command to perform pipe operations in the container.

[root@localhost ~]# isula exec -it container /bin/sh -c "ls /test | grep "xx" |

wc -l"

15

[root@localhost ~]#

 Do not use the echo option to input data to the standard input of the exec command.

Otherwise, the client will be suspended. The echo value should be directly transferred to

the container as a command line parameter.

[root@localhost ~]# echo ls | isula exec 38 /bin/sh

^C

[root@localhost ~]#

The client is suspended when the preceding command is executed because the preceding

command is equivalent to input ls to stdin. Then EOF is read and the client does not

send data and waits for the server to exit. However, the server cannot determine whether

the client needs to continue sending data. As a result, the server is suspended in reading

data, and both parties are suspended.

The correct execution method is as follows:

[root@localhost ~]# isula exec 38 ls

bin dev etc home proc root sys tmp usr var

Example

Run the echo command in a running container.

$ isula exec c75284634bee echo "hello,world"

hello,world

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 46

1.3.1.10 Querying Information About a Single Container

Description

To query information about a single container, run the isula inspect command.

Usage

isula inspect [OPTIONS] CONTAINER|IMAGE [CONTAINER|IMAGE...]

Parameters

The following table lists the parameters supported by the inspect command.

Table 1-12 Parameter description

Command Parameter Description

inspect

-H, --host Specifies the iSulad socket file path

to be accessed.

-f, --format Output format.

-t, --time Timeout interval, in seconds. If the

inspect command fails to query

container information within the

specified period, the system stops

waiting and reports an error

immediately. The default value is

120s. If the value is less than or equal

to 0, the inspect command keeps

waiting until the container

information is obtained successfully.

Constraints
 Lightweight containers do not support the output in {{.State}} format but support the

output in the {{json .State}} format. The -f parameter is not supported when the object is

an image.

Example

Query information about a container.

$ isula inspect c75284634bee

[

 {

 "Id": "c75284634beeede3ab86c828790b439d16b6ed8a537550456b1f94eb852c1c0a",

 "Created": "2019-08-01T22:48:13.993304927-04:00",

 "Path": "sh",

 "Args": [],

 "State": {

 "Status": "running",

 "Running": true,

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 47

 "Paused": false,

 "Restarting": false,

 "Pid": 21164,

 "ExitCode": 0,

 "Error": "",

 "StartedAt": "2019-08-02T06:09:25.535049168-04:00",

 "FinishedAt": "2019-08-02T04:28:09.479766839-04:00",

 "Health": {

 "Status": "",

 "FailingStreak": 0,

 "Log": []

 }

 },

 "Image": "busybox",

 "ResolvConfPath": "",

 "HostnamePath": "",

 "HostsPath": "",

 "LogPath": "none",

 "Name": "c75284634beeede3ab86c828790b439d16b6ed8a537550456b1f94eb852c1c0a",

 "RestartCount": 0,

 "HostConfig": {

 "Binds": [],

 "NetworkMode": "",

 "GroupAdd": [],

 "IpcMode": "",

 "PidMode": "",

 "Privileged": false,

 "SystemContainer": false,

 "NsChangeFiles": [],

 "UserRemap": "",

 "ShmSize": 67108864,

 "AutoRemove": false,

 "AutoRemoveBak": false,

 "ReadonlyRootfs": false,

 "UTSMode": "",

 "UsernsMode": "",

 "Sysctls": {},

 "Runtime": "lcr",

 "RestartPolicy": {

 "Name": "no",

 "MaximumRetryCount": 0

 },

 "CapAdd": [],

 "CapDrop": [],

 "Dns": [],

 "DnsOptions": [],

 "DnsSearch": [],

 "ExtraHosts": [],

 "HookSpec": "",

 "CPUShares": 0,

 "Memory": 0,

 "OomScoreAdj": 0,

 "BlkioWeight": 0,

 "BlkioWeightDevice": [],

 "CPUPeriod": 0,

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 48

 "CPUQuota": 0,

 "CPURealtimePeriod": 0,

 "CPURealtimeRuntime": 0,

 "CpusetCpus": "",

 "CpusetMems": "",

 "SecurityOpt": [],

 "StorageOpt": {},

 "KernelMemory": 0,

 "MemoryReservation": 0,

 "MemorySwap": 0,

 "OomKillDisable": false,

 "PidsLimit": 0,

 "FilesLimit": 0,

 "Ulimits": [],

 "Hugetlbs": [],

 "HostChannel": {

 "PathOnHost": "",

 "PathInContainer": "",

 "Permissions": "",

 "Size": 0

 },

 "EnvTargetFile": "",

 "ExternalRootfs": ""

 },

 "Mounts": [],

 "Config": {

 "Hostname": "localhost",

 "User": "",

 "Env": [

 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",

 "TERM=xterm",

 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"

],

 "Tty": true,

 "Cmd": [

 "sh"

],

 "Entrypoint": [],

 "Labels": {},

 "Annotations": {

 "log.console.file": "none",

 "log.console.filerotate": "7",

 "log.console.filesize": "1MB",

 "rootfs.mount": "/var/lib/isulad/mnt/rootfs",

 "native.umask": "secure"

 },

 "HealthCheck": {

 "Test": [],

 "Interval": 0,

 "Timeout": 0,

 "StartPeriod": 0,

 "Retries": 0,

 "ExitOnUnhealthy": false

 }

 },

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 49

 "NetworkSettings": {

 "IPAddress": ""

 }

 }

]

1.3.1.11 Querying Information About All Containers

Description

To query information about all containers, run the isula ps command.

Usage

isula ps [OPTIONS]

Parameters

The following table lists the parameters supported by the ps command.

Table 1-13 Parameter description

Command Parameter Description

ps

-a, --all Displays all containers.

-H, --host Specifies the iSulad socket file path

to be accessed.

-q, --quiet Displays only the container name.

-f, --filter Adds filter criteria.

--format Output format.

--no-trunc Do not truncate the container ID.

Example

Query information about all containers.

$ isula ps -a

ID IMAGE STATUS PID COMMAND EXIT_CODE

RESTART_COUNT STARTAT FINISHAT RUNTIME NAMES

e84660aa059c rnd-dockerhub.huawei.com/official/busybox running 304765 "sh" 0

0 13 minutes ago - lcr

e84660aa059cafb0a77a4002e65cc9186949132b8e57b7f4d76aa22f28fde016

$ isula ps -a --format "table {{.ID}} {{.Image}}" --no-trunc

ID IMAGE

e84660aa059cafb0a77a4002e65cc9186949132b8e57b7f4d76aa22f28fde016

rnd-dockerhub.huawei.com/official/busybox

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 50

1.3.1.12 Restarting a Container

Description

To restart one or more containers, run the isula restart command.

Usage

isula restart [OPTIONS] CONTAINER [CONTAINER...]

Parameters

The following table lists the parameters supported by the restart command.

Table 1-14 Parameter description

Command Parameter Description

restart -H, --host Specifies the iSulad socket file path

to be accessed.

-t, --time Time for graceful stop. If the time

exceeds the value of this parameter,

the container is forcibly stopped.

Constraints
 If the t parameter is specified and the value of t is less than 0, ensure that the application

in the container can process the stop signal.

The restart command first calls the stop command to stop the container. Send the

SIGTERM signal to the container, and then wait for a period of time (t entered by the

user). If the container is still running after the period of time, the SIGKILL signal is sent

to forcibly kill the container.

 The meaning of the input parameter t is as follows:

t < 0: Wait for graceful stop. This setting is preferred when users are assured that their

applications have a proper stop signal processing mechanism.

t = 0: Do not wait and send kill -9 to the container immediately.

t > 0: Wait for a specified period and send kill -9 to the container if the container does

not stop within the specified period.

Therefore, if t is set to a value less than 0 (for example, t = -1), ensure that the container

application correctly processes the SIGTERM signal. If the container ignores this signal,

the container will be suspended when the isula stop command is run.

Example

Restart a container.

$ isula restart c75284634beeede3ab86c828790b439d16b6ed8a537550456b1f94eb852c1c0a

 c75284634beeede3ab86c828790b439d16b6ed8a537550456b1f94eb852c1c0a

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 51

1.3.1.13 Waiting for a Container to Exit

Description

To wait for one or more containers to exit, run the isula wait command. Only containers

whose runtime is of the LCR type are supported.

Usage

isula wait [OPTIONS] CONTAINER [CONTAINER...]

Parameters

The following table lists the parameters supported by the wait command.

Table 1-15 Parameter description

Command Parameter Description

wait -H, --host Specifies the iSulad socket file path

to be accessed.

/ Blocks until the container stops and

displays the exit code.

Example

Wait for a single container to exit.

$ isula wait c75284634beeede3ab86c828790b439d16b6ed8a537550456b1f94eb852c1c0a

 137

1.3.1.14 Viewing Process Information in a Container

Description

To view process information in a container, run the isula top command. Only containers

whose runtime is of the LCR type are supported.

Usage

isula top [OPTIONS] container [ps options]

Parameters

The following table lists the parameters supported by the top command.

Table 1-16 Parameter description

Command Parameter Description

top -H, --host Specifies the iSulad socket file path

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 52

 to be accessed.

/ Queries the process information of a

running container.

Example

Query process information in a container.

$ isula top 21fac8bb9ea8e0be4313c8acea765c8b4798b7d06e043bbab99fc20efa72629c

UID PID PPID C STIME TTY TIME CMD

root 22166 22163 0 23:04 pts/1 00:00:00 sh

1.3.1.15 Displaying Resource Usage Statistics of a Container

Description

To display resource usage statistics in real time, run the isula stats command. Only containers

whose runtime is of the LCR type are supported.

Usage

isula stats [OPTIONS] [CONTAINER...]

Parameters

The following table lists the parameters supported by the stats command.

Table 1-17 Parameter description

Command Parameter Description

stats

-H, --host Specifies the iSulad socket file path

to be accessed.

-a, --all Displays all containers. (By default,

only running containers are

displayed.)

--no-stream Display the first result only. Only

statistics in non-stream mode are

displayed.

Example

Display resource usage statistics.

$ isula stats --no-stream

21fac8bb9ea8e0be4313c8acea765c8b4798b7d06e043bbab99fc20efa72629c

CONTAINER CPU % MEM USAGE / LIMIT MEM % BLOCK I / O

PIDS

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 53

21fac8bb9ea8 0.00 56.00 KiB / 7.45 GiB 0.00 0.00 B / 0.00 B

1

1.3.1.16 Obtaining Container Logs

Description

To obtain container logs, run the isula logs command. Only containers whose runtime is of

the LCR type are supported.

Usage

isula logs [OPTIONS] [CONTAINER...]

Parameters

The following table lists the parameters supported by the logs command.

Table 1-18 Parameter description

Command Parameter Description

logs

-H, --host Specifies the iSulad socket file path

to be accessed.

-f, --follow Traces log output.

--tail Displays the number of log records.

Constraints
 By default, the container log function is enabled. To disable this function, run the isula

create --log-opt disable-log=true or isula run --log-opt disable-log=true command.

Example

Obtain container logs.

$ isula logs 6a144695f5dae81e22700a8a78fac28b19f8bf40e8827568b3329c7d4f742406

hello, world

hello, world

hello, world

1.3.1.17 Copying Data Between a Container and a Host

Description

To copy data between a host and a container, run the isula cp command. Only containers

whose runtime is of the LCR type are supported.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 54

Usage

isula cp [OPTIONS] CONTAINER:SRC_PATH DEST_PATH

isula cp [OPTIONS] SRC_PATH CONTAINER:DEST_PATH

Parameters

The following table lists the parameters supported by the cp command.

Table 1-19 Parameter description

Command Parameter Description

cp -H, --host Specifies the iSulad socket file path

to be accessed.

Constraints
 When iSulad copies files, note that the /etc/hostname, /etc/resolv.conf, and /etc/hosts

files are not mounted to the host, neither the --volume and --mount parameters.

Therefore, the original files in the image instead of the files in the real container are

copied.

[root@localhost tmp]# isula cp b330e9be717a:/etc/hostname /tmp/hostname

[root@localhost tmp]# cat /tmp/hostname

[root@localhost tmp]#

 When decompressing a file, iSulad does not check the type of the file or folder to be

overwritten in the file system. Instead, iSulad directly overwrites the file or folder.

Therefore, if the source is a folder, the file with the same name is forcibly overwritten as

a folder. If the source file is a file, the folder with the same name will be forcibly

overwritten as a file.

[root@localhost tmp]# rm -rf /tmp/test_file_to_dir && mkdir /tmp/test_file_to_dir

[root@localhost tmp]# isula exec b330e9be717a /bin/sh -c "rm -rf

/tmp/test_file_to_dir && touch /tmp/test_file_to_dir"

[root@localhost tmp]# isula cp b330e9be717a:/tmp/test_file_to_dir /tmp

[root@localhost tmp]# ls -al /tmp | grep test_file_to_dir

-rw-r----- 1 root root 0 Apr 26 09:59 test_file_to_dir

 iSulad freezes the container during the copy process and restores the container after the

copy is complete.

Example

Copy the /test/host directory on the host to the /test directory on container 21fac8bb9ea8.

isula cp /test/host 21fac8bb9ea8:/test

Copy the /www directory on container 21fac8bb9ea8 to the /tmp directory on the host.

isula cp 21fac8bb9ea8:/www /tmp/

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 55

1.3.1.18 Pausing a Container

Description

To pause all processes in a container, run the isula pause command. Only containers whose

runtime is of the LCR type are supported.

Usage

isula pause CONTAINER [CONTAINER...]

Parameters

Command Parameter Description

pause -H, --host Specifies the iSulad socket file path

to be accessed.

Constraints
 Only containers in the running state can be paused.

 After a container is paused, other lifecycle management operations (such as restart, exec,

attach, kill, stop, and rm) cannot be performed.

 After a container with health check configurations is paused, the container status changes

to unhealthy.

Example

Pause a running container.

$ isula pause 8fe25506fb5883b74c2457f453a960d1ae27a24ee45cdd78fb7426d2022a8bac

 8fe25506fb5883b74c2457f453a960d1ae27a24ee45cdd78fb7426d2022a8bac

1.3.1.19 Resuming a Container

Description

To resume all processes in a container, run the isula unpause command. It is the reverse

process of isula pause. Only containers whose runtime is of the LCR type are supported.

Usage

isula unpause CONTAINER [CONTAINER...]

Parameters

Command Parameter Description

pause -H, --host Specifies the iSulad socket file path

to be accessed.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 56

Constraints
 Only containers in the paused state can be unpaused.

Example

Resume a paused container.

$ isula unpause 8fe25506fb5883b74c2457f453a960d1ae27a24ee45cdd78fb7426d2022a8bac

 8fe25506fb5883b74c2457f453a960d1ae27a24ee45cdd78fb7426d2022a8bac

1.3.1.20 Obtaining Event Messages from the Server in Real Time

Description

The isula events command is used to obtain event messages such as container image lifecycle

and running event from the server in real time. Only containers whose runtime type is lcr are

supported.

Usage

isula events [OPTIONS]

Parameter

Command Parameter Description

events -H, --host Specifies the iSulad socket file path

to be accessed.

-n, --name Obtains event messages of a specified

container.

-S, --since Obtains event messages generated

since a specified time.

Example

Run the following command to obtain event messages from the server in real time:

$ isula events

1.3.2 Interconnection with the CNI Network

1.3.2.1 Overview

The container runtime interface (CRI) is provided to connect to the CNI network, including

parsing the CNI network configuration file and adding or removing a pod to or from the CNI

network. When a pod needs to support a network through a container network plug-in such as

Canal, the CRI needs to be interconnected to Canal so as to provide the network capability for

the pod.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 57

1.3.2.2 Common CNIs

Common CNIs include CNI network configuration items in the CNI network configuration

and pod configuration. These CNIs are visible to users.

 CNI network configuration items in the CNI network configuration refer to those used to

specify the path of the CNI network configuration file, path of the binary file of the CNI

network plug-in, and network mode. For details, see Table 1-20.

 CNI network configuration items in the pod configuration refer to those used to set the

additional CNI network list to which the pod is added. By default, the pod is added only

to the default CNI network plane. You can add the pod to multiple CNI network planes

as required.

Table 1-20 CNI network configuration items

Function Command Configurati
on File

Description

Path of the binary file of

the CNI network plug-in

--cni-bin-dir "cni-bin-dir":

"",

The default value is

/opt/cni/bin.

Path of the CNI network

configuration file

--cni-conf-di

r

"cni-conf-dir

": "",

The system traverses all files

with the

extension .conf, .conflist,

or .json in the directory. The

default value is /etc/cni/net.d.

Network mode --network-pl

ugin

"network-plu

gin": "",

Specifies a network plug-in.

The value is a null character

by default, indicating that no

network configuration is

available and the created

sandbox has only the loop

NIC. The CNI and null

characters are supported. Other

invalid values will cause

iSulad startup failure.

Additional CNI network configuration mode:

Add the network plane configuration item "network.alpha.kubernetes.io/network" to

annotations in the pod configuration file.

The network plane is configured in JSON format, including:

 name: specifies the name of the CNI network plane.

 interface: specifies the name of a network interface.

The following is an example of the CNI network configuration method:

"annotations" : {

 "network.alpha.kubernetes.io/network": "{\"name\": \"mynet\", \"interface\":

\"eth1\"}"

 }

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 58

1.3.2.2.1 CNI Network Configuration Description

The CNI network configuration includes two types, both of which are in the .json file format.

 Single-network plane configuration file with the file name extension .conf or .json. For

details about the configuration items, see Table 1-28 in the appendix.

 Multi-network plane configuration file with the file name extension .conflist. For details

about the configuration items, see Table 1-30 in the appendix.

1.3.2.2.2 Adding a Pod to the CNI Network List

If --network-plugin=cni is configured for iSulad and the default network plane is configured,

a pod is automatically added to the default network plane when the pod is started. If the

additional network configuration is configured in the pod configuration, the pod is added to

these additional network planes when the pod is started.

port_mappings in the pod configuration is also a network configuration item, which is used

to set the port mapping of the pod. To set port mapping, perform the following steps:

"port_mappings":[

 {

 "protocol": 1,

 "container_port": 80,

 "host_port": 8080

 }

]

 protocol: protocol used for mapping. The value can be tcp (identified by 0) or udp

(identified by 1).

 container_port: port through which the container is mapped.

 host_port: port mapped to the host.

1.3.2.2.3 Removing a Pod from the CNI Network List

When StopPodSandbox is called, the interface for removing a pod from the CNI network list

will be called to clear network resources.

1. Before calling the RemovePodSandbox interface, you must call the StopPodSandbox interface at least
once.

2. If StopPodSandbox fails to call the CNI, residual network resources may exist.

1.3.2.3 Usage Restrictions

 Currently, only CNI 0.3.0 and CNI 0.3.1 are supported. In later versions, CNI 0.1.0 and

CNI 0.2.0 may need to be supported. Therefore, when error logs are displayed, the

information about CNI 0.1.0 and CNI 0.2.0 is reserved.

 name: The value must contain lowercase letters, digits, hyphens (-), and periods (.) and

cannot be started or ended with a hyphen or period. The value can contain a maximum of

200 characters.

 The number of configuration files cannot exceed 200, and the size of a single

configuration file cannot exceed 1 MB.

 The extended parameters need to be configured based on the actual network

requirements. Optional parameters do not need to be written into the netconf.json file.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 59

1.3.3 Container Resource Management

1.3.3.1 Sharing Resources

Description

Containers or containers and hosts can share namespace information mutually, including PID,

network, IPC, and UTS information.

Usage

When running the isula create/run command, you can set the namespace parameters to share

resources. For details, see the following parameter description table.

Parameters

You can specify the following parameters when running the lcrc create/run command:

Parameter Description Value Range Mandatory or
Not

--pid Specifies the PID

namespace to be

shared.

[none, host,

container:<containerI

D>]: none indicates

that the namespace is

not shared. host

indicates that the

namespace is shared

with the host.

container:<containerI

D> indicates that the

namespace is shared

with the container.

No

--net Specifies the network

namespace to be

shared.

[none, host,

container:<containerI

D>]: none indicates

that the namespace is

not shared. host

indicates that the

namespace is shared

with the host.

container:<containerI

D> indicates that the

namespace is shared

with the container.

No

--ipc Specifies the IPC

namespace to be

shared.

[none, host,

container:<containerI

D>]: none indicates

that the namespace is

not shared. host

indicates that the

namespace is shared

No

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 60

Parameter Description Value Range Mandatory or
Not

with the host.

container:<containerI

D> indicates that the

namespace is shared

with the container.

--uts Specifies the UTS

namespace to be

shared.

[none, host,

container:<containerI

D>]: none indicates

that the namespace is

not shared. host

indicates that the

namespace is shared

with the host.

container:<containerI

D> indicates that the

namespace is shared

with the container.

No

Example

If two containers need to share the same PID namespace, add --pid container:<containerID>

when running the container. For example:

isula run -tid --name test_pid busybox sh

isula run -tid --name test --pid container:test_pid busybox sh

1.3.3.2 Restricting CPU Resources of a Running Container

Description

You can set parameters to restrict the CPU resources of a container.

Usage

When running the isula create/run command, you can set CPU-related parameters to limit

the CPU resources of a container. For details about the parameters and values, see the

following table.

Parameters

You can specify the following parameters when running the isula create/run command:

Parameter Description Value Range Mandatory or
Not

--cpu-period Limits the CPU CFS

period in a container.

64-bit integer No

--cpu-quota Limits the CPU CFS 64-bit integer No

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 61

Parameter Description Value Range Mandatory or
Not

quota.

--cpu-shares Limits the CPU share

(relative weight).

64-bit integer No

--cpuset-cpus Limits the CPU

nodes.

A character string. The

value is the number of

CPUs to be configured.

The value ranges from

0 to 3, or 0 and 1.

No

--cpuset-mems Limits the memory

nodes used by cpuset

in the container.

A character string. The

value is the number of

CPUs to be configured.

The value ranges from

0 to 3, or 0 and 1.

No

Example

To restrict a container to use a specific CPU, add --cpuset-cpus number when running the

container. For example:

isula run -tid --cpuset-cpus 0,2-3 busybox sh

You can check whether the configuration is successful. For details, see "Querying Information About a
Single Container."

1.3.3.3 Restricting the Memory Usage of a Running Container

Description

You can set parameters to restrict the memory usage of a container.

Usage

When running the isula create/run command, you can set memory-related parameters to

restrict memory usage of containers. For details about the parameters and values, see the

following table.

Parameters

You can specify the following parameters when running the isula create/run command:

Parameter Description Value Range Mandatory or Not

--memory Specifies the upper

limit of the memory

usage of a container.

64-bit integer The

value is a

non-negative

number. The value 0

indicates that no

No

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 62

Parameter Description Value Range Mandatory or Not

limit is set. The unit

can be empty (byte),

KB, MB, GB, TB,

or PB.

--memory-reservatio

n

Specifies the soft

upper limit of the

memory of a

container.

64-bit integer The

value is a

non-negative

number. The value 0

indicates that no

limit is set. The unit

can be empty (byte),

KB, MB, GB, TB,

or PB.

No

--memory-swap Specifies the upper

limit of the swap

memory of the

container.

64-bit integer The

value can be -1 or a

non-negative

number. The value

-1 indicates no limit,

and the value 0

indicates that no

limit is set. The unit

can be empty (byte),

KB, MB, GB, TB,

or PB.

No

--kernel-memory Specifies the upper

limit of the kernel

memory of the

container.

64-bit integer The

value is a

non-negative

number. The value 0

indicates that no

limit is set. The unit

can be empty (byte),

KB, MB, GB, TB,

or PB.

No

Example

To set the upper limit of the memory of a container, add --memory <number>[<unit>] when

running the container. For example:

isula run -tid --memory 1G busybox sh

1.3.3.4 Restricting I/O Resources of a Running Container

Description

You can set parameters to limit the read/write speed of devices in the container.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 63

Usage

When running the isula create/run command, you can set

--device-read-bps/--device-write-bps <device-path>:<number>[<unit>] to limit the

read/write speed of devices in the container.

Parameters

When running the isula create/run command, set --device-read/write-bps.

Parameter Description Value Range Mandatory or Not

--device-read-bps/--

device-write-bps

Limits the read/write

speed of devices in

the container.

64-bit integer The

value is a positive

integer. The value

can be 0, indicating

that no limit is set.

The unit can be

empty (byte), KB,

MB, GB, TB, or PB.

No

Example

To limit the read/write speed of devices in the container, add

--device-write-bps/--device-read-bps <device-path>:<number>[<unit>] when running the

container. For example, to limit the read speed of the device /dev/sda in the container

busybox to 1 Mbit/s, run the following command:

isula run -tid --device-write /dev/sda:1mb busybox sh

To limit the write speed, run the following command:

isula run -tid read-bps /dev/sda:1mb busybox sh

1.3.3.5 Restricting the Rootfs Storage Space of a Container

Description

When the overlay2 storage driver is used on the EXT4 file system, the file system quota of a

single container can be set. For example, the quota of container A is set to 5 GB, and the quota

of container B is set to 10 GB.

This feature is implemented by the project quota function of the EXT4 file system. If the

kernel supports this function, use the syscall SYS_IOCTL to set the project ID of a directory,

and then use the syscall SYS_QUOTACTL to set the hard limit and soft limit of the

corresponding project ID.

Usage

1. Prepare the environment.

Ensure that the file system supports the Project ID and Project Quota attributes, the

kernel version is 4.19 or later, and the version of the peripheral package e2fsprogs is

1.43.4-2 or later.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 64

2. Before mounting overlayfs to a container, set different project IDs for the upper and

work directories of different containers and set inheritance options. After overlayfs is

mounted to a container, the project IDs and inherited attributes cannot be modified.

3. Set the quota as a privileged user outside the container.

4. Add the following configuration to daemon:

-s overlay2 --storage-opt overlay2.override_kernel_check=true

5. Daemon supports the following options for setting default restrictions for containers:

--storage-opt overlay2.basesize=128M specifies the default limit. If --storeage-opt size

is also specified when you run the isula run command, the value of this parameter takes

effect. If no size is specified during the daemon process or when you run the isula run

command, the size is not limited.

6. Enable the Project ID and Project Quota attributes of the file system.

− Format and mount the file system.

mkfs.ext4 -O quota,project /dev/sdb

mount -o prjquota /dev/sdb /var/lib/isulad

Parameters

When running the create/run command, set --storage-opt.

Parameter Description Value Range Mandatory
or Not

--storage-opt

size=${rootfsSize}

Restricts the

root file

system

(rootfs)

storage space

of the

container.

The size parsed by rootfsSize is a

positive 64-bit integer expressed

in bytes. You can also set it to

([kKmMgGtTpP])?[iI]?[bB]?$.

No

Example

In the isula run/create command, use the existing parameter --storage-opt size=value to set

the quota. The value is a positive number in the unit of [kKmMgGtTpP]?[iI]?[bB]?. If the

value does not contain a unit, the default unit is byte.

$ [root@localhost ~]# isula run -ti --storage-opt size=10M busybox

/ # df -h

Filesystem Size Used Available Use% Mounted on

overlay 10.0M 48.0K 10.0M 0% /

none 64.0M 0 64.0M 0% /dev

none 10.0M 0 10.0M 0% /sys/fs/cgroup

tmpfs 64.0M 0 64.0M 0% /dev

shm 64.0M 0 64.0M 0% /dev/shm

/dev/mapper/vg--data-ext41

 9.8G 51.5M 9.2G 1% /etc/hostname

/dev/mapper/vg--data-ext41

 9.8G 51.5M 9.2G 1% /etc/resolv.conf

/dev/mapper/vg--data-ext41

 9.8G 51.5M 9.2G 1% /etc/hosts

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 65

tmpfs 3.9G 0 3.9G 0% /proc/acpi

tmpfs 64.0M 0 64.0M 0% /proc/kcore

tmpfs 64.0M 0 64.0M 0% /proc/keys

tmpfs 64.0M 0 64.0M 0% /proc/timer_list

tmpfs 64.0M 0 64.0M 0% /proc/sched_debug

tmpfs 3.9G 0 3.9G 0% /proc/scsi

tmpfs 64.0M 0 64.0M 0% /proc/fdthreshold

tmpfs 64.0M 0 64.0M 0% /proc/fdenable

tmpfs 3.9G 0 3.9G 0% /sys/firmware

/ #

/ # dd if=/dev/zero of=/home/img bs=1M count=12 && sync

dm-4: write failed, project block limit reached.

10+0 records in

9+0 records out

10432512 bytes (9.9MB) copied, 0.011782 seconds, 844.4MB/s

/ # df -h | grep overlay

overlay 10.0M 10.0M 0 100% /

/ #

Constraints

1. The quota applies only to the rw layer.

The quota of overlay2 is for the rw layer of the container. The image size is not included.

2. The kernel supports and enables this function.

The kernel must support the EXT4 project quota function. When running mkfs, add -O

quota,project. When mounting the file system, add -o prjquota. If any of the preceding

conditions is not met, an error is reported when --storage-opt size=value is used.

$ [root@localhost ~]# isula run -it --storage-opt size=10Mb busybox df -h

Error response from daemon: Failed to prepare rootfs with error:

time="2019-04-09T05:13:52-04:00" level=fatal msg="error creating read-

write layer with ID

"a4c0e55e82c55e4ee4b0f4ee07f80cc2261cf31b2c2dfd628fa1fb00db97270f":

--storage-opt is supported only for overlay over

xfs or ext4 with 'pquota' mount option"

3. Description of the limit of quota:

a. If the quota is greater than the size of the partition where user root of iSulad is

located, the file system quota displayed by running the df command in the container

is the size of the partition where user root of iSulad is located, not the specified

quota.

b. --storage-opt size=0 indicates that the size is not limited and the value cannot be

less than 4096. The precision of size is one byte. If the specified precision contains

decimal bytes, the decimal part is ignored. For example, if size is set to 0.1, the size

is not limited. (The value is restricted by the precision of the floating point number

stored on the computer. That is, 0.999999999999999999999999999 is equal to 1.

The number of digits 9 may vary according to computers. Therefore,

4095.999999999999999999999999999 is equal to 4096.) Note that running isula

inspect displays the original command line specified format. If the value contains

decimal bytes, you need to ignore the decimal part.

c. If the quota is too small, for example, --storage-opt size=4k, the container may fail

to be started because some files need to be created for starting the container.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 66

d. The -o prjquota option is added to the root partition of iSulad when iSulad is

started last time. If this option is not added during this startup, the setting of the

container with quota created during the last startup does not take effect.

e. The value range of the daemon quota --storage-opt overlay2.basesize is the same

as that of --storage-opt size.

4. When storage-opt is set to 4 KB, the lightweight container startup is different from that

of Docker.

Use the storage-opt size=4k and image

rnd-dockerhub.huawei.com/official/ubuntu-arm64:latest to run the container.

Docker fails to be started.

[root@localhost ~]# docker run -itd --storage-opt size=4k

rnd-dockerhub.huawei.com/official/ubuntu-arm64:latest

docker: Error response from daemon: symlink /proc/mounts

/var/lib/docker/overlay2/e6e12701db1a488636c881b44109a807e187b8db51a50015db34a1

31294fcf70-init/merged/etc/mtab: disk quota exceeded.

See 'docker run --help'.

The lightweight container is started properly and no error is reported.

[root@localhost ~]# isula run -itd --storage-opt size=4k

rnd-dockerhub.huawei.com/official/ubuntu-arm64:latest

636480b1fc2cf8ac895f46e77d86439fe2b359a1ff78486ae81c18d089bbd728

[root@localhost ~]# isula ps

STATUS PID IMAGE COMMAND EXIT_CODE

RESTART_COUNT STARTAT FINISHAT RUNTIME ID NAMES

running 17609 rnd-dockerhub.huawei.com/official/ubuntu-arm64:latest /bin/bash 0

0 2 seconds ago - lcr 636480b1fc2c

636480b1fc2cf8ac895f46e77d86439fe2b359a1ff78486ae81c18d089bbd728

During container startup, if you need to create a file in the rootfs directory of the

container, the image size exceeds 4 KB, and the quota is set to 4 KB, the file creation

will fail.

When Docker starts the container, it creates more mount points than iSulad to mount

some directories on the host to the container, such as /proc/mounts and /dev/shm. If

these files do not exist in the image, the creation will fail, therefore, the container fails to

be started.

When a lightweight container uses the default configuration during container startup,

there are few mount points. The lightweight container is created only when the directory

like /proc or /sys does not exist. The image

rnd-dockerhub.huawei.com/official/ubuntu-arm64:latest in the test case contains

/proc and /sys. Therefore, no new file or directory is generated during the container

startup. As a result, no error is reported during the lightweight container startup. To

verify this process, when the image is replaced with

rnd-dockerhub.huawei.com/official/busybox-aarch64:latest, an error is reported

when the lightweight container is started because /proc does not exist in the image.

[root@localhost ~]# isula run -itd --storage-opt size=4k

rnd-dockerhub.huawei.com/official/busybox-aarch64:latest

8e893ab483310350b8caa3b29eca7cd3c94eae55b48bfc82b350b30b17a0aaf4

Error response from daemon: Start container error: runtime error:

8e893ab483310350b8caa3b29eca7cd3c94eae55b48bfc82b350b30b17a0aaf4:tools/lxc_star

t.c:main:404 starting container process caused "Failed to setup lxc,

please check the config file."

5. Other description:

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 67

When using iSulad with the quota function to switch data disks, ensure that the data

disks to be switched are mounted using the prjquota option and the mounting mode of

the /var/lib/isulad/storage/overlay2 directory is the same as that of the /var/lib/isulad

directory.

Before switching the data disk, ensure that the mount point of /var/lib/isulad/storage/overlay2 is
unmounted.

1.3.3.6 Restricting the Number of File Handles in a Container

Description

You can set parameters to limit the number of file handles that can be opened in a container.

Usage

When running the isula create/run command, set the --files-limit parameter to limit the

number of file handles that can be opened in a container.

Parameters

Set the --files-limit parameter when running the isula create/run command.

Parameter Description Value Range Mandatory or Not

--files-limit Limits the number

of file handles that

can be opened in a

container.

64-bit integer The

value can be 0 or a

negative number,

but cannot be greater

than 2 to the power

of 63 minus 1. The

value 0 or a negative

number indicates no

limit.

During container

creation, some

handles are opened

temporarily.

Therefore, the value

cannot be too small.

Otherwise, the

container may not be

restricted by the file

limit. If the value is

less than the number

of opened handles,

the cgroup file

cannot be written. It

is recommended that

the value be greater

than 30.

No

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 68

Example

When running the container, add --files-limit n. For example:

isula run -ti --files-limit 1024 busybox bash

Constraints

1. If the --files-limit parameter is set to a small value, for example, 1, the container may fail

to be started.

[root@localhost ~]# isula run -itd --files-limit 1

rnd-dockerhub.huawei.com/official/busybox-aarch64

004858d9f9ef429b624f3d20f8ba12acfbc8a15bb121c4036de4e5745932eff4

Error response from daemon: Start container error: Container is not

running:004858d9f9ef429b624f3d20f8ba12acfbc8a15bb121c4036de4e5745932eff4

Docker will be started successfully, and the value of files.limit cgroup is max.

[root@localhost ~]# docker run -itd --files-limit 1

rnd-dockerhub.huawei.com/official/busybox-aarch64

ef9694bf4d8e803a1c7de5c17f5d829db409e41a530a245edc2e5367708dbbab

[root@localhost ~]# docker exec -it ef96 cat /sys/fs/cgroup/files/files.limit

max

The root cause is that the startup principles of the lxc and runc processes are different.

After the lxc process creates the cgroup, the files.limit value is set, and then the PID of

the container process is written into the cgroup.procs file of the cgroup. At this time, the

process has opened more than one handle. As a result, an error is reported, and the

startup fails. After you create a cgroup by running the runc command, the PID of the

container process is written to the cgroup.procs file of the cgroup, and then the files.limit

value is set. Because more than one handle is opened by the process in the cgroup, the

file.limit value does not take effect, the kernel does not report any error, and the

container is started successfully.

1.3.3.7 Restricting the Number of Processes or Threads that Can Be Created
in a Container

Description

You can set parameters to limit the number of processes or threads that can be created in a

container.

Usage

When creating or running a container, use the --pids-limit parameter to limit the number of

processes or threads that can be created in the container.

Parameters

When running the create/run command, set the --pids-limit parameter.

Parameter Description Value Range Mandatory or Not

--pids-limit Limits the number

of file handles that

can be opened in a

64-bit integer The

value can be 0 or a

negative number,

No

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 69

Parameter Description Value Range Mandatory or Not

container. but cannot be greater

than 2 to the power

of 63 minus 1. The

value 0 or a negative

number indicates no

limit.

Example

When running the container, add --pids-limit n. For example:

isula run -ti --pids-limit 1024 busybox bash

Constraints

During container creation, some processes are created temporarily. Therefore, the value

cannot be too small. Otherwise, the container may fail to be started. It is recommended that

the value be greater than 10.

1.3.3.8 Configuring the ulimit Value in a Container

Description

You can use parameters to control the resources for executed programs.

Usage

Set the --ulimit parameter when creating or running a container, or configure the parameter

on the daemon to control the resources for executed programs in the container.

Parameters

Use either of the following methods to configure ulimit:

1. When running the isula create/run command, use --ulimit <type>=<soft>[:<hard>] to

control the resources of the executed shell program.

Parameter Description Value Range Mandatory or Not

--ulimit Limits the resources

of the executed shell

program.

64-bit integer The

value of the soft

limit must be less

than or equal to that

of the hard limit. If

only the soft limit is

specified, the value

of the hard limit is

equal to that of the

soft limit. Some

types of resources

do not support

No

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 70

Parameter Description Value Range Mandatory or Not

negative numbers.

For details, see the

following table.

2. Use daemon parameters or configuration files.

For details, see --default-ulimits in 1.2.3.1 Deployment Mode.

--ulimit can limit the following types of resources:

Type Description Value Range

core limits the core file size (KB) 64-bit integer, without unit.

The value can be 0 or a

negative number. The value

-1 indicates no limit. Other

negative numbers are

forcibly converted into a

large positive integer.

cpu max CPU time (MIN)

data max data size (KB)

fsize maximum filesize (KB)

locks max number of file locks the

user can hold

memlock max locked-in-memory

address space (KB)

msgqueue max memory used by

POSIX message queues

(bytes)

nice nice priority

nproc max number of processes

rss max resident set size (KB)

rtprio max realtime priority

rttime realtime timeout

sigpending max number of pending

signals

stack max stack size (KB)

nofile max number of open file

descriptors

64-bit integer, without unit.

The value cannot be

negative. A negative number

is forcibly converted to a

large positive number. In

addition, "Operation not

permitted" is displayed

during the setting.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 71

Example

When creating or running a container, add --ulimit <type>=<soft>[:<hard>]. For example:

isula create/run -tid --ulimit nofile=1024:2048 busybox sh

Constraints

The ulimit cannot be configured in the daemon.json and /etc/sysconfig/iSulad files (or the

iSulad command line). Otherwise, an error is reported when iSulad is started.

1.3.4 Privileged Container

1.3.4.1 Scenarios

By default, iSulad starts common containers that are suitable for starting common processes.

However, common containers have only the default permissions defined by capabilities in the

/etc/default/isulad/config.json directory. To perform privileged operations (such as use

devices in the /sys directory), a privileged container is required. By using this feature, user

root in the container has root permissions of the host. Otherwise, user root in the container

has only common user permissions of the host.

1.3.4.2 Usage Restrictions

Privileged containers provide all functions for containers and remove all restrictions enforced

by the device cgroup controller. A privileged container has the following features:

 Secomp does not block any system call.

 The /sys and /proc directories are writable.

 All devices on the host can be accessed in the container.

 All system capabilities will be enabled.

Default capabilities of a common container are as follows:

Capability Key Description

SETPCAP Modifies the process capabilities.

MKNOD Allows using the system call mknod() to create

special files.

AUDIT_WRITE Writes records to kernel auditing logs.

CHOWN Modifies UIDs and GIDs of files. For details, see the

chown(2).

NET_RAW Uses RAW and PACKET sockets and binds any IP

address to the transparent proxy.

DAC_OVERRIDE Ignores the discretionary access control (DAC)

restrictions on files.

FOWNER Ignores the restriction that the file owner ID must be

the same as the process user ID.

FSETID Allows setting setuid bits of files.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 72

Capability Key Description

KILL Allows sending signals to processes that do not

belong to itself.

SETGID Allows the change of the process group ID.

SETUID Allows the change of the process user ID.

NET_BIND_SERVICE Allows bounding to a port whose number is smaller

than 1024.

SYS_CHROOT Allows using the system call chroot().

SETFCAP Allows transferring and deleting capabilities to other

processes.

When a privileged container is enabled, the following capabilities are added:

Capability Key Description

SYS_MODULE Loads and unloads kernel modules.

SYS_RAWIO Allows direct access to /devport, /dev/mem,

/dev/kmem, and original block devices.

SYS_PACCT Allows the process BSD audit.

SYS_ADMIN Allows executing system management tasks, such as

loading or unloading file systems and setting disk

quotas.

SYS_NICE Allows increasing the priority and setting the

priorities of other processes.

SYS_RESOURCE Ignores resource restrictions.

SYS_TIME Allows changing the system clock.

SYS_TTY_CONFIG Allows configuring TTY devices.

AUDIT_CONTROL Enables and disables kernel auditing, modifies audit

filter rules, and extracts audit status and filtering rules.

MAC_ADMIN Overrides the mandatory access control (MAC),

which is implemented for the Smack Linux Security

Module (LSM).

MAC_OVERRIDE Allows MAC configuration or status change, which is

implemented for Smack LSM.

NET_ADMIN Allows executing network management tasks.

SYSLOG Performs the privileged syslog(2) operation.

DAC_READ_SEARCH Ignores the DAC access restrictions on file reading

and catalog search.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 73

Capability Key Description

LINUX_IMMUTABLE Allows modifying the IMMUTABLE and APPEND

attributes of a file.

NET_BROADCAST Allows network broadcast and multicast access.

IPC_LOCK Allows locking shared memory segments.

IPC_OWNER Ignores the IPC ownership check.

SYS_PTRACE Allows tracing any process.

SYS_BOOT Allows restarting the OS.

LEASE Allows modifying the FL_LEASE flag of a file lock.

WAKE_ALARM Triggers the function of waking up the system, for

example, sets the CLOCK_REALTIME_ALARM

and CLOCK_BOOTTIME_ALARM timers.

BLOCK_SUSPEND Allows blocking system suspension.

1.3.4.3 Usage Guide

iSulad runs the --privileged command to enable the privilege mode for containers. Do not add

privileges to containers unless necessary. Comply with the principle of least privilege to

reduce security risks.

isula run --rm -it --privileged busybox

1.3.5 CRI

1.3.5.1 Description

The Container Runtime Interface (CRI) provided by Kubernetes defines container and image

service APIs. iSulad uses the CRI to interconnect with Kubernetes.

Since the container runtime is isolated from the image lifecycle, two services need to be

defined. This API is defined by using Protocol Buffer based on gRPC.

The current CRI version is v1alpha1. For official API description, access the following link:

https://github.com/kubernetes/kubernetes/blob/release-1.14/pkg/kubelet/apis/cri/runtime/v1al

pha2/api.proto

iSulad uses the API description file of version 1.14 used by Pass, which is slightly different

from the official API description file. API description in this document prevails.

The listening IP address of the CRI WebSocket streaming service is 127.0.0.1 and the port number is
10350. The port number can be configured in the --websocket-server-listening-port command or in the
daemon.json configuration file.

https://developers.google.com/protocol-buffers/
https://grpc.io/
https://github.com/kubernetes/kubernetes/blob/release-1.14/pkg/kubelet/apis/cri/runtime/v1alpha2/api.proto
https://github.com/kubernetes/kubernetes/blob/release-1.14/pkg/kubelet/apis/cri/runtime/v1alpha2/api.proto

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 74

1.3.5.2 APIs

The following tables list the parameters that may be used in each API. Some parameters do

not take effect now, which have been noted in the corresponding parameter description.

API Parameters
 DNSConfig

The API is used to configure DNS servers and search domains of a sandbox.

Parameter Description

repeated string servers DNS server list of a cluster.

repeated string searches DNS search domain list of a cluster.

repeated string options DNS option list. For details, see

https://linux.die.net/man/5/resolv.conf.

 Protocol

The API is used to specify enum values of protocols.

Parameter Description

TCP = 0↵ Transmission Control Protocol (TCP).

UDP = 1 User Datagram Protocol (UDP).

 PortMapping

The API is used to configure the port mapping for a sandbox.

Parameter Description

Protocol protocol Protocol used for port mapping.

int32 container_port Port number in the container.

int32 host_port Port number on the host.

string host_ip Host IP address.

 MountPropagation

The API is used to specify enums of mount propagation attributes.

Parameter Description

PROPAGATION_PRIVATE = 0 No mount propagation attributes, that is, private in

Linux.

PROPAGATION_HOST_TO_CO

NTAINER = 1

Mount attribute that can be propagated from the host

to the container, that is, rslave in Linux.

PROPAGATION_BIDIRECTIO Mount attribute that can be propagated between a host

https://linux.die.net/man/5/resolv.conf

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 75

Parameter Description

NAL = 2 and a container, that is, rshared in Linux.

 Mount

The API is used to mount a volume on the host to a container. (Only files and folders are

supported.)

Parameter Description

string container_path Path in the container.

string host_path Path on the host.

bool readonly Whether the configuration is read-only in the

container.

Default value: false

bool selinux_relabel Whether to set the SELinux label. This parameter

does not take effect now.

MountPropagation propagation Mount propagation attribute.

The value can be 0, 1, or 2, corresponding to the

private, rslave, and rshared propagation attributes

respectively.

Default value: 0

 NamespaceOption

Parameter Description

bool host_network Whether to use host network namespaces.

bool host_pid Whether to use host PID namespaces.

bool host_ipc Whether to use host IPC namespaces.

 Capability

This API is used to specify the capabilities to be added and deleted.

Parameter Description

repeated string add_capabilities Capabilities to be added.

repeated string drop_capabilities Capabilities to be deleted.

 Int64Value

The API is used to encapsulate data of the signed 64-bit integer type.

Parameter Description

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 76

Parameter Description

int64 value Actual value of the signed 64-bit integer type.

 UInt64Value

The API is used to encapsulate data of the unsigned 64-bit integer type.

Parameter Description

uint64 value Actual value of the unsigned 64-bit integer type.

 LinuxSandboxSecurityContext

The API is used to configure the Linux security options of a sandbox.

Note that these security options are not applied to containers in the sandbox, and may not

be applied to the sandbox without any running process.

Parameter Description

NamespaceOption

namespace_options

Sandbox namespace options.

SELinuxOption selinux_options SELinux options. This parameter does not take effect

now.

Int64Value run_as_user Process UID in the sandbox.

bool readonly_rootfs Whether the root file system of the sandbox is

read-only.

repeated int64

supplemental_groups

Information of the user group of the init process in

the sandbox (except the primary GID).

bool privileged Whether the sandbox is a privileged container.

string seccomp_profile_path Path of the seccomp configuration file. Valid values

are as follows:

// unconfined: Seccomp is not configured.

// localhost/ Full path of the configuration file:

configuration file path installed in the system.

// Full path of the configuration file: full path of the

configuration file.

// unconfined is the default value.

 LinuxPodSandboxConfig

The API is used to configure information related to the Linux host and containers.

Parameter Description

string cgroup_parent Parent path of the cgroup of the sandbox. The

runtime can use the cgroupfs or systemd syntax

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 77

Parameter Description

based on site requirements. This parameter does not

take effect now.

LinuxSandboxSecurityContext

security_context

Security attribute of the sandbox.

map<string, string> sysctls Linux sysctls configuration of the sandbox.

 PodSandboxMetadata

Sandbox metadata contains all information that constructs a sandbox name. It is

recommended that the metadata be displayed on the user interface during container

running to improve user experience. For example, a unique sandbox name can be

generated based on the metadata during running.

Parameter Description

string name Sandbox name.

string uid Sandbox UID.

string namespace Sandbox namespace.

uint32 attempt Number of attempts to create a sandbox.

Default value: 0

 PodSandboxConfig

This API is used to specify all mandatory and optional configurations for creating a

sandbox.

Parameter Description

PodSandboxMetadata metadata Sandbox metadata, which uniquely identifies a

sandbox. The runtime must use the information to

ensure that operations are correctly performed, and to

improve user experience, for example, construct a

readable sandbox name.

string hostname Host name of the sandbox.

string log_directory Folder for storing container log files in the sandbox.

DNSConfig dns_config Sandbox DNS configuration.

repeated PortMapping

port_mappings

Sandbox port mapping.

map<string, string> labels Key-value pair that can be used to identify a sandbox

or a series of sandboxes.

map<string, string> annotations Key-value pair that stores any information, whose

values cannot be changed and can be queried by

using the PodSandboxStatus API.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 78

Parameter Description

LinuxPodSandboxConfig linux Options related to the Linux host.

 PodSandboxNetworkStatus

The API is used to describe the network status of a sandbox.

Parameter Description

string ip IP address of the sandbox.

string name Network interface name in the sandbox.

string network Name of the additional network.

 Namespace

The API is used to set namespace options.

Parameter Description

NamespaceOption options Linux namespace options.

 LinuxPodSandboxStatus

The API is used to describe the status of a Linux sandbox.

Parameter Description

Namespace namespaces Sandbox namespace.

 PodSandboxState

The API is used to specify enum data of the sandbox status values.

Parameter Description

SANDBOX_READY = 0 The sandbox is ready.

SANDBOX_NOTREADY = 1 The sandbox is not ready.

 PodSandboxStatus

The API is used to describe the PodSandbox status.

Parameter Description

string id Sandbox ID.

PodSandboxMetadata metadata Sandbox metadata.

PodSandboxState state Sandbox status value.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 79

Parameter Description

int64 created_at Sandbox creation timestamp (unit: ns).

repeated

PodSandboxNetworkStatus

networks

Multi-plane network status of the sandbox.

LinuxPodSandboxStatus linux Sandbox status complying with the Linux

specifications.

map<string, string> labels Key-value pair that can be used to identify a sandbox

or a series of sandboxes.

map<string, string> annotations Key-value pair that stores any information, whose

values cannot be changed by the runtime.

 PodSandboxStateValue

The API is used to encapsulate PodSandboxState.

Parameter Description

PodSandboxState state Sandbox status value.

 PodSandboxFilter

The API is used to add filter criteria for the sandbox list. The intersection of multiple

filter criteria is displayed.

Parameter Description

string id Sandbox ID.

PodSandboxStateValue state Sandbox status.

map<string, string> label_selector Sandbox label, which does not support regular

expressions and must be fully matched.

 PodSandbox

This API is used to provide a minimum description of a sandbox.

Parameter Description

string id Sandbox ID.

PodSandboxMetadata metadata Sandbox metadata.

PodSandboxState state Sandbox status value.

int64 created_at Sandbox creation timestamp (unit: ns).

map<string, string> labels Key-value pair that can be used to identify a sandbox

or a series of sandboxes.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 80

Parameter Description

map<string, string> annotations Key-value pair that stores any information, whose

values cannot be changed by the runtime.

 KeyValue

The API is used to encapsulate key-value pairs.

Parameter Description

string key Key

string value Value

 SELinuxOption

The API is used to specify the SELinux label of a container.

Parameter Description

string user User

string role Role

string type Type

string level Level

 ContainerMetadata

Container metadata contains all information that constructs a container name. It is

recommended that the metadata be displayed on the user interface during container

running to improve user experience. For example, a unique container name can be

generated based on the metadata during running.

Parameter Description

string name Container name.

uint32 attempt Number of attempts to create a container.

Default value: 0

 ContainerState

The API is used to specify enums of container status values.

Parameter Description

CONTAINER_CREATED = 0 The container is created.

CONTAINER_RUNNING = 1 The container is running.

CONTAINER_EXITED = 2 The container exits.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 81

Parameter Description

CONTAINER_UNKNOWN = 3 Unknown container status.

 ContainerStateValue

The API is used to encapsulate the data structure of ContainerState.

Parameter Description

ContainerState state Container status value.

 ContainerFilter

The API is used to add filter criteria for the container list. The intersection of multiple

filter criteria is displayed.

Parameter Description

string id Container ID.

PodSandboxStateValue state Container status.

string pod_sandbox_id Sandbox ID.

map<string, string> label_selector Container label, which does not support regular

expressions and must be fully matched.

 LinuxContainerSecurityContext

The API is used to specify container security configurations.

Parameter Description

Capability capabilities Added or removed capabilities.

bool privileged Whether the container is in privileged mode. Default

value: false

NamespaceOption

namespace_options

Container namespace options.

SELinuxOption selinux_options SELinux context, which is optional. This parameter

does not take effect now.

Int64Value run_as_user UID for running container processes. Only

run_as_user or run_as_username can be specified

at a time. run_as_username takes effect

preferentially.

string run_as_username Username for running container processes. If

specified, the user must exist in /etc/passwd in the

container image and be parsed by the runtime.

Otherwise, an error must occur during running.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 82

bool readonly_rootfs Whether the root file system in a container is

read-only. The default value is configured in

config.json.

repeated int64

supplemental_groups

List of user groups of the init process running in the

container (except the primary GID).

string apparmor_profile AppArmor configuration file of the container. This

parameter does not take effect now.

string seccomp_profile_path Path of the seccomp configuration file of the

container.

bool no_new_privs Whether to set the no_new_privs flag in the container.

 LinuxContainerResources

The API is used to specify configurations of Linux container resources.

Parameter Description

int64 cpu_period CPU CFS period. Default value: 0

int64 cpu_quota CPU CFS quota. Default value: 0

int64 cpu_shares CPU share (relative weight). Default value: 0

int64 memory_limit_in_bytes Memory limit (unit: byte). Default value: 0

int64 oom_score_adj OOMScoreAdj that is used to adjust the OOM killer.

Default value: 0

string cpuset_cpus CPU core used by the container. Default value: null

string cpuset_mems Memory nodes used by the container. Default value:

null

 Image

The API is used to describe the basic information about an image.

Parameter Description

string id Image ID.

repeated string repo_tags Image tag name repo_tags.

repeated string repo_digests Image digest information.

uint64 size Image size.

Int64Value uid Default image UID.

string username Default image username.

 ImageSpec

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 83

The API is used to represent the internal data structure of an image. Currently,

ImageSpec encapsulates only the container image name.

Parameter Description

string image Container image name.

 StorageIdentifier

The API is used to specify the unique identifier for defining the storage.

Parameter Description

string uuid Device UUID.

 FilesystemUsage

Parameter Description

int64 timestamp Timestamp when file system information is

collected.

StorageIdentifier storage_id UUID of the file system that stores images.

UInt64Value used_bytes Size of the metadata that stores images.

UInt64Value inodes_used Number of inodes of the metadata that stores images.

 AuthConfig

Parameter Description

string username Username used for downloading images.

string password Password used for downloading images.

string auth Authentication information used for downloading

images. The value is encoded by using Base64.

string server_address IP address of the server where images are

downloaded. This parameter does not take effect

now.

string identity_token Information about the token used for the registry

authentication. This parameter does not take effect

now.

string registry_token Information about the token used for the interaction

with the registry. This parameter does not take effect

now.

 Container

The API is used to describe container information, such as the ID and status.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 84

Parameter Description

string id Container ID.

string pod_sandbox_id ID of the sandbox to which the container belongs.

ContainerMetadata metadata Container metadata.

ImageSpec image Image specifications.

string image_ref Image used by the container. This parameter is an

image ID for most runtime.

ContainerState state Container status.

int64 created_at Container creation timestamp (unit: ns).

map<string, string> labels Key-value pair that can be used to identify a

container or a series of containers.

map<string, string> annotations Key-value pair that stores any information, whose

values cannot be changed by the runtime.

 ContainerStatus

The API is used to describe the container status information.

Parameter Description

string id Container ID.

ContainerMetadata metadata Container metadata.

ContainerState state Container status.

int64 created_at Container creation timestamp (unit: ns).

int64 started_at Container start timestamp (unit: ns).

int64 finished_at Container exit timestamp (unit: ns).

int32 exit_code Container exit code.

ImageSpec image Image specifications.

string image_ref Image used by the container. This parameter is an

image ID for most runtime.

string reason Brief description of the reason why the container is

in the current status.

string message Information that is easy to read and indicates the

reason why the container is in the current status.

map<string, string> labels Key-value pair that can be used to identify a

container or a series of containers.

map<string, string> annotations Key-value pair that stores any information, whose

values cannot be changed by the runtime.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 85

Parameter Description

repeated Mount mounts Information about the container mount point.

string log_path Path of the container log file that is in the

log_directory folder configured in

PodSandboxConfig.

 ContainerStatsFilter

The API is used to add filter criteria for the container stats list. The intersection of

multiple filter criteria is displayed.

Parameter Description

string id Container ID.

string pod_sandbox_id Sandbox ID.

map<string, string> label_selector Container label, which does not support regular

expressions and must be fully matched.

 ContainerStats

The API is used to add filter criteria for the container stats list. The intersection of

multiple filter criteria is displayed.

Parameter Description

ContainerAttributes attributes Container information.

CpuUsage cpu CPU usage information.

MemoryUsage memory Memory usage information.

FilesystemUsage writable_layer Information about the writable layer usage.

 ContainerAttributes

The API is used to list basic container information.

Parameter Description

string id Container ID.

ContainerMetadata metadata Container metadata.

map<string,string> labels Key-value pair that can be used to identify a

container or a series of containers.

map<string,string> annotations Key-value pair that stores any information, whose

values cannot be changed by the runtime.

 CpuUsage

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 86

The API is used to list the CPU usage information of a container.

Parameter Description

int64 timestamp Timestamp.

UInt64Value

usage_core_nano_seconds

CPU usage (unit: ns).

 MemoryUsage

The API is used to list the memory usage information of a container.

Parameter Description

int64 timestamp Timestamp.

UInt64Value working_set_bytes Memory usage.

 FilesystemUsage

The API is used to list the read/write layer information of a container.

Parameter Description

int64 timestamp Timestamp.

StorageIdentifier storage_id Writable layer directory.

UInt64Value used_bytes Number of bytes occupied by images at the writable

layer.

UInt64Value inodes_used Number of inodes occupied by images at the writable

layer.

 Device

The API is used to specify the host volume to be mounted to a container.

Parameter Description

string container_path Mounting path of a container.

string host_path Mounting path on the host.

string permissions Cgroup permission of a device. (r indicates that

containers can be read from a specified device. w

indicates that containers can be written to a specified

device. m indicates that containers can create new

device files.)

 LinuxContainerConfig

The API is used to specify Linux configurations.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 87

Parameter Description

LinuxContainerResources resources Container resource specifications.

LinuxContainerSecurityContext

security_context

Linux container security configuration.

 ContainerConfig

The API is used to specify all mandatory and optional fields for creating a container.

Parameter Description

ContainerMetadata metadata Container metadata. The information will uniquely

identify a container and should be used at runtime to

ensure correct operations. The information can also

be used at runtime to optimize the user experience

(UX) design, for example, construct a readable

name. This parameter is mandatory.

ImageSpec image Image used by the container. This parameter is

mandatory.

repeated string command Command to be executed. Default value: /bin/sh

repeated string args Parameters of the command to be executed.

string working_dir Current working path of the command.

repeated KeyValue envs Environment variables configured in the container.

repeated Mount mounts Information about the mount point to be mounted in

the container.

repeated Device devices Information about the device to be mapped in the

container.

map<string, string> labels Key-value pair that can be used to index and select a

resource.

map<string, string> annotations Unstructured key-value mappings that can be used to

store and retrieve any metadata.

string log_path Relative path to PodSandboxConfig.LogDirectory,

which is used to store logs (STDOUT and STDERR)

on the container host.

bool stdin Whether to open stdin of the container.

bool stdin_once Whether to immediately disconnect other data flows

connected with stdin when a data flow connected

with stdin is disconnected. This parameter does not

take effect now.

bool tty Whether to use a pseudo terminal to connect to stdio

of the container.

LinuxContainerConfig linux Container configuration information in the Linux

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 88

system.

 NetworkConfig

This API is used to specify runtime network configurations.

Parameter Description

string pod_cidr CIDR used by pod IP addresses.

 RuntimeConfig

This API is used to specify runtime network configurations.

Parameter Description

NetworkConfig network_config Runtime network configurations.

 RuntimeCondition

The API is used to describe runtime status information.

Parameter Description

string type Runtime status type.

bool status Runtime status.

string reason Brief description of the reason for the runtime status

change.

string message Message with high readability, which indicates the

reason for the runtime status change.

 RuntimeStatus

The API is used to describe runtime status.

Parameter Description

repeated RuntimeCondition

conditions

List of current runtime status.

1.3.5.2.1 Runtime Service

The runtime service provides APIs for operating pods and containers, and APIs for querying

the configuration and status information of the runtime service.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 89

?.1.RunPodSandbox

Prototype

rpc RunPodSandbox(RunPodSandboxRequest) returns (RunPodSandboxResponse) {}

Description

This API is used to create and start a PodSandbox. If the PodSandbox is successfully run, the

sandbox is in the ready state.

Precautions

1. The default image for starting a sandbox is

rnd-dockerhub.huawei.com/library/pause-${machine}:3.0 where ${machine}

indicates the architecture. On x86_64, the value of machine is amd64. On ARM64, the

value of machine is aarch64. Currently, only the amd64 or aarch64 image can be

downloaded from the rnd-dockerhub registry. If the image does not exist on the host,

ensure that the host can download the image from the rnd-dockerhub registry. If you

want to use another image, refer to pod-sandbox-image in the iSulad Deployment

Configuration.

2. The container name is obtained from fields in PodSandboxMetadata and separated by

underscores (_). Therefore, the metadata cannot contain underscores (_). Otherwise, the

ListPodSandbox API cannot be used for query even when the sandbox is running

successfully.

Parameters

Parameter Description

PodSandboxConfig config Sandbox configuration.

string runtime_handler Runtime for the created sandbox. Currently, lcr and

kata-runtime are supported.

Return Values

Return Value Description

string pod_sandbox_id If the operation is successful, the response is returned.

?.2.StopPodSandbox

Prototype

rpc StopPodSandbox(StopPodSandboxRequest) returns (StopPodSandboxResponse) {}

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 90

Description

This API is used to stop PodSandboxes and sandbox containers, and reclaim the network

resources (such as IP addresses) allocated to a sandbox. If any running container belongs to

the sandbox, the container must be forcibly stopped.

Parameters

Parameter Description

string pod_sandbox_id Sandbox ID.

Return Values

Return Value Description

None None

?.3.RemovePodSandbox

Prototype

rpc RemovePodSandbox(RemovePodSandboxRequest) returns (RemovePodSandboxResponse) {}

Description

This API is used to delete a sandbox. If any running container belongs to the sandbox, the

container must be forcibly stopped and deleted. If the sandbox has been deleted, no errors will

be returned.

Precautions

1. When a sandbox is deleted, network resources of the sandbox are not deleted. Before

deleting a pod, you must call StopPodSandbox to clear network resources. Ensure that

StopPodSandbox is called at least once before deleting the sandbox.

Parameters

Parameter Description

string pod_sandbox_id Sandbox ID.

Return Values

Return Value Description

None None

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 91

?.4.PodSandboxStatus

Prototype

rpc PodSandboxStatus(PodSandboxStatusRequest) returns (PodSandboxStatusResponse) {}

Description

This API is used to query the sandbox status. If the sandbox does not exist, an error is

returned.

Parameters

Parameter Description

string pod_sandbox_id Sandbox ID

bool verbose Whether to display additional information about the

sandbox. This parameter does not take effect now.

Return Values

Return Value Description

PodSandboxStatus status Status of the sandbox.

map<string, string> info Additional information about the sandbox. The key

can be any string, and the value is a JSON character

string. The information can be any debugging content.

When verbose is set to true, info cannot be empty.

This parameter does not take effect now.

?.5.ListPodSandbox

Prototype

rpc ListPodSandbox(ListPodSandboxRequest) returns (ListPodSandboxResponse) {}

Description

This API is used to return the sandbox information list. Filtering based on criteria is

supported.

Parameters

Parameter Description

PodSandboxFilter filter Filter criteria.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 92

Return Values

Return Value Description

repeated PodSandbox items Sandbox information list.

?.6.CreateContainer

grpc::Status CreateContainer(grpc::ServerContext *context, const

runtime::CreateContainerRequest *request, runtime::CreateContainerResponse *reply) {}

Description

This API is used to create a container in the PodSandbox.

Precautions
 sandbox_config in CreateContainerRequest is the same as the configuration

transferred to RunPodSandboxRequest to create a PodSandbox. It is transferred again

for reference only. PodSandboxConfig must remain unchanged throughout the lifecycle

of a pod.

 The container name is obtained from fields in ContainerMetadata and separated by

underscores (_). Therefore, the metadata cannot contain underscores (_). Otherwise, the

ListContainers API cannot be used for query even when the sandbox is running

successfully.

 CreateContainerRequest does not contain the runtime_handler field. The runtime

type of the container is the same as that of the corresponding sandbox.

Parameters

Parameter Description

string pod_sandbox_id ID of the PodSandbox where a container is to be

created.

ContainerConfig config Container configuration information.

PodSandboxConfig

sandbox_config

PodSandbox configuration information.

Supplement

Unstructured key-value mappings that can be used to store and retrieve any metadata. The

field can be used to transfer parameters for the fields for which the CRI does not provide

specific parameters.

 Customize the field:

Custom key:value Description

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 93

cgroup.pids.max:int64_t Used to limit the number of processes or

threads in a container. (Set the parameter to

-1 for unlimited number.)

Return Values

Return Value Description

string container_id ID of the created container.

?.7.StartContainer

Prototype

rpc StartContainer(StartContainerRequest) returns (StartContainerResponse) {}

Description

This API is used to start a container.

Parameters

Parameter Description

string container_id Container ID.

Return Values

Return Value Description

None None

?.8.StopContainer

Prototype

rpc StopContainer(StopContainerRequest) returns (StopContainerResponse) {}

Description

This API is used to stop a running container. You can set a graceful timeout time. If the

container has been stopped, no errors will be returned.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 94

Parameters

Parameter Description

string container_id Container ID.

int64 timeout Waiting time before a container is forcibly stopped.

The default value is 0, indicating forcible stop.

Return Values

None

?.9.RemoveContainer

Prototype

rpc RemoveContainer(RemoveContainerRequest) returns (RemoveContainerResponse) {}

Description

This API is used to delete a container. If the container is running, it must be forcibly stopped.

If the container has been deleted, no errors will be returned.

Parameters

Parameter Description

string container_id Container ID.

Return Values

None

?.10.ListContainers

Prototype

rpc ListContainers(ListContainersRequest) returns (ListContainersResponse) {}

Description

This API is used to return the container information list. Filtering based on criteria is

supported.

Parameters

Parameter Description

ContainerFilter filter Filter criteria.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 95

Return Values

Return Value Description

repeated Container containers Container information list.

?.11.ContainerStatus

Prototype

rpc ContainerStatus(ContainerStatusRequest) returns (ContainerStatusResponse) {}

Description

This API is used to return the container status information. If the container does not exist, an

error will be returned.

Parameters

Parameter Description

string container_id Container ID.

bool verbose Whether to display additional information about the

sandbox. This parameter does not take effect now.

Return Values

Return Value Description

ContainerStatus status Container status information.

map<string, string> info Additional information about the sandbox. The key

can be any string, and the value is a JSON character

string. The information can be any debugging content.

When verbose is set to true, info cannot be empty.

This parameter does not take effect now.

?.12.UpdateContainerResources

Prototype

rpc UpdateContainerResources(UpdateContainerResourcesRequest) returns

(UpdateContainerResourcesResponse) {}

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 96

Description

This API is used to update container resource configurations.

Precautions
 This API cannot be used to update the pod resource configurations.

 The value of oom_score_adj of any container cannot be updated.

Parameters

Parameter Description

string container_id Container ID.

LinuxContainerResources linux Linux resource configuration information.

Return Values

None

?.13.ExecSync

Prototype

rpc ExecSync(ExecSyncRequest) returns (ExecSyncResponse) {}

Description

The API is used to run a command in containers in synchronization mode through the gRPC

communication method.

Precautions

The interaction between the terminal and the containers must be disabled when a single

command is executed.

Parameters

Parameter Description

string container_id Container ID.

repeated string cmd Command to be executed.

int64 timeout Timeout period for stopping the command (unit:

second). The default value is 0, indicating that there is

no timeout limit. This parameter does not take effect

now.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 97

Return Values

Return Value Description

bytes stdout Standard output of the capture command.

bytes stderr Standard error output of the capture command.

int32 exit_code Exit code, which represents the completion of

command execution. The default value is 0, indicating

that the command is executed successfully.

?.14.Exec

Prototype

rpc Exec(ExecRequest) returns (ExecResponse) {}

Description

This API is used to run commands in a container through the gRPC communication method,

that is, obtain URLs from the CRI server, and then use the obtained URLs to establish a long

connection to the WebSocket server, implementing the interaction with the container.

Precautions

The interaction between the terminal and the container can be enabled when a single

command is executed. One of stdin, stdout, and stderr must be true. If tty is true, stderr

must be false. Multiplexing is not supported. In this case, the output of stdout and stderr will

be combined to a stream.

Parameters

Parameter Description

string container_id Container ID.

repeated string cmd Command to be executed.

bool tty Whether to run the command in a TTY.

bool stdin Whether to generate the standard input stream.

bool stdout Whether to generate the standard output stream.

bool stderr Whether to generate the standard error output stream.

Return Values

Return Value Description

string url Fully qualified URL of the exec streaming server.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 98

?.15.Attach

Prototype

rpc Attach(AttachRequest) returns (AttachResponse) {}

Description

This API is used to take over the init process of a container through the gRPC communication

method, that is, obtain URLs from the CRI server, and then use the obtained URLs to

establish a long connection to the WebSocket server, implementing the interaction with the

container. Only containers whose runtime is of the LCR type are supported.

Parameters

Parameter Description

string container_id Container ID.

bool tty Whether to run the command in a TTY.

bool stdin Whether to generate the standard input stream.

bool stdout Whether to generate the standard output stream.

bool stderr Whether to generate the standard error output stream.

Return Values

Return Value Description

string url Fully qualified URL of the attach streaming server.

?.16.ContainerStats

Prototype

rpc ContainerStats(ContainerStatsRequest) returns (ContainerStatsResponse) {}

Description

This API is used to return information about resources occupied by a container. Only

containers whose runtime is of the LCR type are supported.

Parameters

Parameter Description

string container_id Container ID.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 99

Return Values

Return Value Description

ContainerStats stats Container information. Note: Disks and inodes

support only the query of containers started by OCI

images.

?.17.ListContainerStats

Prototype

rpc ListContainerStats(ListContainerStatsRequest) returns

(ListContainerStatsResponse) {}

Description

This API is used to return the information about resources occupied by multiple containers.

Filtering based on criteria is supported.

Parameters

Parameter Description

ContainerStatsFilter filter Filter criteria.

Return Values

Return Value Description

repeated ContainerStats stats Container information list. Note: Disks and inodes

support only the query of containers started by OCI

images.

?.18.UpdateRuntimeConfig

Prototype

rpc UpdateRuntimeConfig(UpdateRuntimeConfigRequest) returns

(UpdateRuntimeConfigResponse);

Description

This API is used as a standard CRI to update the pod CIDR of the network plug-in. Currently,

the CNI network plug-in does not need to update the pod CIDR. Therefore, this API records

only access logs.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 100

Precautions

API operations will not modify the system management information, but only record a log.

Parameters

Parameter Description

RuntimeConfig runtime_config Information to be configured for the runtime.

Return Values

None

?.19.Status

Prototype

rpc Status(StatusRequest) returns (StatusResponse) {};

Description

This API is used to obtain the network status of the runtime and pod. Obtaining the network

status will trigger the update of network configuration. Only containers whose runtime is of

the LCR type are supported.

Precautions

If the network configuration fails to be updated, the original configuration is not affected. The

original configuration is overwritten only when the update is successful.

Parameters

Parameter Description

bool verbose Whether to display additional runtime information.

This parameter does not take effect now.

Return Values

Return Value Description

RuntimeStatus status Runtime status.

map<string, string> info Additional information about the runtime. The key of

info can be any value. The value must be in JSON

format and can contain any debugging information.

When verbose is set to true, info cannot be empty.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 101

1.3.5.2.2 Image Service

The service provides the gRPC API for pulling, viewing, and removing images from the

registry.

?.1.ListImages

Prototype

rpc ListImages(ListImagesRequest) returns (ListImagesResponse) {}

Description

This API is used to list existing image information.

Precautions

This is a unified API. You can run the cri images command to query embedded images.

However, embedded images are not standard OCI images. Therefore, query results have the

following restrictions:

 An embedded image does not have an image ID. Therefore, the value of image ID is the

config digest of the image.

 An embedded image has only config digest, and it does not comply with the OCI image

specifications. Therefore, the value of digest cannot be displayed.

Parameters

Parameter Description

ImageSpec filter Name of the image to be filtered.

Return Values

Return Value Description

repeated Image images Image information list.

?.2.ImageStatus

Prototype

rpc ImageStatus(ImageStatusRequest) returns (ImageStatusResponse) {}

Description

The API is used to query the information about a specified image.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 102

Precautions

1. If the image to be queried does not exist, ImageStatusResponse is returned and Image

is set to nil in the return value.

2. This is a unified API. Since embedded images do not comply with the OCI image

specifications and do not contain required fields, the images cannot be queried by using

this API.

Parameters

Parameter Description

ImageSpec image Image name.

bool verbose Whether to query additional information. This

parameter does not take effect now. No additional

information is returned.

Return Values

Return Value Description

Image image Image information.

map<string, string> info Additional image information. This parameter does

not take effect now. No additional information is

returned.

?.3.PullImage

Prototype

 rpc PullImage(PullImageRequest) returns (PullImageResponse) {}

Description

This API is used to download images.

Precautions

Currently, you can download public images, and use the username, password, and auth

information to download private images. The server_address, identity_token, and

registry_token fields in authconfig cannot be configured.

Parameters

Parameter Description

ImageSpec image Name of the image to be downloaded.

AuthConfig auth Verification information for downloading a private

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 103

image.

PodSandboxConfig

sandbox_config

Whether to download an image in the pod context.

This parameter does not take effect now.

Return Values

Return Value Description

string image_ref Information about the downloaded image.

?.4.RemoveImage

Prototype

rpc RemoveImage(RemoveImageRequest) returns (RemoveImageResponse) {}

Description

This API is used to delete specified images.

Precautions

This is a unified API. Since embedded images do not comply with the OCI image

specifications and do not contain required fields, you cannot delete embedded images by

using this API and the image ID.

Parameters

Parameter Description

ImageSpec image Name or ID of the image to be deleted.

Return Values

None

?.5.ImageFsInfo

Prototype

rpc ImageFsInfo(ImageFsInfoRequest) returns (ImageFsInfoResponse) {}

Description

This API is used to query the information about the file system that stores images.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 104

Precautions

Queried results are the file system information in the image metadata.

Parameters

None

Return Values

Return Value Description

repeated FilesystemUsage

image_filesystems

Information about the file system that stores images.

1.3.5.3 Constraints

1. If log_directory is configured in the PodSandboxConfig parameter when a sandbox is

created, log_path must be specified in ContainerConfig when all containers that belong

to the sandbox are created. Otherwise, the containers may not be started or deleted by

using the CRI.

The actual value of LOGPATH of containers is log_directory/log_path. If log_path is

not set, the final value of LOGPATH is changed to log_directory.

− If the path does not exist, iSulad will create a soft link pointing to the actual path of

container logs when starting a container. Then log_directory becomes a soft link.

There are two cases:

i. In the first case, if log_path is not configured for other containers in the

sandbox, log_directory will be deleted and point to log_path of the newly

started container. As a result, logs of the first started container point to logs of

the later started container.

ii. In the second case, if log_path is configured for other containers in the

sandbox, the value of LOGPATH of the container is log_directory/log_path.

Because log_directory is a soft link, the creation fails when

log_directory/log_path is used as the soft link to point to the actual path of

container logs.

− If the path exists, iSulad will attempt to delete the path (non-recursive) when

starting a container. If the path is a folder path containing content, the deletion fails.

As a result, the soft link fails to be created, the container fails to be started, and the

same error occurs when the container is going to be deleted.

2. If log_directory is configured in the PodSandboxConfig parameter when a sandbox is

created, and log_path is specified in ContainerConfig when a container is created, the

final value of LOGPATH is log_directory/log_path. iSulad does not recursively create

LOGPATH, therefore, you must ensure that dirname(LOGPATH) exists, that is, the

upper-level path of the final log file path exists.

3. If log_directory is configured in the PodSandboxConfig parameter when a sandbox is

created, and the same log_path is specified in ContainerConfig when multiple

containers are created, or if containers in different sandboxes point to the same

LOGPATH, the latest container log path will overwrite the previous path after the

containers are started successfully.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 105

4. If the image content in the remote registry changes and the original image is stored in the

local host, the name and tag of the original image are changed to none when you call the

CRI Pull image API to download the image again.

An example is as follows:

Locally stored images:

IMAGE TAG IMAGE ID SIZE

rnd-dockerhub.huawei.com/pproxyisulad/test latest 99e59f495ffaa

753kB

After the rnd-dockerhub.huawei.com/pproxyisulad/test:latest image in the remote

registry is updated and downloaded again:

IMAGE TAG IMAGE ID SIZE

<none> <none> 99e59f495ffaa

753kB

rnd-dockerhub.huawei.com/pproxyisulad/test latest d8233ab899d41

1.42MB

Run the isula images command. The value of REF is displayed as -.

REF IMAGE ID CREATED

SIZE

rnd-dockerhub.huawei.com/pproxyisulad/test:latest d8233ab899d41

2019-02-14 19:19:37 1.42MB

- 99e59f495ffaa 2016-05-04

02:26:41 753kB

1.3.6 Image Management

1.3.6.1 Docker Image Management

1.3.6.1.1 Logging In to a Registry

Description

The isula login command is run to log in to a registry. After successful login, you can run the

isula pull command to pull images from the registry. If the registry does not require a

password, you do not need to run this command before pulling images.

Usage

isula login [OPTIONS] SERVER

Parameters

For details about parameters in the login command, see Table 1-21.

Example

$ isula login -u abc my.csp-edge.com:5000

Login Succeeded

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 106

1.3.6.1.2 Logging Out of a Registry

Description

The isula logout command is run to log out of a registry. If you run the isula pull command

to pull images from the registry after logging out of the system, the image will fail to be

pulled because you are not authenticated.

Usage

isula logout SERVER

Parameters

For details about parameters in the logout command, see Table 1-22.

Example

$ isula logout my.csp-edge.com:5000

Logout Succeeded

1.3.6.1.3 Pulling Images from a Registry

Description

Pull images from a registry to the local host.

Usage

isula pull [OPTIONS] NAME[:TAG|@DIGEST]

Parameters

For details about parameters in the pull command, see Table 1-23.

Example

$ isula pull localhost:5000/official/busybox

Image "localhost:5000/official/busybox" pulling

Image

"localhost:5000/official/busybox@sha256:bf510723d2cd2d4e3f5ce7e93bf1e52c8fd7683199

5ac3bd3f90ecc866643aff" pulled

1.3.6.1.4 Deleting Images

Description

Delete one or more images.

Usage

isula rmi [OPTIONS] IMAGE [IMAGE...]

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 107

Parameters

For details about parameters in the rmi command, see Table 1-24.

Example

$ isula rmi rnd-dockerhub.huawei.com/official/busybox

Image "rnd-dockerhub.huawei.com/official/busybox" removed

1.3.6.1.5 Loading Images

Description

Load images from a .tar package. The .tar package must be exported by using the docker save

command or must be in the same format.

Usage

isula load [OPTIONS]

Parameters

For details about parameters in the load command, see Table 1-25.

Example

$ isula load -i busybox.tar

Load image from "/root/busybox.tar" success

1.3.6.1.6 Listing Images

Description

List all images in the current environment.

Usage

isula images

Parameters

For details about parameters in the images command, see Table 1-26.

Example

$ isula images

REF IMAGE ID CREATED SIZE

rnd-dockerhub.huawei.com/official/busybox:latest e4db68de4ff2 2019-06-15

08:19:54 1.376 MB

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 108

1.3.6.1.7 Inspecting Images

Description

After the configuration information of an image is returned, you can use the -f parameter to

filter the information as needed.

Usage

isula inspect [options] CONTAINER|IMAGE [CONTAINER|IMAGE...]

Parameters

For details about parameters in the inspect command, see Table 1-27.

Example

$ isula inspect -f "{{json .image.id}}" rnd-dockerhub.huawei.com/official/busybox

"e4db68de4ff27c2adfea0c54bbb73a61a42f5b667c326de4d7d5b19ab71c6a3b"

1.3.6.1.8 Two-Way Authentication

Description

After this function is enabled, iSulad and image repositories communicate over HTTPS. Both

iSulad and image repositories verify the validity of each other.

Usage

The corresponding registry needs to support this function and iSulad needs to be configured

as follows:

1. Modify iSulad configuration (default path: /etc/isulad/daemon.json) and set

use-decrypted-key to false.

2. Place related certificates in the folder named after the registry in the /etc/isulad/certs.d

directory. For details about how to generate certificates, visit the official Docker website:

− https://docs.docker.com/engine/security/certificates/

− https://docs.docker.com/engine/security/https/

3. Run the systemctl restart isulad command to restart iSulad.

Parameters

Parameters can be configured in the /etc/isulad/daemon.json file or carried when iSulad is

started.

isulad --use-decrypted-key=false

Example

Set use-decrypted-key to false.

$ cat /etc/isulad/daemon.json

{

 "group": "isulad",

https://docs.docker.com/engine/security/certificates/
https://docs.docker.com/engine/security/https/

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 109

 "graph": "/var/lib/isulad",

 "state": "/var/run/isulad",

 "engine": "lcr",

 "log-level": "ERROR",

 "pidfile": "/var/run/isulad.pid",

 "log-opts": {

 "log-file-mode": "0600",

 "log-path": "/var/lib/isulad",

 "max-file": "1",

 "max-size": "30KB"

 },

 "log-driver": "stdout",

 "hook-spec": "/etc/default/isulad/hooks/default.json",

 "start-timeout": "2m",

 "storage-driver": "overlay2",

 "storage-opts": [

 "overlay2.override_kernel_check=true"

],

 "registry-mirrors": [

 "docker.io"

],

 "insecure-registries": [

 "rnd-dockerhub.huawei.com"

],

 "pod-sandbox-image": "",

 "image-opt-timeout": "5m",

 "native.umask": "secure",

 "network-plugin": "",

 "cni-bin-dir": "",

 "cni-conf-dir": "",

 "image-layer-check": false,

 "use-decrypted-key": false,

 "insecure-skip-verify-enforce": false

}

Place the certificate in the corresponding directory.

$ pwd

/etc/isulad/certs.d/my.csp-edge.com:5000

$ ls

ca.crt tls.cert tls.key

Restart iSulad.

$ systemctl restart isulad

Run the pull command to download images from the registry:

$ isula pull my.csp-edge.com:5000/busybox

Image "my.csp-edge.com:5000/busybox" pulling

Image

"my.csp-edge.com:5000/busybox@sha256:f1bdc62115dbfe8f54e52e19795ee34b4473babdeb9bc

4f83045d85c7b2ad5c0" pulled

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 110

1.3.6.2 Embedded Image Management

1.3.6.2.1 Loading Images

Description

Load images based on the manifest files of embedded images. The value of --type must be

set to embedded.

Usage

isula load [OPTIONS] --input=FILE --type=TYPE

Parameters

For details about parameters in the load command, see Table 1-25.

Example

$ isula load -i test.manifest --type embedded

Load image from "/root/work/bugfix/tmp/ci_testcase_data/embedded/img/test.manifest"

success

1.3.6.2.2 Listing Images

Description

List all images in the current environment.

Usage

isula images [OPTIONS]

Parameters

For details about parameters in the images command, see Table 1-26.

Example

$ isula images

REF IMAGE ID CREATED SIZE

test:v1 9319da1f5233 2018-03-01 10:55:44 1.273 MB

1.3.6.2.3 Inspecting Images

Description

After the configuration information of an image is returned, you can use the -f parameter to

filter the information as needed.

Usage

isula inspect [options] CONTAINER|IMAGE [CONTAINER|IMAGE...]

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 111

Parameters

For details about parameters in the inspect command, see Table 1-27.

Example

$ isula inspect -f "{{json .created}}" test:v1

"2018-03-01T15:55:44.322987811Z"

1.3.6.2.4 Deleting Images

Description

Delete one or more images.

Usage

isula rmi [OPTIONS] IMAGE [IMAGE...]

Parameters

For details about parameters in the rmi command, see Table 1-24.

Example

$ isula rmi test:v1

Image "test:v1" removed

1.3.7 Checking the Container Health Status

1.3.7.1 Scenarios

In the production environment, bugs are inevitable in applications provided by developers or

services provided by platforms. Therefore, a management system is indispensable for

periodically checking and repairing applications. The container health check mechanism adds

a user-defined health check function for containers. When a container is created, the

--health-cmd option is configured so that commands are periodically executed in the

container to monitor the health status of the container based on return values.

1.3.7.2 Configuration Methods

Configurations during container startup:

isula run -itd --health-cmd "echo iSulad >> /tmp/health_check_file || exit 1"

--health-interval 5m --health-timeout 3s --health-exit-on-unhealthy busybox bash

The configurable options are as follows:

 --health-cmd: This option is mandatory. If 0 is returned after a command is run in a

container, the command execution succeeds. If a value other than 0 is returned, the

command execution fails.

 --health-interval: interval between two consecutive command executions. The default

value is 30s. The value ranges from 1s to the maximum value of Int64 (unit: nanosecond).

If the input parameter is set to 0s, the default value is used.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 112

 --health-timeout: maximum duration for executing a single check command. If the

execution times out, the command execution fails. The default value is 30s. The value

ranges from 1s to the maximum value of Int64 (unit: nanosecond). If the input parameter

is set to 0s, the default value is used. Only containers whose runtime is of the LCR type

are supported.

 --health-start-period: container initialization time. The default value is 0s. The value

ranges from 1s to the maximum value of Int64 (unit: nanosecond).

 --health-retries: maximum number of retries for the health check. The default value is 3.

The maximum value is the maximum value of Int32.

 --health-exit-on-unhealthy: specifies whether to kill a container when it is unhealthy.

The default value is false.

1.3.7.3 Check Rules

1. After a container is started, the container status is health:starting.

2. After the period specified by start-period, the cmd command is periodically executed in

the container at the interval specified by interval. That is, after the command is executed,

the command will be executed again after the specified period.

3. If the cmd command is successfully executed within the time specified by timeout and

the return value is 0, the check is successful. Otherwise, the check fails. If the check is

successful, the container status changes to health:healthy.

4. If the cmd command fails to be executed for the number of times specified by retries,

the container status changes to health:unhealthy, and the container continues the health

check.

5. When the container status is health:unhealthy, the container status changes to

health:healthy if a check succeeds.

6. If --exit-on-unhealthy is set, and the container exits due to reasons other than being

killed (the returned exit code is 137), the health check takes effect only after the

container is restarted.

7. When the cmd command execution is complete or times out, Docker daemon will record

the start time, return value, and standard output of the check to the configuration file of

the container. A maximum of five records can be recorded. In addition, the configuration

file of the container stores health check parameters.

8. When the container is running, the health check status is written into the container

configurations. You can run the isula inspect command to view the status.

"Health": {

 "Status": "healthy",

 "FailingStreak": 0,

 "Log": [

 {

 "Start": "2018-03-07T07:44:15.481414707-05:00",

 "End": "2018-03-07T07:44:15.556908311-05:00",

 "ExitCode": 0,

 "Output": ""

 },

 {

 "Start": "2018-03-07T07:44:18.557297462-05:00",

 "End": "2018-03-07T07:44:18.63035891-05:00",

 "ExitCode": 0,

 "Output": ""

 },

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 113

}

1.3.7.4 Usage Restrictions

 A maximum of five health check status records can be stored in a container. The last five

records are saved.

 If health check parameters are set to 0 during container startup, the default values are

used.

 After a container with configured health check parameters is started, if iSulad daemon

exits, the health check is not executed. After iSulad daemon is restarted, the health status

of the running container changes to starting. Afterwards, the check rules are the same as

above.

 If the health check fails for the first time, the health check status will not change from

starting to unhealthy until the specified number of retries (--health-retries) is reached,

or to healthy until the health check succeeds.

 The health check function of containers whose runtime is of the Open Container

Initiative (OCI) type needs to be improved. Only containers whose runtime is of the LCR

type are supported.

1.3.8 Querying Information

1.3.8.1 Querying the Service Version

Description

The isula version command is run to query the version of the iSulad service.

Usage

isula version

Example

Query the version information.

isula version

If the iSulad service is running properly, you can view the information about versions of the

client, server, and OCI config.

Client:

 Version: 1.0.31

 Git commit: fa7f9902738e8b3d7f2eb22768b9a1372ddd1199

 Built: 2019-07-30T04:21:48.521198248-04:00

Server:

 Version: 1.0.31

 Git commit: fa7f9902738e8b3d7f2eb22768b9a1372ddd1199

 Built: 2019-07-30T04:21:48.521198248-04:00

OCI config:

 Version: 1.0.0-rc5-dev

 Default file: /etc/default/isulad/config.json

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 114

If the iSulad service is not running, only the client information is queried and a message is

displayed indicating that the connection times out.

Client:

 Version: 1.0.31

 Git commit: fa7f9902738e8b3d7f2eb22768b9a1372ddd1199

 Built: 2019-07-30T04:21:48.521198248-04:00

Can not connect with server.Is the iSulad daemon running on the host?

Therefore, the isula version command is often used to check whether the iSulad service is

running properly.

1.3.8.2 Querying System-level Information

Description

The isula info command is run to query the system-level information, number of containers,

and number of images.

Usage

isula info

Example

Query system-level information, including the number of containers, number of images,

kernel version, and operating system (OS).

$ isula info

Containers: 2

 Running: 0

 Paused: 0

 Stopped: 2

Images: 8

Server Version: 1.0.31

Logging Driver: json-file

Cgroup Driverr: cgroupfs

Hugetlb Pagesize: 2MB

Kernel Version: 4.19

Operating System: Fedora 29 (Twenty Nine)

OSType: Linux

Architecture: x86_64

CPUs: 8

Total Memory: 7 GB

Name: localhost.localdomain

iSulad Root Dir: /var/lib/isulad

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 115

1.3.9 Security Features

1.3.9.1 Seccomp Security Configuration

1.3.9.1.1 Scenarios

Secure computing mode (seccomp) is a simple sandboxing mechanism introduced to the

Linux kernel from version 2.6.23. In some specific scenarios, you may want to perform some

privileged operations in a container without starting the privileged container. You can add

--cap-add at runtime to obtain some small-scope permissions. For container instances with

strict security requirements, th capability granularity may not meet the requirements. You can

use some methods to control the permission scope in a refined manner.

 Example

In a common container scenario, you can use the -v flag to map a directory (including a

binary file that cannot be executed by common users) on the host to the container.

In the container, you can add chmod 4777 (the modification permission of the binary file)

to the S flag bit. In this way, on the host, common users who cannot run the binary file

(or whose running permission is restricted) can obtain the permissions of the binary file

(such as the root permission) when running the binary file after the action added to the S

flag bit is performed, so as to escalate the permission or access other files.

In this scenario, if strict security requirements are required, the chmod, fchmod, and

fchmodat system calls need to be tailored by using seccomp.

1.3.9.1.2 Usage Restrictions

 Seccomp may affect performance. Before setting seccomp, evaluate the scenario and add

the configuration only if necessary.

1.3.9.1.3 Usage Guide

Use --security-opt to transfer the configuration file to the container where system calls need

to be filtered.

isula run -itd --security-opt seccomp=/path/to/seccomp/profile.json

rnd-dockerhub.huawei.com/official/busybox

1. When the configuration file is transferred to the container by using --security-opt during container

creation, the default configuration file (/etc/isulad/seccomp_default.json) is used.

2. When --security-opt is set to unconfined during container creation, system calls are not filtered for
the container.

3. /path/to/seccomp/profile.json must be an absolute path.

Obtaining the Default Seccomp Configuration of a Common Container
 Start a common container (or a container with --cap-add) and check its default

permission configuration.

cat /etc/isulad/seccomp_default.json | python -m json.tool > profile.json

The seccomp field contains many syscalls fields. Then extract only the syscalls fields

and perform the customization by referring to the customization of the seccomp

configuration file.

"defaultAction": "SCMP_ACT_ERRNO",

"syscalls": [

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 116

{

"action": "SCMP_ACT_ALLOW",

"name": "accept"

},

{

"action": "SCMP_ACT_ALLOW",

"name": "accept4"

},

{

"action": "SCMP_ACT_ALLOW",

"name": "access"

},

{

"action": "SCMP_ACT_ALLOW",

"name": "alarm"

},

{

"action": "SCMP_ACT_ALLOW",

"name": "bind"

},

]...

 Check the seccomp configuration that can be identified by the LXC.

cat

/var/lib/isulad/engines/lcr/74353e38021c29314188e29ba8c1830a4677ffe5c4decda77a1

e0853ec8197cd/seccomp

...

waitpid allow

write allow

writev allow

ptrace allow

personality allow [0,0,SCMP_CMP_EQ,0]

personality allow [0,8,SCMP_CMP_EQ,0]

personality allow [0,131072,SCMP_CMP_EQ,0]

personality allow [0,131080,SCMP_CMP_EQ,0]

personality allow [0,4294967295,SCMP_CMP_EQ,0]

...

Customizing the Seccomp Configuration File

When starting a container, use --security-opt to introduce the seccomp configuration file.

Container instances will restrict the running of system APIs based on the configuration file.

Obtain the default seccomp configuration of common containers, obtain the complete

template, and customize the configuration file by referring to this section to start the

container.

isula run --rm -it --security-opt seccomp:/path/to/seccomp/profile.json

rnd-dockerhub.huawei.com/official/busybox

The configuration file template is as follows:

{

"defaultAction": "SCMP_ACT_ALLOW",

"syscalls": [

{

"name": "syscall-name",

"action": "SCMP_ACT_ERRNO",

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 117

"args": null

}

]

}

 defaultAction and syscalls: The types of their corresponding actions are the same, but

their values must be different. The purpose is to ensure that each syscall has a default

action. Clear definitions in the syscall array shall prevail. As long as the values of

defaultAction and action are different, no action conflicts will occur. The following

actions are supported:

SCMP_ACT_ERRNO: forbids calling syscalls and displays error information.

SCMP_ACT_ALLOW: allows calling syscalls.

 syscalls: array, which can contain one or more syscalls. args is optional.

 name: syscalls to be filtered.

 args: array. The definition of each object in the array is as follows:

type Arg struct {

Index uint ̀ json:"index"` // Parameter ID. Take open(fd, buf, len) as an example.

The fd corresponds to 0 and buf corresponds to 1.

Value uint64 ̀ json:"value"` // Value to be compared with the parameter.

ValueTwo uint64 ̀ json:"value_two"` // It is valid only when Op is set to MaskEqualTo.

After the bitwise AND operation is performed on the user-defined value and the value

of Value, the result is compared with the value of ValueTwo. If they are the same, the

action is executed.

Op Operator `json:"op"`

}

The value of Op in args can be any of the following:

"SCMP_CMP_NE": NotEqualTo

"SCMP_CMP_LT": LessThan

"SCMP_CMP_LE": LessThanOrEqualTo

"SCMP_CMP_EQ": EqualTo

"SCMP_CMP_GE": GreaterThanOrEqualTo

"SCMP_CMP_GT": GreaterThan

"SCMP_CMP_MASKED_EQ": MaskEqualTo

1.3.9.2 capabilities Security Configuration

1.3.9.2.1 Scenarios

The capability mechanism is a security feature introduced to Linux kernel after version 2.2.

The super administrator permission is controlled at a smaller granularity to prevent the root

permission from being used. The root permission is divided based on different domains so

that the divided permissions can be enabled or disabled separately. For details about

capabilities, see the Linux Programmer's Manual (capabilities(7) - Linux man page).

man capabilities

http://man7.org/linux/man-pages/man7/capabilities.7.html

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 118

1.3.9.2.2 Usage Restrictions

 The default capability list (whitelist) of the iSulad service, which is carried by common

container processes by default, are as follows:

"CAP_CHOWN",

"CAP_DAC_OVERRIDE",

"CAP_FSETID",

"CAP_FOWNER",

"CAP_MKNOD",

"CAP_NET_RAW",

"CAP_SETGID",

"CAP_SETUID",

"CAP_SETFCAP",

"CAP_SETPCAP",

"CAP_NET_BIND_SERVICE",

"CAP_SYS_CHROOT",

"CAP_KILL",

"CAP_AUDIT_WRITE"

 Default configurations of capabilities include CAP_SETUID and CAP_FSETID. If the

host and a container share a directory, the container can set permissions for the binary

file in the shared directory. Common users on the host can use this feature to elevate

privileges. The container can write CAP_AUDIT_WRITE to the host, which may cause

risks. If the application scenario does not require this capability, you are advised to use

--cap-drop to delete the capability when starting the container.

 Adding capabilities means that the container process has greater capabilities than before.

In addition, more system call APIs are opened.

1.3.9.2.3 Usage Guide

iSulad uses --cap-add or --cap-drop to add or delete specific permissions for a container. Do

not add extra permissions to the container unless necessary. You are advised to remove the

default but unnecessary permissions from the container.

isula run --rm -it --cap-add all --cap-drop SYS_ADMIN

rnd-dockerhub.huawei.com/official/busybox

1.3.9.3 SELinux Security Configuration

1.3.9.3.1 Scenarios

Security-Enhanced Linux (SELinux) is a Linux kernel security module that provides a

mechanism for supporting access control security policies. Through Multi-Category Security

(MCS), iSulad labels processes in containers to control containers' access to resources,

reducing privilege escalation risks and preventing further damage.

1.3.9.3.2 Usage Restrictions

 Ensure that SELinux is enabled for the host and daemon (the selinux-enabled field in

the /etc/isulad/daemon.json file is set to true or --selinux-enabled is added to

command line parameters).

 Ensure that a proper SELinux policy has been configured on the host. container-selinux

is recommended.

 The introduction of SELinux affects the performance. Therefore, evaluate the scenario

before setting SELinux. Enable the SELinux function for the daemon and set the

SELinux configuration in the container only when necessary.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 119

 When you configure labels for a mounted volume, the source directory cannot be a

subdirectory of /, /usr, /etc, /tmp, /home, /run, /var, /root, or /usr.

 iSulad does not support labeling the container file system. To ensure that the container file system

and configuration directory are labeled with the container access permission, run the chcon
command to label them.

 If SELinux access control is enabled for iSulad, you are advised to add a label to the /var/lib/isulad
directory before starting daemon. Files and folders generated in the directory during container
creation inherit the label by default. For example:

chcon -R system_u:object_r:container_file_t:s0 /var/lib/isulad

1.3.9.3.3 Usage Guide

 Enable SELinux for daemon.

isulad --selinux-enabled

 Configure SELinux security context labels during container startup.

--security-opt="label=user:USER": Set the label user for the container.

--security-opt="label=role:ROLE": Set the label role for the container.

--security-opt="label=type:TYPE": Set the label type for the container.

--security-opt="label=level:LEVEL": Set the label level for the container.

--security-opt="label=disable": Disable the SELinux configuration for the container.

$ isula run -itd --security-opt label=type:container_t --security-opt

label=level:s0:c1,c2 rnd-dockerhub.huawei.com/official/centos

9be82878a67e36c826b67f5c7261c881ff926a352f92998b654bc8e1c6eec370

 Add the selinux label to a mounted volume (z indicates the shared mode).

$ isula run -itd -v /test:/test:z rnd-dockerhub.huawei.com/official/centos

9be82878a67e36c826b67f5c7261c881ff926a352f92998b654bc8e1c6eec370

$ls -Z /test

system_u:object_r:container_file_t:s0 file

1.3.10 Supporting OCI hooks

1.3.10.1 Description

The running of standard OCI hooks within the lifecycle of a container is supported. There are

three types of standard hooks:

 prestart hook: executed after the isula start command is executed and before the init

process of the container is started.

 poststart hook: executed after the init process is started and before the isula start

command is returned.

 poststop hook: executed after the container is stopped and before the stop command is

returned.

The configuration format specifications of OCI hooks are as follows:

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 120

 path: (Mandatory) The value must be a character string and must be an absolute path.

The specified file must have the execute permission.

 args: (Optional) The value must be a character string array. The syntax is the same as

that of args in execv.

 env: (Optional) The value must be a character string array. The syntax is the same as that

of environment variables. The content is a key-value pair, for example, PATH=/usr/bin.

 timeout: (Optional) The value must be an integer that is greater than 0. It indicates the

timeout interval for hook execution. If the running time of the hook process exceeds the

configured time, the hook process is killed.

The hook configuration is in JSON format and usually stored in a file ended with json. An

example is as follows:

{

 "prestart": [

 {

 "path": "/usr/bin/echo",

 "args": ["arg1", "arg2"],

 "env": ["key1=value1"],

 "timeout": 30

 },

 {

 "path": "/usr/bin/ls",

 "args": ["/tmp"]

 }

],

 "poststart": [

 {

 "path": "/usr/bin/ls",

 "args": ["/tmp"],

 "timeout": 5

 }

],

 "poststop": [

 {

 "path": "/tmp/cleanup.sh",

 "args": ["cleanup.sh", "-f"]

 }

]

}

1.3.10.2 APIs

Both iSulad and iSula provide the hook APIs. The default hook configurations provided by

iSulad apply to all containers. The hook APIs provided by iSula apply only to the currently

created container.

The default OCI hook configurations provided by iSulad are as follows:

 Set the configuration item hook-spec in the /etc/isulad/daemon.json configuration file

to specify the path of the hook configuration file. Example: "hook-spec":

"/etc/default/isulad/hooks/default.json"

 Use the isulad --hook-spec parameter to set the path of the hook configuration file.

The OCI hook configurations provided by iSula are as follows:

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 121

 isula create --hook-spec: specifies the path of the hook configuration file in JSON

format.

 isula run --hook-spec: specifies the path of the hook configuration file in JSON format.

The configuration for run takes effect in the creation phase.

1.3.10.3 Usage Restrictions

 The path specified by hook-spec must be an absolute path.

 The file specified by hook-spec must exist.

 The path specified by hook-spec must contain a common text file in JSON format.

 The file specified by hook-spec cannot exceed 10 MB.

 path configured for hooks must be an absolute path.

 The file that is designated by path configured for hooks must exist.

 The file that is designated by path configured for hooks must have the execute

permission.

 The owner of the file that is designated by path configured for hooks must be user root.

 Only user root has the write permission on the file that is designated by path configured

for hooks.

 The value of timeout configured for hooks must be greater than 0.

1.4 Appendix

1.4.1 Command Line Parameters

Table 1-21 login command parameters

Command Parameter Description

login

-H, --host Specifies the iSulad socket file path

to be accessed.

-p, --password Specifies the password for logging in

to the registry.

--password-stdin Specifies the password for obtaining

the registry from standard input.

-u, --username Specifies the username for logging in

to the registry.

Table 1-22 logout command parameters

Command Parameter Description

logout -H, --host Specifies the iSulad socket file path

to be accessed.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 122

Table 1-23 pull command parameters

Command Parameter Description

pull -H, --host Specifies the iSulad socket file path

to be accessed.

Table 1-24 rmi command parameters

Command Parameter Description

rmi

-H, --host Specifies the iSulad socket file path

to be accessed.

-f, --force Forcibly removes an image.

Table 1-25 load command parameters

Command Parameter Description

load -H, --host (supported only by

iSula)

Specifies the iSulad socket file path

to be accessed.

-i, --input Specifies where to import an image.

If the image is of the docker type, the

value is the image package path. If

the image is of the embedded type,

the value is the image manifest path.

--tag Uses the image name specified by

TAG instead of the default image

name. This parameter is supported

when the type is set to docker.

-t, --type Specifies the image type. The value

can be embedded or docker (default

value).

Table 1-26 images command parameters

Command Parameter Description

images

-H, --host Specifies the iSulad socket file path

to be accessed.

-q, --quit Displays only the image name.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 123

Table 1-27 inspect command parameters

Command Parameter Description

inspect -H, --host Specifies the iSulad socket file path

to be accessed.

-f, --format Outputs using a template.

-t, --time Timeout interval, in seconds. If the

inspect command fails to query

container information within the

specified period, the system stops

waiting and reports an error

immediately. The default value is

120s. If the value is less than or equal

to 0, the inspect command keeps

waiting until the container

information is obtained successfully.

1.4.2 CNI Parameters

Table 1-28 CNI single network parameters

Parameter Type Ma
nda
tor
y or
Not

Description

cniVersion string Yes CNI version. Only 0.3.0 and 0.3.1 are

supported.

name string Yes Network name, which is user-defined and must

be unique.

type string Yes Network type. The following types are

supported:

underlay_ipvlan

overlay_l2

underlay_l2

vpc-router

dpdk-direct

phy-direct

ipmasp bool No Configures the IP masquerade.

ipam structure No For details, see the IPAM parameter definition.

ipam.type string No IPAM type. The following types are

supported:

(1) For underlay_l2, overlay_l2, and

vpc-router networking, only the default value

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 124

Parameter Type Ma
nda
tor
y or
Not

Description

distributed_l2 is supported.

(2) For underlay_ipvlan networking, the

default value is distributed_l2. In the CCN

scenario, only null and fixed are supported. In

the CCE and FST 5G core scenarios, only null

and distributed_l2 are supported.

(3) For phy-direct and dpdk-direct

networking, the default value is l2, and

optional values are null and distributed_l2. In

the FST 5G core scenario, only null and

distributed_l2 are supported.

Description:

If the value is out of the range (for example,

host-local), Canal automatically sets the value

to the default value and no error is returned.

null: Canal is not used to manage IP addresses.

fixed: fixed IP address, which is used in the

CCN scenario.

l2: This value is not used in any scenario.

distributed_l2: The distributed small subnet is

used to manage IP addresses.

ipam.subnet string No Subnet information. Canal supports the subnet

mask ranging from 8 to 29. The IP address

cannot be a multicast address (for example,

224.0.0.0/4), reserved address (240.0.0.0/4),

local link address (169.254.0.0/16), or local

loop address (127.0.0.0/8).

ipam.gateway string No Gateway IP address.

ipam.range-start string No Available start IP address.

ipam.range-end string No Available end IP address.

ipam.routes structure No Subnet list. Each element is a route dictionary.

For details, see the route definition.

ipam.routes.dst string No Destination network.

ipam.routes.gw string No Gateway address.

dns structure No Contains some special DNS values.

dns.nameservers []string No NameServers

dns.domain string No Domain

dns.search []string No Search

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 125

Parameter Type Ma
nda
tor
y or
Not

Description

dns.options []string No Options

multi_entry int No Number of IP addresses required by a vNIC.

The value ranges from 0 to 16. For physical

passthrough, a maximum of 128 IP addresses

can be applied for a single NIC.

backup_mode bool No Active/Standby mode, which is used only for

phy-direct and dpdk-direct networking.

vlanID int No The value ranges from 0 to 4095. It can be

specified through PaaS.

vlan_inside bool No The value true indicates that the VLAN

function is implemented internally on the

node, and the value false indicates that the

VLAN function is implemented externally.

vxlanID int No The value ranges from 0 to 16777215. It can

be specified through PaaS.

vxlan_inside bool No The value true indicates that the VLAN

function is implemented internally on the

node, and the value false indicates that the

VLAN function is implemented externally.

action string No This parameter can be used only with the

special container ID 000000000000.

Create: creates a network.

Delete: deletes a network.

args map[string]i

nterface{}

No Key-value pair type.

runtimeConfig structure No None

capabilities structure No None

Table 1-29 CNI args parameters

Parameter Type Ma
nda
tory

Description

K8S_POD_NAM

E

string No Set this parameter when you apply for a fixed

IP address

(runtimeConfig.ican_caps.fixed_ip is set to

true).

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 126

Parameter Type Ma
nda
tory

Description

K8S_POD_NAM

ESPACE

string No Set this parameter when you apply for a fixed

IP address

(runtimeConfig.ican_caps.fixed_ip is set to

true).

SECURE_CONT

AINER

string No Secure container flag.

multi_port int No The value ranges from 1 to 8. The default

value is 1. Specifies the number of

passthrough NICs. Only phy-direct and

dpdk-direct networks are supported.

phy-direct string No Specifies the NIC to be connected when you

create an SR-IOV container network.

dpdk-direct string No Specifies the NIC to be connected when you

create a DPDK passthrough container

network.

tenant_id string No Indicates the tenant ID.

Only vpc-router networks are supported.

vpc_id string No VPC ID.

Only vpc-router networks are supported.

secret_name string No Specifies the AK/SK object name on the K8S

APIServer.

Only vpc-router networks are supported.

For details, see the configuration of

VPC-Router logical networks.

IP string No IP address specified by the user, in the format

of 192.168.0.10.

K8S_POD_NETW

ORK_ARGS

string No Specifies an IP address, in the format of

192.168.0.10. If both IP and

K8S_POD_NETWORK_ARGS in args are

not empty, the value of

K8S_POD_NETWORK_ARGS prevails.

INSTANCE_NA

ME

string No INSTANCE ID.

Refer to fixed IP addresses that support

containers.

dist_gateway_disa

ble

bool No The value true indicates that no gateway is

created, and the value false indicates that a

gateway is created.

phynet string or

[]string

No Specifies the name of the physical plane to be

added. The physical plane name is predefined

and corresponds to that in the SNC system.

openEuler

Container User Guide 1 iSulad Container Engine

2020-04-01 127

Parameter Type Ma
nda
tory

Description

When two plane names are entered, the active

and standby planes are supported. Example:

phy_net1 or ["phy_net2","phy_net3"]

endpoint_policies struct No "endpoint_policies": [

{

"Type": "",

"ExceptionList": [

""

],

"NeedEncap": true,

"DestinationPrefix": ""

}

]

port_map struct No On a NAT network, container ports can be

advertised to host ports.

"port_map": [

{

"local_port": number,

"host_port": number,

"protocol": [string...]

}...

]

Table 1-30 CNI multiple network parameters

Parameter Type Mandatory Description

cniVersion string Yes CNI version. Only

0.3.0 and 0.3.1 are

supported.

name string Yes Network name,

which is

user-defined and

must be unique.

plugins struct Yes For details, see

Table 1-28

openEuler

Container User Guide 2 System Container

2020-04-01 128

2 System Container

2.1 Overview

2.2 Installation Guideline

2.3 Usage Guide

2.4 Appendix

2.1 Overview
System containers are used for heavyweight applications and cloud-based services in

scenarios with re-computing, high performance, and high concurrency. Compared with the

VM technology, system containers can directly inherit physical machine features and has

better performance and less overhead. In addition, system containers can be allocated more

computing units of limited resources, reducing costs. Therefore, system containers can be

used to build differentiated product competitiveness and provide computing unit instances

with higher computing density, lower price, and better performance.

2.2 Installation Guideline
Step 1 Install the container engine iSulad.

yum install iSulad

Step 2 Install dependent packages of system containers.

yum install isulad-tools authz isulad-lxcfs-toolkit lxcfs

Step 3 Run the following command to check whether iSulad is started:

systemctl status isulad

Step 4 Enable the lxcfs and authz services.

systemctl start lxcfs

systemctl start authz

----End

openEuler

Container User Guide 2 System Container

2020-04-01 129

2.3 Usage Guide

2.3.1 Introduction

System container functions are enhanced based on the iSula container engine. The container

management function and the command format of the function provided by system containers

are the same as those provided by the iSula container engine.

The following sections describe how to use the enhanced functions provided by system

containers. For details about other command operations, see 1 iSulad Container Engine.

The system container functions involve only the isula create/run command. Unless otherwise

specified, this command is used for all functions. The command format is as follows:

isula create/run [OPTIONS] [COMMAND] [ARG...]

In the preceding format:

 OPTIONS: one or more command parameters. For details about supported parameters,

see 1 iSulad Container Engine > 1.4 Appendix > 1.4.1 Command Line Parameters.

 COMMAND: command executed after a system container is started.

 ARG: parameter corresponding to the command executed after a system container is

started.

2.3.2 Specifying Rootfs to Create a Container

Function Description

Different from a common container that needs to be started by specifying a container image, a

system container is started by specifying a local root file system (rootfs) through the

--external-rootfs parameter. Rootfs contains the operating system environment on which the

container depends during running.

Parameter Description

Comman
d

Parameter Value Description

isula

create/run

--external-rootfs  Variable of the string type.

 Absolute path in the root file

system of the container, that is, the

path of rootfs.

Constraints
 The rootfs directory specified by the --external-rootfs parameter must be an absolute

path.

 The rootfs directory specified by the --external-rootfs parameter must be a complete OS

environment. Otherwise, the container fails to be started.

 When a container is deleted, the rootfs directory specified by --external-rootfs is not

deleted.

openEuler

Container User Guide 2 System Container

2020-04-01 130

 Containers based on ARM rootfs cannot run on x86 servers. Containers based on x86

rootfs cannot run on ARM servers.

 You are not advised to start multiple container instances by using the same rootfs. That is,

one rootfs is used only by container instances in the same lifecycle.

Example

If the local rootfs path is /root/myrootfs, run the following command to start a system

container:

isula run -tid --system-container --external-rootfs /root/myrootfs none init

Rootfs is a user-defined file system. Prepare it by yourself. For example, a rootfs is generated after the
TAR package of container images is decompressed.

2.3.3 Using systemd to Start a Container

Function Description

The init process started in system containers differs from that in common containers.

Common containers cannot start system services through systemd. However, system

containers have this capability. You can enable the systemd service by specifying the

--system-contianer parameter when starting a system container.

Parameter Description

Comman
d

Parameter Value Description

isula

create/run

--system-contai

ner

 The value is of a Boolean data type and can be true or

false. The default value is true.

 Specifies whether it is a system container. This function

must be enabled.

Constraints
 The systemd service needs to call some special system APIs, including mount, umount2,

unshare, reboot, and name_to_handle_at. Therefore, permissions to call the preceding

APIs are enabled for system containers when the privileged container tag is disabled.

 All system containers are started by the init process. The init process does not respond to

the SIGTERM signal which indicates normal exit. By default, the stop command

forcibly kills the container 10 seconds later. If you need a quicker stop, you can manually

specify the timeout duration of the stop command.

 --system-container must be used together with --external-rootfs.

 Various services can run in a system container. The systemctl command is used to

manage the service starting and stopping. Services may depend on each other. As a result,

when an exception occurs, some service processes are in the D or Z state so that the

container cannot exit properly.

 Some service processes in a system container may affect other operation results. For

example, if the NetworkManager service is running in the container, adding NICs to the

openEuler

Container User Guide 2 System Container

2020-04-01 131

container may be affected (the NICs are successfully added but then stopped by the

NetworkManger), resulting in unexpected results.

 Currently, system containers and hosts cannot be isolated by using udev events.

Therefore, the fstab file cannot be configured.

 The systemd service may conflict with the cgconfig service provided by libcgroup. You

are advised to delete the libcgroup-related packages from a container or set Delegate of

the cgconfig service to no.

Example
 Specify the --system-container and --external-rootfs parameters to start a system

container.

[root@localhost ~]# isula run -tid -n systest01 --system-container

--external-rootfs /root/myrootfs none init

 After the preceding commands are executed, the container is running properly. You can

run the exec command to access the container and view the process information. The

command output indicates that the systemd service has been started.

[root@localhost ~]# isula exec -it systest01 bash

[root@localhost /]# ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 2 06:49 ? 00:00:00 init

root 14 1 2 06:49 ? 00:00:00 /usr/lib/systemd/systemd-journal

root 16 1 0 06:49 ? 00:00:00 /usr/lib/systemd/systemd-network

dbus 23 1 0 06:49 ? 00:00:00 /usr/bin/dbus-daemon --system --

root 25 0 0 06:49 ? 00:00:00 bash

root 59 25 0 06:49 ? 00:00:00 ps –ef

 Run the systemctl command in the container to check the service status. The command

output indicates that the service is managed by systemd.

[root@localhost /]# systemctl status dbus

● dbus.service - D-Bus System Message Bus

 Loaded: loaded (/usr/lib/systemd/system/dbus.service; static; vendor preset:

disabled)

 Active: active (running) since Mon 2019-07-22 06:49:38 UTC; 2min 5

8s ago

 Docs: man:dbus-daemon(1)

 Main PID: 23 (dbus-daemon)

 CGroup: /system.slice/dbus.service

 └─23 /usr/bin/dbus-daemon --system --address=systemd: --nofork --nopidf

ile --systemd-activation --syslog-only

Jul 22 06:49:38 localhost systemd[1]: Started D-Bus System Message Bus.

 Run the systemctl command in the container to stop or start the service. The command

output indicates that the service is managed by systemd.

[root@localhost /]# systemctl stop dbus

Warning: Stopping dbus.service, but it can still be activated by:

 dbus.socket

[root@localhost /]# systemctl start dbus

openEuler

Container User Guide 2 System Container

2020-04-01 132

2.3.4 Reboot or Shutdown in a Container

Function Description

The reboot and shutdown commands can be executed in a system container. You can run the

reboot command to restart a container, and run the shutdown command to stop a container.

Parameter Description

Comman
d

Parameter Value Description

isula

create/run

--restart  Variable of the string type.

 Supported option is as follows:

on-reboot: restarts the system

container.

Constraints
 The shutdown function relies on the actual OS of the container running environment.

 When you run the shutdown -h now command to shut down the system, do not open

multiple consoles. For example, if you run the isula run -ti command to open a console

and run the isula attach command for the container in another host bash, another

console is opened. In this case, the shutdown command fails to be executed.

Example
 Specify the --restart on-reboot parameter when starting a container. For example:

[root@localhost ~]# isula run -tid --restart on-reboot --system-container

--external-rootfs /root/myrootfs none init

106faae22a926e22c828a0f2b63cf5c46e5d5986ea8a5b26de81390d0ed9714f

 In the container, run the reboot command.

[root@localhost ~]# isula exec -it 10 bash

[root@localhost /]# reboot

Check whether the container is restarted.

[root@localhost ~]# isula exec -it 10 ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.1 0.0 21588 9504 ? Ss 12:11 0:00 init

root 14 0.1 0.0 27024 9376 ? Ss 12:11 0:00 /usr/lib/system

root 17 0.0 0.0 18700 5876 ? Ss 12:11 0:00 /usr/lib/system

dbus 22 0.0 0.0 9048 3624 ? Ss 12:11 0:00 /usr/bin/dbus-d

root 26 0.0 0.0 8092 3012 ? Rs+ 12:13 0:00 ps aux

 In the container, run the shutdown command.

[root@localhost ~]# isula exec -it 10 bash

[root@localhost /]# shutdown -h now

[root@localhost /]# [root@localhost ~]#

Check whether the container is stopped.

openEuler

Container User Guide 2 System Container

2020-04-01 133

[root@localhost ~]# isula exec -it 10 bash

Error response from daemon: Exec container error;Container is not

running:106faae22a926e22c828a0f2b63cf5c46e5d5986ea8a5b26de81390d0ed9714f

2.3.5 Configurable Cgroup Path

Function Description

System containers provide the capabilities of isolating and reserving container resources on

hosts. You can use the --cgroup-parent parameter to specify the cgroup directory used by a

container to another directory, thereby flexibly allocating host resources. For example, if the

cgroup parent path of containers A, B, and C is set to /lxc/cgroup1, and the cgroup parent

path of containers D, E, and F is set to /lxc/cgroup2, the containers are divided into two

groups through the cgroup paths, implementing resource isolation at the cgroup level.

Parameter Description

Command Parameter Value Description

isula create/run --cgroup-parent  Variable of the string type.

 Specifies the cgroup parent path of

the container.

In addition to specifying the cgroup parent path for a system container using commands, you

can also specify the cgroup paths of all containers by modifying the startup configuration files

of the iSulad container engine.

Configuration File
Path

Parameter Description

/etc/isulad/daemon.json --cgroup-parent  Variable of the string type.

 Specifies the default cgroup parent path

of the container.

 Example: "cgroup-parent":

"/lxc/mycgroup"

Constraints
 If the cgroup parent parameter is set on both the daemon and client, the value specified

on the client takes effect.

 If container A is started before container B, the cgroup parent path of container B is

specified as the cgroup path of container A. When deleting a container, you need to

delete container B and then container A. Otherwise, residual cgroup resources exist.

Example

Start a system container and specify the --cgroup-parent parameter.

openEuler

Container User Guide 2 System Container

2020-04-01 134

[root@localhost ~]# isula run -tid --cgroup-parent /lxc/cgroup123 --system-container

--external-rootfs /root/myrootfs none init

115878a4dfc7c5b8c62ef8a4b44f216485422be9a28f447a4b9ecac4609f332e

Check the cgroup information of the init process in the container.

[root@localhost ~]# isula inspect -f "{{json .State.Pid}}" 11

22167

[root@localhost ~]# cat /proc/22167/cgroup

13:blkio:/lxc/cgroup123/115878a4dfc7c5b8c62ef8a4b44f216485422be9a28f447a4b9ecac460

9f332e

12:perf_event:/lxc/cgroup123/115878a4dfc7c5b8c62ef8a4b44f216485422be9a28f447a4b9ec

ac4609f332e

11:cpuset:/lxc/cgroup123/115878a4dfc7c5b8c62ef8a4b44f216485422be9a28f447a4b9ecac46

09f332e

10:pids:/lxc/cgroup123/115878a4dfc7c5b8c62ef8a4b44f216485422be9a28f447a4b9ecac4609

f332e

9:rdma:/lxc/cgroup123/115878a4dfc7c5b8c62ef8a4b44f216485422be9a28f447a4b9ecac4609f

332e

8:devices:/lxc/cgroup123/115878a4dfc7c5b8c62ef8a4b44f216485422be9a28f447a4b9ecac46

09f332e

7:hugetlb:/lxc/cgroup123/115878a4dfc7c5b8c62ef8a4b44f216485422be9a28f447a4b9ecac46

09f332e

6:memory:/lxc/cgroup123/115878a4dfc7c5b8c62ef8a4b44f216485422be9a28f447a4b9ecac460

9f332e

5:net_cls,net_prio:/lxc/cgroup123/115878a4dfc7c5b8c62ef8a4b44f216485422be9a28f447a

4b9ecac4609f332e

4:cpu,cpuacct:/lxc/cgroup123/115878a4dfc7c5b8c62ef8a4b44f216485422be9a28f447a4b9ec

ac4609f332e

3:files:/lxc/cgroup123/115878a4dfc7c5b8c62ef8a4b44f216485422be9a28f447a4b9ecac4609

f332e

2:freezer:/lxc/cgroup123/115878a4dfc7c5b8c62ef8a4b44f216485422be9a28f447a4b9ecac46

09f332e

1:name=systemd:/lxc/cgroup123/115878a4dfc7c5b8c62ef8a4b44f216485422be9a28f447a4b9e

cac4609f332e/init.scope

0::/lxc/cgroup123/115878a4dfc7c5b8c62ef8a4b44f216485422be9a28f447a4b9ecac4609f332e

The cgroup parent path of the container is set to /sys/fs/cgroup/<controller>/lxc/cgroup123.

In addition, you can configure the container daemon file to set the cgroup parent paths for all

containers. For example:

{

 "cgroup-parent": "/lxc/cgroup123",

}

Restart the container engine for the configuration to take effect.

2.3.6 Writable Namespace Kernel Parameters

Function Description

For services running in containers, such as databases, big data, and common applications,

some kernel parameters need to be set and adjusted to obtain the optimal performance and

reliability. The modification permission of all kernel parameters must be disabled or enabled

simultaneously (by using privileged container).

openEuler

Container User Guide 2 System Container

2020-04-01 135

When the modification permission is disabled, only the --sysctl external interface is provided

and parameters cannot be flexibly modified in a container.

When the modification permission is enabled, some kernel parameters are globally valid. If

some parameters are modified in a container, all programs on the host will be affected,

harming security.

System containers provide the --ns-change-opt parameter, which can be used to dynamically

set namespace kernel parameters in a container. The parameter value can be net or ipc.

Parameter Description

Command Parameter Value Description

isula create/run --ns-change-opt  Variable of the string type.

 The parameter value can be net or ipc.

net: All namespace parameters in the

/proc/sys/net directory are supported.

ipc: Supported namespace parameters are as

follows:

/proc/sys/kernel/msgmax

/proc/sys/kernel/msgmnb

/proc/sys/kernel/msgmni

/proc/sys/kernel/sem

/proc/sys/kernel/shmall

/proc/sys/kernel/shmmax

/proc/sys/kernel/shmmni

/proc/sys/kernel/shm_rmid_forced

/proc/sys/fs/mqueue/msg_default

/proc/sys/fs/mqueue/msg_max

/proc/sys/fs/mqueue/msgsize_default

/proc/sys/fs/mqueue/msgsize_max

/proc/sys/fs/mqueue/queues_max

 You can specify multiple namespace

configurations and separate them with commas

(,). For example, --ns-change-opt=net,ipc.

Constraints
 If both --privileged (privileged container) and --ns-change-opt are specified during

container startup, --ns-change-opt does not take effect.

Example

Start a container and set --ns-change-opt to net.

openEuler

Container User Guide 2 System Container

2020-04-01 136

[root@localhost ~]# isula run -tid --ns-change-opt net --system-container

--external-rootfs /root/myrootfs none init

4bf44a42b4a14fdaf127616c90defa64b4b532b18efd15b62a71cbf99ebc12d2

[root@localhost ~]# isula exec -it 4b mount | grep /proc/sys

proc on /proc/sys type proc (ro,nosuid,nodev,noexec,relatime)

proc on /proc/sysrq-trigger type proc (ro,nosuid,nodev,noexec,relatime)

proc on /proc/sys/net type proc (rw,nosuid,nodev,noexec,relatime)

The mount point /proc/sys/net in the container has the rw option, indicating that the

net-related namespace kernel parameters have the read and write permissions.

Start another container and set --ns-change-opt to ipc.

[root@localhost ~]# isula run -tid --ns-change-opt ipc --system-container

--external-rootfs /root/myrootfs none init

c62e5e5686d390500dab2fa76b6c44f5f8da383a4cbbeac12cfada1b07d6c47f

[root@localhost ~]# isula exec -it c6 mount | grep /proc/sys

proc on /proc/sys type proc (ro,nosuid,nodev,noexec,relatime)

proc on /proc/sysrq-trigger type proc (ro,nosuid,nodev,noexec,relatime)

proc on /proc/sys/kernel/shmmax type proc (rw,nosuid,nodev,noexec,relatime)

proc on /proc/sys/kernel/shmmni type proc (rw,nosuid,nodev,noexec,relatime)

proc on /proc/sys/kernel/shmall type proc (rw,nosuid,nodev,noexec,relatime)

proc on /proc/sys/kernel/shm_rmid_forced type proc (rw,nosuid,nodev,noexec,relatime)

proc on /proc/sys/kernel/msgmax type proc (rw,nosuid,nodev,noexec,relatime)

proc on /proc/sys/kernel/msgmni type proc (rw,nosuid,nodev,noexec,relatime)

proc on /proc/sys/kernel/msgmnb type proc (rw,nosuid,nodev,noexec,relatime)

proc on /proc/sys/kernel/sem type proc (rw,nosuid,nodev,noexec,relatime)

proc on /proc/sys/fs/mqueue type proc (rw,nosuid,nodev,noexec,relatime)

The mount point information of ipc-related kernel parameters in the container contains the rw

option, indicating that the ipc-related namespace kernel parameters have the read and write

permissions.

2.3.7 Shared Memory Channels

Function Description

System containers enable the communication between container and host processes through

shared memory. You can set the --host-channel parameter when creating a container to allow

the host to share the same tmpfs with the container so that they can communicate with each

other.

Parameter Description

Command Parameter Value Description

isula

create/run

--host-channel  Variable of the string type. Its format is as follows:

<host path>:<container path>:<rw/ro>:<size limit>

 The parameter is described as follows:

<host path>: path to which tmpfs is mounted on the

host, which must be an absolute path.

<container path>: path to which tmpfs is mounted in

a container, which must be an absolute path.

<rw/ro>: permissions on the file system mounted to

openEuler

Container User Guide 2 System Container

2020-04-01 137

Command Parameter Value Description

the container. The value can only be rw (read and

write) or ro (read only). The default value is rw.

<size limit>: maximum size used by the mounted

tmpfs. The minimum value is one 4 KB physical

page, and the maximum value is half of the total

physical memory in the system. The default value is

64MB.

Constraints
 The lifecycle of tmpfs mounted on the host starts from the container startup to the

container deletion. After a container is deleted and its occupied space is released, the

space is removed.

 When a container is deleted, the path to which tmpfs is mounted on the host is deleted.

Therefore, an existing directory on the host cannot be used as the mount path.

 To ensure that processes running by non-root users on the host can communicate with

containers, the permission for tmpfs mounted on the host is 1777.

Example

Specify the --host-channel parameter when creating a container.

[root@localhost ~]# isula run --rm -it --host-channel /testdir:/testdir:rw:32M

--system-container --external-rootfs /root/myrootfs none init

root@3b947668eb54:/# dd if=/dev/zero of=/testdir/test.file bs=1024 count=64K

dd: error writing '/testdir/test.file': No space left on device

32769+0 records in

32768+0 records out

33554432 bytes (34 MB, 32 MiB) copied, 0.0766899 s, 438 MB/s

 If --host-channel is used for size limit, the file size is constrained by the memory limit in the

container. (The OOM error may occur when the memory usage reaches the upper limit.)

 If a user creates a shared file on the host, the file size is not constrained by the memory limit in the
container.

 If you need to create a shared file in the container and the service is memory-intensive, you can add
the value of --host-channel to the original value of the container memory limit, eliminating the
impact.

2.3.8 Dynamically Loading the Kernel Module

Function Description

Services in a container may depend on some kernel modules. You can set environment

variables to dynamically load the kernel modules required by services in the container to the

host before the system container starts. This feature must be used together with isulad-hooks.

For details, see 2.3.12 Dynamically Managing Container Resources (syscontainer-tools).

openEuler

Container User Guide 2 System Container

2020-04-01 138

Parameter Description

Command Parameter Value Description

isula create/run -e

KERNEL_MODULES=module_name1,modu

le_name

 Variable of the

string type.

 This parameter can

be set to multiple

modules. Use

commas (,) to

separate module

names.

Constraints
 If loaded kernel modules are not verified or conflict with existing modules on the host,

an unpredictable error may occur on the host. Therefore, exercise caution when loading

kernel modules.

 Dynamic kernel module loading transfers kernel modules to be loaded to containers.

This function is implemented by capturing environment variables for container startup

using isulad-tools. Therefore, this function relies on the proper installation and

deployment of isulad-tools.

 Loaded kernel modules need to be manually deleted.

Example

When starting a system container, specify the -e KERNEL_MODULES parameter. After the

system container is started, the ip_vs module is successfully loaded to the kernel.

[root@localhost ~]# lsmod | grep ip_vs

[root@localhost ~]# isula run -tid -e KERNEL_MODULES=ip_vs,ip_vs_wrr --hook-spec

/etc/isulad-tools/hookspec.json --system-container --external-rootfs /root/myrootfs

none init

ae18c4281d5755a1e153a7bff6b3b4881f36c8e528b9baba8a3278416a5d0980

[root@localhost ~]# lsmod | grep ip_vs

ip_vs_wrr 16384 0

ip_vs 176128 2 ip_vs_wrr

nf_conntrack 172032 7

xt_conntrack,nf_nat,nf_nat_ipv6,ipt_MASQUERADE,nf_nat_ipv4,nf_conntrack_netlink,ip

_vs

nf_defrag_ipv6 20480 2 nf_conntrack,ip_vs

libcrc32c 16384 3 nf_conntrack,nf_nat,ip_vs

 isulad-tools must be installed on the host.

 --hooks-spec must be set to isulad hooks.

openEuler

Container User Guide 2 System Container

2020-04-01 139

2.3.9 Environment Variable Persisting

Function Description

In a system container, you can make the env variable persistent to the configuration file in the

rootfs directory of the container by specifying the --env-target-file interface parameter.

Parameter Description

Command Parameter Value Description

isula

create/run

--env-target-file  Variable of the string type.

 The env persistent file must be in the rootfs directory

and must be an absolute path.

Constraints
 If the target file specified by --env-target-file exists, the size cannot exceed 10 MB.

 The parameter specified by --env-target-file must be an absolute path in the rootfs

directory.

 If the value of --env conflicts with that of env in the target file, the value of --env

prevails.

Example

Start a system container and specify the env environment variable and --env-target-file

parameter.

[root@localhost ~]# isula run -tid -e abc=123 --env-target-file /etc/environment

--system-container --external-rootfs /root/myrootfs none init

b75df997a64da74518deb9a01d345e8df13eca6bcc36d6fe40c3e90ea1ee088e

[root@localhost ~]# isula exec b7 cat /etc/environment

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

TERM=xterm

abc=123

The preceding information indicates that the env variable (abc=123) of the container has been

made persistent to the /etc/environment configuration file.

2.3.10 Maximum Number of Handles

Function Description

System containers support limit on the number of file handles. File handles include common

file handles and network sockets. When starting a container, you can specify the --files-limit

parameter to limit the maximum number of handles opened in the container.

Parameter Description

Command Parameter Value Description

openEuler

Container User Guide 2 System Container

2020-04-01 140

Command Parameter Value Description

isula

create/run

--files-limit

 The value cannot be negative and

must be an integer.

 The value 0 indicates that the

number is not limited by the

parameter. The maximum number

is determined by the current kernel

files cgroup.

Constraints
 If the value of --files-limit is too small, the system container may fail to run the exec

command and the error "open temporary files" is reported. Therefore, you are advised to

set the parameter to a large value.

 File handles include common file handles and network sockets.

Example

To use --files-limit to limit the number of file handles opened in a container, run the following

command to check whether the kernel supports files cgroup:

[root@localhost ~]# cat /proc/1/cgroup | grep files

10:files:/

If files is displayed, files cgroup is supported.

Start the container, specify the --files-limit parameter, and check whether the files.limit

parameter is successfully written.

[root@localhost ~]# isula run -tid --files-limit 1024 --system-container

--external-rootfs /tmp/root-fs empty init

01e82fcf97d4937aa1d96eb8067f9f23e4707b92de152328c3fc0ecb5f64e91d

[root@localhost ~]# isula exec -it 01e82fcf97d4 bash

[root@localhost ~]# cat /sys/fs/cgroup/files/files.limit

1024

The preceding information indicates that the number of file handles is successfully limited in

the container.

2.3.11 Security and Isolation

2.3.11.1 Many-to-Many User Namespaces

Function Description

User namespaces are used to map user root of a container to a common user of the host and

allow the processes and user in the container (that are unprivileged on the host) to have

privilege. This can prevent the processes in the container from escaping to the host and

performing unauthorized operations. In addition, after user namespaces are used, the container

and host use different UIDs and GIDs. This ensures that user resources in the container such

as file descriptors are isolated from those on the host.

openEuler

Container User Guide 2 System Container

2020-04-01 141

In system containers, you can configure the --user-remap API parameter to map user

namespaces of different containers to different user namespaces on the host, isolating the user

namespaces of containers.

Parameter Description

Command Parameter Value Description

isula create/run --user-remap The parameter format is uid:gid:offset. The parameter

is described as follows:

 uid and gid must be integers greater than or equal

to 0.

 offset must be an integer greater than 0 and less

than 65536. The value cannot be too small.

Otherwise, the container cannot be started.

 Either the sum of uid and offset or the sum of gid

and offset must be less than or equal to 232 - 1.

Otherwise, an error is reported during container

startup.

Constraints
 If --user-remap is specified in a system container, the rootfs directory must be

accessible to users specified by uid or gid in --user-remap. Otherwise, user namespaces

of containers cannot access rootfs. As a result, the containers fail to be started.

 All IDs in the container can be mapped to the host rootfs. Some directories or files may

be mounted from the host to containers, for example, device files in the /dev/pts

directory. If offset is too small, the mounting may fail.

 uid, gid, and offset are controlled by the upper-layer scheduling platform. The container

engine only checks the validity of them.

 --user-remap is available only in system containers.

 --user-remap and --privileged cannot be set simultaneously. Otherwise, an error is

reported during container startup.

 If uid or gid is set to 0, --user-remap does not take effect.

Usage Guide

Before specifying the --user-remap parameter, configure an offset value for UIDs and GIDs of all
directories and files in rootfs. The offset value should be equal to that for uid and gid in --user-remap.

For example, run the following command to offset UIDs and GIDs of all files in the dev directory with
100000:

chown 100000:100000 dev

Specify the --user-remap parameter when the system container is started.

[root@localhost ~]# isula run -tid --user-remap 100000:100000:65535 --system-container

--external-rootfs /home/root-fs none /sbin/init

eb9605b3b56dfae9e0b696a729d5e1805af900af6ce24428fde63f3b0a443f4a

Check the /sbin/init process information on the host and in a container.

openEuler

Container User Guide 2 System Container

2020-04-01 142

[root@localhost ~]# isula exec eb ps aux | grep /sbin/init

root 1 0.6 0.0 21624 9624 ? Ss 15:47 0:00 /sbin/init

[root@localhost ~]# ps aux | grep /sbin/init

100000 4861 0.5 0.0 21624 9624 ? Ss 15:47 0:00 /sbin/init

root 4948 0.0 0.0 213032 808 pts/0 S+ 15:48 0:00 grep --color=auto

/sbin/init

The owner of the /sbin/init process in the container is user root, but the owner of the host is

the user whose UID is 100000.

Create a file in a container and view the file owner on the host.

[root@localhost ~]# isula exec -it eb bash

[root@localhost /]# echo test123 >> /test123

[root@localhost /]# exit

exit

[root@localhost ~]# ll /home/root-fs/test123

-rw-------. 1 100000 100000 8 Aug 2 15:52 /home/root-fs/test123

The owner of the file that is generated in the container is user root, but the file owner

displayed on the host is the user whose ID is 100000.

2.3.11.2 User Permission Control

Function Description

A container engine supports TLS for user identity authentication, which is used to control user

permissions. Currently, container engines can connect to the authz plug-in to implement

permission control.

API Description

You can configure the startup parameters of the iSulad container engine to specify the

permission control plug-in. The default daemon configuration file is /etc/isulad/daemon.json.

Parameter Example Description

--authorization-plugi

n

"authorization-plugin":

"authz-broker"

User permission

authentication plug-in.

Currently, only

authz-broker is supported.

Constraints
 User permission policies need to be configured for authz. The default policy file is

/var/lib/authz-broker/policy.json. This file can be dynamically modified and the

modification will take effect immediately without restarting the plug-in service.

 A container engine can be started by user root. If some commands used are enabled for

by common users, common users may obtain excessive permissions. Therefore, exercise

caution when performing such operations. Currently, running the container_attach,

container_create, and container_exec_create commands may cause risks.

 Some compound operations, such as running isula exec and isula inspect or running and

isula attach and isula inspect, depend on the permission of isula inspect. If a user does

not have this permission, an error is reported.

openEuler

Container User Guide 2 System Container

2020-04-01 143

 Using SSL/TLS encryption channels hardens security but also reduces performance. For

example, the delay increases, more CPU resources are consumed, and encryption and

decryption require higher throughput. Therefore, the number of concurrent executions

decreases compared with non-TLS communication. According to the test result, when

the ARM server (Cortex-A72 64-core) is almost unloaded, TLS is used to concurrently

start a container. The maximum number of concurrent executions is 200 to 250.

 If --tlsverify is specified on the server, the default path where authentication files store is

/etc/isulad. The default file names are ca.pem, cert.pem, and key.pem.

Example

Step 1 Ensure that the authz plug-in is installed on the host. If the authz plug-in is not installed, run

the following command to install and start the authz plug-in service:

[root@localhost ~]# yum install authz

[root@localhost ~]# systemctl start authz

Step 2 To enable this function, configure the container engine and TLS certificate. You can use

OpenSSL to generate the required certificate.

#SERVERSIDE

Generate CA key

openssl genrsa -aes256 -passout "pass:$PASSWORD" -out "ca-key.pem" 4096

Generate CA

openssl req -new -x509 -days $VALIDITY -key "ca-key.pem" -sha256 -out "ca.pem" -passin

"pass:$PASSWORD" -subj

"/C=$COUNTRY/ST=$STATE/L=$CITY/O=$ORGANIZATION/OU=$ORGANIZATIONAL_UNIT/CN=$COMMON_

NAME/emailAddress=$EMAIL"

Generate Server key

openssl genrsa -out "server-key.pem" 4096

Generate Server Certs.

openssl req -subj "/CN=$COMMON_NAME" -sha256 -new -key "server-key.pem" -out server.csr

echo "subjectAltName = DNS:localhost,IP:127.0.0.1" > extfile.cnf

echo "extendedKeyUsage = serverAuth" >> extfile.cnf

openssl x509 -req -days $VALIDITY -sha256 -in server.csr -passin "pass:$PASSWORD" -CA

"ca.pem" -CAkey "ca-key.pem" -CAcreateserial -out "server-cert.pem" -extfile

extfile.cnf

#CLIENTSIDE

openssl genrsa -out "key.pem" 4096

openssl req -subj "/CN=$CLIENT_NAME" -new -key "key.pem" -out client.csr

echo "extendedKeyUsage = clientAuth" > extfile.cnf

openssl x509 -req -days $VALIDITY -sha256 -in client.csr -passin "pass:$PASSWORD" -CA

"ca.pem" -CAkey "ca-key.pem" -CAcreateserial -out "cert.pem" -extfile extfile.cnf

If you want to use the preceding content as the script, replace the variables with the

configured values. If the parameter used for generating the CA is empty, set it to ".

PASSWORD, COMMON_NAME, CLIENT_NAME, and VALIDITY are mandatory.

Step 3 When starting the container engine, add parameters related to the TLS and authentication

plug-in and ensure that the authentication plug-in is running properly. In addition, to use TLS

openEuler

Container User Guide 2 System Container

2020-04-01 144

authentication, the container engine must be started in TCP listening mode instead of the Unix

socket mode. The configuration on the container demon is as follows:

{

 "tls": true,

 "tls-verify": true,

 "tls-config": {

 "CAFile": "/root/.iSulad/ca.pem",

 "CertFile": "/root/.iSulad/server-cert.pem",

 "KeyFile":"/root/.iSulad/server-key.pem"

 },

 "authorization-plugin": "authz-broker"

}

Step 4 Configure policies. For the basic authorization process, all policies are stored in the

/var/lib/authz-broker/policy.json configuration file. The configuration file can be

dynamically modified without restarting the plug-in. Only the SIGHUP signal needs to be

sent to the authz process. In the file, a line contains one JSON policy object. The following

provides policy configuration examples:

 All users can run all iSuald commands:

{"name":"policy_0","users":[""],"actions":[""]}

 Alice can run all iSulad commands:

{"name":"policy_1","users":["alice"],"actions":[""]}

 A blank user can run all iSulad commands:

{"name":"policy_2","users":[""],"actions":[""]}

 Alice and Bob can create new containers:

{"name":"policy_3","users":["alice","bob"],"actions":["container_create"]}

 service_account can read logs and run docker top:

{"name":"policy_4","users":["service_account"],"actions":["container_logs","co

ntainer_top"]}

 Alice can perform any container operations:

{"name":"policy_5","users":["alice"],"actions":["container"]}

 Alice can perform any container operations, but the request type can only be get:

{"name":"policy_5","users":["alice"],"actions":["container"], "readonly":true}

 action indicates that regular expressions are supported.

 users indicates that regular expressions are not supported.

 Users configured in users must be unique. That is, a user cannot match multiple rules.

Step 5 After updating the configurations, configure TLS parameters on the client to connect to the

container engine. That is, access the container engine with restricted permissions.

[root@localhost ~]# isula version --tlsverify --tlscacert=/root/.iSulad/ca.pem

--tlscert=/root/.iSulad/cert.pem --tlskey=/root/.iSulad/key.pem

-H=tcp://127.0.0.1:2375

If you want to use the TLS authentication for default client connection, move the

configuration file to ~/.iSulad and set the ISULAD_HOST and ISULAD_TLS_VERIFY

variables (rather than transferring -H=tcp://$HOST:2375 and --tlsverify during each call).

[root@localhost ~]# mkdir -pv ~/.iSulad

[root@localhost ~]# cp -v {ca,cert,key}.pem ~/.iSulad

openEuler

Container User Guide 2 System Container

2020-04-01 145

[root@localhost ~]# export ISULAD_HOST=localhost:2375 ISULAD_TLS_VERIFY=1

[root@localhost ~]# isula version

----End

2.3.11.3 proc File System Isolation (Lxcfs)

Application Scenario

Container virtualization is lightweight and efficient, and can be quickly deployed. However,

containers are not strongly isolated, which causes great inconvenience to users. Containers

have some defects in isolation because the namespace feature of the Linux kernel is not

perfect. For example, you can view the proc information on the host (such as meminfo,

cpuinfo, stat, and uptime) in the proc file system of a container. You can use the lxcfs tool to

replace the /proc content of instances in the container with the content in the /proc file system

of the host so that services in the container can obtain the correct resource value.

API Description

A system container provides two tool packages: lxcfs and lxcfs-toolkit, which are used

together. Lxcfs resides on the host as the daemon process. lxcfs-toolkit mounts the lxcfs file

system of the host to containers through the hook mechanism.

The command line of lxcfs-toolkit is as follows:

lxcfs-toolkit [OPTIONS] COMMAND [COMMAND_OPTIONS]

Command Function Parameter

remount Remounts lxcfs to

containers.

--all: remounts lxcfs to all containers.

--container-id: remounts lxcfs to a

specified container.

umount Unmounts lxcfs from

containers.

--all: unmounts lxcfs from all containers.

--container-id: unmounts lxcfs from a

specified container.

check-lxcfs Checks whether the lxcfs

service is running properly.

None

prestart Mounts the /var/lib/lxcfs

directory to the container

before the lxcfs service

starts.

None

Constraints
 Currently, only the cpuinfo, meminfo, stat, diskstats, partitions, swaps, and uptime

files in the proc file system are supported. Other files are not isolated from other kernel

API file systems (such as sysfs).

 After an RPM package is installed, a sample JSON file is generated in

/var/lib/lcrd/hooks/hookspec.json. To add the log function, you need to add the --log

configuration during customization.

openEuler

Container User Guide 2 System Container

2020-04-01 146

 The diskstats file displays only information about disks that support CFQ scheduling,

instead of partition information. Devices in containers are displayed as names in the /dev

directory. If a device name does not exist, the information is left blank. In addition, the

device where the container root directory is located is displayed as sda.

 The slave parameter is required when lxcfs is mounted. If the shared parameter is used,

the mount point in containers may be leaked to the host, affecting the host running.

 Lxcfs supports graceful service degradation. If the lxcfs service crashes or becomes

unavailable, the cpuinfo, meminfo, stat, diskstats, partitions, swaps and uptime files

in containers are about host information, and other service functions of containers are not

affected.

 Bottom layer of lxcfs depends on the FUSE kernel module and libfuse library. Therefore,

the kernel needs to support FUSE.

 Lxcfs supports only the running of 64-bit applications in containers. If a 32-bit

application is running in a container, the CPU information (cpuinfo) read by the

application may fail to meet expectations.

 Lxcfs simulates the resource view only of container control groups (cgroups). Therefore,

system calls (such as sysconf) in containers can obtain only host information. Lxcfs

cannot implement the kernel isolation.

 The CPU information (cpuinfo) displayed after lxcfs implements the isolation has the

following features:

− processor: The value increases from 0.

− physical id: The value increases from 0.

− sibliing: It has a fixed value of 1.

− core id: It has a fixed value of 0.

− cpu cores: It has a fixed value of 1.

Example

Step 1 Install the lxcfs and lxcfs-toolkit packages and start the lxcfs service.

[root@localhost ~]# yum install lxcfs lxcfs-toolkit

[root@localhost ~]# systemctl start lxcfs

Step 2 After a container is started, check whether the lxcfs mount point exists in the container.

[root@localhost ~]# isula run -tid -v /var/lib/lxc:/var/lib/lxc --hook-spec

/var/lib/isulad/hooks/hookspec.json --system-container --external-rootfs

/home/root-fs none init

a8acea9fea1337d9fd8270f41c1a3de5bceb77966e03751346576716eefa9782

[root@localhost ~]# isula exec a8 mount | grep lxcfs

lxcfs on /var/lib/lxc/lxcfs type fuse.lxcfs

(rw,nosuid,nodev,relatime,user_id=0,group_id=0,allow_other)

lxcfs on /proc/cpuinfo type fuse.lxcfs

(rw,nosuid,nodev,relatime,user_id=0,group_id=0,allow_other)

lxcfs on /proc/diskstats type fuse.lxcfs

(rw,nosuid,nodev,relatime,user_id=0,group_id=0,allow_other)

lxcfs on /proc/meminfo type fuse.lxcfs

(rw,nosuid,nodev,relatime,user_id=0,group_id=0,allow_other)

lxcfs on /proc/partitions type fuse.lxcfs

(rw,nosuid,nodev,relatime,user_id=0,group_id=0,allow_other)

lxcfs on /proc/stat type fuse.lxcfs

(rw,nosuid,nodev,relatime,user_id=0,group_id=0,allow_other)

openEuler

Container User Guide 2 System Container

2020-04-01 147

lxcfs on /proc/swaps type fuse.lxcfs

(rw,nosuid,nodev,relatime,user_id=0,group_id=0,allow_other)

lxcfs on /proc/uptime type fuse.lxcfs

(rw,nosuid,nodev,relatime,user_id=0,group_id=0,allow_other)

Step 3 Run the update command to update the CPU and memory resource configurations of the

container and check the container resources. As shown in the following command output, the

container resource view displays the actual container resource data instead of data of the host.

[root@localhost ~]# isula update --cpuset-cpus 0-1 --memory 1G a8

a8

[root@localhost ~]# isula exec a8 cat /proc/cpuinfo

processor : 0

BogoMIPS : 100.00

cpu MHz : 2400.000

Features : fp asimd evtstrm aes pmull sha1 sha2 crc32 cpuid

CPU implementer : 0x41

CPU architecture: 8

CPU variant : 0x0

CPU part : 0xd08

CPU revision : 2

processor : 1

BogoMIPS : 100.00

cpu MHz : 2400.000

Features : fp asimd evtstrm aes pmull sha1 sha2 crc32 cpuid

CPU implementer : 0x41

CPU architecture: 8

CPU variant : 0x0

CPU part : 0xd08

CPU revision : 2

[root@localhost ~]# isula exec a8 free -m

 total used free shared buff/cache available

Mem: 1024 17 997 7 8 1006

Swap: 4095 0 4095

----End

2.3.12 Dynamically Managing Container Resources
(syscontainer-tools)

Resources in common containers cannot be managed. For example, a block device cannot be

added to a common container, and a physical or virtual NIC cannot be inserted to a common

container. In the system container scenario, the syscontainer-tools can be used to dynamically

mount or unmount block devices, network devices, routes, and volumes for containers.

To use this function, you need to install the syscontainer-tools first.

[root@localhost ~]# yum install syscontainer-tools

openEuler

Container User Guide 2 System Container

2020-04-01 148

2.3.12.1 Device Management

Function Description

isulad-tools allows you to add block devices (such as disks and logical volume managers) or

character devices (such as GPUs, binners, and FUSEs) on the host to a container. The devices

can be used in the container. For example, you can run the fdisk command to format the disk

and write data to the file system. If the devices are not required, isulad-tools allows you to

delete them from the container and return them to the host.

Command Format

isulad-tools [COMMADN][OPTIONS] <container_id> [ARG...]

In the preceding format:

COMMAND: command related to device management.

OPTIONS: option supported by the device management command.

container_id: container ID.

ARG: parameter corresponding to the command.

Parameter Description

Comman
d

Function
Description

Option Description Parameter Description

add-device Adds block

devices or

character

devices on the

host to a

container.

Supported options are as

follows:

 --blkio-weight-device:

sets the I/O weight

(relative weight, ranging

from 10 to 100) of a

block device.

 --device-read-bps: sets

the read rate limit for the

block device (byte/s).

 --device-read-iops: sets

the read rate limit for the

block device (I/O/s).

 --device-write-bps: sets

the write rate limit for the

block device (byte/s).

 --device-write-iops: sets

the write rate limit for the

block device (I/O/s).

 --follow-partition: If a

block device is a basic

block device (primary

SCSI block disk), set this

parameter to add all

partitions of the primary

Parameter format:

hostdevice[:containerdevice

][:permission]

[hostdevice[:containerdevic

e][:permission]]

In the preceding format:

hostdevice: path on the host

for storing a device.

containerdevice: path on the

container for storing a

device.

permission: operation

permission on a device

within the container.

openEuler

Container User Guide 2 System Container

2020-04-01 149

Comman
d

Function
Description

Option Description Parameter Description

disk.

 --force: If any block

device or character device

already exists in the

container, use this

parameter to overwrite

the old block device or

character device files.

 --update-config-only:

updates configuration

files only and does not

add disks.

remove-de

vice

Deletes block

devices or

character

devices from

a container

and restores

them to the

host.

Supported options are as

follows:

--follow-partition: If a block

device is a basic block device

(primary SCSI block disk),

set this parameter to delete

all partitions of the primary

disk in the container, and

restore them to the host.

Parameter format:

hostdevice[:containerdevice

]

[hostdevice[:containerdevic

e]]

In the preceding format:

hostdevice: path on the host

for storing a device.

containerdevice: path on the

container for storing a

device.

list-device Lists all block

devices or

character

devices in a

container.

Supported options are as

follows:

 --pretty: outputs data in

JSON format.

 --sub-partition: For a

primary disk, add this

flag to display the

primary disk and its

sub-partitions.

None

update-dev

ice

Updates the

disk QoS.

Supported options are as

follows:

 --device-read-bps: sets

the read rate limit for the

block device (byte/s).

You are advised to set

this parameter to a value

greater than or equal to

1024.

 --device-read-iops: sets

the read rate limit for the

block device (I/O/s).

 --device-write-bps: sets

the write rate limit for the

block device (byte/s).

None

openEuler

Container User Guide 2 System Container

2020-04-01 150

Comman
d

Function
Description

Option Description Parameter Description

You are advised to set

this parameter to a value

greater than or equal to

1024.

 --device-write-iops: sets

the write rate limit for the

block device (I/O/s).

Constraints
 You can add or delete devices when container instances are not running. After the

operation is complete, you can start the container to view the device status. You can also

dynamically add a device when the container is running.

 Do not concurrently run the fdisk command to format disks in a container and on the

host. Otherwise, the container disk usage will be affected.

 When you run the add-device command to add a disk to a specific directory of a

container, if the parent directory in the container is a multi-level directory (for example,

/dev/a/b/c/d/e) and the directory level does not exist, isulad-tools will automatically

create the corresponding directory in the container. When the disk is deleted, the created

parent directory is not deleted. If you run the add-device command to add a device to

this parent directory again, a message is displayed, indicating that a device already exists

and cannot be added.

 When you run the add-device command to add a disk or update disk parameters, you

need to configure the disk QoS. Do not set the write or read rate limit for the block

device (I/O/s or byte/s) to a small value. If the value is too small, the disk may be

unreadable (the actual reason is the speed is too slow), affecting service functions.

 When you run the --blkio-weight-device command to limit the weight of a specified

block device, if the block device supports only the BFQ mode, an error may be reported,

prompting you to check whether the current OS environment supports setting the weight

of the BFQ block device.

Example
 Start a system container, and set hook spec to the isulad hook execution script.

[root@localhost ~]# isula run -tid --hook-spec /etc/isulad-tools/hookspec.json

--system-container --external-rootfs /root/root-fs none init

eed1096c8c7a0eca6d92b1b3bc3dd59a2a2adf4ce44f18f5372408ced88f8350

 Add a block device to a container.

[root@localhost ~]# isulad-tools add-device ee /dev/sdb:/dev/sdb123

Add device (/dev/sdb) to container(ee,/dev/sdb123) done.

[root@localhost ~]# isula exec ee fdisk -l /dev/sdb123

Disk /dev/sdb123: 50 GiB, 53687091200 bytes, 104857600 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0xda58a448

openEuler

Container User Guide 2 System Container

2020-04-01 151

Device Boot Start End Sectors Size Id Type

/dev/sdb123p1 2048 104857599 104855552 50G 5 Extended

/dev/sdb123p5 4096 104857599 104853504 50G 83 Linux

 Update the device information.

[root@localhost ~]# isulad-tools update-device --device-read-bps /dev/sdb:10m ee

Update read bps for device (/dev/sdb,10485760) done.

 Delete a device.

[root@localhost ~]# isulad-tools remove-device ee /dev/sdb:/dev/sdb123

Remove device (/dev/sdb) from container(ee,/dev/sdb123) done.

Remove read bps for device (/dev/sdb) done.

2.3.12.2 NIC Management

Function Description

isulad-tools allows you to insert physical or virtual NICs on the host to a container. If the

NICs are not required, isulad-tools allows you to delete them from the container and return

them to the host. In addition, the NIC configurations can be dynamically modified. To insert a

physical NIC, add the NIC on the host to the container. To insert a virtual NIC, create a veth

pair and insert its one end to the container.

Command Format

isulad-tools [COMMADN][OPTIONS] <container_id>

In the preceding format:

COMMAND: command related to NIC management.

OPTIONS: option supported by the NIC management command.

container_id: container ID.

Parameter Description

Command Function Description Option Description

add-nic Creates an NIC for a

container.

Supported options are as follows:

 --type: specifies the NIC type. Only

eth and veth are supported.

 --name: specifies the NIC name. The

format is [host:]container. If host is

not specified, a random value is used.

 --ip: specifies the NIC IP address.

 --mac: specifies the NIC MAC

address.

 --bridge: specifies the network

bridge bound to the NIC.

 --mtu: specifies the MTU value of

the NIC. The default value is 1500.

 --update-config-only: If this flag is

set, only configuration files are

openEuler

Container User Guide 2 System Container

2020-04-01 152

Command Function Description Option Description

updated and NICs are not added.

 --qlen: specifies the value of QLEN.

The default value is 1000.

remove-nic Deletes NICs from a

container and restores

them to the host.

Supported options are as follows:

 --type: specifies the NIC type.

 --name: specifies the name of the

NIC. The format is [host:]container.

list-nic Lists all NICs in a

container.

Supported options are as follows:

 --pretty: outputs data in JSON

format.

 --filter: outputs filtered data in the

specific format, for example, --filter'

{"ip":"192.168.3.4/24",

"Mtu":1500}'.

update-nic Modifies configuration

parameters of a specified

NIC in a container.

Supported options are as follows:

 --name: specifies the name of the

NIC in the container. This parameter

is mandatory.

 --ip: specifies the NIC IP address.

 --mac: specifies the NIC MAC

address.

 --bridge: specifies the network

bridge bound to the NIC.

 --mtu: specifies the MTU value of

the NIC.

 --update-config-only: If this flag is

set, configuration files are updated

and NICs are not updated.

 --qlen: specifies the value of QLEN.

Constraints
 Physical NICs (eth) and virtual NICs (veth) can be added.

 When adding a NIC, you can also configure the NIC. The configuration parameters

include --ip, --mac, --bridge, --mtu, --qlen.

 A maximum of eight physical NICs can be added to a container.

 If you run the isulad-tools add-nic command to add an eth NIC to a container and do

not add a hook, you must manually delete the NIC before the container exits. Otherwise,

the name of the eth NIC on the host will be changed to the name of that in the container.

 For a physical NIC (except 1822 VF NIC), use the original MAC address when running

the add-nic command. Do not change the MAC address in the container, or when

running the update-nic command.

 When using the isulad-tools add-nic command, set the MTU value. The value range

depends on the NIC model.

openEuler

Container User Guide 2 System Container

2020-04-01 153

 When using isulad-tools to add NICs and routes to containers, you are advised to run the

add-nic command to add NICs and then run the add-route command to add routes.

When using isulad-tools to delete NICs and routes from a container, you are advised to

run the remove-route command to delete routes and then run the remove-nic command

to delete NICs.

 When using isulad-tools to add NICs, add a NIC to only one container.

Example
 Start a system container, and set hook spec to the isulad hook execution script.

[root@localhost ~]# isula run -tid --hook-spec /etc/isulad-tools/hookspec.json

--system-container --external-rootfs /root/root-fs none init

2aaca5c1af7c872798dac1a468528a2ccbaf20b39b73fc0201636936a3c32aa8

 Add a virtual NIC to a container.

[root@localhost ~]# isulad-tools add-nic --type "veth" --name abc2:bcd2 --ip

172.17.28.5/24 --mac 00:ff:48:13:xx:xx --bridge docker0 2aaca5c1af7c

Add network interface to container 2aaca5c1af7c (bcd2,abc2) done

 Add a physical NIC to a container.

[root@localhost ~]# isulad-tools add-nic --type "eth" --name eth3:eth1 --ip

172.17.28.6/24 --mtu 1300 --qlen 2100 2aaca5c1af7c

Add network interface to container 2aaca5c1af7c (eth3,eth1) done

When adding a virtual or physical NIC, ensure that the NIC is in the idle state. Adding a NIC in use will
disconnect the system network.

2.3.12.3 Route Management

Function Description

isulad-tools can be used to dynamically add or delete routing tables for system containers.

Command Format

isulad-tools [COMMADN][OPTIONS] <container_id> [ARG...]

In the preceding format:

COMMAND: command related to route management.

OPTIONS: option supported by the route management command.

container_id: container ID.

ARG: parameter corresponding to the command.

API Description

Command Function
Description

Option Description Parameter Description

add-route Adds the network

routing rules to a

container.

Supported options are as

follows:

--update-config-only: If

Parameter format:

[{rule1},{rule2}]

Example of rule:

openEuler

Container User Guide 2 System Container

2020-04-01 154

Command Function
Description

Option Description Parameter Description

this parameter is

configured, configuration

files are updated and

routing tables are not

updated.

'[{"dest":"default",

"gw":"192.168.10.1"},{"d

est":"192.168.0.0/16","dev

":"eth0","src":"192.168.1.

2"}]'

 dest: target network. If

this parameter is left

blank, the default

gateway is used.

 src: source IP address

of a route.

 gw: route gateway.

 dev: network device.

remove-rout

e

Deletes a route

from a container.

Supported options are as

follows:

--update-config-only: If

this parameter is

configured, only

configuration files are

updated and routes are

not deleted from the

container.

Parameter format:

[{rule1},{rule2}]

Example of rule:

'[{"dest":"default",

"gw":"192.168.10.1"},{"d

est":"192.168.0.0/16","dev

":"eth0","src":"192.168.1.

2"}]'

 dest: target network. If

this parameter is left

blank, the default

gateway is used.

 src: source IP address

of a route.

 gw: route gateway.

 dev: network device.

list-route Lists all routing

rules in a

container.

Supported options are as

follows:

 --pretty: outputs data

in JSON format.

 --filter: outputs

filtered data in the

specific format, for

example, --filter'

{"ip":"192.168.3.4/2

4", "Mtu":1500}'.

None

Constraints
 When using isulad-tools to add NICs and routes to containers, you are advised to run the

add-nic command to add NICs and then run the add-route command to add routes.

When using isulad-tools to delete NICs and routes from a container, you are advised to

openEuler

Container User Guide 2 System Container

2020-04-01 155

run the remove-route command to delete routes and then run the remove-nic command

to delete NICs.

 When adding a routing rule to a container, ensure that the added routing rule does not

conflict with existing routing rules in the container.

Example
 Start a system container, and set hook spec to the isulad hook execution script.

[root@localhost ~]# isula run -tid --hook-spec /etc/isulad-tools/hookspec.json

--system-container --external-rootfs /root/root-fs none init

0d2d68b45aa0c1b8eaf890c06ab2d008eb8c5d91e78b1f8fe4d37b86fd2c190b

 Use isulad-tools to add a physical NIC to the system container.

[root@localhost ~]# isulad-tools add-nic --type "eth" --name enp4s0:eth123 --ip

172.17.28.6/24 --mtu 1300 --qlen 2100 0d2d68b45aa0

Add network interface (enp4s0) to container (0d2d68b45aa0,eth123) done

 isulad-tools adds a routing rule to the system container. Format example:

[{"dest":"default",

"gw":"192.168.10.1"},{"dest":"192.168.0.0/16","dev":"eth0","src":"192.168.1.2"}

]. If dest is left blank, its value will be default.

[root@localhost ~]# isulad-tools add-route 0d2d68b45aa0

'[{"dest":"172.17.28.0/32", "gw":"172.17.28.5","dev":"eth123"}]'

Add route to container 0d2d68b45aa0, route:

{dest:172.17.28.0/32,src:,gw:172.17.28.5,dev:eth123} done

 Check whether a routing rule is added in the container.

[root@localhost ~]# isula exec -it 0d2d68b45aa0 route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

172.17.28.0 172.17.28.5 255.255.255.255 UGH 0 0 0 eth123

172.17.28.0 0.0.0.0 255.255.255.0 U 0 0 0 eth123

2.3.12.4 Volume Mounting Management

Function Description

In a common container, you can set the --volume parameter during container creation to

mount directories or volumes of the host to the container for resource sharing. However,

during container running, you cannot unmount directories or volumes that are mounted to the

container, or mount directories or volumes of the host to the container. Only the system

container can use the isulad-tools tool to dynamically mount directories or volumes of the

host to the container and unmount directories or volumes from the container.

Command Format

isulad-tools [COMMADN][OPTIONS] <container_id> [ARG...]

In the preceding format:

COMMAND: command related to route management.

OPTIONS: option supported by the route management command.

container_id: container ID.

ARG: parameter corresponding to the command.

openEuler

Container User Guide 2 System Container

2020-04-01 156

API Description

Table 2-1

Command Function
Description

Option
Description

Parameter Description

add-path Adds files or

directories on the

host to a container.

None The parameter format is as

follows:

hostpath:containerpath:permis

sion

[hostpath:containerpath:permi

ssion ...]

In the preceding format:

hostpath: path on the host for

storing a volume.

containerpath: path on the

container for storing a

volume.

permission: operation

permission on a mount path

within the container.

remove-path Deletes directories or

files from the

container and

restores them to the

host.

None Parameter format:

hostpath:containerpath[hostp

ath:containerpath]

In the preceding format:

hostpath: path on the host for

storing a volume.

containerpath: path on the

container for storing a

volume.

list-path Lists all path

directories in a

container.

Supported options

are as follows:

--pretty: outputs

data in JSON

format.

None

Constraints
 When running the add-path command, specify an absolute path as the mount path.

 The mount point /.sharedpath is generated on the host after the mount path is specified

by running the add-path command.

 A maximum of 128 volumes can be added to a container.

 Do not overwrite the root directory (/) in a container with the host directory by running

the add-path command. Otherwise, the function is affected.

openEuler

Container User Guide 2 System Container

2020-04-01 157

Example
 Start a system container, and set hook spec to the isulad hook execution script.

[root@localhost ~]# isula run -tid --hook-spec /etc/isulad-tools/hookspec.json

--system-container --external-rootfs /root/root-fs none init

e45970a522d1ea0e9cfe382c2b868d92e7b6a55be1dd239947dda1ee55f3c7f7

 Use isulad-tools to mount a directory on the host to a container, implementing resource

sharing.

[root@localhost ~]# isulad-tools add-path e45970a522d1

/home/test123:/home/test123

Add path (/home/test123) to container(e45970a522d1,/home/test123) done.

 Create a file in the /home/test123 directory on the host and check whether the file can be

accessed in the container.

[root@localhost ~]# echo "hello world" > /home/test123/helloworld

[root@localhost ~]# isula exec e45970a522d1 bash

[root@localhost /]# cat /home/test123/helloworld

hello world

 Use isulad-tools to delete the mount directory from the container.

[root@localhost ~]# isulad-tools remove-path e45970a522d1

/home/test123:/home/test123

Remove path (/home/test123) from container(e45970a522d1,/home/test123) done

[root@localhost ~]# isula exec e45970a522d1 bash

[root@localhost /]# ls /home/test123/helloworld

ls: cannot access '/home/test123/helloworld': No such file or directory

2.4 Appendix

2.4.1 Command Line Interface List

This section lists commands in system containers, which are different from those in common

containers. For details about other commands, refer to sections related to the iSulad container

engine or run the isula XXX --help command.

Command Parameters Value Description

isula

create/run

--external-rootfs  Variable of the string type.

 Absolute path on the host.

 Specifies the rootfs of a VM when running a system

container.

--system-contain

er

 Boolean variable.

 Specifies whether a container is a system container.

In a system container scenario, this function must be

enabled.

--add-host  Variable of the string type.

 Specifies the hosts configuration for a container. The

format is hostname:ip. Multiple values can be set.

--dns,

--dns-option,

 Variable of the string type.

openEuler

Container User Guide 2 System Container

2020-04-01 158

Command Parameters Value Description

--dns-search  Specifies the DNS configuration for a container.

Multiple values can be set.

--ns-change-opt  Variable of the string type.

 Container namespace kernel parameter. The value

can only be net or ipc. If multiple values are set,

separate them with commas (,), for example,

--ns-change-opt=net,ipc.

--oom-kill-disabl

e

 Boolean variable.

 Indicates whether to enable the oom-kill-disable

function.

--shm-size  Variable of the string type.

 Sets the size of /dev/shm. The default value is 64

MB. The unit can be byte (B), kilobyte (KB),

megabyte (MB), gigabyte (GB), terabyte (TB), or

petabyte (PB).

--sysctl  Variable of the string type.

 Specifies container kernel parameters. The format is

key=value. Multiple values can be set. The sysctl

whitelist is as follows:

kernel.msgmax, kernel.msgmnb, kernel.msgmni,

kernel.sem, kernel.shmall, kernel.shmmax,

kernel.shmmni, kernel.shm_rmid_forced,

kernel.pid_max, net., and fs.mqueue

NOTE

The kernel.pid_max kernel parameter in a container must be
able to be namespaced. Otherwise, an error is reported.

Parameter restrictions (including the parameter types and value
ranges) of the sysctl whitelist in a container must be the same as
those of kernel parameters in the physical machine.

--env-target-file  Variable of the string type.

 Specifies the env persistent file path. (The path must

be an absolute path and the file must be in the rootfs

directory.) The file size cannot exceed 10 MB. If the

value of --env conflicts with that of env in the file,

the value of --env takes effect.

 The root directory of the absolute path is the rootfs

root directory. That is, to set the file path to

/etc/environment in the container, you need to

specify env-target-file=/etc/environment only.

--cgroup-parent  Variable of the string type.

 Specifies the cgroup parent directory of a container.

The cgroup root directory is

/sys/fs/cgroup/controller.

--host-channel  Variable of the string type.

 Specifies the memory space shared between the host

openEuler

Container User Guide 2 System Container

2020-04-01 159

Command Parameters Value Description

and a container (tmpfs). The format is as follows:

host path:container path:rw/ro:size limit

--files-limit  Variable of the string type.

 Specifies the maximum number of file handles in a

container. The value must be an integer.

--user-remap  Variable of the string type.

 The parameter format is uid:gid:offset.

openEuler

Container User Guide 3 Secure Container

2020-04-01 160

3 Secure Container

3.1 Overview

3.2 Installation and Deployment

3.3 Application Scenarios

3.4 Appendix

3.1 Overview

The secure container technology is an organic combination of virtualization and container

technologies. Compared with a common Linux container, a secure container has better

isolation performance.

Common Linux containers use namespaces to isolate the running environment between

processes and use cgroups to limit resources. Essentially, these common Linux containers

share the same kernel. Therefore, if a single container affects the kernel intentionally or

unintentionally, the containers on the same host will be affected.

Secure containers are isolated by the virtualization layers. Containers on the same host do not

affect each other.

openEuler

Container User Guide 3 Secure Container

2020-04-01 161

Figure 3-1 Secure container architecture

Secure containers are closely related to the concept of pod in Kubernetes. Kubernetes is the

open-source ecosystem standard for the container scheduling management platform. It defines

a group of container runtime interfaces (CRIs).

In the CRI standards, a pod is a logical grouping of one or more containers, which are

scheduled together and share interprocess communication (IPC) and network namespaces. As

the smallest unit for scheduling, a pod must contain a pause container and one or more service

containers. The lifecycle of a pause container is the same as that of the pod.

A lightweight virtual machine (VM) in a secure container is a pod. The first container started

in the VM is the pause container, and the containers started later are service containers.

In a secure container, you can start a single container or start a pod.

Figure 3-2 shows the relationship between the secure container and peripheral components.

openEuler

Container User Guide 3 Secure Container

2020-04-01 162

Figure 3-2 Relationship between the secure container and peripheral components

3.2 Installation and Deployment

3.2.1 Installation Methods

Prerequisites
 For better performance experience, a secure container needs to run on the bare metal

server and must not run on VMs.

 A secure container depends on the following components (openEuler 1.0 version).

Ensure that the required components have been installed in the environment. To install

iSulad, refer to 1.2.1 Installation Methods.

− docker-engine

− qemu

openEuler

Container User Guide 3 Secure Container

2020-04-01 163

Installation Procedure

Released secure container components are integrated in the kata-containers-version.rpm

package. You can run the rpm command to install the corresponding software.

rpm -ivh kata-containers-<version>.rpm

3.2.2 Deployment Configuration

3.2.2.1 Configuring the Docker Engine

To enable the Docker engine to support kata-runtime, perform the following steps to

configure the Docker engine:

1. Ensure that all software packages (docker-engine and kata-containers) have been

installed in the environment.

2. Stop the Docker engine.

systemctl stop docker

3. Modify the configuration file /etc/docker/daemon.json of the Docker engine and add

the following configuration:

{

 "runtimes": {

 "kata-runtime": {

 "path": "/usr/bin/kata-runtime",

 "runtimeArgs": [

 "--kata-config",

 "/usr/share/defaults/kata-containers/configuration.toml"

]

 }

 }

}

4. Restart the Docker engine.

systemctl start docker

3.2.2.2 iSulad Configuration

To enable the iSulad to support the new container runtime kata-runtime, perform the

following steps which are similar to those for the container engine docker-engine:

1. Ensure that all software packages (iSulad and kata-containers) have been installed in the

environment.

2. Stop iSulad.

systemctl stop isulad

3. Modify the /etc/isulad/daemon.json configuration file of the iSulad and add the

following configurations:

{

 "runtimes": {

 "kata-runtime": {

 "path": "/usr/bin/kata-runtime",

 "runtime-args": [

 "--kata-config",

 "/usr/share/defaults/kata-containers/configuration.toml"

]

openEuler

Container User Guide 3 Secure Container

2020-04-01 164

 }

 }

}

4. Restart iSulad.

systemctl start isulad

3.2.2.3 Configuration.toml

The secure container provides a global configuration file configuration.toml. Users can also

customize the path and configuration options of the secure container configuration file.

In the runtimeArges field of Docker engine, you can use --kata-config to specify a private

file. The default configuration file path is

/usr/share/defaults/kata-containers/configuration.toml.

The following lists the common fields in the configuration file. For details about the

configuration file options, see 3.4.1 configuration.toml.

1. hypervisor.qemu

− path: specifies the execution path of the virtualization QEMU.

− kernel: specifies the execution path of the guest kernel.

− initrd: specifies the guest initrd execution path.

− machine_type: specifies the type of the analog chip. The value is virt for the ARM

architecture and pc for the x86 architecture.

− kernel_params: specifies the running parameters of the guest kernel.

2. proxy.kata

− path: specifies the kata-proxy running path.

− enable_debug: enables the debugging function for the kata-proxy process.

3. agent.kata

− enable_blk_mount: enables guest mounting of the block device.

− enable_debug: enables the debugging function for the kata-agent process.

4. runtime

− enable_cpu_memory_hotplug: enables CPU and memory hot swap.

− enable_debug: enables debugging for the kata-runtime process.

3.3 Application Scenarios

This section describes how to use a secure container.

3.3.1 Managing the Lifecycle of a Secure Container

3.3.1.1 Starting a Secure Container

You can use the Docker engine or iSulad as the container engine of the secure container. The

invoking methods of the two engines are similar. You can select either of them to start a

secure container.

To start a secure container, perform the following steps:

openEuler

Container User Guide 3 Secure Container

2020-04-01 165

1. Ensure that the secure container component has been correctly installed and deployed.

2. Prepare the container image. If the container image is busybox, run the following

commands to download the container image using the Docker engine or iSulad:

docker pull busybox

isula pull busybox

3. Start a secure container. Run the following commands to start a secure container using

the Docker engine and iSulad:

docker run -tid --runtime kata-runtime --network none busybox <command>

isula run -tid --runtime kata-runtime --network none busybox <command>

The secure container supports the CNI network only and does not support the CNM network. The -p and
--expose options cannot be used to expose container ports. When using a secure container, you need to
specify the --net=none option.

4. Start a pod.

a. Start the pause container and obtain the sandbox ID of the pod based on the

command output. Run the following commands to start a pause container using the

Docker engine and iSulad:

docker run -tid --runtime kata-runtime --network none --annotation

io.kubernetes.docker.type=podsandbox <pause-image> <command>

isula run -tid --runtime kata-runtime --network none --annotation

io.kubernetes.cri.container-type=sandbox <pause-image> <command>

b. Create a service container and add it to the pod. Run the following commands to

create a service container using the Docker engine and iSulad:

docker run -tid --runtime kata-runtime --network none --annotation

io.kubernetes.docker.type=container --annotation

io.kubernetes.sandbox.id=<sandbox-id> busybox <command>

isula run -tid --runtime kata-runtime --network none --annotation

io.kubernetes.cri.container-type=container --annotation

io.kubernetes.cri.sandbox-id=<sandbox-id> busybox <command>

--annotation is used to mark the container type, which is provided by the Docker

engine and iSulad, but not provided by the open-source Docker engine in the

upstream community.

3.3.1.2 Stopping a Secure Container

 Run the following command to stop a secure container:

docker stop <contaienr-id>

 Stop a pod.

When stopping a pod, note that the lifecycle of the pause container is the same as that of

the pod. Therefore, stop service containers before the pause container.

3.3.1.3 Deleting a Secure Container

Ensure that the container has been stopped.

docker rm <container-id>

To forcibly delete a running container, run the -f command.

docker rm -f <container-id>

openEuler

Container User Guide 3 Secure Container

2020-04-01 166

3.3.1.4 Running a New Command in the Container

The pause container functions only as a placeholder container. Therefore, if you start a pod,

run a new command in the service container. The pause container does not execute the

corresponding command. If only one container is started, run the following command

directly:

docker exec -ti <container-id> <command>

1. If the preceding command has no response because another host runs the docker restart or docker

stop command to access the same container, you can press Ctrl+P+Q to exit the operation.

2. If the -d option is used, the command is executed in the background and no error information is
displayed. The exit code cannot be used to determine whether the command is executed correctly.

3.3.2 Configuring Resources for a Secure Container

The secure container runs on a virtualized and isolated lightweight VM. Therefore, resource

configuration is divided into two parts: resource configuration for the lightweight VM, that is,

host resource configuration; resource configuration for containers in the VM, that is, guest

container resource configuration. The following describes resource configuration for the two

parts in detail.

3.3.2.1 Sharing Resources

Because the secure container runs on a virtualized and isolated lightweight VM, resources in

some namespaces on the host cannot be accessed. Therefore, --net host, --ipc host, --pid host,

and --uts host are not supported during startup.

When a pod is started, all containers in the pod share the same net namespace and ipc

namespace by default. If containers in the same pod need to share the pid namespace, you can

use Kubernetes to configure the pid namespace. In Kubernetes 1.11, the pid namespace is

disabled by default.

3.3.2.2 Limiting CPU Resources

1. Configure CPU resources for running a lightweight VM.

Configuring CPU resources of a lightweight VM is to configure the vCPUs for running

the VM. The secure container uses --annotation

com.github.containers.virtcontainers.sandbox_cpu to configure the CPU resources

for running the lightweight VM. This option can be configured only on the pause

container.

docker run -tid --runtime kata-runtime --network none --annotation

io.kubernetes.docker.type=podsandbox --annotation

com.github.containers.virtcontainers.sandbox_cpu=<cpu-nums> <pause-image>

<command>

Example:

#Start a pause container.

docker run -tid --runtime kata-runtime --network none --annotation

io.kubernetes.docker.type=podsandbox --annotation

com.github.containers.virtcontainers.sandbox_cpu=4 busybox sleep 999999

be3255a3f66a35508efe419bc52eccd3b000032b9d8c9c62df611d5bdc115954

#Access the container and check whether the number of CPUs is the same as that

configured in the com.github.containers.virtcontainers.sandbox_cpu file.

openEuler

Container User Guide 3 Secure Container

2020-04-01 167

docker exec be32 lscpu

Architecture: aarch64

Byte Order: Little Endian

CPU(s): 4

On-line CPU(s) list: 0-3

Thread(s) per core: 1

Core(s) per socket: 1

Socket(s): 4

The maximum number of CPUs that can be configured is the number of CPUs (excluding isolated cores)
that can run on the OS. The minimum number of CPUs is 0.5.

2. Configure CPU resources for running a container.

The method of configuring CPU resources for a container is the same as that for an

open-source Docker container. You can configure CPU resources by setting the

following parameters in the docker run command:

Parameter Description

--cpu-shares Sets the percentage of CPU time that can be

used by the container.

--cpus Sets the number of CPUs that can be used

by the container.

--cpu-period Sets the scheduling period of the container

process.

--cpu-quota Sets the CPU time that can be used by the

container process in a scheduling period.

--cpuset-cpus Sets the list of CPUs that can be used by the

container process.

NOTE

When the secure container uses the
--cpuset-cpus option to bind a CPU, the CPU ID
cannot exceed the number of CPUs in the
lightweight VM corresponding to the secure
container minus 1. (The CPU ID in the
lightweight VM starts from 0.)

--cpuset-mems Sets the memory node that can be accessed

by the container process.

NOTE

Secure containers do not support the
multi-NUMA architecture and configuration. The
--cpuset-mems option of NUMA memory can
only be set to 0.

3. Configure CPU hot swap.

The CPU hot swap function of the secure container requires the virtualization component QEMU.

The enable_cpu_memory_hotplug option in the kata-runtime configuration file

config.toml is used to enable or disable CPU and memory hot swap. The default value is

openEuler

Container User Guide 3 Secure Container

2020-04-01 168

false, indicating that CPU and memory hot swap is disabled. If the value is true, CPU

and memory hot swap is enabled.

The --cpus option is reused in kata-runtime to implement the CPU hot swap function.

The total number of --cpus options of all containers in a pod is calculated to determine

the number of CPUs to be hot added to the lightweight VM.

Example:

#Start a pause container. By default, one vCPU is allocated to a lightweight VM.

docker run -tid --runtime kata-runtime --network none --annotation

io.kubernetes.docker.type=podsandbox busybox sleep 999999

77b40fb72f63b11dd3fcab2f6dabfc7768295fced042af8c7ad9c0286b17d24f

#View the number of CPUs in the lightweight VM after the pause container is started.

docker exec 77b40fb72f6 lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 1

On-line CPU(s) list: 0

Thread(s) per core: 1

Core(s) per socket: 1

Socket(s): 1

#Start a new container in the same pod and run the --cpus command to set the number

of CPUs required by the container to 4.

docker run -tid --runtime kata-runtime --network none --cpus 4 --annotation

io.kubernetes.docker.type=container --annotation

io.kubernetes.sandbox.id=77b40fb72f63b11dd3fcab2f6dabfc7768295fced042af8c7ad9c0

286b17d24f busybox sleep 999999

7234d666851d43cbdc41da356bf62488b89cd826361bb71d585a049b6cedafd3

#View the number of CPUs in the current lightweight VM.

docker exec 7234d6668 lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 4

On-line CPU(s) list: 0-3

Thread(s) per core: 1

Core(s) per socket: 1

Socket(s): 4

#View the number of CPUs in the lightweight VM after deleting the container where

CPUs are hot added.

docker rm -f 7234d666851d

7234d666851d

docker exec 77b40fb72f6 lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 1

On-line CPU(s) list: 0

Thread(s) per core: 1

openEuler

Container User Guide 3 Secure Container

2020-04-01 169

Core(s) per socket: 1

Socket(s): 1

The pause container is only a placeholder container and does not have any workload. Therefore, when a
lightweight VM is started, the CPU allocated by default can be shared by other containers. Therefore,
you only need to hot add three CPUs to the lightweight VM for the new container started in the
preceding example.

− After the container where the CPU is hot added is stopped, the CPU is removed

when the container is started.

3.3.2.3 Limiting Memory Resources

1. Configure memory resources for running a lightweight VM.

Configuring the memory resources of a lightweight VM is to configure the memory for

running the VM. The secure container uses --annotation

com.github.containers.virtcontainers.sandbox_mem to configure the memory

resources for running the lightweight VM. This option can be configured only on the

pause container.

docker run -tid --runtime kata-runtime --network none --annotation

io.kubernetes.docker.type=podsandbox --annotation

com.github.containers.virtcontainers.sandbox_mem=<memory-size> <pause-image>

<command>

Example:

#Start a pause container and use --annotation

com.github.containers.virtcontainers.sandbox_mem=4G to allocate 4 GB memory to the

lightweight VM.

docker run -tid --runtime kata-runtime --network none --annotation

io.kubernetes.docker.type=podsandbox --annotation

com.github.containers.virtcontainers.sandbox_mem=4G busybox sleep 999999

1532c3e59e7a45cd6b419aa1db07dd0069b0cdd93097f8944177a25e457e4297

#View the memory information of the lightweight VM and check whether the memory size

is the same as that configured in the

com.github.containers.virtcontainers.sandbox_mem file.

docker exec 1532c3e free -m

 total used free shared buff/cache available

Mem: 3950 20 3874 41 55 3858

Swap: 0 0 0

 If the memory size of a lightweight VM is not set using --annotation

com.github.containers.virtcontainers.sandbox_mem, the lightweight VM uses 1 GB memory by
default.

 The minimum memory size of a pod in a secure container is 1 GB, and the maximum memory size is
256 GB. If the memory size allocated to a user exceeds 256 GB, an undefined error may occur.
Currently, secure containers do not support the scenario where the memory size exceeds 256 GB.

2. Configure memory resources for running a container.

The method of configuring memory resources for running a container is the same as that

for the open-source Docker container. You can configure memory resource limitation

parameters in the docker run command.

openEuler

Container User Guide 3 Secure Container

2020-04-01 170

Parameter Description

-m/--memory Sets the memory size that can be used by

the container process.

NOTE

 When memory hot swap is disabled, the
value of -m must be less than or equal to the
memory size allocated when the lightweight
VM is started.

3. Configure memory hot add.

The memory hot add function is also configured by the enable_cpu_memory_hotplug

option in the kata-runtime configuration file config.toml. For details, see 3.

Currently, memory resources support hot add only.

The -m option is reused in kata-runtime to implement the memory hot add function. The

sum of the -m options of all containers in a pod is collected to determine the number of

memories to be hot added to a lightweight VM.

Example:

#Start a pause container. By default, 1 GB memory is allocated to the lightweight

VM.

docker run -tid --runtime kata-runtime --network none --annotation

io.kubernetes.docker.type=podsandbox busybox sleep 999999

99b78508ada3fa7dcbac457bb0f6e3784e64e7f7131809344c5496957931119f

#View the memory size of the lightweight VM after the pause container is started.

docker exec 99b78508ada free -m

 total used free shared buff/cache available

Mem: 983 18 914 36 50 908

Swap: 0 0 0

#Start a new container in the same pod and run the -m command to set the memory size

required by the container to 4 GB.

docker run -tid --runtime kata-runtime --network none -m 4G --annotation

io.kubernetes.docker.type=container --annotation

io.kubernetes.sandbox.id=99b78508ada3fa7dcbac457bb0f6e3784e64e7f7131809344c5496

957931119f busybox sleep 999999

c49461745a712b2ef3127fdf43b2cbb034b7614e6060b13db12b7a5ff3c830c8

#View the memory size of the lightweight VM.

docker exec c49461745 free -m

 total used free shared buff/cache available

Mem: 4055 69 3928 36 57 3891

Swap: 0 0 0

#After deleting the container where the CPU is hot added, check the memory size of

the lightweight VM.

docker rm -f c49461745

c49461745

#The hot added memory does not support the hot add function. Therefore, after the

openEuler

Container User Guide 3 Secure Container

2020-04-01 171

hot added memory container is deleted from the lightweight VM, the memory is still

4 GB.

docker exec 99b78508ada free -m

 total used free shared buff/cache available

Mem: 4055 69 3934 36 52 3894

Swap: 0 0 0

The pause container is only a placeholder container and does not have any workload. Therefore, the
memory allocated to the lightweight VM during startup can be shared by other containers. You only
need to hot add 3 GB memory to the lightweight VM for the new container started in the preceding
example.

3.3.2.4 Limiting Block I/O Resources

1. Configure the block I/O resources for running a lightweight VM.

To configure block I/O resources for running a lightweight VM of secure containers, use

--annotation com.github.containers.virtcontainers.blkio_cgroup. This option can be

configured only on the pause container.

docker run -tid --runtime --network none --annotation

io.kubernetes.docker.type=podsandbox --annotation

com.github.containers.virtcontainers.blkio_cgroup=<blkio json

string<pause-image> <command>

The value of --annotation com.github.containers.virtcontainers.blkio_cgroup must

comply with the definition of the BlkioCgroup structure.

// BlkioCgroup for Linux cgroup 'blkio' data exchange

type BlkioCgroup struct {

 // Items specifies per cgroup values

 Items []BlockIOCgroupItem `json:"blkiocgroup,omitempty"`

}

type BlockIOCgroupItem struct {

 // Path represent path of blkio device

 Path string `json:"path,omitempty"`

 // Limits specifies the blkio type and value

 Limits []IOLimit `json:"limits,omitempty"`

}

type IOLimit struct {

 // Type specifies IO type

 Type string `json:"type,omitempty"`

 // Value specifies rate or weight value

 Value uint64 `json:"value,omitempty"`

}

The values of the Type field in the IOLimit structure body are as follows:

// BlkioThrottleReadBps is the key to fetch throttle_read_bps

BlkioThrottleReadBps = "throttle_read_bps"

// BlkioThrottleWriteBps is the key to fetch throttle_write_bps

BlkioThrottleWriteBps = "throttle_write_bps"

// BlkioThrottleReadIOPS is the key to fetch throttle_read_iops

BlkioThrottleReadIOPS = "throttle_read_iops"

openEuler

Container User Guide 3 Secure Container

2020-04-01 172

// BlkioThrottleWriteIOPS is the key to fetch throttle_write_iops

BlkioThrottleWriteIOPS = "throttle_write_iops"

// BlkioWeight is the key to fetch blkio_weight

BlkioWeight = "blkio_weight"

// BlkioLeafWeight is the key to fetch blkio_leaf_weight

BlkioLeafWeight = "blkio_leaf_weight"

Example:

docker run -tid --runtime kata-runtime --network none --annotation

com.github.containers.virtcontainers.blkio_cgroup='{"blkiocgroup":[{"path":"/de

v/sda","limits":[{"type":"throttle_read_bps","value":400},{"type":"throttle_wri

te_bps","value":400},{"type":"throttle_read_iops","value":700},{"type":"throttl

e_write_iops","value":699}]},{"limits":[{"type":"blkio_weight","value":78}]}]}'

busybox sleep 999999

The preceding command is used to limit the block I/O traffic of the /dev/sda disk used

by the started secure container by setting throttle_read_bps to 400 bit/s,

throttle_write_bps to 400 bit/s, throttle_read_iops to 700 times/s, throttle_write_iops

to 699 times/s, and the weight of the block I/O cgroup to 78.

3.3.2.5 Limiting File Descriptor Resources

To prevent the file descriptor resources on the host from being exhausted when a large

number of files in the 9p shared directory are opened in the container, the secure container can

customize the maximum number of file descriptors that can be opened by the QEMU process

of the secure container.

The secure container reuses the --files-limit option in the docker run command to set the

maximum number of file descriptors that can be opened by the QEMU process of the secure

container. This parameter can be configured only on the pause container. The usage method is

as follows:

docker run -tid --runtime kata-runtime --network none --annotation

io.kubernetes.docker.type=podsandbox --files-limit <max-open-files> <pause-image>

bash

 If the value of --files-limit is less than the default minimum value 1024 and is not 0, the maximum

number of file descriptors that can be opened by the QEMU process of the secure container is set to
the minimum value 1024.

 If the value of --files-limit is 0, the maximum number of file descriptors that can be opened by the
QEMU process of the secure container is the default value obtained by dividing the maximum
number of file descriptors that can be opened by the system (/proc/sys/fs/file-max) by 400.

 If the maximum number of file descriptors that can be opened by the QEMU process of the secure
container is not displayed when the secure container is started, the maximum number of file
descriptors that can be opened by the QEMU process of the secure container is the same as the
system default value.

3.3.3 Configuring Networking for a Secure Container

TAP-based Network Support

The secure container technology is implemented based on QEMU VMs. For a physical

machine system, a secure container is equivalent to a VM. Therefore, the secure container

may connect the VM to an external network in the Neutron network by using the test access

openEuler

Container User Guide 3 Secure Container

2020-04-01 173

point (TAP) technology. You do not need to pay attention to TAP device creation and bridging.

You only need to hot add the specified TAP device (with an existing host) to the VM in the

pause container and update the NIC information.

Related commands are as follows:

1. Run the following command to add a TAP NIC for a started container:

$ cat ./test-iface.json | kata-runtime kata-network add-iface 6ec7a98 -

In the preceding command, 6ec7a98 is the truncated container ID, and test-infs.json is

the file that describes the NIC information. The following is an example:

{

 "device": "tap-test",

 "name": "eth-test",

 "IPAddresses": [

 {

 "address": "172.16.0.3",

 "mask": "16"

 }

],

 "hwAddr":"02:42:20:6f:a3:69",

 "mtu": 1500,

 "vhostUserSocket":"/usr/local/var/run/openvswitch/vhost-user1",

 "queues":5

}

The fields in the JSON file are described as follows:

Field Mandatory/O
ptional

Description

device Mandatory Name of the NIC on a host. The value can contain a

maximum of 15 characters, including letters, digits,

underscores (_), hyphens (-), and periods (.). It must

start with a letter. The device name must be unique

on the same host.

name Mandatory Name of the NIC in the container. The value can

contain a maximum of 15 characters, including

letters, digits, underscores (_), hyphens (-), and

periods (.). It must start with a letter. The name must

be unique in the same sandbox.

IPAddresses Optional IP address of the NIC. Currently, one IP address can

be configured for each NIC. If no IP address is

configured for the NIC, no IP address will be

configured in the container, either.

hwAddr Mandatory MAC address of the NIC.

mtu Mandatory MTU of the NIC. The value ranges from 46 to 9600.

vhostUserSocke

t

Optional Socket path for DPDK polling. The path contains a

maximum of 128 bytes. The naming rule can contain

digits, letters, and hyphens (-). The path name must

start with a letter.

queues Optional Number of NIC queues. If this parameter is not set,

openEuler

Container User Guide 3 Secure Container

2020-04-01 174

Field Mandatory/O
ptional

Description

the default value 0 is used.

The following describes the output of the kata-runtime kata-network add-iface

command for adding NICs:

− If the command is successfully executed, the NIC information in JSON format is

returned from standard output (stdout). The content in JSON format is the same

as the input NIC information.

Example:

$ kata-runtime kata-network add-iface <container-id> net.json

{"device":"tap_test","name":"eth-test","IPAddresses":[{"Family":2,"Address

":"173.85.100.1","Mask":"24"}],"mtu":1500,"hwAddr":"02:42:20:6e:03:01","pc

iAddr":"01.0/00"}

− If the command fails to be executed, null is returned from stdout.

Example:

$ kata-runtime kata-network add-iface <container-id> netbad.json 2>/dev/null

null

If an IP address is specified for an NIC that is successfully added, Kata adds a default route whose
destination is in the same network segment as the IP address of the NIC. In the preceding example, after
the NIC is added, the following route is added to the container:

[root@6ec7a98 /]# ip route

172.16.0.0/16 dev eth-test proto kernel scope link src 172.16.0.3

2. Run the following command to view the added NICs:

$ kata-runtime kata-network list-ifaces 6ec7a98

[{"name":"eth-test","mac":"02:42:20:6f:a3:69","ip":["172.16.0.3/16"],"mtu":1500

}]

The information about the added NICs is displayed.

The following describes the output of the kata-runtime kata-network list-ifaces

command for listing added NICs:

− If the command is executed successfully, information about all NICs inserted into

the pod in JSON format is returned from stdout.

If multiple NICs are inserted into the pod, the NIC information in JSON array

format is returned.

$ kata-runtime kata-network list-ifaces <container-id>

[{"name":"container_eth","mac":"02:42:20:6e:a2:59","ip":["172.17.25.23/8"]

,"mtu":1500},{"name":"container_eth_2","mac":"02:90:50:6b:a2:29","ip":["19

2.168.0.34/24"],"mtu":1500}]

If no NIC is inserted into the pod, null is returned from stdout.

$ kata-runtime kata-network list-ifaces <container-id>

null

− If the command fails to be executed, null is returned from stdout, and error

description is returned from standard error (stderr).

Example:

openEuler

Container User Guide 3 Secure Container

2020-04-01 175

$ kata-runtime kata-network list-ifaces <container-id>

null

3. Add a route for a specified NIC.

$ cat ./test-route.json | kata-runtime kata-network add-route 6ec7a98 -

[{"dest":"default","gateway":"172.16.0.1","device":"eth-test"}]

The following describes the output of the kata-runtime kata-network add-route

command for adding a route to a specified NIC:

− If the command is executed successfully, the added route information in JSON

format is returned from stdout.

Example:

$ kata-runtime kata-network add-route <container-id> route.json

[{"dest":"177.17.0.0/24","gateway":"177.17.25.1","device":"netport_test_1"

}]

− If the command fails to be executed, null is returned from stdout, and error

description is returned from standard error (stderr).

Example:

$ kata-runtime kata-network add-route <container-id> routebad.json 2>/dev/null

null

Key fields are described as follows:

− dest: Network segment corresponding to the route. The value is in the format of

<ip>/<mask>. <ip> is mandatory. There are three cases:

i. Both IP address and mask are configured.

ii. If only an IP address is configured, the default mask is 32.

iii. If "dest":"default" is configured, there is no destination by default. In this

case, the gateway needs to be configured.

− gateway: Next-hop gateway of the route. When "dest":"default" is configured,

the gateway is mandatory. In other cases, this parameter is optional.

− device: Name of the NIC corresponding to the route, which is mandatory. The value

contains a maximum of 15 characters.

If a route is added for the loopback device lo in the container, the device name corresponding to the
device field in the route configuration file is lo.

4. Run the following command to delete a specified route:

$ cat ./test-route.json | kata-runtime kata-network del-route 6ec7a98 -

The fields in the test-route.json file are the same as those in the JSON file for adding a

route.

The following describes the output of the kata-runtime kata-network del-route

command for deleting a specified route:

− If the command is executed successfully, the added route information in JSON

format is returned from stdout.

Example:

$ kata-runtime kata-network del-route <container-id> route.json

[{"dest":"177.17.0.0/24","gateway":"177.17.25.1","device":"netport_test_1"

}]

− If the command fails to be executed, null is returned from stdout, and error

description is returned from standard error (stderr).

openEuler

Container User Guide 3 Secure Container

2020-04-01 176

Example:

$ kata-runtime kata-network del-route <container-id> routebad.json 2>/dev/null

null

 In the input fields, dest is mandatory, and both device and gateway are optional. Kata performs

fuzzy match based on different fields and deletes the corresponding routing rules. For example, if
dest is set to an IP address, all rules of this IP address will be deleted.

 If the route of the loopback device lo in the container is deleted, the device name corresponding to
the device field in the route configuration file is lo.

5. Run the following command to delete an NIC:

$ cat ./test-iface.json | kata-runtime kata-network del-iface 6ec7a98 -

When deleting an NIC, you can only delete it based on the name field in the NIC container. Kata does
not identify other fields.

The following describes the output of the kata-runtime kata-network del-iface

command for deleting NICs:

− If the command is executed successfully, null is returned from stdout.

Example:

$ kata-runtime kata-network del-iface <container-id> net.json

null

− If the command fails to be executed, the information about NICs that fail to be

deleted in JSON format is returned from stdout, and error description is returned

from stderr.

Example:

$ kata-runtime kata-network del-iface <container-id> net.json

{"device":"tapname_fun_012","name":"netport_test_1","IPAddresses":[{"Famil

y":0,"Address":"177.17.0.1","Mask":"8"}],"mtu":1500,"hwAddr":"02:42:20:6e:

a2:59","linkType":"tap"}

The preceding are common commands. For details about the command line interfaces, see

3.4.2 APIs.

Kata IPVS Subsystem

The secure container provides an API for adding the ipvs command and setting the IPVS rule

for the container. The functions include adding, editing, and deleting virtual services, adding,

editing, and deleting real servers, querying IPVS service information, setting connection

timeout, clearing the system connection cache, and importing rules in batches.

1. Add a virtual service address for the container.

kata-runtime kata-ipvs ipvsadm --parameters "--add-service --tcp-service

172.17.0.7:80 --scheduler rr --persistent 3000" <container-id>

2. Modify virtual service parameters of a container.

kata-runtime kata-ipvs ipvsadm --parameters "--edit-service --tcp-service

172.17.0.7:80 --scheduler rr --persistent 5000" <container-id>

3. Delete the virtual service address of a container.

kata-runtime kata-ipvs ipvsadm --parameters "--delete-service --tcp-service

172.17.0.7:80" <container-id>

4. Add a real server for the virtual service address.

openEuler

Container User Guide 3 Secure Container

2020-04-01 177

kata-runtime kata-ipvs ipvsadm --parameters "--add-server --tcp-service

172.17.0.7:80 --real-server 172.17.0.4:80 --weight 100" <container-id>

5. Modify real server parameters of a container.

kata-runtime kata-ipvs ipvsadm --parameters "--edit-server --tcp-service

172.17.0.7:80 --real-server 172.17.0.4:80 --weight 200" <container-id>

6. Delete a real server from a container.

kata-runtime kata-ipvs ipvsadm --parameters "--delete-server --tcp-service

172.17.0.7:80 --real-server 172.17.0.4:80" <container-id>

7. Query service information.

kata-runtime kata-ipvs ipvsadm --parameters "--list" <container-id>

8. It takes a long time to import rules one by one. You can write rules into a file and import

them in batches.

kata-runtime kata-ipvs ipvsadm --restore - < <rule file path> <container-id>

By default, the NAT mode is used for adding a single real server. To add real servers in batches, you
need to manually add the -m option to use the NAT mode.

The following is an example of the rule file content:

-A -t 10.10.11.12:100 -s rr -p 3000

-a -t 10.10.11.12:100 -r 172.16.0.1:80 -m

-a -t 10.10.11.12:100 -r 172.16.0.1:81 -m

-a -t 10.10.11.12:100 -r 172.16.0.1:82 -m

9. Clear the system connection cache.

kata-runtime kata-ipvs cleanup --parameters "--orig-dst 172.17.0.4 --protonum tcp"

<container-id>

10. Set timeout interval for TCP, TCP FIN, or UDP connections.

kata-runtime kata-ipvs ipvsadm --parameters "--set 100 100 200" <container-id>

1. Each container supports a maximum of 20000 iptables rules (5000 services and three

servers/services). Both add-service and add-server are rules.

2. Before importing rules in batches, you need to clear existing rules.

3. No concurrent test scenario exists.

4. The preceding are common commands. For details about the command line interfaces, see 3.4.2
APIs.

3.3.4 Monitoring Secure Containers

Description

The kata events command is used to view the status information of a specified container. The

information includes but is not limited to the container memory, CPU, PID, Blkio, hugepage

memory, and network information.

Usage

kata-runtime events [command options] <container-id>

openEuler

Container User Guide 3 Secure Container

2020-04-01 178

Parameters
 -- interval value: specifies the query period. If this parameter is not specified, the default

query period is 5 seconds.

 --stats: displays container information and exits the query.

Prerequisites

The container to be queried must be in the running state. Otherwise, the following error

message will be displayed: "Container ID (<container_id>) does not exist".

This command can be used to query the status of only one container.

Example
 The container status is displayed every three seconds.

$ kata-runtime events --interval 3s 5779b2366f47

{

 "data": {

 "blkio": {},

 "cpu": {

 "throttling": {},

 "usage": {

 "kernel": 130000000,

 "percpu": [

 214098440

],

 "total": 214098440,

 "user": 10000000

 }

 },

 "hugetlb": {},

 "intel_rdt": {},

 "interfaces": [

 {

 "name": "lo",

 "rx_bytes": 0,

 "rx_dropped": 0,

 "rx_errors": 0,

 "rx_packets": 0,

 "tx_bytes": 0,

 "tx_dropped": 0,

 "tx_errors": 0,

 "tx_packets": 0

 }

],

 "memory": {

 "cache": 827392,

 "kernel": {

 "failcnt": 0,

 "limit": 9223372036854771712,

 "max": 421888,

 "usage": 221184

 },

 "kernelTCP": {

openEuler

Container User Guide 3 Secure Container

2020-04-01 179

 "failcnt": 0,

 "limit": 0

 },

 "raw": {

 "active_anon": 49152,

 "active_file": 40960,

 "cache": 827392,

 "dirty": 0,

 "hierarchical_memory_limit": 9223372036854771712,

 "hierarchical_memsw_limit": 9223372036854771712,

 "inactive_anon": 0,

 "inactive_file": 839680,

 "mapped_file": 540672,

 "pgfault": 6765,

 "pgmajfault": 0,

 "pgpgin": 12012,

 "pgpgout": 11803,

 "rss": 4096,

 "rss_huge": 0,

 "shmem": 32768,

 "swap": 0,

 "total_active_anon": 49152,

 "total_active_file": 40960,

 "total_cache": 827392,

 "total_dirty": 0,

 "total_inactive_anon": 0,

 "total_inactive_file": 839680,

 "total_mapped_file": 540672,

 "total_pgfault": 6765,

 "total_pgmajfault": 0,

 "total_pgpgin": 12012,

 "total_pgpgout": 11803,

 "total_rss": 4096,

 "total_rss_huge": 0,

 "total_shmem": 32768,

 "total_swap": 0,

 "total_unevictable": 0,

 "total_writeback": 0,

 "unevictable": 0,

 "writeback": 0

 },

 "swap": {

 "failcnt": 0,

 "limit": 9223372036854771712,

 "max": 34201600,

 "usage": 1204224

 },

 "usage": {

 "failcnt": 0,

 "limit": 9223372036854771712,

 "max": 34201600,

 "usage": 1204224

 }

 },

 "pids": {

openEuler

Container User Guide 3 Secure Container

2020-04-01 180

 "current": 1

 },

 "tcp": {},

 "tcp6": {},

 "udp": {},

 "udp6": {}

 },

 "id": "5779b2366f47cd1468ebb1ba7c52cbdde3c7d3a5f2af3eefadc8356700fc860b",

 "type": "stats"

}

 The query exits after the container status is displayed.

kata-runtime events --stats <container_id>

The format of the command output is the same as that of the previous command.

However, the output of this command is displayed only once.

3.4 Appendix

3.4.1 configuration.toml

The value of each field in the configuration.toml file is subject to the configuration.toml file in the
kata-containers-<version>.rpm package. You cannot set any field in the configuration file.

[hypervisor.qemu]

path: specifies the execution path of the virtualization QEMU.

kernel: specifies the execution path of the guest kernel.

initrd: specifies the guest initrd execution path.

image: specifies the execution path of the guest image (not applicable).

machine_type: specifies the type of the analog chip. The value is virt for the ARM

architecture and pc for the x86 architecture.

kernel_params: specifies the running parameters of the guest kernel.

firmware: specifies the firmware path. If this parameter is left blank, the default

firmware is used.

machine_accelerators: specifies an accelerator.

default_vcpus: specifies the default number of vCPUs for each SB/VM.

default_maxvcpus: specifies the default maximum number of vCPUs for each SB/VM.

default_root_ports: specifies the default number of root ports for each SB/VM.

default_bridges: specifies the default number of bridges for each SB/VM.

default_memory: specifies the default memory size of each SB/VM. The default value is

1024 MiB.

memory_slots: specifies the number of memory slots for each SB/VM. The default value

is 10.

memory_offset: specifies the memory offset. The default value is 0.

disable_block_device_use: disables the block device from being used by the rootfs of

the container.

shared_fs: specifies the type of the shared file system. The default value is virtio-9p.

virtio_fs_daemon: specifies the path of the vhost-user-fs daemon process.

virtio_fs_cache_size: specifies the default size of the DAX cache.

virtio_fs_cache: specifies the cache mode.

block_device_driver: specifies the driver of a block device.

block_device_cache_set: specifies whether to set cache-related options for a block

device. The default value is false.

openEuler

Container User Guide 3 Secure Container

2020-04-01 181

block_device_cache_direct: specifies whether to enable O_DIRECT. The default value is

false.

block_device_cache_noflush: specifies whether to ignore device update requests. The

default value is false.

enable_iothreads: enables iothreads.

enable_mem_prealloc: enables VM RAM pre-allocation. The default value is false.

enable_hugepages: enables huge pages. The default value is false.

enable_swap: enables the swap function. The default value is false.

enable_debug: enables QEMU debugging. The default value is false.

disable_nesting_checks: disables nested check.

msize_9p = 8192: specifies the number of bytes transmitted in each 9p packet.

use_vsock: uses vsocks to directly communicate with the agent (the prerequisite is that

vsocks is supported). The default value is false.

hotplug_vfio_on_root_bus: enables the hot swap of the VFIO device on the root bus. The

default value is false.

disable_vhost_net: disables vhost_net. The default value is false.

entropy_source: specifies the default entropy source.

guest_hook_path: specifies the binary path of the guest hook.

[factory]

enable_template: enables the VM template. The default value is false.

template_path: specifies the template path.

vm_cache_number: specifies the number of VM caches. The default value is 0.

vm_cache_endpoint: specifies the address of the Unix socket used by the VMCache. The

default value is /var/run/kata-containers/cache.sock.

[proxy.kata]

path: specifies the kata-proxy running path.

enable_debug: enables proxy debugging. The default value is false.

[shim.kata]

path: specifies the running path of kata-shim.

enable_debug: enables shim debugging. The default value is false.

enable_tracing: enables shim opentracing.

[agent.kata]

enable_debug: enables the agent debugging function. The default value is false.

enable_tracing: enables the agent tracing function.

trace_mode: specifies the trace mode.

trace_type: specifies the trace type.

enable_blk_mount: enables guest mounting of the block device.

[netmon]

enable_netmon: enables network monitoring. The default value is false.

path: specifies the kata-netmon running path.

enable_debug: enables netmon debugging. The default value is false.

[runtime]

enable_debug: enables runtime debugging. The default value is false.

enable_cpu_memory_hotplug: enables CPU and memory hot swap. The default value is false.

internetworking_model: specifies the network interconnection mode between VMs and

containers.

disable_guest_seccomp: disables the seccemp security mechanism in the guest application.

The default value is true.

enable_tracing: enables runtime opentracing. The default value is false.

openEuler

Container User Guide 3 Secure Container

2020-04-01 182

disable_new_netns: disables network namespace creation for the shim and hypervisor

processes. The default value is false.

experimental: enables the experimental feature, which does not support user-defined

configurations.

3.4.2 APIs

Table 3-1 Commands related to the kata-runtime network

Command Subcomma
nd

File Example Fiel
d

Descriptio
n

Remarks

kata-networ

k

NOTE

 The
kata-net
work
comman
d must
be used
in
groups.
Network
devices
that are
not
added
using

kata-run

time
kata-net

work
cannot
be
deleted
or listed
using

kata-run
time

kata-net
work.
The
reverse
is also
true.

 kata-run
time

kata-net

work
imports
configur
ation
paramete
rs
through
a file or
stdin.

add-iface

NOTE

 An
interface
can be
added to
only one
container
.

 The
executio
n result
is subject
to the
returned
value
(non-zer
o return
value).

{

"device":"tap1"

,

"name":"eth1",

"IPAddresses":

[{"address":"17

2.17.1.10","ma

sk":"24"}],

"mtu":1300,

"hwAddr":"02:

42:20:6f:a2:80"

"vhostUserSoc

ket":"/usr/local/

var/run/openvs

witch/vhost-use

r1"

}

devi

ce

Sets the

name of the

NIC on a

host.

Mandatory. The

value can contain

a maximum of 15

characters,

including letters,

digits,

underscores (_),

hyphens (-), and

periods (.). It must

start with a letter.

The device name

must be unique on

the same host.

nam

e

Sets the

name of the

NIC in the

container.

Mandatory. The

value can contain

a maximum of 15

characters,

including letters,

digits,

underscores (_),

hyphens (-), and

periods (.). It must

start with a letter.

Ensure that the

name is unique in

the same sandbox.

IPA

ddre

sses

Sets the IP

address of

an NIC.

Optional.

Currently, one IP

address can be

configured for

each NIC. If no IP

address is

configured for the

NIC, no IP

address will be

configured in the

container, either.

mtu Sets the

MTU of an

NIC.

Mandatory.

The value ranges

from 46 to 9600.

openEuler

Container User Guide 3 Secure Container

2020-04-01 183

Command Subcomma
nd

File Example Fiel
d

Descriptio
n

Remarks

hw

Add

r

Sets the

MAC

address of

an NIC.

Mandatory.

vho

stUs

erS

ock

et

Sets the

DPDK

polling

socket path.

Optional.

The path contains

a maximum of

128 bytes. The

naming rule can

contain digits,

letters, and

hyphens (-). The

path name must

start with a letter.

del-iface {

"name":"eth1"

}

Non

e

Deletes an

NIC from a

container.

NOTE

When deleting a
NIC, you can only
delete it based on
the name field in
the NIC container.
Kata does not
identify other
fields.

list-ifaces None Non

e

Queries the

NIC list in a

container.

None

add-route {

"dest":"172.17.

10.10/24",

"gateway":"",

"device":"eth1"

}

dest Sets the

network

segment

correspondi

ng to the

route.

The value is in the

format of

<ip>/<mask>.

<ip> is

mandatory.

There are three

cases:

1. Both IP address

and mask are

configured.

2. If only an IP

address is

configured, the

default mask is

32.

3. If

"dest":"default"

is configured,

there is no

destination by

default. In this

case, the gateway

openEuler

Container User Guide 3 Secure Container

2020-04-01 184

Command Subcomma
nd

File Example Fiel
d

Descriptio
n

Remarks

needs to be

configured.

gate

way

Sets the

next-hop

gateway of

the route.

When

"dest":"default"

is configured, the

gateway is

mandatory. In

other cases, this

parameter is

optional.

devi

ce

Sets the

name of the

NIC

correspondi

ng to the

route.

Mandatory.

The value

contains a

maximum of 15

characters.

del-route {

"dest":"172.17.

10.10/24"

}

Non

e

Deletes a

container

routing rule.

dest is mandatory,

and both device

and gateway are

optional.

NOTE

Kata performs
fuzzy match based
on different fields
and deletes the
corresponding
routing rules.

list-routes None Non

e

Queries the

route list in

a container.

None

Table 3-2 kata-ipvs command line interfaces

Co
m
m
an
d

Su
bc
om
ma
nd

Fiel
d

Parame
ter

Sub-p
arame
ter

Descrip
tion

Remarks

ka

ta-

ipv

s

ipv

sad

m

--pa

ram

eter

s

-A,

--add-se

rvice

-t,

--tcp-s

ervice

-u,

--udp-s

ervice

Virtual

service

type.

Mandatory. You can select

--tcp-service or --udp-service. The

format is ip:port. The value of port

ranges from 1 to 65535.

Example:

kata-runtime kata-ipvs ipvsadm

--parameters "--add-service

--tcp-service 172.17.0.7:80

openEuler

Container User Guide 3 Secure Container

2020-04-01 185

Co
m
m
an
d

Su
bc
om
ma
nd

Fiel
d

Parame
ter

Sub-p
arame
ter

Descrip
tion

Remarks

--scheduler rr --persistent 3000"

<container-id>

-s,

--sched

uler

Load

balancin

g

scheduli

ng

algorith

m.

Mandatory. Value range:

rr|wrr|lc|wlc|lblc|lblcr|dh|sh|sed|nq.

-p,

--persi

stent

Service

duration.

Mandatory. The value ranges from 1 to

2678400, in seconds.

-E,

--edit-se

rvice

-t,

--tcp-s

ervice

-u,

--udp-s

ervice

Virtual

service

type.

Mandatory. You can select

--tcp-service or --udp-service. The

format is ip:port. The value of port

ranges from 1 to 65535.

-s,

--sched

uler

Load

balancin

g

scheduli

ng

algorith

m.

Mandatory. Value range:

rr|wrr|lc|wlc|lblc|lblcr|dh|sh|sed|nq.

-p,

--persi

stent

Service

duration.

Mandatory. The value ranges from 1 to

2678400, in seconds.

-D,

--delete-

service

-t,

--tcp-s

ervice

-u,

--udp-s

ervice

Virtual

service

type.

Mandatory. You can select

--tcp-service or --udp-service. The

format is ip:port. The value of port

ranges from 1 to 65535.

-a,

--add-se

rver

-t,

--tcp-s

ervice

-u,

--udp-s

ervice

Virtual

service

type.

Mandatory. You can select

--tcp-service or --udp-service. The

format is ip:port. The value of port

ranges from 1 to 65535.

Example:

kata-runtime kata-ipvs ipvsadm

--parameters "--add-server

--tcp-service 172.17.0.7:80

--real-server 172.17.0.4:80

openEuler

Container User Guide 3 Secure Container

2020-04-01 186

Co
m
m
an
d

Su
bc
om
ma
nd

Fiel
d

Parame
ter

Sub-p
arame
ter

Descrip
tion

Remarks

--weight 100" <container-id>

-r,

--real-s

erver

Real

server

address.

Mandatory. The format is ip:port. The

value of port ranges from 1 to 65535.

-w,

--weig

ht

Weight Optional. The value ranges from 0 to

65535.

-e,

--edit-se

rver

-t,

--tcp-s

ervice

-u,

--udp-s

ervice

Virtual

service

type.

Mandatory. You can select

--tcp-service or --udp-service. The

format is ip:port. The value of port

ranges from 1 to 65535.

-r,

--real-s

erver

Real

server

address.

Mandatory. The format is ip:port. The

value of port ranges from 1 to 65535.

-w,

--weig

ht

Weight Optional. The value ranges from 0 to

65535.

-d,

--delete-

server

-t,

--tcp-s

ervice

-u,

--udp-s

ervice

Virtual

service

type.

Mandatory. You can select

--tcp-service or --udp-service. The

format is ip:port. The value of port

ranges from 1 to 65535.

-r,

--real-s

erver

Real

server

address.

Mandatory. The format is ip:port. The

value of port ranges from 1 to 65535.

-L, --list -t,

--tcp-s

ervice

-u,

--udp-s

ervice

Queries

virtual

service

informat

ion.

Optional.

Example:

kata-runtime kata-ipvs ipvsadm

--parameters "--list --tcp-service

ip:port" <container-id>

--set --tcp TCP

timeout.

Mandatory. The value ranges from 0 to

1296000.

Example:

kata-runtime kata-ipvs ipvsadm

--parameters "--set 100 100 200"

<container-id>

openEuler

Container User Guide 3 Secure Container

2020-04-01 187

Co
m
m
an
d

Su
bc
om
ma
nd

Fiel
d

Parame
ter

Sub-p
arame
ter

Descrip
tion

Remarks

--tcpfi

n

TCP

FIN

timeout.

Mandatory. The value ranges from 0 to

1296000.

--udp UDP

timeout.

Mandatory. The value ranges from 0 to

1296000.

--res

tore

- Imports

standard

inputs in

batches.

Rule

files can

be

specified

.

Example:

kata-runtime kata-ipvs ipvsadm

--restore - < <rule file path>

<container-id>

NOTE

By default, the NAT mode is used for
adding a single real server. To add real
servers in batches, you need to manually
add the -m option to use the NAT mode.

The following is an example of the rule file
content:

-A -t 10.10.11.12:100 -s rr -p 3000

-a -t 10.10.11.12:100 -r 172.16.0.1:80 -m

-a -t 10.10.11.12:100 -r 172.16.0.1:81 -m

-a -t 10.10.11.12:100 -r 172.16.0.1:82 -m

cle

an

up

--pa

ram

eter

s

-d, --orig-dst Specifie

s the IP

address.

Mandatory.

Example:

kata-runtime kata-ipvs cleanup

--parameters "--orig-dst 172.17.0.4

--protonum tcp" <container-id>

-p, --protonum Protocol

type.

Mandatory. The value can be tcp or

udp.

openEuler

Container User Guide 4 Docker Container

2020-04-01 188

4 Docker Container

4.1 Overview

4.2 Installation and Deployment

4.3 Container Management

4.4 Image Management

4.5 Command Reference

4.1 Overview
Docker is an open-source Linux container engine that enables quick application packaging,

deployment, and delivery. The original meaning of Docker is dork worker, whose job is to

pack the goods to the containers, and move containers, and load containers. Similarly, the job

of Docker in Linux is to pack applications to containers, and deploy and run applications on

various platforms using containers. Docker uses Linux Container technology to turn

applications into standardized, portable, and self-managed components, enabling the "build

once" and "run everywhere" features of applications. Features of Docker technology include:

quick application release, easy application deployment and management, and high application

density.

4.2 Installation and Deployment

4.2.1 Installation Configurations and Precautions

This section describes important configurations related to the installation of the open-source

container Docker.

4.2.1.1 Precautions

 The docker-engine RPM package cannot be installed together with the containerd,

runc, or podman RPM package. This is because the docker-engine RPM package

contains all components required for Docker running, including containerd, runc, and

docker binary files. Yet the containerd, runc, and podman RPM packages also contain

the corresponding binary files. Software package conflicts may occur due to repeated

installation.

openEuler

Container User Guide 4 Docker Container

2020-04-01 189

4.2.1.2 Basic Installation Configuration

4.2.1.2.1 Daemon Parameter Configuration

You can add configuration items to the /etc/docker/daemon.json file to customize parameters.

You can run the dockerd --help command to view related configuration items and their usage

methods. A configuration example is as follows:

cat /etc/docker/daemon.json

{

 "debug": true,

 "storage-driver": "overlay2",

 "storage-opts": ["overlay2.override_kernel_check=true"]

}

4.2.1.2.2 Daemon Running Directory Configuration

Re-configuring various running directories and files (including --graph and --exec-root) may

cause directory conflicts or file attribute changes, affecting the normal use of applications.

Therefore, the specified directories or files should be used only by Docker to avoid file

attribute changes and security issues caused by conflicts.

 Take --graph as an example. When /new/path/ is used as the new root directory of the

daemon, if a file exists in /new/path/ and the directory or file name conflicts with that

required by Docker (for example, containers, hooks, and tmp), Docker may update the

original directory or file attributes, including the owner and permission.

From Docker 17.05, the --graph parameter is marked as Deprecated and replaced with the

--data-root parameter.

4.2.1.2.3 Daemon Network Configuration

 After the network segment of the docker0 bridge is specified by using the --bip

parameter on Docker daemon, if the --bip parameter is deleted during the next Docker

daemon restart, the docker0 bridge uses the previous value of --bip, even if the docker0

bridge is deleted before the restart. The reason is that Docker saves the network

configuration and restores the previous configuration by default during the next restart.

 When running the docker network create command to concurrently create networks,

you can create two networks with the same name. The reason is that Docker networks

are distinguished by IDs. The name is only an alias that is easy to identify and may not

be unique.

 In the Docker bridge network mode, a Docker container establishes external

communication through NAT on the host. When Docker daemon starts a Docker

container, a docker-proxy process is started for each port mapped on the host to access

the proxy. It is recommended that you map only the necessary ports when using

userland-proxy to reduce the resources consumed by the port mapping of docker-proxy.

openEuler

Container User Guide 4 Docker Container

2020-04-01 190

4.2.1.2.4 Daemon umask Configuration

The default umask value of the main container process and exec process is 0022. To meet

security specifications and prevent containers from being attacked, the default value of umask

is changed to 0027 after runC implementation is modified. After the modification, the other

groups cannot access new files or directories.

The default value of umask is 0027 when Docker starts a container. You can change the value

to 0022 by running the --exec-opt native.umask=normal command during container startup.

If native.umask is configured in docker create or docker run command, its value is used.

For details, see the parameter description in 4.6.2.4 create and 4.6.2.16 run.

4.2.1.2.5 Daemon Start Time

The Docker service is managed by systemd, which restricts the startup time of each service. If

the Docker service fails to be started within the specified time, the possible causes are as

follows:

 If Docker daemon is started for the first time using devicemapper, the Docker daemon

needs to perform the initialization operation on the device. This operation, however, will

perform a large number of disk I/O operations. When the disk performance is poor or

many I/O conflicts exist, the Docker daemon startup may time out. devicemapper needs

to be initialized only once and does not need to be initialized again during later Docker

daemon startup.

 If the usage of the current system resources is too high, the system responses slowly, all

operations in the system slow down, and the startup of the Docker service may time out.

 During the restart, a daemon traverses and reads configuration files and the init layer and

writable layer configurations of each container in the Docker working directory. If there

are too many containers (including the created and exited containers) in the current

system and the disk read and write performance is limited, the startup of the Docker

service may time out due to the long-time daemon traversing.

If the service startup times out, you are advised to rectify the fault as follows:

 Ensure that the container orchestration layer periodically deletes unnecessary containers,

especially the exited containers.

 Based on performance requirements of the solution, adjust the cleanup period of the

orchestration layer and the start time of the Docker service.

4.2.1.2.6 Journald Component

After systemd-journald is restarted, Docker daemon needs to be restarted. Journald obtains the

Docker daemon logs through a pipe. If the journald service is restarted, the pipe is disabled.

The write operation of Docker logs triggers the SIGPIPE signal, which causes the Docker

daemon crash. If this signal is ignored, the subsequent Docker daemon logs may fail to be

recorded. Therefore, you are advised to restart Docker daemon after the journald service is

restarted or becomes abnormal, ensuring that Docker logs can be properly recorded and

preventing status exceptions caused by daemon crash.

openEuler

Container User Guide 4 Docker Container

2020-04-01 191

4.2.1.2.7 Firewalld Component

You need to restart the Docker service after restarting or starting firewalld.

 When the firewalld service is started, the iptables rules of the current system are cleared.

Therefore, if the firewalld service is restarted during Docker daemon startup, the Docker

service may fail to insert iptables rules, causing the Docker service startup failure.

 If the firewalld service is restarted after the Docker service is started, or the status of the

firewalld service (service paused or resumed) is changed, the iptables rules of the Docker

service are deleted. As a result, the container with port mapping fails to be created.

4.2.1.2.8 Iptables Component

If the --icc=false option is added in Docker, the communication between containers can be

restricted. However, if the OS has some rules, the communication between containers may not

be restricted. For example:

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)

...

0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0

...

0 0 DROP all -- docker0 docker0 0.0.0.0/0 0.0.0.0/0

...

In the Chain FORWARD command, the ACCEPT icmp rule is added to DROP. As a result,

after the --icc=false option is added, containers can be pinged, but the peer end is unreachable

if UDP or TCP is used.

Therefore, if you want to add the --icc=false option when using Docker in a container OS,

you are advised to clear iptables rules on the host first.

4.2.1.2.9 Audit Component

You can configure audit for Docker. However, this configuration is not mandatory. For

example:

-w /var/lib/docker -k docker

-w /etc/docker -k docker

-w /usr/lib/systemd/system/docker.service -k docker

-w /usr/lib/systemd/system/docker.socket -k docker

-w /etc/sysconfig/docker -k docker

-w /usr/bin/docker-containerd -k docker

-w /usr/bin/docker-runc -k docker

-w /etc/docker/daemon.json -k docker

Configuring audit for Docker brings certain benefits for auditing, while it does not have any

substantial effects on attack defense. In addition, the audit configurations cause serious

efficiency problems, for example, the system may not respond smoothly. Therefore, exercise

caution in the production environment.

The following uses -w /var/lib/docker -k docker as an example to describe how to configure

Docker audit.

[root@localhost signal]# cat /etc/audit/rules.d/audit.rules | grep docker -w

/var/lib/docker/ -k docker

[root@localhost signal]# auditctl -R /etc/audit/rules.d/audit.rules | grep docker

[root@localhost signal]# auditctl -l | grep docker -w /var/lib/docker/ -p rwxa -k docker

openEuler

Container User Guide 4 Docker Container

2020-04-01 192

-p [r|w|x|a] and -w are used together to monitor the read, write, execution, and attribute changes (such
as timestamp changes) of the directory. In this case, any file or directory operation in the /var/lib/docker
directory will be recorded in the audit.log file. As a result, too many logs will be recorded in the
audit.log file, which severely affects the memory or CPU usage of the auditd, and further affects the OS.
For example, logs similar to the following will be recorded in the /var/log/audit/audit.log file each time
the ls /var/lib/docker/containers command is executed:

type=SYSCALL msg=audit(1517656451.457:8097): arch=c000003e syscall=257 success=yes

exit=3 a0=ffffffffffffff9c a1=1b955b0 a2=90800 a3=0 items=1 ppid=17821 pid=1925 auid=0

uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts6 ses=4 comm="ls"

exe="/usr/bin/ls" subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

key="docker"type=CWD msg=audit(1517656451.457:8097): cwd="/root"type=PATH

msg=audit(1517656451.457:8097): item=0 name="/var/lib/docker/containers"

inode=1049112 dev=fd:00 mode=040700 ouid=0 ogid=0 rdev=00:00

obj=unconfined_u:object_r:container_var_lib_t:s0 objtype=NORMAL

4.2.1.2.10 Security Configuration seccomp

During the container network performance test, it is found that the performance of Docker is

lower than that of the native kernel namespace. After seccomp is enabled, system calls (such

as sendto) are not performed through system_call_fastpath. Instead, tracesys is called, which

greatly deteriorates the performance. Therefore, you are advised to disable seccomp in

container scenarios where services require high performance. For example:

docker run -itd --security-opt seccomp=unconfined busybox:latest

4.2.1.2.11 Do Not Modify Private Directory of Docker Daemon

Do not modify the root directory used by Docker (/var/lib/docker by default), the directory

during operation (/run/docker by default), or the files or directories in the two directories.

The forbidden operations include deleting files, adding files, creating soft or hard links for the

directories or files, or modifying attributes, permissions, or contents of the files. If any

modification is required, contact the Euler container team for review.

4.2.1.2.12 Precautions for Common Users in the Scenario Where a Large Number of
Containers Are Deployed

The maximum number of processes that a common user can create on an OS host can be

restricted by creating the /etc/security/limits.d/20-nproc.conf file in the system. Similarly,

the maximum number of processes that a common user can create in a container is determined

by the value in the /etc/security/limits.d/20-nproc.conf file in the container image, as shown

in the following example:

cat /etc/security/limits.conf

* soft nproc 4096

If an error is reported due to insufficient resources when a large number of containers are

deployed by a common user, increase the value 4096 in the

/etc/security/limits.d/20-nproc.conf file.

Configure the maximum value based on the maximum capability of the kernel, as shown in

the following example:

[root@localhost ~]# sysctl -a | grep pid_max

kernel.pid_max = 32768

openEuler

Container User Guide 4 Docker Container

2020-04-01 193

4.2.1.3 Storage Driver Configuration

This Docker version supports two storage drivers: overlay2 and devicemapper. Since overlay2

has better performance than devicemapper, it is recommended that overlay2 be preferentially

used in the production environment.

4.2.1.3.1 overlay2 Storage Driver Configuration

Configuration Methods

overlay2 is the default storage driver of Docker. You can also use either of the following

methods to check or configure the driver:

 Edit the /etc/docker/daemon.json file to check or configure the storage-driver field.

cat /etc/docker/daemon.json

{

 "storage-driver": "overlay2"

}

 Edit the /etc/sysconfig/docker-storage file and check or configure the Docker daemon

startup parameters.

cat /etc/sysconfig/docker-storage

DOCKER_STORAGE_OPTIONS="--storage-driver=overlay2"

Precautions
 When you perform lifecycle management operations on some containers, an error may

be reported, indicating that the corresponding rootfs or executable file cannot be found.

 If the health check of a container is configured to execute executable files in the

container, an error may be reported, which causes the health check failure of the

container.

 When you use overlay2 as the graphdriver and modify an image file in a container for

the first time, the modification fails if the file size is greater than the remaining space of

the system. Even if a little modification on the file is involved, the whole file must be

copied to the upper layer. If the remaining space is insufficient, the modification fails.

 Compared with common file systems, the overlay2 file system has the following

behavior differences:

− Kernel version

overlay2 is compatible only with the native kernel 4.0 or later. You are advised to

use the Ext4 file system.

− Copy-UP performance

Modifying files at the lower layer triggers file replication to the upper layer. Data

block replication and fsync are time-consuming.

− Rename directories

 The rename system call is allowed only when both the source and the

destination paths are at the merged layer. Otherwise, the EXDEV error is

reported.

 Kernel 4.10 introduces the redirect directory feature to fix this issue. The

corresponding kernel option is

CONFIG_OVERLAY_FS_REDIRECT_DIR.

When overlay2 is used, a file system directory fails to be renamed because the

related feature configured in the

openEuler

Container User Guide 4 Docker Container

2020-04-01 194

/sys/module/overlay/parameters/redirect_dir file has been disabled. To use

this feature, you need to manually set

/sys/module/overlay/parameters/redirect_dir to Y.

− Hard link disconnection

 If there are multiple hard links in the lower-layer directory, writing data to the

merged layer will trigger Copy-UP, resulting in hard link disconnection.

 The index feature is introduced in kernel 4.13 to fix this issue. The

corresponding kernel option is CONFIG_OVERLAY_FS_INDEX. Note that

this option is not forward compatible and does not support hot upgrade.

− Changes of st_dev and st_ino

After Copy-UP is triggered, you can view only new files at the merged layer, and

inodes change. Although attr and xattr can be replicated, st_dev and st_ino are

unique and cannot be replicated. As a result, you can run stat and ls commands to

check inode changes accordingly.

− fd change

Before Copy-UP is triggered, you can obtain the descriptor fd1 when opening a file

in read-only mode. After Copy-UP is trigger, you can obtain the descriptor fd2

when opening the file with the same name. The two descriptors point to different

files. The data written to fd2 is not displayed in fd1.

Abnormal Scenarios

When a container uses the overlay2 storage driver, mount points may be overwritten.

Abnormal Scenario: Mount Point Being Overwritten

In the faulty container, there is a mount point in /var/lib/docker/overlay2.

[root@localhost ~]# mount -l | grep overlay

overlay on

/var/lib/docker/overlay2/844fd3bca8e616572935808061f009d106a8748dfd29a0a4025645457

fa21785/merged type overlay

(rw,relatime,seclabel,lowerdir=/var/lib/docker/overlay2/l/JL5PZQLNDCIBU3ZOG3LPPDBH

IJ:/var/lib/docker/overlay2/l/ELRPYU4JJG4FDPRLZJCZZE4UO6,upperdir=/var/lib/docker/

overlay2/844fd3bca8e616572935808061f009d106a8748dfd29a0a4025645457fa21785/diff,wor

kdir=/var/lib/docker/overlay2/844fd3bca8e616572935808061f009d106a8748dfd29a0a40256

45457fa21785/work)

/dev/mapper/dm-root on /var/lib/docker/overlay2 type ext4

(rw,relatime,seclabel,data=ordered)

An error as follows may occur when some Docker commands are executed:

[root@localhost ~]# docker rm 1348136d32

docker rm: Error response from daemon: driver "overlay2" failed to remove root filesystem

for 1348136d32: error while removing

/var/lib/docker/overlay2/844fd3bca8e616572935808061f009d106a8748dfd29a0a4025645457

fa21785: invalid argument

You will find that the rootfs of the corresponding container cannot be found on the host.

However, this does not mean that the rootfs is lost. The rootfs is overwritten by the mount

point in /var/lib/docker/overlay2, and services are still running properly. The solutions are as

follows:

openEuler

Container User Guide 4 Docker Container

2020-04-01 195

 Solution 1

a. Run the following command to check the graphdriver used by Docker:

docker info | grep "Storage Driver"

b. Run the following commands to query the current mount point:

Devicemapper: mount -l | grep devicemapper

Overlay2: mount -l | grep overlay2

The output format is A on B type C (D).

 A: block device name or overlay

 B: mount point

 C: file system type

 D: mounting attribute

c. Run the umount command on the mount points (B) one by one from bottom to top.

d. Run the docker restart command on all the containers or delete all the containers.

e. Run the following command to restart Docker:

systemctl restart docker

 Solution 2

a. Migrate services.

b. Restart nodes.

4.2.1.3.2 devicemapper Storage Driver Configuration

If you need to set the storage driver of Docker to devicemapper, you can also use either of the

following methods to check or configure the driver:

 Edit the /etc/docker/daemon.json file to check or configure the storage-driver field.

cat /etc/docker/daemon.json

{

 "storage-driver": "devicemapper"

}

 Edit the /etc/sysconfig/docker-storage file and check or configure the Docker daemon

startup parameters.

cat /etc/sysconfig/docker-storage

DOCKER_STORAGE_OPTIONS="--storage-driver=devicemapper"

Precautions
 To use devicemapper, you must use the direct-lvm mode. For details about the

configuration method, refer to

https://docs.docker.com/engine/userguide/storagedriver/device-mapper-driver/#configure

-direct-lvm-mode-for-production.

 When configuring devicemapper, if the system does not have sufficient space for

automatic capacity expansion of thinpool, disable the automatic capacity expansion

function.

 Do not set both the following two parameters in the

/etc/lvm/profile/docker-thinpool.profile file to 100:

activation {

 thin_pool_autoextend_threshold=80

https://docs.docker.com/engine/userguide/storagedriver/device-mapper-driver/#configure-direct-lvm-mode-for-production
https://docs.docker.com/engine/userguide/storagedriver/device-mapper-driver/#configure-direct-lvm-mode-for-production

openEuler

Container User Guide 4 Docker Container

2020-04-01 196

 thin_pool_autoextend_percent=20

}

 You are advised to add --storage-opt dm.use_deferred_deletion=true and

--storage-opt dm.use_deferred_removal=true when using devicemapper.

 When devicemapper is used, you are advised to use Ext4 as the container file system.

You need to add --storage-opt dm.fs=ext4 to the configuration parameters of Docker

daemon.

 If graphdriver is devicemapper and the metadata files are damaged and cannot be

restored, you need to manually restore the metadata files. Do not directly operate or

tamper with metadata of the devicemapper storage driver in Docker daemon.

 When the devicemapper LVM is used, if the devicemapper thinpool is damaged due to

abnormal power-off, you cannot ensure the data integrity or whether the damaged

thinpool can be restored. Therefore, you need to rebuild the thinpool.

Precautions for Switching the devicemapper Storage Pool When the User Namespace

Feature Is Enabled on Docker Daemon

 Generally, the path of the deviceset-metadata file is

/var/lib/docker/devicemapper/metadata/deviceset-metadata during container startup.

 If user namespaces are used, the path of the deviceset-metadata file is

/var/lib/docker/userNSUID.GID/devicemapper/metadata/deviceset-metadata.

 When you use the devicemapper storage driver and the container is switched between the

user namespace scenario and common scenario, the BaseDeviceUUID content in the

corresponding deviceset-metadata file needs to be cleared. In the thinpool capacity

expansion or rebuild scenario, you also need to clear the BaseDeviceUUID content in

the deviceset-metadata file. Otherwise, the Docker service fails to be restarted.

4.2.1.4 Impact of Forcibly Killing Docker Background Processes

The call chain of Docker is long. Forcibly killing docker background processes (such as

sending kill -9) may cause data status inconsistency. This section describes some problems

that may be caused by forcible killing.

4.2.1.4.1 Semaphores May Be Residual

When the devicemapper is used as the graphdriver, forcible killing may cause residual

semaphores. Docker creates semaphores when performing operations on devicemapper. If

daemon is forcibly killed before the semaphores are released, the release may fail. A

maximum of one semaphore can be leaked at a time, and the leakage probability is low.

However, the Linux OS has an upper limit on semaphores. When the number of semaphore

leakage times reaches the upper limit, new semaphores cannot be created. As a result, Docker

daemon fails to be started. The troubleshooting method is as follows:

1. Check the residual semaphores in the system.

$ ipcs

------ Message Queues --------

key msqid owner perms used-bytes messages

------ Shared Memory Segments --------

key shmid owner perms bytes nattch status

------ Semaphore Arrays --------

key semid owner perms nsems

0x0d4d3358 238977024 root 600 1

0x0d4d0ec9 270172161 root 600 1

0x0d4dc02e 281640962 root 600 1

openEuler

Container User Guide 4 Docker Container

2020-04-01 197

2. Run the dmsetup command to check semaphores created by devicemapper. The

semaphore set is the subset of the system semaphores queried in the previous step.

$ dmsetup udevcookies

3. Check the upper limit of kernel semaphores. The fourth value is the upper limit of the

current system semaphores.

$ cat /proc/sys/kernel/sem

250 32000 32 128

If the number of residual semaphores in step 1 is the same as the upper limit of

semaphores in step 3, the number of residual semaphores reaches the upper limit. In this

case, Docker daemon cannot be normally started. You can run the following command to

increase the upper limit to restart Docker:

$ echo 250 32000 32 1024 > /proc/sys/kernel/sem

You can also run the following command to manually clear the residual devicemapper

semaphores. The following describes how to clear the devicemapper semaphores applied

one minute ago.

$ dmsetup udevcomplete_all 1

This operation will destroy all semaphores older than 1 minutes with keys that have

a prefix 3405 (0xd4d).

Do you really want to continue? [y/n]: y

0 semaphores with keys prefixed by 3405 (0xd4d) destroyed. 0 skipped.

4.2.1.4.2 NICs May Be Residual

When a container is started in bridge mode, forcibly killing may cause residual NICs. In

bridge network mode, when Docker creates a container, a pair of veths are created on the host,

and then the NIC information is saved to the database. If daemon is forcibly killed before the

NIC information is saved to the database of Docker, the NIC cannot be associated with

Docker and cannot be deleted during the next startup because Docker deletes unused NICs

from its database.

4.2.1.4.3 Failed to Restart a Container

If container hook takes a long time, and containerd is forcibly killed during container startup,

the container start operation may fail. When containerd is forcibly killed during container

startup, an error is returned for the Docker start operation. After containerd is restarted, the

last startup may still be in the runc create execution phase (executing the user-defined hook

may take a long time). If you run the docker start command again to start the container, the

following error message may be displayed:

Error response from daemon: oci runtime error: container with id exists: xxxxxx

This error is caused by running runc create on an existing container (or being created). After

the runc create operation corresponding to the first start operation is complete, the docker

start command can be successfully executed.

The execution of hook is not controlled by Docker. In this case, if the container is recycled,

the containerd process may be suspended when an unknown hook program is executed. In

addition, the risk is controllable (although the creation of the current container is affected in a

short period).

 After the first operation is complete, the container can be successfully started again.

 Generally, a new container is created after the container fails to be started. The container

that fails to be started cannot be reused.

In conclusion, this problem has a constraint on scenarios.

openEuler

Container User Guide 4 Docker Container

2020-04-01 198

4.2.1.4.4 Failed to Restart the Docker Service

The Docker service cannot be restarted properly due to frequent startup in a short period The

Docker system service is monitored by systemd. If the Docker service is restarted for more

than five times within 10s, the systemd service detects the abnormal startup. Therefore, the

Docker service is disabled. Docker can respond to the restart command and be normally

restarted only when the next period of 10s starts.

4.2.1.5 Impact of System Power-off

When a system is unexpectedly powered off or system panic occurs, Docker daemon status

may not be updated to the disk in time. As a result, Docker daemon is abnormal after the

system is restarted. The possible problems include but are not limited to the following:

 A container is created before the power-off. After the restart, the container is not

displayed when the docker ps –a command is run, as the file status of the container is

not updated to the disk. As a result, daemon cannot obtain the container status after the

restart.

 Before the system power-off, a file is being written. After daemon is restarted, the file

format is incorrect or the file content is incomplete. As a result, loading fails.

 As Docker database (DB) will be damaged during power-off, all DB files in data-root

will be deleted during node restart. Therefore, the following information created before

the restart will be deleted after the restart:

− Network: Resources created through Docker network will be deleted after the node

is restarted.

− Volume: Resources created through Docker volume will be deleted after the node is

restarted.

− Cache construction: The cache construction information will be deleted after the

node is restarted.

− Metadata stored in containerd: Metadata stored in containerd will be recreated when

a container is started. Therefore, the metadata stored in containerd will be deleted

when the node is restarted.

If you want to manually clear data and restore the environment, you can set the environment variable
DISABLE_CRASH_FILES_DELETE to true to disable the function of clearing DB files when the
daemon process is restarted due to power-off.

4.3 Container Management

4.3.1 Creating a Container

Downloading Images

Only user root can run the docker command. If you log in as a common user, you need to use

the sudo command before running the docker command.

[root@localhost ~]# docker pull busybox

openEuler

Container User Guide 4 Docker Container

2020-04-01 199

This command is used to download the busybox:latest image from the official Docker

registry. (If no tag is specified in the command, the default tag name latest is used.) During

the image download, the system checks whether the dependent layer exists locally. If yes, the

image download is skipped. When downloading images from a private registry, specify the

registry description. For example, if a private registry containing some common images is

created and its IP address is 192.168.1.110:5000, you can run the following command to

download the image from the private registry:

[root@localhost ~]# docker pull 192.168.1.110:5000/busybox

The name of the image downloaded from the private registry contains the registry address

information, which may be too long. Run the docker tag command to generate an image with

a shorter name.

[root@localhost ~]# docker tag 192.168.1.110:5000/busybox busybox

Run the docker images command to view the local image list.

Running a Simple Application

[root@localhost ~]# docker run busybox /bin/echo "Hello world"

Hello world

This command uses the busybox:latest image to create a container, and executes the echo

"Hello world" command in the container. Run the following command to view the created

container:

[root@localhost ~]# docker ps -l

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

d8c0a3315bc0 busybox"/bin/echo 'Hello wo..." 5 seconds ago Exited (0) 3

seconds ago practical_franklin

Creating an Interactive Container

[root@localhost ~]# docker run -it busybox /bin/bash

root@bf22919af2cf:/# ls

bin boot dev etc home lib media mnt opt proc root run sbin srv sys tmp

usr var

root@bf22919af2cf:/# pwd

/

The -ti option allocates a pseudo terminal to the container and uses standard input (STDIN)

for interaction. You can run commands in the container. In this case, the container is an

independent Linux VM. Run the exit command to exit the container.

Running a Container in the Background

Run the following command. -d indicates that the container is running in the background.

--name=container1 indicates that the container name is container1.

[root@localhost ~]# docker run -d --name=container1 busybox /bin/sh -c "while true;do

echo hello world;sleep 1;done"

7804d3e16d69b41aac5f9bf20d5f263e2da081b1de50044105b1e3f536b6db1c

The command output contains the container ID but does not contain hello world. In this case,

the container is running in the background. You can run the docker ps command to view the

running container.

openEuler

Container User Guide 4 Docker Container

2020-04-01 200

[root@localhost ~]# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

7804d3e16d69 busybox "/bin/sh -c 'while tr" 11 seconds ago Up 10 seconds

container1

Run the following docker logs command to view the output during container running:

[root@localhost ~]# docker logs container1

hello world

hello world

hello world

...

Container Network Connection

By default, a container can access an external network, while port mapping is required when

an external network accesses a container. The following uses how to run the private registry

service in Docker as an example. In the following command, -P is used to expose open ports

in the registry to the host.

[root@localhost ~]# docker run --name=container_registry -d -P registry

cb883f6216c2b08a8c439b3957fb396c847a99079448ca741cc90724de4e4731

The container_registry container has been started, but the mapping between services in the

container and ports on the host is not clear. You need to run the docker port command to

view the port mapping.

[root@localhost ~]# docker port container_registry

5000/tcp -> 0.0.0.0:49155

The command output shows that port 5000 in the container is mapped to port 49155 on the

host. You can access the registry service by using the host IP address 49155. Enter

http://localhost:49155 in the address box of the browser and press Enter. The registry

version information is displayed.

When running registry images, you can directly specify the port mapping, as shown in the

following:

docker run --name=container_registry -d -p 5000:5000 registry

-p 5000:5000 is used to map port 5000 in the container to port 5000 on the host.

Precautions
 Do Not Add -a stdin Independently During Container Startup

When starting a container, you must add -a stdout or -a stderr together with -a stdin

instead of -a stdin only. Otherwise, the device stops responding even after the container

exits.

 Do Not Use the Long Or Short ID of an Existing Container As the Name of a New

Container

When creating a container, do not use the long or short ID of the existing container A as

the name of the new container B. If the long ID of container A is used as the name of

container B, Docker will match container A even though the name of container B is used

as the specified target container for operations. If the short ID of container A is used as

the name of container B, Docker will match container B even though the short ID of

container A is used as the specified target container for operations. This is because

openEuler

Container User Guide 4 Docker Container

2020-04-01 201

Docker matches the long IDs of all containers first. If the matching fails, the system

performs exact matching using the value of container_name. If matching failure persists,

the container ID is directly matched in fuzzy mode.

 Containers That Depend on Standard Input and Output, Such As sh/bash, Must

Use the -ti Parameter to Avoid Exceptions

Normal case: If you do not use the -ti parameter to start a process container such as

sh/bash, the container exits immediately.

The cause of this problem is that Docker creates a stdin that matches services in the

container first. If the interactive parameters such as -ti are not set, Docker closes pipe

after the container is started and the service container process sh/bash exits after stdin is

closed.

Exception: If Docker daemon is forcibly killed in a specific phase (before pipe is closed),

daemon of the pipe is not closed in time. In this case, the sh/bash process does not exit

even without -ti. As a result, an exception occurs. You need to manually clear the

container.

After being restarted, daemon takes over the original container stream. Containers

without the -ti parameter may not be able to process the stream because these containers

do not have streams to be taken over in normal cases. In actual services, sh/bash without

the -ti parameter does not take effect and is seldom used. To avoid this problem, the -ti

parameter is used to restrict interactive containers.

 Container Storage Volumes

If you use the -v parameter to mount files on the host to a container when the container is

started, the inodes of the files may be changed when you run the vi or sed command to

modify the files on the host or in the container. As a result, files on the host and in the

container are not synchronized. Do not mount files in the container in this mode (or do

not use together with the vi and sed commands). You can also mount the upper-layer

directories of the files to avoid exceptions. The nocopy option can be used to prevent

original files in the mount point directory of a container from being copied to the source

directory of the host when Docker mounts volumes. However, this option can be used

only when an anonymous volume is mounted and cannot be used in the bind mount

scenario.

 Do Not Use Options That May Affect the Host

The --privileged option enables all permissions for a container. On the container,

mounting operations can be performed and directories such as /proc and /sys can be

modified, which may affect the host. Therefore, do not use this option for common

containers.

A host-shared namespace, such as the --pid host, --ipc host, or --net host option, can

enable a container to share the namespace with the host, which will also affect the host.

Therefore, do not use this option.

 Do Not Use the Unstable Kernel Memory Cgroup

Kernel memory cgroup on the Linux kernel earlier than 4.0 is still in the experimental

phase and runs unstably. Therefore, do not use kernel memory cgroup.

When the docker run --kernel-memory command is executed, the following alarm is

generated:

WARNING: You specified a kernel memory limit on a kernel older than 4.0. Kernel memory

limits are experimental on older kernels, it won't work as expected as expected and

can cause your system to be unstable.

 blkio-weight Parameter Is Unavailable in the Kernel That Supports blkio Precise

Control

openEuler

Container User Guide 4 Docker Container

2020-04-01 202

--blkio-weight-device can implement more accurate blkio control in a container. The

control requires a specified disk device, which can be implemented through the

--blkio-weight-device parameter of Docker. In this kernel, Docker does not provide the

--blkio-weight mode to limit the container blkio. If you use this parameter to create a

container, the following error is reported:

docker: Error response from daemon: oci runtime error: container_linux.go:247:

starting container process caused "process_linux.go:398: container init caused

\"process_linux.go:369: setting cgroup config for ready process caused

\\\"blkio.weight not supported, use weight_device instead\\\"\""

 Using --blkio-weight-device in CFQ Scheduling Policy

The --blkio-weight-device parameter works only when the disk works in the Completely

Fair Queuing (CFQ) policy.

You can view the scheduler file (/sys/block/disk/queue/scheduler) to obtain the policies

supported by the disk and the current policy. For example, you can run the following

command to view sda.

cat /sys/block/sda/queue/scheduler noop [deadline] cfq

sda supports the following scheduling policies: noop, deadline, and cfq, and the

deadline policy is being used. You can run the echo command to change the policy to

cfq.

echo cfq > /sys/block/sda/queue/scheduler

 systemd Usage Restrictions in Basic Container Images

When containers created from basic images are used, systemd in basic images is used

only for system containers.

Concurrent Performance
 There is an upper limit for the message buffer in Docker. If the number of messages

exceeds the upper limit, the messages are discarded. Therefore, it is recommended that

the number of commands executed concurrently should not exceed 1000. Otherwise, the

internal messages in Docker may be lost and the container may fail to be started.

 When containers are concurrently created and restarted, the error message"oci runtime

error: container init still running" is occasionally reported. This is because containerd

optimizes the performance of the event waiting queue. When a container is stopped, the

runc delete command is executed to kill the init processes in the container within 1s. If

the init processes are not killed within 1s, runC returns this error message. The garbage

collection (GC) mechanism of containerd reclaims residual resources after runc delete is

executed at an interval of 10s. Therefore, operations on the container are not affected. If

the preceding error occurs, wait for 4 or 5s and restart the container.

Security Feature Interpretation

1. The following describes default permission configuration analysis of Docker.

In the default configuration of a native Docker, capabilities carried by each default

process are as follows:

"CAP_CHOWN",

"CAP_DAC_OVERRIDE",

"CAP_FSETID",

"CAP_FOWNER",

"CAP_MKNOD",

"CAP_NET_RAW",

"CAP_SETGID",

"CAP_SETUID",

openEuler

Container User Guide 4 Docker Container

2020-04-01 203

"CAP_SETFCAP",

"CAP_SETPCAP",

"CAP_NET_BIND_SERVICE",

"CAP_SYS_CHROOT",

"CAP_KILL",

"CAP_AUDIT_WRITE",

The default seccomp configuration is a whitelist. If any syscall is not in the whitelist,

SCMP_ACT_ERRNO is returned by default. Different system invoking is enabled for

different caps of Docker. If a capability is not in the whitelist, Docker will not assign it to

the container by default.

2. CAP_SYS_MODULE

CAP_SYS_MODULE allows a container to insert the ko module. Adding this capability

allows the container to escape or even damage the kernel. Namespace provides the

maximum isolation for a container. In the ko module, you only need to point its

namespace to init_nsproxy.

3. CAP_SYS_ADMIN

The sys_admin permission provides the following capabilities for a container:

− For file system: mount, umount, and quotactl

− For namespace setting: setns, unshare, and clone new namespace

− driver ioctl

− For PCI control: pciconfig_read, pciconfig_write, and pciconfig_iobase

− sethostname

4. CAP_NET_ADMIN

CAP_NET_ADMIN allows a container to access network interfaces and sniff network

traffic. The container can obtain the network traffic of all containers including the host,

which greatly damages network isolation.

5. CAP_DAC_READ_SEARCH

CAP_DAC_READ_SEARCH calls the open_by_handle_at and name_to_handle_at

system calls. If the host is not protected by SELinux, the container can perform

brute-force search for the inode number of the file_handle structure to open any file on

the host, which affects the isolation of the file system.

6. CAP_SYS_RAWIO

CAP_SYS_RAWIO allows a container to write I/O ports to the host, which may cause

the host kernel to crash.

7. CAP_SYS_PTRACE

The ptrace permission for a container provides ptrace process debugging in the container.

RunC has fixed this vulnerability. However, some tools, such as nsenter and docker-enter,

are not protected. In a container, processes executed by these tools can be debugged to

obtain resource information (such as namespace and fd) brought by these tools. In

addition, ptrace can bypass seccomp, greatly increasing attack risks of the kernel.

8. Docker capability interface: --cap-add all

--cap-add all grants all permissions to a container, including the dangerous permissions

mentioned in this section, which allows the container to escape.

9. Do not disable the seccomp feature of Docker.

Docker has a default seccomp configuration with a whitelist. sys_call that is not in the

whitelist is disabled by seccomp. You can disable the seccomp feature by running

--security-opt 'seccomp:unconfined'. If seccomp is disabled or the user-defined

openEuler

Container User Guide 4 Docker Container

2020-04-01 204

seccomp configuration is used but the filtering list is incomplete, attack risks of the

kernel in the container are increased.

10. Do not set the /sys and /proc directories to writable.

The /sys and /proc directories contain Linux kernel maintenance parameters and device

management interfaces. If the write permission is configured for the directories in a

container, the container may escape.

11. Docker open capability: --CAP_AUDIT_CONTROL

The permission allows a container to control the audit system and run the

AUDIT_TTY_GET and AUDIT_TTY_SET commands to obtain the TTY execution

records (including the root password) recorded in the audit system.

12. CAP_BLOCK_SUSPEND and CAP_WAKE_ALARM

The permission provides a container the capability to block the system from suspending

(epoll).

13. CAP_IPC_LOCK

With this permission, a container can break the max locked memory limit in ulimit and

use any mlock large memory block to cause DoS attacks.

14. CAP_SYS_LOG

In a container with this permission, system kernel logs can be read by using dmesg to

break through kernel kaslr protection.

15. CAP_SYS_NICE

In a container with this permission, the scheduling policy and priority of a process can be

changed, causing DoS attacks.

16. CAP_SYS_RESOURCE

With this permission, a container can bypass resource restrictions, such as disk space

resource restriction, keymaps quantity restriction, and pipe-size-max restriction, causing

DoS attacks.

17. CAP_SYS_TIME

In a container with this capability, the time on the host can be changed.

18. Risk analysis of Docker default capabilities

The default capabilities of Docker include CAP_SETUID and CAP_FSETID. If the host

and a container share a directory, the container can set permissions for the binary file in

the shared directory. Common users on the host can use this method to elevate privileges.

With the CAP_AUDIT_WRITE capability, a container can write logs to the host, and the

host must be configured with log anti-explosion measures.

19. Docker and host share namespace parameters, such as --pid, --ipc, and --uts.

This parameter indicates that the container and host share the namespace. The container

can attack the host as the namespace of the container is not isolated from that of the host.

For example, if you use --pid to share PID namespace with the host, the PID on the host

can be viewed in the container, and processes on the host can be killed at will.

20. --device is used to map the sensitive directories or devices of the host to the container.

The Docker management plane provides interfaces for mapping directories or devices on

a host to the container, such as --device and -v. Do not map sensitive directories or

devices on the host to the container.

openEuler

Container User Guide 4 Docker Container

2020-04-01 205

4.3.2 Creating Containers Using hook-spec

Principles and Application Scenarios

Docker supports the extended features of hooks. The execution of hook applications and

underlying runC complies with the OCI standards. For details about the standards, visit

https://github.com/opencontainers/runtime-spec/blob/master/config.md#hooks.

There are three types of hooks: prestart, poststart, and poststop. They are respectively used

before applications in the container are started, after the applications are started, and after the

applications are stopped.

API Reference

The --hook-spec parameter is added to the docker run and create commands and is followed

by the absolute path of the spec file. You can specify the hooks to be added during container

startup. These hooks will be automatically appended after the hooks that are dynamically

created by Docker (currently only libnetwork prestart hook) to execute programs specified by

users during the container startup or destruction.

The structure of spec is defined as follows:

// Hook specifies a command that is run at a particular event in the lifecycle of a

container

type Hook struct{

 Path string ̀ json:"path"`

 Args []string `json:"args,omitempty"`

 Env []string `json:"env,omitempty"`

 Timeout *int ̀ json:"timeout,omitempty"`

}

// Hooks for container setup and teardown

type Hooks struct{

 // Prestart is a list of hooks to be run before the container process is

executed.

 // On Linux, they are run after the container namespaces are created.

 Prestart []Hook `json:"prestart,omitempty"`

 // Poststart is a list of hooks to be run after the container process is

started.

 Poststart []Hook `json:"poststart,omitempty"`

 // Poststop is a list of hooks to be run after the container process exits.

 Poststop []Hook `json:"poststop,omitempty"`

}

 The Path, Args, and Env parameters are mandatory.

 Timeout is optional, while you are advised to set this parameter to a value ranging from

1 to 120. The parameter type is int. Floating point numbers are not allowed.

 The content of the spec file must be in JSON format as shown in the preceding example.

If the format is incorrect, an error is reported.

 Both docker run --hook-spec /tmp/hookspec.json xxx, and docker create --hook-spec

/tmp/hookspec.json xxx && docker start xxx can be used.

Customizing Hooks for a Container

Take adding a NIC during the startup as an example. The content of the hook spec file is as

follows:

https://github.com/opencontainers/runtime-spec/blob/master/config.md#hooks

openEuler

Container User Guide 4 Docker Container

2020-04-01 206

{

 "prestart": [

 {

 "path": "/var/lib/docker/hooks/network-hook",

 "args": ["network-hook", "tap0", "myTap"],

 "env": [],

 "timeout": 5

 }

],

 "poststart":[],

 "poststop":[]

}

Specify prestart hook to add the configuration of a network hook. The path is

/var/lib/docker/hooks/network-hook. args indicates the program parameters. Generally, the

first parameter is the program name, and the second parameter is the parameter accepted by

the program. For the network-hook program, two parameters are required. One is the name of

the NIC on the host, and the other is the name of the NIC in the container.

 Precautions

a. The hook path must be in the hooks folder in the graph directory (--graph) of

Docker. Its default value is /var/lib/docker/hooks. You can run the docker info

command to view the root path.

[root@localhost ~]# docker info

...

Docker Root Dir: /var/lib/docker

...

This path may change due to the user's manual configuration and the use of user

namespaces (daemon --userns-remap). After the symbolic link of the path is

parsed, the parsed path must start with Docker Root Dir/hooks (for example,

/var/lib/docker/hooks). Otherwise, an error message is displayed.

b. The hook path must be an absolute path because daemon cannot properly process a

relative path. In addition, an absolute path meets security requirements.

c. The information output by the hook program to stderr is output to the client and

affects the container lifecycle (for example, the container may fail to be started).

The information output to stdout is ignored.

d. Do not reversely call Docker instructions in hooks.

e. The execute permission must have been granted on the configured hook execution

file. Otherwise, an error is reported during hook execution.

f. The execution time of the hook operation must be as short as possible. If the

prestart period is too long (more than 2 minutes), the container startup times out. If

the poststop period is too long (more than 2 minutes), the container is abnormal.

The known exceptions are as follows: When the docker stop command is executed

to stop a container and the clearing operation is performed after 2 minutes, the hook

operation is not complete. Therefore, the system waits until the hook operation is

complete (the process holds a lock). As a result, all operations related to the

container stop responding. The operations can be recovered only after the hook

operation is complete. In addition, the two-minute timeout processing of the docker

stop command is an asynchronous process. Therefore, even if the docker stop

command is successfully executed, the container status is still up. The container

status is changed to exited only after the hook operation is completed.

openEuler

Container User Guide 4 Docker Container

2020-04-01 207

 Suggestions

a. You are advised to set the hook timeout threshold to a value less than 5s.

b. You are advised to configure only one prestart hook, one poststart hook, and one

poststop hook for each container. If too many hooks are configured, the container

startup may take a long time.

c. You are advised to identify the dependencies between multiple hooks. If required,

you need to adjust the sequence of the hook configuration files according to the

dependencies. The execution sequence of hooks is based on the sequence in the

configured spec file.

Multiple hook-spec

If multiple hook configuration files are available and you need to run multiple hooks, you

must manually combine these files into a configuration file and specify the new configuration

file by using the --hook-spec parameter. Then all hooks can take effect. If multiple

--hook-spec parameters are configured, only the last one takes effect.

Configuration examples:

The content of the hook1.json file is as follows:

cat /var/lib/docker/hooks/hookspec.json

{

 "prestart": [

 {

 "path": "/var/lib/docker/hooks/lxcfs-hook",

 "args": ["lxcfs-hook", "--log", "/var/log/lxcfs-hook.log"],

 "env": []

 }

],

 "poststart":[],

 "poststop":[]

}

The content of the hook2.json file is as follows:

cat /etc/isulad-tools/hookspec.json

{

 "prestart": [

 {

 "path": "/docker-root/hooks/docker-hooks",

 "args": ["docker-hooks", "--state", "prestart"],

 "env": []

 }

],

 "poststart":[],

 "poststop":[

 {

 "path": "/docker-root/hooks/docker-hooks",

 "args": ["docker-hooks", "--state", "poststop"],

 "env": []

 }

]

}

The content in JSON format after manual combination is as follows:

openEuler

Container User Guide 4 Docker Container

2020-04-01 208

{

 "prestart":[

 {

 "path": "/var/lib/docker/hooks/lxcfs-hook",

 "args": ["lxcfs-hook", "--log", "/var/log/lxcfs-hook.log"],

 "env": []

 },

 {

 "path": "/docker-root/hooks/docker-hooks",

 "args": ["docker-hooks", "--state", "prestart"],

 "env": []

 }

],

 "poststart":[],

 "poststop":[

 {

 "path": "/docker-root/hooks/docker-hooks",

 "args": ["docker-hooks", "--state", "poststop"],

 "env": []

 }

]

}

Docker daemon reads the binary values of hook in actions such as prestart in the hook

configuration files in sequence based on the array sequence and executes the actions.

Therefore, you need to identify the dependencies between multiple hooks. If required, you

need to adjust the sequence of the hook configuration files according to the dependencies.

Customizing Default Hooks for All Containers

Docker daemon can receive the --hook-spec parameter. The semantics of --hook-spec is the

same as that of --hook-spec in docker create or docker run. You can also add hook

configurations to the /etc/docker/daemon.json file.

{

 "hook-spec": "/tmp/hookspec.json"

}

When a container is running, hooks specified in --hook-spec defined by daemon are executed

first, and then hooks customized for each container are executed.

4.3.3 Configuring Health Check During Container Creation

Docker provides the user-defined health check function for containers. You can configure the

HEALTHCHECK CMD option in the Dockerfile, or configure the --health-cmd option

when a container is created so that commands are periodically executed in the container to

monitor the health status of the container based on return values.

Configuration Methods
 Add the following configurations to the Dockerfile file:

HEALTHCHECK --interval=5m --timeout=3s --health-exit-on-unhealthy=true \

 CMD curl -f http://localhost/ || exit 1

The configurable options are as follows:

openEuler

Container User Guide 4 Docker Container

2020-04-01 209

a. --interval=DURATION: interval between two consecutive command executions.

The default value is 30s. After a container is started, the first check is performed

after the interval time.

b. --timeout=DURATION: maximum duration for executing a single check

command. If the execution times out, the command execution fails. The default

value is 30s.

c. --start-period=DURATION: container initialization period. The default value is 0s.

During the initialization, the health check is also performed, while the health check

failure is not counted into the maximum number of retries. However, if the health

check is successful during initialization, the container is considered as started. All

subsequent consecutive check failures are counted in the maximum number of

retries.

d. --retries=N. maximum number of retries for the health check. The default value is

3.

e. --health-exit-on-unhealthy=BOOLEAN: whether to kill a container when it is

unhealthy. The default value is false.

f. CMD: This option is mandatory. If 0 is returned after a command is run in a

container, the command execution succeeds. If a value other than 0 is returned, the

command execution fails.

After HEALTHCHECK is configured, related configurations are written into the

image configurations during image creation. You can run the docker inspect

command to view the configurations. For example:

"Healthcheck": {

 "Test": [

 "CMD-SHELL",

 "/test.sh"

]

},

 Configurations during container creation:

docker run -itd --health-cmd "curl -f http://localhost/ || exit 1" --health-interval

5m --health-timeout 3s --health-exit-on-unhealthy centos bash

The configurable options are as follows:

a. --health-cmd: This option is mandatory. If 0 is returned after a command is run in a

container, the command execution succeeds. If a value other than 0 is returned, the

command execution fails.

b. --health-interval: interval between two consecutive command executions. The

default value is 30s. The upper limit of the value is the maximum value of Int64

(unit: nanosecond).

c. --health-timeout: maximum duration for executing a single check command. If the

execution times out, the command execution fails. The default value is 30s. The

upper limit of the value is the maximum value of Int64 (unit: nanosecond).

d. --health-start-period: container initialization time. The default value is 0s. The

upper limit of the value is the maximum value of Int64 (unit: nanosecond).

e. --health-retries: maximum number of retries for the health check. The default

value is 3. The maximum value is the maximum value of Int32.

f. --health-exit-on-unhealthy: specifies whether to kill a container when it is

unhealthy. The default value is false.

After the container is started, the HEALTHCHECK configurations are written into

the container configurations. You can run the docker inspect command to view the

configurations. For example:

openEuler

Container User Guide 4 Docker Container

2020-04-01 210

"Healthcheck": {

 "Test": [

 "CMD-SHELL",

 "/test.sh"

]

},

Check Rules

1. After a container is started, the container status is health:starting.

2. After the period specified by start-period, the cmd command is periodically executed in

the container at the interval specified by interval. That is, after the command is executed,

the command will be executed again after the specified period.

3. If the cmd command is successfully executed within the time specified by timeout and

the return value is 0, the check is successful. Otherwise, the check fails. If the check is

successful, the container status changes to health:healthy.

4. If the cmd command fails to be executed for the number of times specified by retries,

the container status changes to health:unhealthy, and the container continues the health

check.

5. When the container status is health:unhealthy, the container status changes to

health:healthy if a check succeeds.

6. If --health-exit-on-unhealthy is set, and the container exits due to reasons other than

being killed (the returned exit code is 137), the health check takes effect only after the

container is restarted.

7. When the cmd command execution is complete or times out, Docker daemon will record

the start time, return value, and standard output of the check to the configuration file of

the container. A maximum of five latest records can be recorded. In addition, the

configuration file of the container stores health check parameters.

Run the docker ps command to view the container status.

[root@bac shm]# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

7de2228674a2 testimg "bash" About an hour ago Up About an

hour (unhealthy) cocky_davinci

When the container is running, the health check status is written into the container

configurations. You can run the docker inspect command to view the configurations.

"Health": {

 "Status": "healthy",

 "FailingStreak": 0,

 "Log": [

 {

 "Start": "2018-03-07T07:44:15.481414707-05:00",

 "End": "2018-03-07T07:44:15.556908311-05:00",

 "ExitCode": 0,

 "Output": ""

 },

 {

 "Start": "2018-03-07T07:44:18.557297462-05:00",

 "End": "2018-03-07T07:44:18.63035891-05:00",

 "ExitCode": 0,

 "Output": ""

openEuler

Container User Guide 4 Docker Container

2020-04-01 211

 },

}

 A maximum of five health check status records can be stored in a container. The last five records are

saved.

 Only one health check configuration item can take effect in a container at a time. The later items
configured in the Dockerfile will overwrite the earlier ones. Configurations during container creation
will overwrite those in images.

 In the Dockerfile, you can set HEALTHCHECK NONE to cancel the health check configuration in
a referenced image. When a container is running, you can set --no-healthcheck to cancel the health
check configuration in an image. Do not configure the health check and --no-healthcheck
parameters at the same time during the startup.

 After a container with configured health check parameters is started, if Docker daemon exits, the
health check is not executed. After Docker daemon is restarted, the container health status changes
to starting. Afterwards, the check rules are the same as above.

 If health check parameters are set to 0 during container image creation, the default values are used.

 If health check parameters are set to 0 during container startup, the default values are used.

4.3.4 Stopping and Deleting a Container

Run the docker stop command to stop the container named container1.

[root@localhost ~]# docker stop container1

Or run the docker kill command to kill and stop the container.

[root@localhost ~]# docker kill container1

After the container is stopped, run the docker rm command to delete the container.

[root@localhost ~]# docker rm container1

Or run the docker rm -f command to forcibly delete the container.

[root@localhost ~]# docker rm -f container1

Precautions
 Do not run the docker rm –f XXX command to delete a container. If you forcibly delete

a container, the docker rm command ignores errors during the process, which may cause

residual metadata of the container. If you delete an image in common mode and an error

occurs during the deletion process, the deletion fails and no metadata remains.

 Do not run the docker kill command. The docker kill command sends related signals to

service processes in a container. Depending on the signal processing policies of service

processes in the container may cause the result that the signal execution cannot be

performed as expected.

 A container in the restarting state may not stop immediately when you run the docker

stop command. If a container uses the restart rules, when the container is in the restarting

state, there is a low probability that the docker stop command on the container returns

immediately. The container will still be restarted with the impact of the restart rule.

 Do not run the docker restart command to restart a container with the --rm parameter.

When a container with the --rm parameter exits, the container is automatically deleted. If

the container with the --rm parameter is restarted, exceptions may occur. For example, if

both the --rm and -ti parameters are added when the container is started, the restart

openEuler

Container User Guide 4 Docker Container

2020-04-01 212

operation cannot be performed on the container, otherwise, the container may stop

responding and cannot exit.

When Using docker stop/restart to Specify -t and t<0, Ensure That Applications
in the Container Can Process Stop Signal

Stop Principle: (The stop process is called by Restart.)

1. The SIGTERM (15) signal can be sent to a container for the first time.

2. Wait for a period of time (t entered by the user).

3. If the container process still exists, send the SIGKILL (9) signal to forcibly kill the

process.

The meaning of the input parameter t (unit: s) is as follows:

 t < 0: Wait for graceful stop. This setting is preferred when users are assured that their

applications have a proper stop signal processing mechanism.

 t = 0: Do not wait and send kill -9 to the container immediately.

 t > 0: Wait for a specified period and send kill -9 to the container if the container does

not stop within the specified period.

Therefore, if t is set to a value less than 0 (for example, t = -1), ensure that the container

application correctly processes the SIGTERM signal. If the container ignores this signal, the

container will be suspended when the docker stop command is run.

Manually Deleting Containers in the Dead State As the Underlying File System
May Be Busy

When Docker deletes a container, it stops related processes of the container, changes the

container status to Dead, and then deletes the container rootfs. When the file system or

devicemapper is busy, the last step of deleting rootfs fails. Run the docker ps -a command.

The command output shows that the container is in the Dead state. Containers in the Dead

state cannot be started again. Wait until the file system is not busy and run the docker rm

command again to delete the containers.

In PID namespace Shared Containers, If Child Container Is in pause State,
Parent Container Stops Responding and the docker run Command Cannot Be
Executed

When the --pid parameter is used to create the parent and child containers that share PID

namespace, if any process in the child container cannot exit (for example, it is in the D or

pause state) when the docker stop command is executed, the docker stop command of the

parent container is waiting. You need to manually recover the process so that the command

can be executed normally.

In this case, run the docker inspect command on the container in the pause state to check

whether the parent container corresponding to PidMode is the container that requires docker

stop. For the required container, run the docker unpause command to cancel the pause state

of the child container. Then, proceed to the next step.

Generally, the possible cause is that the PID namespace corresponding to the container cannot

be destroyed due to residual processes. If the problem persists, use Linux tools to obtain the

residual processes and locate the cause of the process exit failure in PID namespace. After the

problem is solved, the container can exit.

openEuler

Container User Guide 4 Docker Container

2020-04-01 213

 Obtain PID namespace ID in a container.

docker inspect --format={{.State.Pid}} CONTAINERID | awk '{print

"/proc/"$1"/ns/pid"}' |xargs readlink

 Obtain threads in the namespace.

 ls -l /proc/*/task/*/ns/pid |grep -F PIDNAMESPACE_ID |awk '{print $9}' |awk -F \/

'{print $5}'

4.3.5 Querying Container Information

In any case, the container status should not be determined based on whether the docker

command is successfully returned. To view the container status, you are advised to use the

following command:

docker inspect <NAME|ID>

4.3.6 Modification Operations

Precautions for Starting Multiple Processes in Container Using docker exec

When the first docker exec command executed in a container is the bash command, ensure

that all processes started by exec are stopped before you run the exit command. Otherwise,

the device may stop responding when you run the exit command. To ensure that the process

started by exec is still running in the background when the exit command is run, add nohup

when starting the process.

Usage Conflict Between docker rename and docker stats container_name

If you run the docker stats container_name command to monitor a container in real time,

after the container is renamed by using docker rename, the name displayed after docker

stats is executed is the original name instead of the renamed one.

Failed to Perform docker rename Operation on Container in restarting State

When the rename operation is performed on a container in the restarting state, Docker

modifies the container network configuration accordingly. The container in the restarting state

may not be started and the network does not exist. As a result, the rename operation reports an

error indicating that the sandbox does not exist. You are advised to rename only containers

that are not in the restarting state.

docker cp

1. When you run docker cp to copy files to a container, all operations on the container can

be performed only after the docker cp command is executed.

2. When a container runs as a non-root user, and you run the docker cp command to copy

a non-root file on the host to the container, the permission role of the file in the container

changes to root. Different from the cp command, the docker cp command changes

UIDs and GIDs of the files copied to the container to root.

docker login

After the docker login command is executed, usrer/passwd encrypted by AES (256-bit) is

saved in /root/.docker/config.json. At the same time, root.docker/aeskey (permission 0600)

is generated to decrypt usrer/passwd in /root/.docker/config.json. Currently, AES key

openEuler

Container User Guide 4 Docker Container

2020-04-01 214

cannot be updated periodically. You need to manually delete the AES key for updating. After

AES key is updated, you need to log in to Docker daemon again to push the AES key no

matter whether Docker daemon is restarted. For example:

root@hello:~/workspace/dockerfile# docker login

Login with your Docker ID to push and pull images from Docker Hub. If you don't have

a Docker ID, head over to https://hub.docker.com to create one.

Username: example Password:

Login Succeeded

root@hello:~/workspace/dockerfile# docker push example/empty

The push refers to a repository [docker.io/example/empty]

547b6288eb33: Layer already exists

latest: digest:

sha256:99d4fb4ce6c6f850f3b39f54f8eca0bbd9e92bd326761a61f106a10454b8900b size: 524

root@hello:~/workspace/dockerfile# rm /root/.docker/aeskey

root@hello:~/workspace/dockerfile# docker push example/empty

WARNING: Error loading config file:/root/.docker/config.json - illegal base64 data at

input byte 0

The push refers to a repository [docker.io/example/empty]

547b6288eb33: Layer already exists

errors:

denied: requested access to the resource is denied

unauthorized: authentication required

root@hello:~/workspace/dockerfile# docker login

Login with your Docker ID to push and pull images from Docker Hub. If you don't have

a Docker ID, head over to https://hub.docker.com to create one.

Username: example

Password:

Login Succeeded

root@hello:~/workspace/dockerfile# docker push example/empty

The push refers to a repository [docker.io/example/empty]

547b6288eb33: Layer already exists

latest: digest:

sha256:99d4fb4ce6c6f850f3b39f54f8eca0bbd9e92bd326761a61f106a10454b8900b size: 524

4.4 Image Management

4.4.1 Creating an Image

You can use the docker pull, docker build, docker commit, docker import, or docker load

command to create an image. For details about how to use these commands, see 4.6.3 Image

Management.

Precautions

1. Do not concurrently run the docker load and docker rmi commands. If both of the

following conditions are met, concurrency problems may occur:

− An image exists in the system.

− The docker rmi and docker load operations are concurrently performed on an

image.

openEuler

Container User Guide 4 Docker Container

2020-04-01 215

Therefore, avoid this scenario. (All concurrent operations between the image creation

operations such as running the tag, build, and load, and rmi commands, may cause

similar errors. Therefore, do not concurrently perform these operations with rmi.)

2. If the system is powered off when docker operates an image, the image may be damaged.

In this case, you need to manually restore the image.

When the docker operates images (using the pull, load, rmi, build, combine, commit,

or import commands), image data operations are asynchronous, and image metadata is

synchronous. Therefore, if the system power is off when not all image data is updated to

the disk, the image data may be inconsistent with the metadata. Users can view images

(possibly none images), but cannot start containers, or the started containers are

abnormal. In this case, run the docker rmi command to delete the image and perform the

previous operations again. The system can be recovered.

3. Do not store a large number of images on nodes in the production environment. Delete

unnecessary images in time.

If the number of images is too large, the execution of commands such as docker image

is slow. As a result, the execution of commands such as docker build or docker commit

fails, and the memory may be stacked. In the production environment, delete

unnecessary images and intermediate process images in time.

4. When the --no-parent parameter is used to build images, if multiple build operations are

performed at the same time and the FROM images in the Dockerfile are the same,

residual images may exist. There are two cases:

− If FROM images are incomplete, the images generated when images of FROM are

running may remain. Names of the residual images are similar to

base_v1.0.0-app_v2.0.0, or they are none images.

− If the first several instructions in the Dockerfile are the same, none images may

remain.

None Image May Be Generated

1. A none image is the top-level image without a tag. For example, the image ID of ubuntu

has only one tag ubuntu. If the tag is not used but the image ID is still available, the

image ID becomes a none image.

2. An image is protected because the image data needs to be exported during image saving.

However, if a deletion operation is performed, the image may be successfully untagged

and the image ID may fail to be deleted (because the image is protected). As a result, the

image becomes a none image.

3. If the system is powered off when you run the docker pull command or the system is in

panic, a none image may be generated. To ensure image integrity, you can run the

docker rmi command to delete the image and then restart it.

4. If you run the docker save command to save an image and specify the image ID as the

image name, the loaded image does not have a tag and the image name is none.

A Low Probability That Image Fails to Be Built If the Image Is Deleted When
Being Built

Currently, the image build process is protected by reference counting. After an image is built,

reference counting of the image is increased by 1 (holdon operation). Once the holdon

operation is successful, the image will not be deleted. However, there is a low probability that

before the holdon operation is performed, the image can still be deleted, causing the image

build failure.

openEuler

Container User Guide 4 Docker Container

2020-04-01 216

4.4.2 Viewing Images

Run the following command to view the local image list:

docker images

4.4.3 Deleting Images

Precautions

Do not run the docker rmi –f XXX command to delete images. If you forcibly delete an image,

the docker rmi command ignores errors during the process, which may cause residual

metadata of containers or images. If you delete an image in common mode and an error

occurs during the deletion process, the deletion fails and no metadata remains.

4.5 Command Reference

4.5.1 Container Engine

Docker daemon is a system process that resides in the background. Before you run a docker

subcommand, start Docker daemon.

If the Docker daemon is installed using the RPM package or system package management

tool, you can run the systemctl start docker command to start the Docker daemon.

The docker command supports the following parameters:

1. To combine parameters of a single character, run the following command:

docker run -t -i busybox /bin/sh

The command can be written as follows:

docker run -ti busybox /bin/sh

2. bool command parameters such as --icc=true, are displayed in the command help. If this

parameter is not used, the default value displayed in the command help is used. If this

parameter is used, the opposite value of the value displayed in the command help is used.

In addition, if --icc is not added when Docker daemon is started, --icc=true is used by

default. Otherwise, --icc=false is used.

3. Parameters such as --attach=[] in the command help indicate that these parameters can

be set for multiple times. For example:

docker run --attach=stdin --attach=stdout -i -t busybox /bin/sh

4. Parameters such as -a and --attach=[] in the command help indicate that the parameter

can be specified using either -a value or --attach=value. For example:

docker run -a stdin --attach=stdout -i -t busybox /bin/sh

5. Parameters such as --name="" can be configured with a character string and can be

configured only once. Parameters such as -c= can be configured with an integer and can

be configured only once.

openEuler

Container User Guide 4 Docker Container

2020-04-01 217

Table 4-1 Parameters specified during the Docker daemon startup

Parameter Description

--api-cors-header CORS header information for enabling remote API

calling. This interface supports the secondary

development of upper-layer applications, which sets

the CORS header for a remote API.

--authorization-plugin=[] Authentication plug-in.

-b, --bridge="" Existing bridge device mounting to the docker

container. Note: none can be used to disable the

network in the container.

--bip="" Bridge IP address, which is automatically created

using the CIDR address. Note: this parameter cannot

be used with -b .

--cgroup-parent cgroup parent directory configured for all containers.

--config-file=/etc/docker/daemon.js

on

Configuration file for starting Docker daemon.

--containerd Socket path of containerd.

-D, --debug=false Specifies whether to enable the debugging mode.

--default-gateway Default gateway of the container IPv4 address.

--default-gateway-v6 Default gateway of the container IPv6 address.

--default-ulimit=[] Default ulimit value of the container.

--disable-legacy-registry Disables the original registry.

--dns=[] DNS server of the forcibly used container.

Example: --dns 8.8.x.x

--dns-opt=[] DNS option.

--dns-search=[] Forcibly searches DNS search domain name used by

a container.

Example: --dns-search example.com

--exec-opt=[] Parameter to be executed when a container is started.

For example, set the native.umask parameter.

#The umask value of the started container is 0022.

--exec-opt native.umask=normal

#The umask value of the started container is 0027

(default value).

--exec-opt native.umask=secure

Note: If native.umask is also configured in docker

create or docker run command, the configuration

in command is used.

--exec-root=/var/run/docker Root directory for storing the execution status file.

https://en.wikipedia.org/wiki/Cross-Origin_Resource_Sharing

openEuler

Container User Guide 4 Docker Container

2020-04-01 218

Parameter Description

--fixed-cidr="" Fixed IP address (for example, 10.20.0.0/16) of the

subnet. The IP address of the subnet must belong to

the network bridge.

--fixed-cidr-v6 Fixed IPv6 address.

-G, --group="docker" Group assigned to the corresponding Unix socket in

the background running mode. Note: When an

empty string is configured for this parameter, the

group information is removed.

-g, --graph="/var/lib/docker" The root directory for running docker.

-H, --host=[] Socket bound in background mode. One or more

sockets can be configured using tcp://host:port,

unix:///path to socket, fd://* or fd://socketfd.

Example:

$ dockerd -H tcp://0.0.0.0:2375

or

$ export DOCKER_HOST="tcp://0.0.0.0:2375"

--insecure-registry=[] Registry for insecure connections. By default, the

Docker uses TLS certificates to ensure security for

all connections. If the registry does not support

HTTPS connections or the certificate is issued by an

unknown certificate authority of the Docker daemon,

you need to configure

--insecure-registry=192.168.1.110:5000 when

starting the daemon. This parameter needs to be

configured if a private registry is used.

--image-layer-check=true Image layer integrity check. To enable the function,

set this parameter to true. Otherwise, set this

parameter to false. If this parameter is not

configured, the function is disabled by default.

When Docker is started, the image layer integrity is

checked. If the image layer is damaged, the related

images are unavailable. Docker cannot verify empty

files, directories, or link files. Therefore, if the

preceding files are lost due to a power failure, the

integrity check of Docker image data may fail.

When the Docker version changes, check whether

the parameter is supported. If not supported, delete it

from the configuration file.

--icc=true Enables communication between containers.

--ip="0.0.0.0" Default IP address used when a container is bound

to a port.

--ip-forward=true Starts the net.ipv4.ip_forward process of the

container.

--ip-masq=true Enables IP spoofing.

openEuler

Container User Guide 4 Docker Container

2020-04-01 219

Parameter Description

--iptables=true Starts the iptables rules defined by the Docker

container.

-l, --log-level=info Log level.

--label=[] Daemon label, in key=value format.

--log-driver=json-file Default log driver of container logs.

--log-opt=map[] Log drive parameters.

--mtu=0 MTU value of the container network. If this

parameter is not configured, value of route MTU is

used by default. If the default route is not

configured, set this parameter to the constant value

1500.

-p, --pidfile="/var/run/docker.pid" PID file path of the background process.

--raw-logs Logs with all timestamps and without the ANSI

color scheme.

--registry-mirror=[] Image registry preferentially used by the dockerd.

-s, --storage-driver="" Storage driver used when a container is forcibly run.

--selinux-enabled=false Enables SELinux. If the kernel version is

3.10.0-862.14 or later, this parameter cannot be set

to true.

--storage-opt=[] Storage driver parameter. This parameter is valid

only when the storage driver is devicemapper.

Example: dockerd --storage-opt

dm.blocksize=512K

--tls=false Enables the TLS authentication.

--tlscacert="/root/.docker/ca.pem" Certificate file path that has been authenticated by

the CA.

--tlscert="/root/.docker/cert.pem" File path of the TLS certificates.

--tlskey="/root/.docker/key.pem" File path of TLS keys.

--tlsverify=false Verifies the communication between the background

processes and the client using TLS.

--insecure-skip-verify-enforce Whether to forcibly skip the verification of the

certificate host or domain name. The default value is

false.

--use-decrypted-key=true Whether to use the decryption private key.

--userland-proxy=true Whether to use the userland proxy for the container

LO device.

--userns-remap User namespace-based user mapping table in the

container.

openEuler

Container User Guide 4 Docker Container

2020-04-01 220

Parameter Description

NOTE

This parameter is not supported in the current version.

4.5.2 Container Management

Subcommands supported by the current Docker are classified into the following groups by

function:

Function Command Description

Host environment version Views the Docker

version.

info Views the Docker

system and host

environment

information.

Container-related

information

Container lifecycle

management

create Creates a container

using an image.

run Creates and runs a

container using an

image.

start Starts a stopped

container.

stop Stops a running

container.

restart Restarts a container.

wait Waits for a container

to stop and prints the

exit code.

rm Deletes a container.

Container process

management

pause Suspends all

processes in a

container.

unpause Resumes a

suspended process

in a container.

top Views processes in a

container.

exec Executes a process

in containers.

Container inspection ps Views running

containers (without

openEuler

Container User Guide 4 Docker Container

2020-04-01 221

Function Command Description

tool attaching any

option).

logs Displays the log

information of a

container.

attach Connects standard

input and output to a

container.

inspect Returns the

bottom-layer

information of a

container.

port Lists the port

mappings between

containers and hosts.

diff Returns the changes

made by the

container compared

with rootfs in the

image.

cp Copies files between

containers and hosts.

export Exports the file

system in a

container in a .tar

package.

stats Views the resource

usage of a container

in real time.

Images Generates an image. build Creates an image

using a Dockerfile.

commit Creates an image

based on the

container rootfs.

import Creates an image

using the content in

the .tar package as

the file system.

load Loads an image

from the .tar

package.

Image registry login Logs in to a registry.

logout Logs out of a

openEuler

Container User Guide 4 Docker Container

2020-04-01 222

Function Command Description

registry.

pull Pulls an image from

the registry.

push Pushes an image to

the registry.

search Searches for an

image in the

registry.

Image management images Displays images in

the system.

history Displays the change

history of an image.

rmi Deletes an image.

tag Adds a tag to an

image.

save Saves an image to

a .tar package.

Others events Obtains real-time

events from the

Docker daemon.

rename Renames a

container.

Some subcommands have some parameters, such as docker run. You can run the docker

command --help command to view the help information of the command. For details about

the command parameters, see the preceding command parameter description. The following

sections describe how to use each command.

4.5.2.1 attach

Syntax: docker attach [options] container

Function: Attaches an option to a running container.

Parameter description:

--no-stdin=false: Does not attach any STDIN.

--sig-proxy=true: Proxies all signals of the container, except SIGCHLD, SIGKILL, and

SIGSTOP.

Example:

$ sudo docker attach attach_test

root@2988b8658669:/# ls bin boot dev etc home lib lib64 media mnt opt proc

root run sbin srv sys tmp usr var

openEuler

Container User Guide 4 Docker Container

2020-04-01 223

4.5.2.2 commit

Syntax: docker commit [options] container [repository[:tag]]

Function: creates an image from a container.

Parameter description:

-a, --author="": specifies an author.

-m, --message="": specifies the submitted information.

-p, --pause=true: pauses the container during submission.

Example:

Run the following command to start a container and submit the container as a new image:

$ sudo docker commit test busybox:test

sha256:be4672959e8bd8a4291fbdd9e99be932912fe80b062fba3c9b16ee83720c33e1

$ sudo docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

busybox latest e02e811dd08f 2 years ago 1.09MB

4.5.2.3 cp

Syntax: docker cp [options] container:src_path dest_path|-

docker cp [options] src_path|- container:dest_path

Function: Copies a file or folder from a path in a container to a path on the host or copies a

file or folder from the host to the container:

Precautions: The docker cp command does not support the copy of files in virtual file

systems such as /proc, /sys, /dev, and /tmp in the container and files in the file systems

mounted by users in the container.

Parameter description:

-a, --archive: Sets the owner of the file copied to the container to the container user (--user).

-L, --follow-link: Parses and traces the symbolic link of a file.

Example:

Run the following command to copy the /test directory in the registry container to the

/home/aaa directory on the host:

$ sudo docker cp registry:/test /home/aaa

4.5.2.4 create

Syntax: docker create [options] image [command] [arg...]

Function: Creates a container using an image file and return the ID of the container. After the

container is created, run the docker start command to start the container. options are used to

configure the container during container creation. Some parameters will overwrite the

container configuration in the image file. command indicates the command to be executed

during container startup.

openEuler

Container User Guide 4 Docker Container

2020-04-01 224

Parameter description:

Table 4-2 Parameter description

Parameter Description

-a --attach=[] Attaches the console to the STDIN, STDOUT, and STDERR

of the process in the container.

--name="" Name of a container.

--add-host=[host:ip] Adds a mapping between the host name and IP address to the

/etc/hosts in the container.

For example, --add-host=test:10.10.10.10.

--annotation Sets annotations for the container. For example, set the

native.umask parameter.

--annotation native.umask=normal #The umask value of the

started container is 0022.

--annotation native.umask=secure #The umask value of the

started container is 0027.

If this parameter is not set, the umask configuration in

dockerd is used.

--blkio-weight Relative weight of blockio, which ranges from 10 to 1000.

--blkio-weight-device=[] Blockio weight, which configures the relative weight.

-c, --cpu-shares=0 Relative weight of the host CPU obtained by the container.

This parameter can be used to obtain a higher priority. By

default, all containers obtain the same CPU priority.

--cap-add=[] Adds Linux functions.

--cap-drop=[] Clears Linux functions.

--cgroup-parent cgroup parent directory for the container.

--cidfile="" Writes the container ID to a specified file.

For example: --cidfile=/home/cidfile-test writes the

container ID to the /home/cidfile-test file.

--cpu-period CPU CFS period.

The default value is 100 ms. Generally, --cpu-period and

--cpu-quota are used together. For example,

--cpu-period=50000 --cpu-quota=25000 indicates that if

there is one CPU, the container can obtain 50% of the CPU

every 50 ms.

--cpus=0.5 has the same effect.

--cpu-quota CPU CFS quota. The default value is 0, indicating that there

is no restriction on the quota.

--cpuset-cpus Number of CPUs (0-3, 0, 1) that can be used by processes in

the container. By default, there is no restriction on this

parameter.

openEuler

Container User Guide 4 Docker Container

2020-04-01 225

Parameter Description

--cpuset-mems Memory nodes (0-3, 0, 1) for running processes in the

container. This parameter is valid only for the NUMA

system.

--device=[] Adds the host device to a container, for example,

--device=/dev/sdc:/dev/xvdc:rwm.

--dns=[] Forcibly enables the container to use the specified DNS

server. For example, --dns=114.114.xxx.xxx indicates that

nameserver 114.114.xxx.xxx is written to /etc/resolv.conf of

the created container and the original content is overwritten.

--dns-opt=[] DNS options.

--dns-search=[] Forcibly searches DNS search domain name used by a

container.

-e, --env=[] Sets environment variable for the container.

--env=[KERNEL_MODULES=]:

Inserts a specified module into a container. Currently, only

the modules on the host can be inserted. After the container

is deleted, the modules still reside on the host, and the

--hook-spec option must be configured for the container. The

following are valid parameter formats:

KERNEL_MODULERS=

KERNEL_MODULERS=a

KERNEL_MODULERS=a,b

KERNEL_MODULERS=a,b,

--entrypoint="" Overwrites the original entrypoint in the image. The

entrypoint is used to set the command executed when the

container is started.

--env-file=[] Reads environment variables from a file. Multiple

environment variables are separated by lines in the file. For

example: --env-file=/home/test/env indicates multiple

environment variables are stored in the env file.

--expose=[] Enables an internal port of a container. The -P option

described in the following section maps the enabled port to a

port on the host.

--group-add=[] Adds a specified container to an additional group.

-h, --hostname="" Host name.

--health-cmd Container health check command.

--health-interval Interval between two consecutive command executions. The

default value is 30s.

--health-timeout Maximum duration for executing a single check command. If

the execution times out, the command fails to be executed.

The default value is 30s.

openEuler

Container User Guide 4 Docker Container

2020-04-01 226

Parameter Description

--health-start-period Interval between the time when the container is started and

the time when the first health check is performed. The

default value is 0s.

--health-retries Maximum number of retries after a health check fails. The

default value is 3.

--health-exit-on-unhealthy Specifies whether to stop a container when the container is

unhealthy. The default value is false.

--host-channel=[] Sets a channel for communication between processes in the

container and the host, in host path:container path:rw/ro:size

limit format.

-i, --interactive=false Enables STDIN even if it is not attached.

--ip IPv4 address of a container.

--ip6 IPv6 address of a container.

--ipc IPC namespace of a container.

--isolation Container isolation policy.

-l, --label=[] Label of a container.

--label-file=[] Obtains the label from the file.

--link=[] Links to another container. This parameter adds environment

variables of the IP address and port number of the linked

container to the container and adds a mapping to the

/etc/hosts file, for example, --link=name:alias.

--log-driver Log driver of a container.

--log-opt=[] Log driver option.

-m, --memory="" Memory limit of a container. The format is numberoptional

unit, and available units are b, k, m, and g. The minimum

value of this parameter is 4m.

--mac-address MAC address of a container, for example,

92:d0:c6:0a:xx:xx.

--memory-reservation Container memory limit. The default value is the same as

that of --memory. --memory is a hard limit, and

--memory-reservation is a soft limit. When the memory

usage exceeds the preset value, the memory usage is

dynamically adjusted (the system attempts to reduce the

memory usage to a value less than the preset value when

reclaiming the memory). However, the memory usage may

exceed the preset value. Generally, this parameter can be

used together with --memory. The value must be less than

the preset value of --memory.

--memory-swap Total usage of the common memory and swap partition. -1

indicates no restriction is set on the usage. If this parameter is

not set, the swap partition size is twice the value of

openEuler

Container User Guide 4 Docker Container

2020-04-01 227

Parameter Description

--memory. That is, the swap partition can use the same

amount of memory as --memory.

--memory-swappiness=-1 Time when the container uses the swap memory. The value

ranges from 0 to 100, in percentage.

--net="bridge" Network mode of the container. Docker 1.3.0 has the

following network modes: bridge, host, none, and

container:name|id. The default value is bridge.

 bridge: Creates a network stack on the bridge when the

Docker daemon is started.

 host: Uses the network stack of the host in the container.

 none: Does not use networks.

 container:name|id: Reuses the network stack of another

container.

--no-healthcheck Does not perform health check for a container.

--oom-kill-disable Disables the OOM killer. You are advised not to set this

parameter if the -m parameter is not set.

--oom-score-adj Adjusts the OOM rule of a container. The value ranges from

-1000 to 1000.

-P, --publish-all=false Maps all enabled ports of a container to host ports.

Containers can be accessed through the host ports. You can

run the docker port command to view the mapping between

container ports and host ports.

-p, --publish=[] Maps a port in a container to a port on the host, in IP

address:host port:container port | IP address::container port

| host port:container port | container port format. If no IP

address is configured, accesses of all NICs on the host is

listened. If no host port is configured, the host port is

automatically allocated.

--pid PID namespace of a container.

--privileged=false Grants extra permission to a container. If the --privileged

option is used, the container can access all devices on the

host.

--restart="" Configures restart rule when the container exits. Currently,

version 1.3.1 supports the following rules:

 no: indicates that the container is not restarted when it is

stopped.

 on-failure: indicates that the container is restarted when

the container exit code is not 0. This rule can be used to

add the maximum number of restart times, for example,

on-failure:5, indicating that the container can be restarted

for a maximum of five times.

 always: indicates the container is exited regardless of the

exit code.

openEuler

Container User Guide 4 Docker Container

2020-04-01 228

Parameter Description

--read-only Mounts the root file system of the container in read-only

mode.

--security-opt=[] Container security rule.

--shm-size Size of the /dev/shm device. The default value is 64M.

--stop-signal=SIGTERM Container stop signal. The default value is SIGTERM.

-t, --tty=false Allocates a pseudo terminal.

--tmpfs=[] Mounts the tmpfs directory.

-u, --user="" User name or user ID.

--ulimit=[] ulimit option.

--userns User namespace of a container.

-v, --volume=[] Mounts a directory of the host to the container, or create a

volume in the container. For example, -v /home/test:/home

mounts the /home/test directory of the host to the /home

directory of the container, and -v /tmp creates the tmp folder

in the root directory of the container, the folder can be

shared by other containers using the --volumes-from option.

The host directory cannot be mounted to the /proc

subdirectory of the container. Otherwise, an error is reported

when the container is started.

--volume-driver Data volume driver of the container. This parameter is

optional.

--volumes-from=[] Mounts the volume of another container to the current

container to share the volume. For example, -volumes-from

container_name mounts the volume of container_name to

the current container. -v and --volumes-from=[] are two very

important options for data backup and live migration.

-w, --workdir="" Specifies the working directory of the container.

Example:

Run the following command to create a container named busybox and run the docker start

command to start the container.

$ sudo docker create -ti --name=busybox busybox /bin/bash

4.5.2.5 diff

Syntax: docker diff container

Function: Checks the differences between containers and determines the changes have been

made compared with the container creation.

Parameter description: none.

openEuler

Container User Guide 4 Docker Container

2020-04-01 229

Example:

$ sudo docker diff registry

C /root

A /root/.bash_history

A /test

4.5.2.6 exec

Syntax: docker exec [options] container command [arg...]

Function: Runs a command in the container.

Parameter description:

-d and --detach=false: Run in the background.

-i and --interactive=false: Keep the STDIN of the container enabled.

-t and --tty=false: Allocate a virtual terminal.

--privileged: Executes commands in privilege mode.

-u and --user: Specifies the user name or UID.

Example:

$ sudo docker exec -ti exec_test ls

bin etc lib media opt root sbin sys tmp var

dev home lib64 mnt proc run srv test usr

4.5.2.7 export

Syntax: docker export container

Function: Exports the file system content of a container to STDOUT in .tar format.

Parameter description: none.

Example:

Run the following commands to export the contents of the container named busybox to the

busybox.tar package:

$ sudo docker export busybox > busybox.tar

$ ls

busybox.tar

4.5.2.8 inspect

Syntax: docker inspect [options] container|image [container|image...]

Function: Returns the underlying information about a container or image.

Parameter description:

-f and --format="": Output information in a specified format.

openEuler

Container User Guide 4 Docker Container

2020-04-01 230

-s and --size: Display the total file size of the container when the query type is container.

--type: Returns the JSON format of the specified type.

-t and --time=120: Timeout interval, in seconds. If the docker inspect command fails to be

executed within the timeout interval, the system stops waiting and immediately reports an

error. The default value is 120.

Example:

1. Run the following command to return information about a container:

$ sudo docker inspect busybox_test

[

 {

 "Id": "9fbb8649d5a8b6ae106bb0ac7686c40b3cbd67ec2fd1ab03e0c419a70d755577",

 "Created": "2019-08-28T07:43:51.27745746Z",

 "Path": "bash",

 "Args": [],

 "State": {

 "Status": "running",

 "Running": true,

 "Paused": false,

 "Restarting": false,

 "OOMKilled": false,

 "Dead": false,

 "Pid": 64177,

 "ExitCode": 0,

 "Error": "",

 "StartedAt": "2019-08-28T07:43:53.021226383Z",

 "FinishedAt": "0001-01-01T00:00:00Z"

 },

......

2. Run the following command to return the specified information of a container in a

specified format. The following uses the IP address of the busybox_test container as an

example.

$ sudo docker inspect -f {{.NetworkSettings.IPAddress}} busybox_test

172.17.0.91

4.5.2.9 logs

Syntax: docker logs [options] container

Function: Captures logs in a container that is in the running or stopped state.

Parameter description:

-f and --follow=false: Print logs in real time.

-t and --timestamps=false: Display the log timestamp.

--since: Displays logs generated after the specified time.

--tail="all": Sets the number of lines to be displayed. By default, all lines are displayed.

Example:

openEuler

Container User Guide 4 Docker Container

2020-04-01 231

1. Run the following command to check the logs of the jaegertracing container where a

jaegertracing service runs:

$ sudo docker logs jaegertracing

{"level":"info","ts":1566979103.3696961,"caller":"healthcheck/handler.go:99","m

sg":"Health Check server started","http-port":14269,"status":"unavailable"}

{"level":"info","ts":1566979103.3820567,"caller":"memory/factory.go:55","msg":"

Memory storage configuration","configuration":{"MaxTraces":0}}

{"level":"info","ts":1566979103.390773,"caller":"tchannel/builder.go:94","msg":

"Enabling service discovery","service":"jaeger-collector"}

{"level":"info","ts":1566979103.3908608,"caller":"peerlistmgr/peer_list_mgr.go:

111","msg":"Registering active peer","peer":"127.0.0.1:14267"}

{"level":"info","ts":1566979103.3922884,"caller":"all-in-one/main.go:186","msg"

:"Starting agent"}

{"level":"info","ts":1566979103.4047635,"caller":"all-in-one/main.go:226","msg"

:"Starting jaeger-collector TChannel server","port":14267}

{"level":"info","ts":1566979103.404901,"caller":"all-in-one/main.go:236","msg":

"Starting jaeger-collector HTTP server","http-port":14268}

{"level":"info","ts":1566979103.4577134,"caller":"all-in-one/main.go:256","msg"

:"Listening for Zipkin HTTP traffic","zipkin.http-port":9411}

2. Add -f to the command to output the logs of the jaegertracing container in real time.

$ sudo docker logs -f jaegertracing

{"level":"info","ts":1566979103.3696961,"caller":"healthcheck/handler.go:99","m

sg":"Health Check server started","http-port":14269,"status":"unavailable"}

{"level":"info","ts":1566979103.3820567,"caller":"memory/factory.go:55","msg":"

Memory storage configuration","configuration":{"MaxTraces":0}}

{"level":"info","ts":1566979103.390773,"caller":"tchannel/builder.go:94","msg":

"Enabling service discovery","service":"jaeger-collector"}

{"level":"info","ts":1566979103.3908608,"caller":"peerlistmgr/peer_list_mgr.go:

111","msg":"Registering active peer","peer":"127.0.0.1:14267"}

{"level":"info","ts":1566979103.3922884,"caller":"all-in-one/main.go:186","msg"

:"Starting agent"}

4.5.2.10 pause/unpause

Syntax: docker pause container

docker unpause container

Function: The two commands are used in pairs. The docker pause command suspends all

processes in a container, and the docker unpause command resumes the suspended

processes.

Parameter description: none.

Example:

The following uses a container where the docker registry service runs as an example. After the

docker pause command is executed to pause the process of the container, access of the

registry service by running the curl command is blocked. You can run the docker unpause

command to resume the suspended registry service. The registry service can be accessed by

running the curl command.

1. Run the following command to start a registry container:

openEuler

Container User Guide 4 Docker Container

2020-04-01 232

$ sudo docker run -d --name pause_test -p 5000:5000 registry

Run the curl command to access the service. Check whether the status code 200 OK is

returned.

$ sudo curl -v 127.0.0.1:5000

2. Run the following command to stop the processes in the container:

$ sudo docker pause pause_test

Run the curl command to access the service to check whether it is blocked and wait until

the service starts.

3. Run the following command to resume the processes in the container:

$ sudo docker unpause pause_test

The cURL access in step 2 is restored and the request status code 200 OK is returned.

4.5.2.11 port

Syntax: docker port container [private_port[/proto]]

Function: Lists the port mapping of a container or queries the host port where a specified port

resides.

Parameter description: none.

Example:

1. Run the following command to list all port mappings of a container:

$ sudo docker port registry

5000/tcp -> 0.0.0.0.:5000

2. Run the following command to query the mapping of a specified container port:

$ sudo docker port registry 5000

0.0.0.0.:5000

4.5.2.12 ps

Syntax: docker ps [options]

Function: Lists containers in different states based on different parameters. If no parameter is

added, all running containers are listed.

Parameter description:

-a and --all=false: Display the container.

-f and --filter=[]: Filter values. The available options are: exited=int (exit code of the

container) status=restarting|running|paused|exited (status code of the container), for example,

-f status=running: lists the running containers.

-l and --latest=false: List the latest created container.

-n=-1: Lists the latest created n containers.

--no-trunc=false: Displays all 64-bit container IDs. By default, 12-bit container IDs are

displayed.

-q and --quiet=false: Display the container ID.

openEuler

Container User Guide 4 Docker Container

2020-04-01 233

-s and --size=false: Display the container size.

Example:

1. Run the following command to lists running containers:

$ sudo docker ps

2. Run the following command to display all containers:

$ sudo docker ps -a

4.5.2.13 rename

Syntax: docker rename OLD_NAME NEW_NAME

Function: Renames a container.

Example:

Run the docker run command to create and start a container, run the docker rename

command to rename the container, and check whether the container name is changed.

$ sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

b15976967abb busybox:latest "bash" 3 seconds ago Up 2

seconds festive_morse

$ sudo docker rename pedantic_euler new_name

$ sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

b15976967abb busybox:latest "bash" 34 seconds ago Up 33

seconds new_name

4.5.2.14 restart

Syntax: docker restart [options] container [container...]

Function: Restarts a running container.

Parameter description:

-t and --time=10: Number of seconds to wait for the container to stop before the container is

killed. If the container has stopped, restart the container. The default value is 10.

Example:

$ sudo docker restart busybox

During the container restart, if a process in the D or Z state exists in the container, the container may fail
to be restarted. In this case, you need to analyze the cause of the D or Z state of the process in the
container. Restart the container after the D or Z state of the process in the container is released.

4.5.2.15 rm

Syntax: docker rm [options] container [container...]

Function: Deletes one or more containers.

openEuler

Container User Guide 4 Docker Container

2020-04-01 234

Parameter description:

-f and --force=false: Forcibly delete a running container.

-l and --link=false: Remove the specified link and do not remove the underlying container.

-v and --volumes=false: Remove the volumes associated with the container.

Example:

1. Run the following command to delete a stopped container:

$ sudo docker rm test

2. Run the following command to delete a running container:

$ sudo docker rm -f rm_test

4.5.2.16 run

Syntax: docker run [options] image [command] [arg...]

Function: Creates a container from a specified image (if the specified image does not exist, an

image is downloaded from the official image registry), starts the container, and runs the

specified command in the container. This command integrates the docker create, docker

start, and docker exec commands.

Parameter description: (The parameters of this command are the same as those of the docker

create command. For details, see the parameter description of the docker create command.

Only the following two parameters are different.)

--rm=false: Specifies the container to be automatically deleted when it exits.

-v: Mounts a local directory or an anonymous volume to the container. Note: When a local

directory is mounted to a container with a SELinux security label, do not add or delete the

local directory at the same time. Otherwise, the security label may not take effect.

--sig-proxy=true: Receives proxy of the process signal. SIGCHLD, SIGSTOP, and SIGKILL

do not use the proxy.

Example:

Run the busybox image to start a container and run the /bin/sh command after the container is

started:

$ sudo docker run -ti busybox /bin/sh

4.5.2.17 start

Syntax: docker start [options] container [container...]

Function: Starts one or more containers that are not running.

Parameter description:

-a and --attach=false: Attach the standard output and error output of a container to STDOUT

and STDERR of the host.

-i and --interactive=false: Attach the standard input of the container to the STDIN of the host.

Example:

openEuler

Container User Guide 4 Docker Container

2020-04-01 235

Run the following command to start a container named busybox and add the -i -a to the

command to add standard input and output. After the container is started, directly enter the

container. You can exist the container by entering exit.

If -i -a is not added to the command when the container is started, the container is started in

the background.

$ sudo docker start -i -a busybox

4.5.2.18 stats

Syntax: docker stats [options] [container...]

Function: Continuously monitors and displays the resource usage of a specified container. (If

no container is specified, the resource usage of all containers is displayed by default.)

Parameter description:

-a, and --all: Display information about all containers. By default, only running containers are

displayed.

--no-stream: Displays only the first result and does not continuously monitor the result.

Example:

Run the docker run command to start and create a container, and run the docker stats

command to display the resource usage of the container:

$ sudo docker stats

CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM %

NET I/O BLOCK I/O PIDS

2e242bcdd682 jaeger 0.00% 77.08MiB / 125.8GiB 0.06%

42B / 1.23kB 97.9MB / 0B 38

02a06be42b2c relaxed_chandrasekhar 0.01% 8.609MiB / 125.8GiB

0.01% 0B / 0B 0B / 0B 10

deb9e49fdef1 hardcore_montalcini 0.01% 12.79MiB / 125.8GiB

0.01% 0B / 0B 0B / 0B 9

4.5.2.19 stop

Syntax: docker stop [options] container [container...]

Function: Sends a SIGTERM signal to a container and then sends a SIGKILL signal to stop

the container after a certain period.

Parameter description:

-t and --time=10: Number of seconds that the system waits for the container to exit before the

container is killed. The default value is 10.

Example:

$ sudo docker stop -t=15 busybox

4.5.2.20 top

Syntax: docker top container [ps options]

Function: Displays the processes running in a container.

openEuler

Container User Guide 4 Docker Container

2020-04-01 236

Parameter description: none.

Example:

Run the top_test container and run the top command in the container.

$ sudo docker top top_test

UID PID PPID C STIME

TTY TIME CMD

root 70045 70028 0 15:52

pts/0 00:00:00 bash

The value of PID is the PID of the process in the container on the host.

4.5.2.21 update

Syntax: docker update [options] container [container...]

Function: Hot changes one or more container configurations.

Parameter description:

Table 4-3 Parameter description

Parameter Description

--accel=[] Configures one or more container accelerators.

--blkio-weight Relative weight of the container blockio. The value ranges

from 10 to 1000.

--cpu-shares Relative weight of the host CPU obtained by the container.

This parameter can be used to obtain a higher priority. By

default, all containers obtain the same CPU priority.

--cpu-period CPU CFS period.

The default value is 100 ms. Generally, --cpu-period and

--cpu-quota are used together. For example,

--cpu-period=50000 --cpu-quota=25000 indicates that if

there is one CPU, the container can obtain 50% of the CPU

every 50 ms.

--cpu-quota CPU CFS quota. The default value is 0, indicating that there

is no restriction on the quota.

--cpuset-cpus Number of CPUs (0-3, 0, 1) that can be used by processes in

the container. By default, there is no restriction on this

parameter.

--cpuset-mems Memory nodes (0-3, 0, 1) for running processes in the

container. This parameter is valid only for the NUMA

system.

--kernel-memory="" Kernel memory limit of a container. The format is

numberoptional unit, and available units are b, k, m, and g.

-m, --memory="" Memory limit of a container. The format is numberoptional

unit, and available units are b, k, m, and g. The minimum

value of this parameter is 4m.

openEuler

Container User Guide 4 Docker Container

2020-04-01 237

Parameter Description

--memory-reservation Container memory limit. The default value is the same as

that of --memory. --memory is a hard limit, and

--memory-reservation is a soft limit. When the memory

usage exceeds the preset value, the memory usage is

dynamically adjusted (the system attempts to reduce the

memory usage to a value less than the preset value when

reclaiming the memory). However, the memory usage may

exceed the preset value. Generally, this parameter can be

used together with --memory. The value must be less than

the preset value of --memory.

--memory-swap Total usage of the common memory and swap partition. -1

indicates no restriction is set on the usage. If this parameter is

not set, the swap partition size is twice the value of

--memory. That is, the swap partition can use the same

amount of memory as --memory.

--restart="" Configures restart rule when the container exits. Currently,

version 1.3.1 supports the following rules:

 no: indicates that the container is not restarted when it is

stopped.

 on-failure: indicates that the container is restarted when

the container exit code is not 0. This rule can be used to

add the maximum number of restart times, for example,

on-failure:5, indicating that the container can be restarted

for a maximum of five times.

 always: indicates the container is exited regardless of the

exit code.

--help Help information.

Example:

Run the following command to change the CPU and memory configurations of the container

named busybox, including changing the relative weight of the host CPU obtained by the

container to 512, the CPU cores that can be run by processes in the container to 0,1,2,3, and

the memory limit for running the container to 512 m.

$ sudo docker update --cpu-shares 512 --cpuset-cpus=0,3 --memory 512m ubuntu

4.5.2.22 wait

Syntax: docker wait container [container...]

Function: Waits for a container to stop and print the exit code of the container:

Parameter description: none.

Example:

Run the following command to start a container named busybox:

$ sudo docker start -i -a busybox

openEuler

Container User Guide 4 Docker Container

2020-04-01 238

Run the docker wait command:

$ sudo docker wait busybox

0

Wait until the busybox container exits. After the busybox container exits, the exit code 0 is

displayed.

4.5.3 Image Management

4.5.3.1 build

Syntax: docker build [options] path | URL | -

Function: Builds an image using the Dockerfile in the specified path.

Parameter description: Common parameters are as follows. For details about more parameters,

see the docker help build command section.

Table 4-4 Parameter description

Parameter Description

--force-rm=false Deletes containers generated during the

build process even if the build is not

successful.

--no-cache=false Builds cache without using cache.

-q, --quiet=false Prevents the redundant information

generation during the build.

--rm=true Deletes the container generated during the

build after the build is successful.

-t, --tag="" Tag name of the image generated during the

build.

--build-arg=[] Configures the build parameters.

--label=[] Image-related parameters. The description

of each parameter is similar to that of the

create command.

--isolation Container isolation method.

--pull Obtains the latest image during the build.

Dockerfile Command

Dockerfile is used to describe how to build an image and automatically build a container. The

format of all Dockerfile commands is instruction arguments.

FROM Command

openEuler

Container User Guide 4 Docker Container

2020-04-01 239

Syntax: FROM image or FROM image:tag

Function: Specifies a basic image, which is the first command for all Dockerfile files. If the

tag of a basic image is not specified, the default tag name latest is used.

RUN Command

Syntax: RUN command (for example, run in a shell - `/bin/sh -c`) or

RUN [executable, param1, param2 ...] (in the exec command format)

Function: Runs any command in the image specified by the FROM command and then

commits the result. The committed image can be used in later commands. The RUN

command is equivalent to:

docker run image command

docker commit container_id

Remarks

The number sign (#) is used to comment out.

MAINTAINER Command

Syntax: MAINTAINER name

Function: Specifies the name and contact information of the maintenance personnel.

ENTRYPOINT Command

Syntax: ENTRYPOINT cmd param1 param2... or ENTRYPOINT ["cmd", "param1",

"param2"...]

Function: Configures the command to be executed during container startup.

USER Command

Syntax: USER name

Function: Specifies the running user of memcached.

EXPOSE Command

Syntax: EXPOSE port [port...]

Function: Enables one or more ports for images.

ENV Command

Syntax: ENV key value

openEuler

Container User Guide 4 Docker Container

2020-04-01 240

Function: Configures environment variables. After the environment variables are configured,

the RUN commands can be subsequently used.

ADD Command

Syntax: ADD src dst

Function: Copies a file from the src directory to the dest directory of a container. src indicates

the relative path of the source directory to be built. It can be the path of a file or directory, or a

remote file URL. dest indicates the absolute path of the container.

VOLUME Command

Syntax: VOLUME ["mountpoint"]

Function: Creates a mount point for sharing a directory.

WORKDIR Command

Syntax: workdir path

Function: Runs the RUN, CMD, and ENTRYPOINT commands to set the current working

path. The current working path can be set multiple times. If the current working path is a

relative path, it is relative to the previous WORKDIR command.

CMD command

Syntax: CMD ["executable","param1","param2"] (This command is similar to the exec

command and is preferred.)

CMD ["param1","param2"] (The parameters are the default parameters for ENTRYPOINT.)

CMD command param1 param2 (This command is similar to the shell command.)

Function: A Dockerfile can contain only one CMD command. If there are multiple CMD

commands, only the last one takes effect.

ONBUILD Commands

Syntax: ONBUILD [other commands]

Function: This command is followed by other commands, such as the RUN and COPY

commands. This command is not executed during image build and is executed only when the

current image is used as the basic image to build the next-level image.

The following is a complete example of the Dockerfile command that builds an image with

the sshd service installed.

FROM busybox

ENV http_proxy http://192.168.0.226:3128

ENV https_proxy https://192.168.0.226:3128

RUN apt-get update && apt-get install -y openssh-server

RUN mkdir -p /var/run/sshd

openEuler

Container User Guide 4 Docker Container

2020-04-01 241

EXPOSE 22

ENTRYPOINT /usr/sbin/sshd -D

Example:

1. Run the following command to build an image using the preceding Dockerfile:

$ sudo docker build -t busybox:latest

2. Run the following command to view the generated image:

docker images | grep busybox

4.5.3.2 history

Syntax: docker history [options] image

Function: Displays the change history of an image.

Parameter description:

-H, --human=true

--no-trunc=false: Does not delete any output.

-q and --quiet=false: Display only IDs.

Example:

$ sudo docker history busybox:test

IMAGE CREATED CREATED BY SIZE COMMENT

be4672959e8b 15 minutes ago bash 23B

21970dfada48 4 weeks ago 128MB Imported from

-

4.5.3.3 images

Syntax: docker images [options] [name]

Function: Lists existing images. The intermediate image is not displayed if no parameter is

configured.

Parameter description:

-a and --all=false: Display all images.

-f and --filter=[]: Specify a filtering value, for example, dangling=true.

--no-trunc=false: Does not delete any output.

-q and --quiet=false: Display only IDs.

Example:

$ sudo docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

busybox latest e02e811dd08f 2 years ago 1.09MB

openEuler

Container User Guide 4 Docker Container

2020-04-01 242

4.5.3.4 import

Syntax: docker import URL|- [repository[:tag]]

Function: Imports a .tar package that contains rootfs as an image. This parameter corresponds

to the docker export command.

Parameter description: none.

Example:

Run the following command to generate a new image for busybox.tar exported using the

docker export command:

$ sudo docker import busybox.tar busybox:test

sha256:a79d8ae1240388fd3f6c49697733c8bac4d87283920defc51fb0fe4469e30a4f

$ sudo docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

busybox test a79d8ae12403 2 seconds ago 1.3MB

4.5.3.5 load

Syntax: docker load [options]

Function: Reloads an image from .tar package obtained by running the docker save command.

This parameter corresponds to the docker save command.

Parameter description:

-i and --input="" can be used.

Example:

$ sudo docker load -i busybox.tar

Loaded image ID:

sha256:e02e811dd08fd49e7f6032625495118e63f597eb150403d02e3238af1df240ba

$ sudo docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

busybox latest e02e811dd08f 2 years ago 1.09MB

4.5.3.6 login

Syntax: docker login [options] [server]

Function: Logs in to an image server. If no server is specified, the system logs in to

https://index.docker.io/v1/ by default.

Parameter description:

-e and --email="": Email address.

-p and --password="": Password.

-u and --username="": User name.

Example:

$ sudo docker login

openEuler

Container User Guide 4 Docker Container

2020-04-01 243

4.5.3.7 logout

Syntax: docker logout [server]

Function: Logs out of an image server. If no server is specified, the system logs out of

https://index.docker.io/v1/ by default.

Parameter description: none.

Example:

$ sudo docker logout

4.5.3.8 pull

Syntax: docker pull [options] name[:tag]

Function: Pulls an image from an official or private registry.

Parameter description:

-a and --all-tags=false: Download all images in a registry. (A registry can be tagged with

multiple tags. For example, a busybox registry may have multiple tags, such as

busybox:14.04, busybox:13.10, busybox:latest. If -a is used, all busybox images with tags

are pulled.)

Example:

1. Run the following command to obtain the Nginx image from the official registry:

$ sudo docker pull nginx

Using default tag: latest

latest: Pulling from official/nginx

94ed0c431eb5: Pull complete

9406c100a1c3: Pull complete

aa74daafd50c: Pull complete

Digest: sha256:788fa27763db6d69ad3444e8ba72f947df9e7e163bad7c1f5614f8fd27a311c3

Status: Downloaded newer image for nginx:latest

When an image is pulled, the system checks whether the dependent layer exists. If yes,

the local layer is used.

2. Pull an image from a private registry.

Run the following command to pull the Fedora image from the private registry, for

example, the address of the private registry is 192.168.1.110:5000:

$ sudo docker pull 192.168.1.110:5000/fedora

4.5.3.9 push

Syntax: docker push name[:tag]

Function: Pushes an image to the image registry.

Parameter description: none.

Example:

1. Run the following command to push an image to the private image registry at

192.168.1.110:5000.

2. Label the image to be pushed. (The docker tag command is described in the following

section.) In this example, the image to be pushed is busybox:sshd.

openEuler

Container User Guide 4 Docker Container

2020-04-01 244

$ sudo docker tag ubuntu:sshd 192.168.1.110:5000/busybox:sshd

3. Run the following command to push the tagged image to the private image registry:

$ sudo docker push 192.168.1.110:5000/busybox:sshd

During the push, the system automatically checks whether the dependent layer exists in

the image registry. If yes, the layer is skipped.

4.5.3.10 rmi

Syntax: docker rmi [options] image [image...]

Function: Deletes one or more images. If an image has multiple tags in the image library, only

the untag operation is performed when the image is deleted. If the image has only one tag, the

dependent layers are deleted in sequence.

Parameter description:

-f and --force=false: Forcibly delete an image.

--no-prune=false: Does not delete parent images without tags.

Example:

$ sudo docker rmi 192.168.1.110:5000/busybox:sshd

4.5.3.11 save

Syntax: docker save [options] image [image...]

Function: Saves an image to a TAR package. The output is STDOUT by default.

Parameter description:

-o and --output="": Save an image to a file rather than STDOUT.

Example:

$ sudo docker save -o nginx.tar nginx:latest

$ ls

nginx.tar

4.5.3.12 search

Syntax: docker search options TERM

Function: Searches for a specific image in the image registry.

Parameter description:

--automated=false: Displays the automatically built image.

--no-trunc=false: Does not delete any output.

-s and --stars=0: Display only images of a specified star level or higher.

Example:

1. Run the following command to search for Nginx in the official image library:

$ sudo docker search nginx

NAME DESCRIPTION STARS

OFFICIAL AUTOMATED

openEuler

Container User Guide 4 Docker Container

2020-04-01 245

nginx Official build of Nginx. 11873

[OK]

jwilder/nginx-proxy Automated Nginx reverse proxy for docker con...

1645 [OK]

richarvey/nginx-php-fpm Container running Nginx + PHP-FPM capable of...

739 [OK]

linuxserver/nginx An Nginx container, brought to you by LinuxS... 74

bitnami/nginx Bitnami nginx Docker Image 70

[OK]

tiangolo/nginx-rtmp Docker image with Nginx using the nginx-rtmp...

51 [OK]

2. Run the following command to search for busybox in the private image library. The

address of the private image library must be added during the search.

$ sudo docker search 192.168.1.110:5000/busybox

4.5.3.13 tag

Syntax: docker tag [options] image[:tag] [registry host/][username/]name[:tag]

Function: Tags an image to a registry.

Parameter description:

-f or --force=false: Forcibly replaces the original image when the same tag name exists.

Example:

$ sudo docker tag busybox:latest busybox:test

4.5.4 Statistics

4.5.4.1 events

Syntax: docker events [options]

Function: Obtains real-time events from the docker daemon.

Parameter description:

--since="": Displays events generated after the specified timestamp.

--until="": Displays events generated before the specified timestamp.

Example:

After the docker events command is executed, a container is created and started by running

the docker run command. create and start events are output.

$ sudo docker events

2019-08-28T16:23:09.338838795+08:00 container create

53450588a20800d8231aa1dc4439a734e16955387efb5f259c47737dba9e2b5e

(image=busybox:latest, name=eager_wu)

2019-08-28T16:23:09.339909205+08:00 container attach

53450588a20800d8231aa1dc4439a734e16955387efb5f259c47737dba9e2b5e

(image=busybox:latest, name=eager_wu)

2019-08-28T16:23:09.397717518+08:00 network connect

e2e20f52662f1ee2b01545da3b02e5ec7ff9c85adf688dce89a9eb73661dedaa

openEuler

Container User Guide 4 Docker Container

2020-04-01 246

(container=53450588a20800d8231aa1dc4439a734e16955387efb5f259c47737dba9e2b5e,

name=bridge, type=bridge)

2019-08-28T16:23:09.922224724+08:00 container start

53450588a20800d8231aa1dc4439a734e16955387efb5f259c47737dba9e2b5e

(image=busybox:latest, name=eager_wu)

2019-08-28T16:23:09.924121158+08:00 container resize

53450588a20800d8231aa1dc4439a734e16955387efb5f259c47737dba9e2b5e (height=48,

image=busybox:latest, name=eager_wu, width=210)

4.5.4.2 info

Syntax: docker info

Function: Displays the Docker system information, including the number of containers,

number of images, image storage driver, container execution driver, kernel version, and host

OS version.

Parameter description: none.

Example:

$ sudo docker info

Containers: 4

 Running: 3

 Paused: 0

 Stopped: 1

Images: 45

Server Version: 18.09.0

Storage Driver: devicemapper

 Pool Name: docker-thinpool

 Pool Blocksize: 524.3kB

 Base Device Size: 10.74GB

 Backing Filesystem: ext4

 Udev Sync Supported: true

 Data Space Used: 11GB

 Data Space Total: 51GB

 Data Space Available: 39.99GB

 Metadata Space Used: 5.083MB

 Metadata Space Total: 532.7MB

 Metadata Space Available: 527.6MB

 Thin Pool Minimum Free Space: 5.1GB

 Deferred Removal Enabled: true

 Deferred Deletion Enabled: true

 Deferred Deleted Device Count: 0

......

4.5.4.3 version

Syntax: docker version

Function: Displays the Docker version information, including the client version, server

version, Go version, and OS and Arch information.

Parameter description: none.

openEuler

Container User Guide 4 Docker Container

2020-04-01 247

Example:

$ sudo docker version

Client:

 Version: 18.09.0

 EulerVersion: 18.09.0.48

 API version: 1.39

 Go version: go1.11

 Git commit: cbf6283

 Built: Mon Apr 1 00:00:00 2019

 OS/Arch: linux/arm64

 Experimental: false

Server:

 Engine:

 Version: 18.09.0

 EulerVersion: 18.09.0.48

 API version: 1.39 (minimum version 1.12)

 Go version: go1.11

 Git commit: cbf6283

 Built: Mon Apr 1 00:00:00 2019

 OS/Arch: linux/arm64

 Experimental: false

