

openEuler
20.03 LTS

Application Development Guide

Date 2020-04-10

openEuler

Application Development Guide Contents

2020-04-10 ii

Contents

Terms of Use ... iv

About This Document ... v

1 Preparation ... 7

1.1 Configuring the Development Environment ... 7

1.2 Configuring a Repo Source ... 8

1.3 Installing the Software Package .. 11

1.3.1 Installing the JDK Software Package .. 11

1.3.2 Installing the rpm-build Software Package .. 12

1.4 Using the IDE for Java Development ... 12

1.4.1 Overview ... 12

1.4.2 Logging In to the Server Using MobaXterm ... 12

1.4.3 Setting the JDK Environment .. 13

1.4.4 Downloading and Installing the GTK Library ... 13

1.4.5 Setting X11 Forwarding ... 13

1.4.6 Downloading and Running IntelliJ IDEA .. 14

2 Using GCC for Compilation ... 15

2.1 Overview .. 15

2.2 Basics .. 15

2.2.1 File Type .. 15

2.2.2 Compilation Process .. 16

2.2.3 Compilation Options .. 16

2.2.4 Multi-file Compilation ... 18

2.3 Libraries .. 18

2.3.1 Dynamic Link Library ... 19

2.3.2 Static Link Library ... 20

2.4 Examples .. 20

2.4.1 Example for Using GCC to Compile C Programs ... 20

2.4.2 Example for Creating and Using a DLL Using GCC ... 21

2.4.3 Example for Creating and Using an SLL Using GCC ... 23

3 Using Make for Compilation .. 25

3.1 Overview .. 25

openEuler

Application Development Guide Contents

2020-04-10 iii

3.2 Basics .. 25

3.2.1 File Type .. 25

3.2.2 make Work Process .. 26

3.2.3 make Options ... 26

3.3 Makefiles .. 28

3.4 Examples .. 29

3.4.1 Example of Using Makefile to Implement Compilation .. 29

4 Using JDK for Compilation .. 31

4.1 Overview .. 31

4.2 Basics .. 31

4.2.1 File Type and Tool ... 31

4.2.2 Java Program Generation Process .. 32

4.2.3 Common JDK Options... 32

4.3 Class Library ... 36

4.4 Examples .. 37

4.4.1 Compiling a Java Program Without a Package .. 37

4.4.2 Compiling a Java Program with a Package .. 38

5 Building an RPM Package ... 40

5.1 Packaging Description .. 40

5.2 Building an RPM Package Locally ... 44

5.2.1 Setting Up the Development Environment .. 44

5.2.2 Creating a Hello World RPM Package... 45

5.2.2.1 Obtaining the Source Code ... 45

5.2.2.2 Editing the SPEC File ... 45

5.2.2.3 Building an RPM Package .. 46

5.3 Building an RPM Package Using the OBS ... 47

5.3.1 OBS Overview ... 47

5.3.2 Building an RPM Software Package Online .. 47

5.3.2.1 Building an Existing Software Package .. 47

5.3.2.2 Adding a Software Package .. 49

5.3.2.3 Obtaining the Software Package ... 51

5.3.3 Building a Software Package Using OSC .. 52

5.3.3.1 Installing and Configuring the OSC ... 52

5.3.3.2 Building an Existing Software Package .. 53

5.3.3.3 Adding a Software Package .. 54

5.3.3.4 Obtaining the Software Package ... 55

openEuler

Application Development Guide Terms of Use

2020-04-10 iv

Terms of Use

Copyright © Huawei Technologies Co., Ltd. 2020. All rights reserved.

Your replication, use, modification, and distribution of this document are governed by the

Creative Commons License Attribution-ShareAlike 4.0 International Public License (CC

BY-SA 4.0). You can visit https://creativecommons.org/licenses/by-sa/4.0/ to view a

human-readable summary of (and not a substitute for) CC BY-SA 4.0. For the complete CC

BY-SA 4.0, visit https://creativecommons.org/licenses/by-sa/4.0/legalcode.

Trademarks and Permissions

openEuler is a trademark or registered trademark of Huawei Technologies Co., Ltd. All other

trademarks and registered trademarks mentioned in this document are the property of their

respective holders.

Disclaimer

This document is used only as a guide. Unless otherwise specified by applicable laws or

agreed by both parties in written form, all statements, information, and recommendations in

this document are provided "AS IS" without warranties, guarantees or representations of any

kind, including but not limited to non-infringement, timeliness, and specific purposes.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/legalcode

openEuler

Application Development Guide About This Document

2020-04-10 v

About This Document

Overview

This document describes the following four parts to guide users to use openEuler and develop

code based on openEuler.

 Install and use the GCC compiler in the openEuler operating system (OS), and complete

the development, compilation, and execution of simple code.

 In the openEuler OS, use the JDK built-in tool to compile and execute code.

 Install IntelliJ IDEA in the openEuler OS for Java development.

 Create an RPM package locally or using the Open Build Service (OBS).

Intended Audience

This document is intended for all users who use the openEuler OS for code development. You

are expected to have the following experience or capabilities:

 Have basic knowledge of the Linux OS.

 Know how to use Linux command lines.

Symbol Conventions

The symbols that may be found in this document are defined as follows.

Symbol Description

Indicates a potentially hazardous situation which, if not avoided, could

result in equipment damage, data loss, performance deterioration, or

unanticipated results.

NOTICE is used to address practices not related to personal injury.

 Supplements the important information in the main text.

NOTE is used to address information not related to personal injury,

equipment damage, and environment deterioration.

openEuler

Application Development Guide About This Document

2020-04-10 vi

Command Conventions

Table 1 Command conventions

Format Description

Boldface Command keywords, which remain unchanged in the commands, are in

boldface.

Italic Command parameters, which are replaced with actual values in the

commands, are in italic.

[] Items in square brackets are optional.

{ x | y | ... } Optional items are grouped in braces and separated by vertical bars. One

item is selected.

[x | y | ...] Optional items are grouped in brackets and separated by vertical bars. One

item is selected or no item is selected.

{ x | y | ... }* Optional items are grouped in brackets and separated by vertical bars. A

minimum of one or a maximum of all can be selected.

[x | y | ...]* Optional items are grouped in brackets and separated by vertical bars. One

or more items are selected or no item is selected.

openEuler

Application Development Guide 1 Preparation

2020-04-10 7

1 Preparation

1.1 Configuring the Development Environment

1.2 Configuring a Repo Source

1.3 Installing the Software Package

1.4 Using the IDE for Java Development

1.1 Configuring the Development Environment
 If physical machines (PMs) are used, the minimum hardware requirements of the

development environment are described in Table 1-1.

Table 1-1 Minimum hardware specifications

Comp
onent

Minimum Hardware
Specification

Description

Archite

cture

 AArch64

 x86_64

 64-bit Arm architecture

 64-bit Intel x86 architecture

CPU  Huawei Kunpeng 920 series

 Intel ® Xeon® processor

-

Memor

y

≥ 4 GB (8 GB or higher

recommended for better user

experience)

-

Hard

disk

≥ 120 GB (for better user

experience)

IDE, SATA, SAS interfaces are supported.

 If virtual machines (VMs) are used, the minimum virtualization space required for the

development environment is described in Table 1-2.

openEuler

Application Development Guide 1 Preparation

2020-04-10 8

Table 1-2 Minimum virtualization space

Comp
onent

Minimum Virtualization
Space

Description

Archite

cture

 AArch64

 x86_64

-

CPU Two CPUs -

Memor

y

≥ 4 GB (8 GB or higher

recommended for better user

experience)

-

Hard

disk

≥ 32 GB (120 GB or higher

recommended for better user

experience)

-

OS Requirements

The openEuler OS is required.

For details about how to install the openEuler OS, see the openEuler 20.03 LTS Installation

Guide. On the SOFTWARE SELECTION page, select Development Tools in the Add-Ons

for Selected Environment area.

1.2 Configuring a Repo Source

You can configure a repo source by directly obtaining the repo source file or by mounting an

ISO file.

Configuring a Repo Source by Directly Obtaining the Repo Source File

openEuler provides multiple repo source files. This section uses the OS repo source file of the AArch64

architecture as an example.

Step 1 Go to the yum source directory.

cd /etc/yum.repos.d

Step 2 Create and edit the local.repo file. Configure the repo source file as the yum source.

vi local.repo

Edit the local.repo file as follows:

[basiclocal]

name=basiclocal

baseurl=http://repo.openeuler.org/openEuler-20.03-LTS/OS/aarch64/

enabled=1

openEuler

Application Development Guide 1 Preparation

2020-04-10 9

gpgcheck=0

----End

Configuring a Repo Source by Mounting an ISO File

This section uses the openEuler-20.03-LTS-aarch64-dvd.iso image file and

openEuler-20.03-LTS-aarch64-dvd.iso.sha256sum verification file as examples. Modify them based

on the actual requirements.

Step 1 Download the ISO image.

 Download an ISO image using a cross-platform file transfer tool.

a. Log in to the openEuler community at https://openeuler.org.

b. Click Download.

c. Click the link provided after Download ISO. The download list is displayed.

d. Select the version to be downloaded, for example, openEuler 20.03 LTS. Then,

click openEuler-20.03-LTS. The download list is displayed.

e. Click ISO. The ISO download list is displayed.

 aarch64: ISO image file of the AArch64 architecture

 x86_64: ISO image file of the x86_64 architecture

 source: ISO image file of the openEuler source code

f. Click aarch64.

g. Click openEuler-20.03-LTS-aarch64-dvd.iso to download the openEuler release

package to the local host.

h. Click openEuler-20.03-LTS-aarch64-dvd.iso.sha256sum to download the

openEuler verification file to the local host.

i. Log in to the openEuler OS and create a directory for storing the release package

and verification file, for example, /home/iso.

mkdir /home/iso

j. Use a cross-platform file transfer tool (such as WinSCP) to upload the local

openEuler release package and verification file to the target openEuler OS.

 Run the wget command to download the ISO image.

a. Log in to the openEuler community at https://openeuler.org.

b. Click Download.

c. Click the link provided after Download ISO. The download list is displayed.

d. Select the version to be downloaded, for example, openEuler 20.03 LTS. Then,

click openEuler-20.03-LTS. The download list is displayed.

e. Click ISO. The ISO download list is displayed.

 aarch64: ISO image file of the AArch64 architecture

 x86_64: ISO image file of the x86_64 architecture

 source: ISO image file of the openEuler source code

f. Click aarch64.

g. Right-click openEuler-20.03-LTS-aarch64-dvd.iso and choose Copy URL from

the shortcut menu to copy the address of the openEuler release package.

https://openeuler.org/
https://openeuler.org/

openEuler

Application Development Guide 1 Preparation

2020-04-10 10

h. Right-click openEuler-20.03-LTS-aarch64-dvd.iso.sha256sum and choose Copy

URL from the shortcut menu to copy the address of the openEuler verification file.

i. Log in to the openEuler OS, create a directory (for example, /home/iso) for storing

the release package and verification file, and switch to the directory.

mkdir /home/iso

cd /home/iso

j. Run the wget command to remotely download the release package and verification

file. In the command, ipaddriso and ipaddrisosum are the addresses copied in Step

1.g and Step 1.h.

wget ipaddriso

wget ipaddrisosum

Step 2 Release Package Integrity Check

1. Obtain the verification value in the verification file.

cat openEuler-20.03-LTS-aarch64-dvd.iso.sha256sum

2. Calculate the SHA256 verification value of the openEuler release package.

sha256sum openEuler-20.03-LTS-aarch64-dvd.iso

After the command is run, the verification value is displayed.

3. Check whether the values calculated in step 1 and step 2 are consistent.

If the verification values are consistent, the .iso file is not damaged. If they are

inconsistent, the file is damaged and you need to obtain the file again.

Step 3 Mount the ISO image file and configure it as a repo source.

Run the mount command to mount the image file.

The following is an example:

mount /home/iso/openEuler-20.03-LTS-aarch64-dvd.iso /mnt/

The mounted mnt directory is as follows:

.

│── boot.catalog

│── docs

│── EFI

│── images

│── Packages

│── repodata

│── TRANS.TBL

└── RPM-GPG-KEY-openEuler

In the preceding command, Packages indicates the directory where the RPM package is

stored, repodata indicates the directory where the repo source metadata is stored, and

RPM-GPG-KEY-openEuler indicates the public key for signing openEuler.

The mounted directory can be configured as the yum source. Create the ***.repo

configuration file (with the extension .repo) in the /etc/yum.repos.d/ directory.

The following is an example:

Create the openEuler.repo file in the /etc/yum.repos.d directory and use the local image

mounting directory as the yum source. The content of the openEuler.repo file is as follows:

openEuler

Application Development Guide 1 Preparation

2020-04-10 11

[base]

name=base

baseurl=file:///mnt

enabled=1

gpgcheck=1

gpgkey=file:///mnt/RPM-GPG-KEY-openEuler

 gpgcheck indicates whether to enable the GNU privacy guard (GPG) to check the validity and

security of the source of RPM packages. 1 indicates that the GPG check is enabled. 0 indicates that

the GPG check is disabled. If this option is not specified, the GPG check is enabled by default.

 gpgkey is the storage path of the signed public key.

----End

1.3 Installing the Software Package

Install the software required for development. The software required varies in different

development environments. However, the installation methods are the same. This section

describes how to install common software packages (such as JDK and rpm-build). Some

development software, such as GCC and GNU make, is provided by the openEuler OS by

default.

1.3.1 Installing the JDK Software Package

Step 1 Run the dnf list installed | grep jdk command to check whether the JDK software is

installed.

dnf list installed | grep jdk

Check the command output. If the command output contains "jdk", the JDK has been installed.

If no such information is displayed, the software is not installed.

Step 2 Clear the cache.

dnf clean all

Step 3 Create a cache.

dnf makecache

Step 4 Query the JDK software package that can be installed.

dnf search jdk | grep jdk

View the command output and install the java-x.x.x-openjdk-devel.aarch64 software

package. x.x.x indicates the version number.

Step 5 Install the JDK software package. The following uses the java-1.8.0-openjdk-devel software

package as an example.

dnf install java-1.8.0-openjdk-devel.aarch64

Step 6 Query information about the JDK software.

java -version

openEuler

Application Development Guide 1 Preparation

2020-04-10 12

Check the command output. If the command output contains "openjdk version "1.8.0_232"",

the JDK has been correctly installed. In the command output, 1.8.0_232 indicates the JDK

version.

----End

1.3.2 Installing the rpm-build Software Package

Step 1 Run the dnf list installed | grep rpm-build command to check whether the rpm-build

software is installed.

dnf list installed | grep rpm-build

Check the command output. If the command output contains "rpm-build", the software has

been installed. If no such information is displayed, the software is not installed.

Step 2 Clear the cache.

dnf clean all

Step 3 Create a cache.

dnf makecache

Step 4 Install the rpm-build package.

dnf install rpm-build

Step 5 Query the rpm-build software version.

rpmbuild --version

----End

1.4 Using the IDE for Java Development

For small-sized Java applications, you can directly use JDK to compile them to run Java

applications. However, for medium- and large-sized Java applications, this method cannot

meet the development requirements. You can perform the following steps to install and use

the IDE to facilitate Java development on the openEuler OS.

1.4.1 Overview

IntelliJ IDEA is a popular Java IDE. You can download the community edition of IntelliJ

IDEA for free. Currently, openEuler supports Java development in the IntelliJ IDEA

integrated development environment (IDE), improving the work efficiency of developers.

1.4.2 Logging In to the Server Using MobaXterm

MobaXterm is an excellent SSH client. It has an X Server and can easily solve remote GUI

display problems.

You need to download, install, and start MobaXterm in advance, and then log in to your

server in SSH mode to perform the following operations:

openEuler

Application Development Guide 1 Preparation

2020-04-10 13

1.4.3 Setting the JDK Environment

Before setting JAVA_HOME, you need to find the installation path of the JDK. You are

supported to have installed the JDK. If you have not installed the JDK, install it by referring

to Preparation > Installing the Software Package > Installing the JDK Software Package.

Run the following command to view the Java path:

which java

/usr/bin/java

Run the following command to check the directory to which the soft link points:

ls -la /usr/bin/java

lrwxrwxrwx. 1 root root 22 Mar 6 20:28 /usr/bin/java -> /etc/alternatives/java

ls -la /etc/alternatives/java

lrwxrwxrwx. 1 root root 83 Mar 6 20:28 /etc/alternatives/java ->

/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.232.b09-1.h2.aarch64/jre/bin/java

The actual path is /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.232.b09-1.h2.aarch64. Run the

following command to set JAVA_HOME and PATH:

export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.232.b09-1.h2.aarch64

export PATH=$JAVA_HOME/bin:$PATH

1.4.4 Downloading and Installing the GTK Library

Ensure that you have the root permission and run the following command:

dnf list installed | grep gtk

If gtk2 or gtk3 is displayed, the GTK library has been installed. In this case, skip this step.

Otherwise, run the following command to automatically download and install the GTK

library:

dnf -y install gtk2 libXtst libXrender xauth

1.4.5 Setting X11 Forwarding

Switch to the SSHD configuration directory.

cd ~/.ssh

If the directory does not exist, run the following command to create the directory and then

switch to the directory:

mkdir ~/.ssh

Edit the configuration file in the .ssh directory and save the file.

1. Run the vim command to open the configuration file.

vim config

2. Add the following content to the end of the file and save the file:

Host *

 ForwardAgent yes

 ForwardX11 yes

openEuler

Application Development Guide 1 Preparation

2020-04-10 14

1.4.6 Downloading and Running IntelliJ IDEA

After the preceding environment configuration is complete, you can download and run the

IntelliJ IDEA. The latest version of IntelliJ IDEA is incompatible with openEuler in some

functions. You are advised to click here and download the Linux package of the 2018 version.

Move the downloaded package to the directory where you want to install the software and

decompress the package.

tar xf ideaIC-2018.3.tar.gz

Decompress the package, switch to the IntelliJ IDEA directory, and run the IntelliJ IDEA.

cd ./idea-IC-183.4284.148

bin/idea.sh &

https://www.jetbrains.com/idea/download/other.html

openEuler

Application Development Guide 2 Using GCC for Compilation

2020-04-10 15

2 Using GCC for Compilation

This chapter describes the basic knowledge of GCC compilation and provides examples for

demonstration. For more information about GCC, run the man gcc command.

2.1 Overview

2.2 Basics

2.3 Libraries

2.4 Examples

2.1 Overview

The GNU Compiler Collection (GCC) is a powerful and high-performance multi-platform

compiler developed by GNU. The GCC compiler can compile and link source programs,

assemblers, and target programs of C and C++ into executable files. By default, the GCC

software package is installed in the openEuler OS.

2.2 Basics

2.2.1 File Type

For any given input file, the file type determines which compilation to perform. Table 2-1

describes the common GCC file types.

Table 2-1 Common GCC file types

Extension (Suffix) Description

.c C source code file.

.C, .cc, or .cxx C++ source code file.

.m Objective-C source code file.

.s Assembly language source code file.

openEuler

Application Development Guide 2 Using GCC for Compilation

2020-04-10 16

Extension (Suffix) Description

.i Preprocessed C source code file.

.ii Preprocessed C++ source code file.

.S Pre-processed assembly language source

code file.

.h Header file contained in the program.

.o Target file after compilation.

.so Dynamic link library, which is a special

target file.

.a Static link library.

.out Executable files, which do not have a fixed

suffix. The system distinguishes executable

files from unexecutable files based on file

attributes. If the name of an executable file

is not given, GCC generates a file named

a.out.

2.2.2 Compilation Process

Using GCC to generate executable files from source code files requires preprocessing,

compilation, assembly, and linking.

1. Preprocessing: Preprocess the source program (such as a .c file) to generate an .i file.

2. Compilation: Compile the preprocessed .i file into an assembly language to generate

an .s file.

3. Assemble: Assemble the assembly language file to generate the target file .o.

4. Linking: Link the .o files of each module to generate an executable program file.

The .i, .s, and .o files are intermediate or temporary files. If the GCC is used to compile

programs in C language at a time, these files will be deleted.

2.2.3 Compilation Options

GCC compilation command format: gcc [options] [filenames]

In the preceding information:

options: compilation options.

filenames: file name.

GCC is a powerful compiler. It has many options, but most of them are not commonly used.

Table 2-2 describes the common options.

Table 2-2 Common GCC compilation options

options Value Description Example

openEuler

Application Development Guide 2 Using GCC for Compilation

2020-04-10 17

options Value Description Example

-c Compiles and assembles

specified source files to

generate target files without

linking them. It is usually

used to compile subprogram

files.

Use the -c option to

compile the source files

test1.c and test2.c.

gcc -c test1.c test2.c

-S Compiles the specified

source file to generate an

assembly language file with

the .s suffix but without

assembling it.

Use the compiler to

preprocess circle.c, translate

it into assembly language,

and store the result in

circle.s.

gcc -S circle.c

-E Preprocesses specified

source files without

compiling them.

By default, the output of the

preprocessor is imported to

a standard output stream,

such as a display. You can

use the -o option to import it

to an output file.

Export the preprocessing

result to the circle.i file.

gcc -E circle.c -o circle.i

-o file Generates a specified output

file when an executable file

is generated. The name must

be different from that of the

source file. If this option is

not given, GCC generates

the preset executable file

a.out.

Use the source file as the

input file and the executable

file as the output file. That

is, compile the entire

program.

gcc main.c func.c -o app.out

-g Contains standard

debugging information in

executable programs.

-

-L libary_path Adds the library_path to the

library file search path list.

-

-Ilibrary Searches for the specified

function library during

linking.

When GCC is used to

compile and link programs,

GCC links libc.a or libc.so

by default. However, other

libraries (such as

non-standard libraries and

third-party libraries) need to

be manually added.

Use the -l option to link

the math library.

gcc main.c -o main.out -lm

NOTE

The file name of the math

library is libm.a. The prefix lib

and suffix .a are standard, and

m is the basic name. GCC

automatically adds these

prefixes and suffixes to the

basic name following the -l

option. In this example, the

basic name is m.

openEuler

Application Development Guide 2 Using GCC for Compilation

2020-04-10 18

options Value Description Example

-I head_path Adds the head_path to the

search path list of the header

file.

-

-static Performs static compilation

and links static libraries. Do

not link dynamic libraries.

-

-shared Default option, which can

be omitted.

 A dynamic library file

can be generated.

 During dynamic

compilation, the dynamic

library is preferentially

linked. The static library

with the same name is

linked only when there is

no dynamic library.

-

-fPIC (or -fpic) Generates

location-independent target

code that uses a relative

address. Generally, the

-static option is used to

generate a dynamic library

file from the PIC target file.

-

2.2.4 Multi-file Compilation

There are two methods provided for compiling multiple source files.

 Multiple source files are compiled at the same time. All files need to be recompiled

during compilation.

Example: Compile test1.c and test2.c and link them to the executable file test.

gcc test1.c test2.c -o test

 Compile each source file, and then link the target files generated after compilation.

During compilation, only modified files need to be recompiled.

For example, compile test1.c and test2.c, and link the target files test1.o and test2.o to

the executable file test.

gcc -c test1.c

gcc -c test2.c

gcc -o test1.o test2.o -o test

2.3 Libraries

A library is mature and reusable code that has been written for use. Each program depends on
many basic underlying libraries.

openEuler

Application Development Guide 2 Using GCC for Compilation

2020-04-10 19

The library file name is prefixed with lib and suffixed with .so (dynamic library) or .a (static

library). The middle part is the user-defined library file name, for example, libfoo.so or

libfoo.a. Because all library files comply with the same specifications, the lib prefix can be

omitted when the -l option specifies the name of the linked library file. That is, when GCC

processes -lfoo, the library file libfoo.so or libfoo.a is automatically linked. When creating a

library, you must specify the full file name libfoo.so or libfoo.a.

Libraries are classified into static libraries and dynamic libraries based on the linking time.

The static library links and packs the target file .o generated by assembly and the referenced

library into an executable file in the linking phase. The dynamic library is not linked to the

target code when the program is compiled, but is loaded when the program is run. The

differences are as follows:

 The resource usage is different.

The static library is a part of the generated executable file, while the dynamic library is a

separate file. Therefore, the sizes and occupied disk space of the executable files of the

static library and dynamic library are different, which leads to different resource usage.

 The scalability and compatibility are different.

If the implementation of a function in the static library changes, the executable file must

be recompiled. For the executable file generated by dynamic linking, only the dynamic

library needs to be updated, and the executable file does not need to be recompiled.

 The dependency is different.

The executable file of the static library can run without depending on any other contents,

while the executable file of the dynamic library must depend on the dynamic library.

Therefore, the static library is convenient to migrate.

 The loading speeds are different.

Static libraries are linked together with executable files, while dynamic libraries are

linked only when they are loaded or run. Therefore, for the same program, static linking

is faster than dynamic linking.

2.3.1 Dynamic Link Library

You can use the -shared and -fPIC options to create a dynamic link library (DLL) with the

source file, assembly file, or target file. The -fPIC option is used in the compilation phase.

This option is used when the target file is generated, so as to generate location-independent

code.

Example 1: Generate a DLL from the source file.

gcc -fPIC -shared test.c -o libtest.so

Example 2: Generate a DLL from the target file.

gcc -fPIC -c test.c -o test.o

gcc -shared test.o -o libtest.so

To link a DLL to an executable file, you need to list the name of the DLL in the command

line.

Example: Compile main.c and libtest.so into app.out. When app.out is running, the link

library libtest.so is dynamically loaded.

gcc main.c libtest.so -o app.out

In this mode, the libtest.so file in the current directory is used.

openEuler

Application Development Guide 2 Using GCC for Compilation

2020-04-10 20

If you choose to search for a DLL, to ensure that the DLL can be linked when the program is

running, you must implement by using one of the following methods:

 Save the DLL to a standard directory, for example, /usr/lib.

 Add the DLL path libaryDIR to the environment variable LD_LIBRARY_PATH.

export LD_LIBRARY_PATH=libraryDIR:$LD_LIBRARY_PATH

LD_LIBRARY_PATH is an environment variable of the DLL. If the DLL is not in the default

directories (/lib and /usr/lib), you need to specify the environment variable LD_LIBRARY_PATH.

 Add the DLL path libaryDIR to /etc/ld.so.conf and run ldconfig, or use the DLL path

libaryDIR as a parameter to run ldconfig.

gcc main.c -L libraryDIR -ltest -o app.out

export LD_LIBRARY_PATH=libraryDIR:$LD_LIBRARY_PATH

2.3.2 Static Link Library

To create a static link library (SLL), you need to compile the source file to the target file, and

then run the ar command to compress the target file into an SLL.

Example: Compile and compress source files test1.c, test2.c, and test3.c into an SLL.

gcc -c test1.c test2.c test3.c

ar rcs libtest.a test1.o test2.o test3.o

The ar command is a backup compression command. You can compress multiple files into a

backup file (also called an archive file) or extract member files from the backup file. The most

common use of ar is to compress the target files into an SLL.

The format of the ar command to compress the target files into an SLL is as follows:

ar rcs Sllfilename Targetfilelist

 Sllfilename: Name of the static library file.

 Targetfilelist: Target file list.

 r: replaces the existing target file in the library or adds a new target file.

 c: creates a library regardless of whether the library exists.

 s: creates the index of the target file. The speed can be improved when a large library is

created.

Example: Create a main.c file to use the SLL.

gcc main.c -L libraryDIR -ltest -o test.out

In the preceding command, libraryDIR indicates the path of the libtest.a library.

2.4 Examples

2.4.1 Example for Using GCC to Compile C Programs

Step 1 Run the cd command to go to the code directory. The /home/code directory is used as an

example. The command is as follows:

cd /home/code

openEuler

Application Development Guide 2 Using GCC for Compilation

2020-04-10 21

Step 2 Compile the Hello World program and save it as helloworld.c. The following uses the Hello

World program as an example. The command is as follows:

vi helloworld.c

Code example:

#include <stdio.h>

int main()

{

 printf("Hello World!\n");

 return 0;

}

Step 3 Run the following command to compile the code in the code directory:

gcc helloworld.c -o helloworld

If no error is reported, the execution is successful.

Step 4 After the compilation is complete, the helloworld file is generated. Check the compilation

result. The following is an example:

./helloworld

Hello World!

----End

2.4.2 Example for Creating and Using a DLL Using GCC

Step 1 Run the cd command to go to the code directory. The /home/code directory is used as an

example. Create the src, lib, and include subdirectories in the directory to store the source file,

DLL file, and header file, respectively.

cd /home/code

mkdir src

mkdir lib

mkdir include

Step 2 Run the cd command to go to the /home/code/src directory and create two functions add.c

and sub.c to implement addition and subtraction, respectively.

cd /home/code/src

vi add.c

vi sub.c

The following is an example of the add.c code:

#include "math.h"

int add(int a, int b)

{

 return a+b;

}

The following is an example of the sub.c code:

#include "math.h"

int sub(int a, int b)

{

openEuler

Application Development Guide 2 Using GCC for Compilation

2020-04-10 22

 return a-b;

}

Step 3 Compile the source files add.c and sub.c into the DLL libmath.so, and store the DLL in the

/home/code/lib directory.

gcc -fPIC -shared add.c sub.c -o /home/code/lib/libmath.so

Step 4 Go to the /home/code/include directory, create a header file math.h, and declare the header

file of the function.

cd /home/code/include

vi math.h

The following is an example of the math.h code:

#ifndef __MATH_H_

#define __MATH_H_

int add(int a, int b);

int sub(int a, int b);

#endif

Step 5 Run the cd command to go to the /home/code/src directory and create a main.c function that

invokes add() and sub().

cd /home/code/src

vi main.c

The following is an example of the math.c code:

#include <stdio.h>

#include "math.h"

int main()

{

 int a, b;

 printf("Please input a and b:\n");

 scanf("%d %d", &a, &b);

 printf("The add: %d\n", add(a,b));

 printf("The sub: %d\n", sub(a,b));

 return 0;

}

Step 6 Compile main.c and libmath.so into math.out.

gcc main.c -I /home/code/include -L /home/code/lib -lmath -o math.out

Step 7 Add the path of the DLL to the environment variable.

export LD_LIBRARY_PATH=/home/code/lib:$LD_LIBRARY_PATH

Step 8 Run the following command to execute math.out:

./math.out

The command output is as follows:

Please input a and b:

9 2

The add: 11

The sub: 7

----End

openEuler

Application Development Guide 2 Using GCC for Compilation

2020-04-10 23

2.4.3 Example for Creating and Using an SLL Using GCC

Step 1 Run the cd command to go to the code directory. The /home/code directory is used as an

example. Create the src, lib, and include subdirectories in the directory to store the source file,

SLL file, and header file respectively.

cd /home/code

mkdir src

mkdir lib

mkdir include

Step 2 Run the cd command to go to the /home/code/src directory and create two functions add.c

and sub.c to implement addition and subtraction, respectively.

cd /home/code/src

vi add.c

vi sub.c

The following is an example of the add.c code:

#include "math.h"

int add(int a, int b)

{

 return a+b;

}

The following is an example of the sub.c code:

#include "math.h"

int sub(int a, int b)

{

 return a-b;

}

Step 3 Compile the source files add.c and sub.c into the target files add.o and sub.o.

gcc -c add.c sub.c

Step 4 Run the ar command to compress the add.o and sub.o target files into the SLL libmath.a and

save the SLL to the /home/code/lib directory.

ar rcs /home/code/lib/libmath.a add.o sub.o

Step 5 Go to the /home/code/include directory, create a header file math.h, and declare the header

file of the function.

cd /home/code/include

vi math.h

The following is an example of the math.h code:

#ifndef __MATH_H_

#define __MATH_H_

int add(int a, int b);

int sub(int a, int b);

#endif

Step 6 Run the cd command to go to the /home/code/src directory and create a main.c function that

invokes add() and sub().

openEuler

Application Development Guide 2 Using GCC for Compilation

2020-04-10 24

cd /home/code/src

vi main.c

The following is an example of the math.c code:

#include <stdio.h>

#include "math.h"

int main()

{

 int a, b;

 printf("Please input a and b:\n");

 scanf("%d %d", &a, &b);

 printf("The add: %d\n", add(a,b));

 printf("The sub: %d\n", sub(a,b));

 return 0;

}

Step 7 Compile main.c and libmath.a into math.out.

gcc main.c -I /home/code/include -L /home/code/lib -lmath -o math.out

Step 8 Run the following command to execute math.out:

./math.out

The command output is as follows:

Please input a and b:

9 2

The add: 11

The sub: 7

----End

openEuler

Application Development Guide 3 Using Make for Compilation

2020-04-10 25

3 Using Make for Compilation

This chapter describes the basic knowledge of make compilation and provides examples for

demonstration. For more information about Make, run the man make command.

3.1 Overview

3.2 Basics

3.3 Makefiles

3.4 Examples

3.1 Overview

The GNU make utility (usually abbreviated as make) is a tool for controlling the generation of

executable files from source files. make automatically identifies which parts of the complex

program have changed and need to be recompiled. Make uses a configuration file called

makefiles to control how the program is built.

3.2 Basics

3.2.1 File Type

Table 3-1 describes the file types that may be used in the makefiles file.

Table 3-1 文件类型

Extension (Suffix) Description

.c C source code file.

.C, .cc, or .cxx C++ source code file.

.m Objective-C source code file.

.s Assembly language source code file.

.i Preprocessed C source code file.

openEuler

Application Development Guide 3 Using Make for Compilation

2020-04-10 26

Extension (Suffix) Description

.ii Preprocessed C++ source code file.

.S Pre-processed assembly language source

code file.

.h Header file contained in the program.

.o Target file after compilation.

.so Dynamic link library, which is a special

target file.

.a Static link library.

.out Executable files, which do not have a fixed

suffix. The system distinguishes executable

files from unexecutable files based on file

attributes. If the name of an executable file

is not given, GCC generates a file named

a.out.

3.2.2 make Work Process

The process of deploying make to generate an executable file from the source code file is

described as follows:

1. The make command reads the Makefiles, including the files named GNUmakefile,

makefile, and Makefile in the current directory, the included makefile, and the rule files

specified by the -f, --file, and --makefile options.

2. Initialize variables.

3. Derive implicit rules, analyze dependencies, and create a dependency chain.

4. Determine which targets need to be regenerated based on the dependency chain.

5. Run a command to generate the final file.

3.2.3 make Options

make command format: make [option]... [target]...

In the preceding command:

option: parameter option.

target: target specified in Makefile.

Table 3-2 describes the common make options.

Table 3-2 Common make options

options Value Description

-C dir, --directory=dir Specifies dir as the working directory after

the make command starts to run.

When there are multiple -C options, the

openEuler

Application Development Guide 3 Using Make for Compilation

2020-04-10 27

options Value Description

final working directory of make is the

relative path of the first directory.

-d Displays all debugging information during

execution of the make command. You can

use the -d option to display all the

information during the construction of the

dependency chain and the reconstruction of

the target.

-e, --environment-overrides Overwrites the variable definition with the

same name in Makefile with the

environment variable definition.

-f file, --file=file,

--makefile=file

Specifies the file as the Makefile for the

make command.

-p, --help Displays help information.

-i, --ignore-errors Ignores the errors occurred during the

execution.

-k, --keep-going When an error occurs during command

execution, the make command is not

terminated. The make command executes

all commands as many as possible until a

known error occurs.

-n, --just-print, --dry-run Simulates the execution of commands

(including the commands starting with @)

in the actual execution sequence. This

command is used only to display the

execution process and has no actual

execution effect.

-o file, --old-file=file, --assume-old=file The specified file does not need to be rebuilt

even if its dependency has expired, and no

target of this dependency file is rebuilt.

-p, --print-date-base Before the command is executed, all data of

Makefile read by make and the version

information of make are printed. If you only

need to print the data, run the make -qp

command to view the preset rules and

variables before the make command is

executed. You can run the make -p -f

/dev/null command.

-r, --no-builtin-rules Ignores the use of embedded implicit rules

and the implicit suffix list of all suffix rules.

-R, --no-builtin-variabes Ignores embedded hidden variables.

-s, --silent, --quiet Cancels the printing during the command

execution.

openEuler

Application Development Guide 3 Using Make for Compilation

2020-04-10 28

options Value Description

-S, --no-keep-going, --stop Cancels the -k option. In the recursive make

process, the sub-make inherits the

upper-layer command line option through

the MAKEFLAGS variable. You can use

the -S option in the sub-make to cancel the

-k option transferred by the upper-layer

command, or cancel the -k option in the

system environment variable

MAKEFLAGS.

-t, --touch Updates the timestamp of all target files to

the current system time. Prevents make

from rebuilding all outdated target files.

-v, version Displays the make version.

3.3 Makefiles

Make is a tool that uses makefiles for compilation, linking, installation, and cleanup, so as to

generate executable files and other related files from source code files. Therefore, makefiles

describe the compilation and linking rules of the entire project, including which files need to

be compiled, which files do not need to be compiled, which files need to be compiled first,

which files need to be compiled later, and which files need to be rebuilt. The makefiles

automate project compilation. You do not need to manually enter a large number of source

files and parameters each time.

This chapter describes the structure and main contents of makefiles. For more information

about makefiles, run the info make command.

Makefile Structure

The makefile file structure is as follows:

targets:prereguisites

command

or

targets:prerequisites;command

command

In the preceding information:

 targets: targets, which can be target files, executable files, or tags.

 prerequisites: dependency files, which are the files or targets required for generating the

targets. There can be multiple or none of them.

 command: command (any shell command) to be executed by make. Multiple commands

are allowed, and each command occupies a line.

openEuler

Application Development Guide 3 Using Make for Compilation

2020-04-10 29

 Use colons (:) to separate the target files from the dependency files. Press Tab at the

beginning of each command line.

The makefile file structure indicates the output target, the object on which the output target

depends, and the command to be executed for generating the target.

Makefile Contents

A makefile file consists of the following contents:

 Explicit rule

Specify the dependency, such as the file to be generated, dependency file, and generated

command.

 Implicit rule

Specify the rule that is automatically derived by make. The make command supports the

automatic derivation function.

 Variable definition

 File indicator

The file indicator consists of three parts:

− Inclusion of other makefiles, for example, include xx.md

− Selective execution, for example, #ifdef

− Definition of multiple command lines, for example, define...endef. (define ... endef)

 Comment

The comment starts with a number sign (#).

3.4 Examples

3.4.1 Example of Using Makefile to Implement Compilation

Step 1 Run the cd command to go to the code directory. The /home/code directory is used as an

example.

cd /home/code

Step 2 Create a header file hello.h and two functions hello.c and main.c.

cd /home/code/

The following is an example of the hello.h code:

#pragma once

#include <stdio.h>

void hello();

The following is an example of the hello.c code:

#include "hello.h"

void hello()

{

 int i=1;

 while(i<5)

 {

openEuler

Application Development Guide 3 Using Make for Compilation

2020-04-10 30

 printf("The %dth say hello.\n", i);

 i++;

 }

}

The following is an example of the main.c code:

#include "hello.h"

#include <stdio.h>

int main()

{

 hello();

 return 0;

}

Step 3 Create the makefile.

vi Makefile

The following provides an example of the makefile content:

main:main.o hello.o

 gcc -o main main.o hello.o

main.o:main.c

 gcc -c main.c

hello.o:hello.c

 gcc -c hello.c

clean:

 rm -f hello.o main.o main

Step 4 Run the make command.

make

After the command is executed, the commands executed in makefile are printed. If you do not

need to print the information, add the -s option to the make command.

gcc -c main.c

gcc -c hello.c

gcc -o main main.o hello.o

Step 5 Execute the ./main target.

./main

After the command is executed, the following information is displayed:

The 1th say hello.

The 2th say hello.

The 3th say hello.

The 4th say hello.

----End

openEuler

Application Development Guide 4 Using JDK for Compilation

2020-04-10 31

4 Using JDK for Compilation

4.1 Overview

4.2 Basics

4.3 Class Library

4.4 Examples

4.1 Overview

A Java Development Kit (JDK) is a software package required for Java development. It

contains the Java Runtime Environment (JRE) and compilation and commissioning tools. On

the basis of OpenJDK, openEuler optimizes GC, enhances concurrency stability, and

enhances security, improving the performance and stability of Java applications on ARM.

4.2 Basics

4.2.1 File Type and Tool

For any given input file, the file type determines which tool to use for processing. The

common file types and tools are described in Table 4-1 and Table 4-2.

Table 4-1 Common JDK file types

Extension (Suffix) Description

.java Java source code file.

.class Java bytecode file, which is intermediate

code irrelevant to any specific machine or

OS environment. It is a binary file, which is

the target code file generated after the Java

source file is compiled by the Java

compiler.

.jar JAR package of Java files.

openEuler

Application Development Guide 4 Using JDK for Compilation

2020-04-10 32

Table 4-2 Common JDK tools

Name Description

java Java running tool, which is used to

run .class bytecode files or .jar files.

javac Compiles Java source code files into .class

bytecode files.

jar Creates and manages JAR files.

4.2.2 Java Program Generation Process

To generate a program from Java source code files and run the program using Java,

compilation and run are required.

1. Compilation: Use the Java compiler (javac) to compile Java source code files (.java files)

into .class bytecode files.

2. Run: Execute the bytecode files on the Java virtual machine (JVM).

4.2.3 Common JDK Options

Javac Compilation Options

The command format for javac compilation is as follows: javac [options] [sourcefiles]

[classes] [@argfiles]

In the preceding information:

options: command options.

sourcefiles: one or more source files to be compiled.

classes: one or more classes to be processed as comments.

@argfiles: one or more files that list options and source files. The -J option is not allowed in

these files.

Javac is a Java compiler. It has many options, but most of them are not commonly used. Table

4-3 describes the common options values.

Table 4-3 Common javac options

options Value Description Example

-d path Path for storing the

generated class files.

By default, the class files

generated after compilation

are in the same path as the

source file. You can use the
-d option to export the class

Use the -d option to export

all class files to the bin

directory.

javac /src/*.java -d /bin

openEuler

Application Development Guide 4 Using JDK for Compilation

2020-04-10 33

options Value Description Example

files to the specified path.

-s path Path for storing the

generated source files.

-

-cp path or -classpath path Searches for the class files

required for compilation and

specifies the location of the

class files.

In the Demo, the getLine()

method in the

GetStringDemo class needs

to be invoked. The .class file

compiled by the

GetStringDemo class is

stored in the bin directory.

javac -cp bin Demo.java -d

bin

-verbose Outputs information about

the operations being

performed by the compiler,

such as loaded class

information and compiled

source file information.

Display information about

the operations that are being

performed by the compiler.

javac -verbose -cp bin

Demo.java

-source sourceversion Specifies the location of the

input source files to be

searched for.

-

-sourcepath path Searches for source files

(Java files) required for

compilation and specifies

the location of the source

files to be searched for, for

example, JAR, ZIP, or other

directories that contain Java

files.

-

-target targetversion Generates class files of a

specific JVM version. The

value can be 1.1, 1.2, 1.3,

1.4, 1.5 (or 5), 1.6 (or 6), 1.7

(or 7), or 1.8 (or 8). The

default value of

targetversion is related to

sourceversion of the -source

option. The options of

sourceversion are as

follows:

 1.2, corresponding to

target version 1.4

 1.3, corresponding to

target version 1.4

 1.5, 1.6, 1.7, and

unspecified,

corresponding to target

-

openEuler

Application Development Guide 4 Using JDK for Compilation

2020-04-10 34

options Value Description Example

version 1.8

 For other values, the

values of targetversion

and sourceversion are

the same.

Java Running Options

The Java running format is as follows:

Running class file: java [options] classesname [args]

Running Java file: java [options] -jar filename [args]

In the preceding information:

options: command options, which are separated by spaces.

classname: name of the running .class file.

filename: name of the running .jar file.

args: parameters transferred to the main() function. The parameters are separated by spaces.

Java is a tool for running Java applications. It has many options, but most of them are not

commonly used. Table 4-4 describes the common options.

Table 4-4 Common Java running options

options Value Description Example

-cp path or -classpath path Specifies the location of the

file to be run and the class

path to be used, including

the .jar, .zip, and class file

directories.

If there are multiple paths,

separate them with colons

(:).

-

-verbose Outputs information about

the operations being

performed by the compiler,

such as loaded class

information and compiled

source file information.

Display information about

the operations that are being

performed by the compiler.

java -verbose -cp bin

Demo.java

JAR Options

The JAR command format is as follows: jar {c | t | x | u}[vfm0M] [jarfile] [manifest] [-C dir]

file...

openEuler

Application Development Guide 4 Using JDK for Compilation

2020-04-10 35

Table 4-5 describes the parameters in the jar command.

Table 4-5 JAR parameter description

Parameter Description Example

c Creates a JAR package. # Compress the hello.class

files in the current directory

into Hello.jar. The

compression process is not

displayed. If the Hello.jar

files do not exist, create

them. Otherwise, clear the

directory.

jar cf Hello.jar hello.class

t Lists the contents of a JAR

package.

List the files contained in

Hello.jar.

jar tf Hello.jar

x Decompresses a JAR

package.

Decompress Hello.jar to

the current directory. No

information is displayed.

jar xf Hello.jar

u Updates the existing JAR

package, for example, add

files to the JAR package.

-

v Generates a detailed report

and prints it to the standard

output.

Compress the hello.class

files in the current directory

into Hello.jar and display

the compression process. If

the Hello.jar files do not

exist, create them.

Otherwise, clear the

directory.

jar cvf Hello.jar hello.class

f Specifies the name of a JAR

package. This parameter is

mandatory.

-

m Specifies the manifest file to

be contained.

-

0 If this parameter is not set,

the generated JAR package

is larger but faster than that

generated when this

parameter is not set.

-

M If the manifest file of all

items is not generated, this

parameter will be ignored.

Compress the hello.class

files in the current directory

into Hello.jar and display

the compression process. If

openEuler

Application Development Guide 4 Using JDK for Compilation

2020-04-10 36

Parameter Description Example

the Hello.jar files do not

exist, create them.

Otherwise, clear the

directory. However, the

manifest file is not

generated when Hello.jar is

created.

jar cvfM Hello.jar

hello.class

jarfile JAR package, which is an

auxiliary parameter of the f

parameter.

-

manifest Manifest file in .mf format,

which is an auxiliary

parameter of the m

parameter.

-

-C dir Runs the jar command in

the specified dir. This

command can be used only

with parameters c and t.

-

file Specifies the file or path list.

All files in the file or path

(including those in the

recursive path) are

compressed into the JAR

package or the JAR package

is decompressed to the path.

Compress all class files in

the current directory into

Hello.jar and display the

compression process. If the

Hello.jar files do not exist,

create them. Otherwise,

clear the directory.

jar cvf Hello.jar *.class

4.3 Class Library

The Java class library is implemented as a package, which is a collection of classes and

interfaces. The Java compiler generates a bytecode file for each class, and the file name is the

same as the class name. Therefore, conflicts may occur between classes with the same name.

In the Java language, a group of classes and interfaces are encapsulated in a package. Class

namespaces can be effectively managed by package. Classes in different packages do not

conflict even if they have the same name. This solves the problem of conflicts between

classes with the same name and facilitates the management of a large number of classes and

interfaces. It also ensures the security of classes and interfaces.

In addition to many packages provided by Java, developers can customize packages by

collecting compiled classes and interfaces into a package for future use.

Before using a custom package, you need to declare the package.

openEuler

Application Development Guide 4 Using JDK for Compilation

2020-04-10 37

Package Declaration

The declaration format of a package is package pkg1[.pkg2[.pkg3...]].

To declare a package, you must create a directory. The subdirectory name must be the same as

the package name. Then declare the package at the beginning of the class file that needs to be

placed in the package, indicating that all classes of the file belong to the package. The dot (.)

in the package declaration indicates the directory hierarchy. If the source program file does

not contain the package statement, the package is specified as an anonymous package. An

anonymous package does not have a path. Generally, Java still stores the classes in the source

file in the current working directory (that is, the directory where the Java source files are

stored).

The package declaration statement must be added to the beginning of the source program file

and cannot be preceded by comments or spaces. If you use the same package declaration

statement in different source program files, you can include the classes in different source

program files in the same package.

Package Reference

In Java, there are two methods to use the common classes in the package provided by Java or

the classes in the custom package.

 Add the package name before the name of the class to be referenced.

For example, name.A obj=new name.A ()

name indicates the package name, A indicates the class name, and obj indicates the

object. This string indicates that class A in the name package is used to define an object

obj in the program.

Example: Create a test object of the Test class in the example package.

example.Test test = new example.Test();

 Use import at the beginning of the file to import the classes in the package.

The format of the import statement is import pkg1[.pkg2[.pkg3...]].(classname | *).

pkg1[.pkg2[.pkg3...]] indicates the package level, and classname indicates the class to

be imported. If you want to import multiple classes from a package, you can use the

wildcard (*) instead.

Example: Import the Test class in the example package.

import example.Test;

Example: Import the entire example package.

import example.*;

4.4 Examples

4.4.1 Compiling a Java Program Without a Package

Step 1 Run the cd command to go to the code directory. The /home/code directory is used as an

example. The command is as follows:

cd /home/code

Step 2 Compile the Hello World program and save it as HelloWorld.java. The following uses the

Hello World program as an example. The command is as follows:

openEuler

Application Development Guide 4 Using JDK for Compilation

2020-04-10 38

vi HelloWorld.java

Code example:

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello World");

 }

}

Step 3 Run the following command to compile the code in the code directory:

javac HelloWorld.java

If no error is reported, the execution is successful.

Step 4 After the compilation is complete, the HelloWorld.class file is generated. You can run the

java command to view the result. The following is an example:

java HelloWorld

Hello World

----End

4.4.2 Compiling a Java Program with a Package

Step 1 Run the cd command to go to the code directory. The /home/code directory is used as an

example. Create the /home/code/Test/my/example, /home/code/Hello/world/developers,

and /home/code/Hi/openos/openeuler subdirectories in the directory to store source files.

cd /home/code

mkdir -p Test/my/example

mkdir -p Hello/world/developers

mkdir -p Hi/openos/openeuler

Step 2 Run the cd command to go to the /home/code/Test/my/example directory and create

Test.java.

cd /home/code/Test/my/example

vi Test.java

The following is an example of the Test.java code:

package my.example;

import world.developers.Hello;

import openos.openeuler.Hi;

public class Test {

 public static void main(String[] args) {

 Hello me = new Hello();

 me.hello();

 Hi you = new Hi();

 you.hi();

 }

}

Step 3 Run the cd command to go to the /home/code/Hello/world/developers directory and create

Hello.java.

openEuler

Application Development Guide 4 Using JDK for Compilation

2020-04-10 39

cd /home/code/Hello/world/developers

vi Hello.java

The following is an example of the Hello.java code:

package world.developers;

public class Hello {

 public void hello(){

 System.out.println("Hello, openEuler.");

 }

}

Step 4 Run the cd command to go to the /home/code/Hi/openos/openeuler directory and create

Hi.java.

cd /home/code/Hi/openos/openeuler

vi Hi.java

The following is an example of the Hi.java code:

package openos.openeuler;

public class Hi {

 public void hi(){

 System.out.println("Hi, the global developers.");

 }

}

Step 5 Run the cd command to go to the /home/code directory and use javac to compile the source

file.

cd /home/code

javac -classpath Hello:Hi Test/my/example/Test.java

After the command is executed, the Test.class, Hello.class, and Hi.class files are generated in

the /home/code/Test/my/example, /home/code/Hello/world/developers, and

/home/code/Hi/openos/openeuler directories.

Step 6 Run the cd command to go to the /home/code directory and run the Test program using Java.

cd /home/code

java -classpath Test:Hello:Hi my/example/Test

The command output is as follows:

Hello, openEuler.

Hi, the global developers.

----End

openEuler

Application Development Guide 5 Building an RPM Package

2020-04-10 40

5 Building an RPM Package

This section describes how to build an RPM software package on a local PC or using OBS.

For details, see

https://gitee.com/openeuler/community/blob/master/zh/contributors/packaging.md.

5.1 Packaging Description

5.2 Building an RPM Package Locally

5.3 Building an RPM Package Using the OBS

5.1 Packaging Description

Principles

During RPM packaging, the source code needs to be compiled. The compiled configuration

files and binary command files need to be placed in proper positions. The RPM packages

need to be tested as required. A workspace is required for these operations. The rpmbuild

command uses a set of standard workspaces.

rpmdev-setuptree

The rpmdev-setuptree command is used to install rpmdevtools. After the command is

executed, the rpmbuild folder is generated in the /root directory (or the /home/username

directory for non-root users). The directory structure is as follows:

tree rpmbuild

rpmbuild

├── BUILD

├── RPMS

├── SOURCES

├── SPECS

└── SRPMS

The content is described as follows:

Content Macro Code Name Function

~/rpmbuild/BUILD %_builddir Build

directory.

The source code package is

decompressed and compiled in

https://gitee.com/openeuler/community/blob/master/zh/contributors/packaging.md

openEuler

Application Development Guide 5 Building an RPM Package

2020-04-10 41

Content Macro Code Name Function

a subdirectory of the directory.

~/rpmbuild/RPMS %_rpmdir Standard

RPM package

directory.

The binary RPM package is

generated and stored in this

directory.

~/rpmbuild/SOURCE

S

%_sourcedir Source code

directory.

The source code package (for

example, .tar package) and all

patches are stored in this

directory.

~/rpmbuild/SPECS %_specdir Spec file

directory.

The RPM package

configuration file (.spec) is

stored in this directory.

~/rpmbuild/SRPMS %_srcrpmdir Source code

RPM package

directory.

The source code RPM package

(SRPM) is stored in this

directory.

The ~/rpmbuild/SPECS directory contains the configuration file of the RPM package, which

is the drawing of the RPM package. This file tells the rpmbuild command how to build the

RPM package. The Macro Code column contains the corresponding directories in the .spec

file, which is similar to the macro or global variable in the programming language.

Packaging Process

The packaging process is as follows:

1. Place the source code in %_sourcedir.

2. Compile the source code in %_builddir. Generally, the source code is compressed and

needs to be decompressed first.

3. Install the RPM package. The installation is similar to pre-assembling the software

package. Copy the contents (such as binary files, configuration files, and man files) that

should be contained in the software package to %_buildrootdir and assemble the

contents based on the actual directory structure after installation. For example, if binary

commands are stored in /usr/bin, copy the directory structure to %_buildrootdir.

4. Perform necessary configurations, such as preparations before installation and cleanup

after installation. These are configured in the SPEC file to tell the rpmbuild command

how to build.

5. Check whether the software is running properly.

6. The generated RPM package is stored in %_rpmdir, and the source code package is

stored in %_srpmdir.

In the SPEC file, each phase is described as follows:

openEuler

Application Development Guide 5 Building an RPM Package

2020-04-10 42

Pha
se

Director
y to Be
Read

Direct
ory to
Whic
h
Data
Is
Writte
n

Action

%pr

ep

%_source

dir

%_buil

ddir

Read the source code and patch in the %_sourcedir

directory. Then, decompress the source code to

the %_builddir subdirectory and apply all patches.

%bu

ild

%_builddi

r

%_buil

ddir

Compile files in the %_builddir build directory. Run a

command similar to ./configure && make.

%in

stall

%_builddi

r

%_buil

drootdi

r

Read files in the %_builddir build directory and install them

to the %_buildrootdir directory. These files are generated

after the RPM is installed.

%ch

eck

%_builddi

r

%_buil

ddir

Check whether the software is running properly. Run a

command similar to make test.

bin %_buildro

otdir

%_rp

mdir

Read files in the %_buildrootdir final installation directory

to create RPM packages in the %_rpmdir directory. In this

directory, RPM packages of different architectures are stored

in different subdirectories. The noarch directory stores RPM

packages applicable to all architectures. These RPM files are

the RPM packages that are finally installed by users.

src %_source

dir

%_srcr

pmdir

Create the source code RPM package (SRPM for short, with

the file name extension .src.rpm) and save it to

the %_srcrpmdir directory. The SRPM package is usually

used to review and upgrade software packages.

Packaging Options

Run the rpmbuild command to build the software package. The rpmbuild command can be

used to build software packages by building .spec, .tar, and source files.

The format of the rpmbuild command is rpmbuild [option...]

Table 5-1 describes the common rpmbuild packaging options.

Table 5-1 rpmbuild Packaging Options

option Value Description

-bp specfile Starts build from the %prep phase of the

specfile (decompress the source code

package and install the patch).

-bc specfile Starts build from the %build phase of the

specfile.

openEuler

Application Development Guide 5 Building an RPM Package

2020-04-10 43

option Value Description

-bi specfile Starts build from the %install phase of the

specfile.

-bl specfile Starts check from the %file phase of the

specfile.

-ba specfile Uses the specfile to build the source code

package and binary package.

-bb specfile Uses the specfile to build the binary

package.

-bs specfile Uses the specfile to build the source code

package.

-rp sourcefile Starts build from the %prep phase of the

sourcefile (decompress the source code

package and install the patch).

-rc sourcefile Starts build from the %build phase of the

sourcefile.

-ri sourcefile Starts build from the %install phase of the

sourcefile.

-rl sourcefile Starts build from the %file phase of the

sourcefile.

-ra sourcefile Uses the sourcefile to build the source code

package and binary package.

-rb sourcefile Uses the sourcefile to build the binary

package.

-rs sourcefile Uses the sourcefile to build the source code

package.

-tp tarfile Starts build from the %prep phase of the

tarfile (decompress the source code package

and install the patch).

-tc tarfile Starts build from the %build phase of the

tarfile.

-ti tarfile Starts build from the %install phase of the

tarfile.

-ta tarfile Uses the tarfile to build the source code

package and binary package.

-tb tarfile Uses the tarfile to build the binary package.

-ts tarfile Uses the tarfile to build the source code

package.

--buildroot=DIRECTORY During the build, uses DIRECTORY to

overwrite the default /root directory.

openEuler

Application Development Guide 5 Building an RPM Package

2020-04-10 44

option Value Description

--clean Deletes the files in the BUILD directory.

--nobuild No actual build steps are performed. It can

be used to test the .spec file.

--noclean Skips the %clean phase of the .spec file

(even if it does exist).

--nocheck Skips the %check phase of the .spec file

(even if it does exist).

--dbpath DIRECTORY Uses the database in DIRECTORY instead

of the default directory /var/lib/rpm.

--root DIRECTORY Sets DIRECTORY to the highest level. The

default value is /, indicating the highest

level.

--rebuild sourcefile Installs the specified source code package

sourcefile, that is, start preparation,

compilation, and installation of the source

code package.

--recompile sourcefile Builds a new binary package based on

--recompile. When the build is complete,

the build directory, source code, and .spec

file are deleted.

The deletion effect is the same as that of

--clean.

-?, --help Displays detailed help information.

--version Displays detailed version information.

5.2 Building an RPM Package Locally

This section uses an example to describe how to build an RPM software package locally.

5.2.1 Setting Up the Development Environment

Prerequisites

You have obtained the root permission, and have configured a repo source for openEuler.

Procedure

You can use the DNF tool to install rpmdevtools, including the rpm-build command and

related dependencies (such as make and gdb). Run the following command:

dnf install rpmdevtools*

openEuler

Application Development Guide 5 Building an RPM Package

2020-04-10 45

5.2.2 Creating a Hello World RPM Package

The following uses the packaging process of the GNU Hello World project as an example.

The package contains the most common peripheral components related to the typical Free and

Open Source Software (FOSS) project, including the configuration, compilation, and

installation environments, documents, and internationalization (i18n) information.

5.2.2.1 Obtaining the Source Code

Run the following command to download the source code of the official example:

cd ~/rpmbuild/SOURCES

wget http://ftp.gnu.org/gnu/hello/hello-2.10.tar.gz

5.2.2.2 Editing the SPEC File

Run the following command to create the .spec file:

vi hello.spec

Write the corresponding content to the file and save the file. The following is an example of

the file content. Modify the corresponding fields based on the actual requirements.

Name: hello

Version: 2.10

Release: 1%{?dist}

Summary: The "Hello World" program from GNU

Summary(zh_CN): GNU Hello World program

License: GPLv3+

URL: http://ftp.gnu.org/gnu/hello

Source0: http://ftp.gnu.org/gnu/hello/%{name}-%{version}.tar.gz

BuildRequires: gettext

Requires(post): info

Requires(preun): info

%description

The "Hello World" program, done with all bells and whistles of a proper FOSS

project, including configuration, build, internationalization, help files, etc.

%description -l zh_CN

The Hello World program contains all parts required by the FOSS project, including

configuration, build, i18n, and help files.

%prep

%setup -q

%build

%configure

make %{?_smp_mflags}

%install

make install DESTDIR=%{buildroot}

%find_lang %{name}

rm -f %{buildroot}/%{_infodir}/dir

%post

openEuler

Application Development Guide 5 Building an RPM Package

2020-04-10 46

/sbin/install-info %{_infodir}/%{name}.info %{_infodir}/dir || :

%preun

if [$1 = 0] ; then

/sbin/install-info --delete %{_infodir}/%{name}.info %{_infodir}/dir || :

fi

%files -f %{name}.lang

%doc AUTHORS ChangeLog NEWS README THANKS TODO

%license COPYING

%{_mandir}/man1/hello.1.*

%{_infodir}/hello.info.*

%{_bindir}/hello

%changelog

* Thu Dec 26 2019 Your Name <youremail@xxx.xxx> - 2.10-1

- Update to 2.10

* Sat Dec 3 2016 Your Name <youremail@xxx.xxx> - 2.9-1

- Update to 2.9

 The Name tag indicates the software name, the Version tag indicates the version number,

and the Release tag indicates the release number.

 The Summary tag is a brief description. The first letter of the tag must be capitalized to

prevent the rpmlint tool (packaging check tool) from generating alarms.

 The License tag describes the protocol version of the software package. The packager is

responsible for checking the license status of the software, which can be implemented by

checking the source code or license file or communicating with the author.

 The Group tag is used to classify software packages by /usr/share/doc/rpm-/GROUPS.

Currently, this tag has been discarded. However, the VIM template still has this tag. You

can delete it. However, adding this tag does not affect the system. The %changelog tag

should contain the log of changes made for each release, especially the description of the

upstream security/vulnerability patches. The %changelog tag should contain the version

string to avoid the rpmlint tool from generating alarms.

 If multiple lines are involved, such as %changelog or %description, start from the next

line of the instruction and end with a blank line.

 Some unnecessary lines (such as BuildRequires and Requires) can be commented out

with a number sign (#) at the beginning of the lines.

 The default values of %prep, %build, %install, and %file are retained.

5.2.2.3 Building an RPM Package

Run the following command in the directory where the .spec file is located to build the source

code, binary files, and software packages that contain debugging information:

rpmbuild -ba hello.spec

Run the following command to view the execution result:

tree ~/rpmbuild/*RPMS

/home/testUser/rpmbuild/RPMS

└── aarch64

 ├── hello-2.10-1.aarch64.rpm

 ├── hello-debuginfo-2.10-1.aarch64.rpm

 └── hello-debugsource-2.10-1.aarch64.rpm

openEuler

Application Development Guide 5 Building an RPM Package

2020-04-10 47

/home/testUser/rpmbuild/SRPMS

└── hello-2.10-1.src.rpm

5.3 Building an RPM Package Using the OBS

This section describes how to build RPM software packages using the OBS on the web page

or with OSC. There are two methods:

 Modifying an existing software package: Modify the source code of an existing software

package and build the modified source code into an RPM software package.

 Adding a software package: A new software source file is developed from scratch, and

the newly developed source file is used to build an RPM software package.

5.3.1 OBS Overview

OBS is a general compilation framework based on the openSUSE distribution. It is used to

build source code packages into RPM software packages or Linux images. OBS uses the

automatic distributed compilation mode and supports the compilation of images and

installation packages of multiple Linux OS distributions (such as openEuler, SUSE, and

Debian) on multiple architecture platforms (such as x86 and ARM64).

OBS consists of the backend and frontend. The backend implements all core functions. The

frontend provides web applications and APIs for interaction with the backend. In addition,

OBS provides an API command line client OSC, which is developed in an independent

repository.

OBS uses the project organization software package. Basic permission control, related

repository, and build targets (OS and architecture) can be defined in the project. A project can

contain multiple subprojects. Each subproject can be configured independently to complete a

task.

5.3.2 Building an RPM Software Package Online

This section describes how to build an RPM software package online on OBS.

5.3.2.1 Building an Existing Software Package

 If you use OBS for the first time, register an individual account on the OBS web page.

 With this method, you must copy the modified code and commit it to the code directory before

performing the following operations. The code directory is specified in the _service file.

To modify the source code of the existing software and build the modified source file into an

RPM software package on the OBS web client, perform the following steps:

1. Log in to OBS at http://openeuler-build.huawei.com/.

2. Click All Projects. The All Projects page is displayed.

3. Click the project to be modified. The project details page is displayed. For example,

click openEuler:Mainline.

4. On the project details page, search for the software package to be modified and click the

software package name. The software package details page is displayed.

5. Click Branch package. In the displayed dialog box, click Accept, as shown in Figure

5-1.

http://openeuler-build.huawei.com/

openEuler

Application Development Guide 5 Building an RPM Package

2020-04-10 48

Figure 5-1 Branch Confirmation page

6. Click the _service file to go to the editing page, modify the file content, and click Save.

An example of the _service file content is as follows. userCodeURL and

userCommitID indicate the user code path and commission version number or branch,

respectively.

<services>

 <service name="tar_scm_kernel">

 <param name="scm">git</param>

 <param name="url">userCodeURL</param>

 <param name="revision">userCommitID</param>

 </service>

 <service name="recompress">

 <param name="compression">bz2</param>

 <param name="file">*.tar</param>

 </service>

</services>

Click Save to save the _service file. OBS downloads the source code from the specified URL to the

software directory of the corresponding OBS project based on the _service file description and replaces

the original file. For example, the kernel directory of the openEuler:Mainline project in the preceding

example.

7. After the files are copied and replaced, OBS automatically starts to build the RPM

software package. Wait until the build is complete and view the build status in the status

bar on the right.

− succeeded: The build is successful. You can click succeeded to view the build logs,

as shown in Figure 5-2.

openEuler

Application Development Guide 5 Building an RPM Package

2020-04-10 49

Figure 5-2 Succeeded page

− failed: The build failed. Click failed to view error logs, locate the fault, and rebuild

again.

− unresolvable: The build is not performed. The possible cause is that the

dependency is missing.

− disabled: The build is manually closed or is queuing for build.

− excluded: The build is prohibited. The possible cause is that the .spec file is missing

or the compilation of the target architecture is prohibited in the .spec file.

5.3.2.2 Adding a Software Package

To add a new software package on the OBS web page, perform the following steps:

1. Log in to the OBS console.

2. Select a project based on the dependency of the new software package. That is, click All

Projects and select the corresponding project, for example, openEuler:Mainline.

3. Click a software package in the project. The software package details page is displayed.

4. Click Branch package. On the confirmation page that is displayed, click Accept.

5. Click Delete package to delete the software package in the new subproject, as shown in

Figure 5-3.

Figure 5-3 Deleting a software package from a subproject

The purpose of creating a project by using existing software is to inherit the dependency such as the

environment. Therefore, you need to delete these files.

openEuler

Application Development Guide 5 Building an RPM Package

2020-04-10 50

6. Click Create Package. On the page that is displayed, enter the software package name,

title, and description, and click Create to create a software package, as shown in Figure

5-4 and Figure 5-5.

Figure 5-4 Create Package page

Figure 5-5 Creating a software package

7. Click Add file to upload the .spec file and the file to be compiled (specified in the .spec

file), as shown in Figure 5-6.

openEuler

Application Development Guide 5 Building an RPM Package

2020-04-10 51

Figure 5-6 Add file page

8. After the file is uploaded, OBS automatically starts to build the RPM software package.

Wait until the build is complete and view the build status in the status bar on the right.

− succeeded: The build is successful. You can click succeeded to view the build logs.

− failed: The build failed. Click failed to view error logs, locate the fault, and rebuild

again.

− unresolvable: The build is not performed. The possible cause is that the

dependency is missing.

− disabled: The build is manually closed or is queuing for build.

− excluded: The build is prohibited. The possible cause is that the .spec file is missing

or the compilation of the target architecture is prohibited in the .spec file.

5.3.2.3 Obtaining the Software Package

After the RPM software package is built, perform the following operations to obtain the RPM

software package on the web page:

1. Log in to the OBS console.

2. Click All Projects and find the project corresponding to the required software package,

for example, openEuler:Mainline.

3. Click the name of the required software package in the project. The software package

details page is displayed, for example, the kernel page in the preceding example.

4. Click the Repositories tab. On the software repository management page that is

displayed, click Enable in Publish Flag to enable the RPM software package download

function (the status changes from to), as shown in Figure 5-7.

Figure 5-7 Repositories page

openEuler

Application Development Guide 5 Building an RPM Package

2020-04-10 52

5. Click the project name in the Repository column. On the RPM software package

download page that is displayed, click Download on the right of the RPM software

package to download the RPM software package, as shown in Figure 5-8.

Figure 5-8 RPM software package download page

5.3.3 Building a Software Package Using OSC

This section describes how to use the OBS command line tool OSC to create a project and

build an RPM software package.

5.3.3.1 Installing and Configuring the OSC

Prerequisites

You have obtained the root permission, and have configured a repo source for openEuler.

Procedure

Step 1 Install the OSC command line tool and its dependency as the root user.

dnf install osc build

The compilation of RPM software packages depends on build.

Step 2 Configure the OSC.

1. Run the following command to open the ~/.oscrc file:

vi ~/.oscrc

2. Add the user and pass fields to ~/.oscrc. The values of userName and passWord are the

account and password registered on the OBS website

(http://openeuler-build.huawei.com/).

[general]

apiurl = http://openeuler-build.huawei.com/

no_verify = 1

[http://openeuler-build.huawei.com/]

user=userName

pass=passWord

3. If the domain name openeuler-build.openeuler.org cannot be resolved, manually add

the following line to the /etc/hosts file: ip-address indicates the IP address of OBS,

which is http://117.78.1.88/.

ip-address openeuler-build.openeuler.org

http://openeuler-build.huawei.com/

openEuler

Application Development Guide 5 Building an RPM Package

2020-04-10 53

----End

5.3.3.2 Building an Existing Software Package

Creating a Project

1. You can copy an existing project to create a subproject of your own. For example, to

copy the zlib software package in the openEuler:Mainline project to the new branch,

run the following command:

osc branch openEuler:Mainline zlib

If the following information is displayed, a new branch project

home:testUser:branches:openEuler:Mainline is created for user testUser.

A working copy of the branched package can be checked out with:

osc co home:testUser:branches:openEuler:Mainline/zlib

2. Download the configuration file (for example, _service) of the software package to be

modified to the local directory. In the preceding command, testUser indicates the

account name configured in the ~/.oscrc configuration file. Change it based on the actual

requirements.

osc co home:testUser:branches:openEuler:Mainline/zlib

Information similar to the following is displayed:

A home:testUser:branches:openEuler:Mainline

A home:testUser:branches:openEuler:Mainline/zlib

A home:testUser:branches:openEuler:Mainline/zlib/_service

3. Go to the local subproject directory and synchronize the remote code of the software

package to the local host.

cd home:testUser:branches:openEuler:Mainline/zlib

osc up -S

Information similar to the following is displayed:

A _service:tar_scm_kernel_repo:0001-Neon-Optimized-hash-chain-rebase.patch

A _service:tar_scm_kernel_repo:0002-Porting-optimized-longest_match.patch

A _service:tar_scm_kernel_repo:0003-arm64-specific-build-patch.patch

A _service:tar_scm_kernel_repo:zlib-1.2.11-optimized-s390.patch

A _service:tar_scm_kernel_repo:zlib-1.2.11.tar.xz

A _service:tar_scm_kernel_repo:zlib-1.2.5-minizip-fixuncrypt.patch

A _service:tar_scm_kernel_repo:zlib.spec

Building an RPM Package

4. Rename the source file and add the renamed source file to the temporary storage of OBS.

rm -f _service;for file in ̀ ls | grep -v .osc`;do new_file=${file##*:};mv $file

$new_file;done

osc addremove *

5. Modify the source code and .spec file, and synchronize all modifications of the

corresponding software package to the OBS server. The following is a command

example. The information after the -m parameter is the commission record.

osc ci -m "commit log"

6. Run the following command to obtain the repository name and architecture of the current

project:

osc repos home:testUser:branches:openEuler:Mainline

openEuler

Application Development Guide 5 Building an RPM Package

2020-04-10 54

7. After the modification is committed, OBS automatically compiles the software package.

You can run the following command to view the compilation logs of the corresponding

repository. In the command, standard_aarch64 and aarch64 indicate the repository

name and architecture obtained in the command output.

osc buildlog standard_aarch64 aarch64

You can also open the created project on the web client to view the build logs.

5.3.3.3 Adding a Software Package

To use the OSC tool of OBS to add a new software package, perform the following steps:

Creating a Project

1. Create a project based on the dependency of the new software package and a proper

project. For example, to create a project based on zlib of the openEuler:Mainline

project, run the following command (zlib is any software package in the project):

osc branch openEuler:Mainline zlib

2. Delete unnecessary software packages added during project creation. For example, to

delete the zlib software package, run the following command:

cd home:testUser:branches:openEuler:Mainline

osc rm zlib

osc commit -m "commit log"

3. Create a software package in your own project. For example, to add the

my-first-obs-package software package, run the following command:

mkdir my-first-obs-package

cd my-first-obs-package

Building an RPM Package

4. Add the prepared source file and .spec file to the software package directory.

5. Modify the source code and .spec file, and upload all files of the corresponding software

package to the OBS server. The following is a command example. The information after

the -m parameter is the commission record.

cd home:testUser:branches:openEuler:Mainline

osc add my-first-obs-package

osc ci -m "commit log"

6. Run the following command to obtain the repository name and architecture of the current

project:

osc repos home:testUser:branches:openEuler:Mainline

7. After the modification is committed, OBS automatically compiles the software package.

You can run the following command to view the compilation logs of the corresponding

repository. In the command, standard_aarch64 and aarch64 indicate the repository

name and architecture obtained in the command output.

cd home:testUser:branches:openEuler:Mainline/my-first-obs-package

osc buildlog standard_aarch64 aarch64

You can also open the created project on the web client to view the build logs.

openEuler

Application Development Guide 5 Building an RPM Package

2020-04-10 55

5.3.3.4 Obtaining the Software Package

After the RPM software package is built, run the following command to obtain the RPM

software package using the OSC:

osc getbinaries home:testUser:branches:openEuler:Mainline my-first-obs-package

standard_aarch64 aarch64

The parameters in the command are described as follows. You can modify the parameters

according to the actual situation.

 home:testUser:branches:openEuler:Mainline: name of the project to which the software

package belongs.

 my-first-obs-package: name of the software package.

 standard_aarch64: repository name.

 aarch64: repository architecture name.

You can also obtain the software package built using OSC from the web page. For details, see 5.2.2.3

Building an RPM Package.

