// SPDX-License-Identifier: GPL-2.0 // Copied from kernel mm/pagewalk.c, modified by yuan.yao@intel.com #include #include #include #include #include "ept_idle_common.h" #ifdef CONFIG_HUGETLB_PAGE int pmd_huge(pmd_t pmd) { return !pmd_none(pmd) && (pmd_val(pmd) & (_PAGE_PRESENT|_PAGE_PSE)) != _PAGE_PRESENT; } int pud_huge(pud_t pud) { return !!(pud_val(pud) & _PAGE_PSE); } /* * ept_idle_huge_pte_offset() - Walk the page table to resolve the hugepage * entry at address @addr * * Return: Pointer to page table or swap entry (PUD or PMD) for * address @addr, or NULL if a p*d_none() entry is encountered and the * size @sz doesn't match the hugepage size at this level of the page * table. */ pte_t *ept_idle_huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pgd = pgd_offset(mm, addr); if (!pgd_present(*pgd)) return NULL; p4d = p4d_offset(pgd, addr); if (!p4d_present(*p4d)) return NULL; pud = pud_offset(p4d, addr); if (sz != PUD_SIZE && pud_none(*pud)) return NULL; /* hugepage or swap? */ if (pud_huge(*pud) || !pud_present(*pud)) return (pte_t *)pud; pmd = pmd_offset(pud, addr); if (sz != PMD_SIZE && pmd_none(*pmd)) return NULL; /* hugepage or swap? */ if (pmd_huge(*pmd) || !pmd_present(*pmd)) return (pte_t *)pmd; return NULL; } #else // #ifdef CONFIG_HUGETLB_PAGE #define pud_huge(x) 0 #define pmd_huge(x) 0 #define ept_idle_huge_pte_offset(mm, address, sz) 0 #endif #ifndef VM_BUG_ON_VMA #define VM_BUG_ON_VMA(cond, vma) \ do { \ if (unlikely(cond)) { \ BUG(); \ } \ } while (0) #endif #ifndef VM_BUG_ON_MM #define VM_BUG_ON_MM VM_BUG_ON_VMA #endif static inline int ept_idle_p4d_none_or_clear_bad(p4d_t *p4d) { if (p4d_none(*p4d)) return 1; if (unlikely(p4d_bad(*p4d))) { p4d_clear_bad(p4d); return 1; } return 0; } static inline spinlock_t *ept_idle_pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) { spinlock_t *ptl; VM_BUG_ON_VMA(!rwsem_is_locked(&vma->vm_mm->mmap_sem), vma); ptl = pud_lock(vma->vm_mm, pud); if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) return ptl; spin_unlock(ptl); return NULL; } void p4d_clear_bad(p4d_t *p4d) { p4d_ERROR(*p4d); p4d_clear(p4d); } void pmd_clear_bad(pmd_t *pmd) { pmd_ERROR(*pmd); pmd_clear(pmd); } #ifdef _EPT_IDLE_SPLIT_PMD_ static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { pte_t *pte; int err = 0; pte = pte_offset_map(pmd, addr); for (;;) { err = walk->pte_entry(pte, addr, addr + PAGE_SIZE, walk); if (err) break; addr += PAGE_SIZE; if (addr == end) break; pte++; } pte_unmap(pte); return err; } #endif static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, struct mm_walk *walk) { pmd_t *pmd; unsigned long next; int err = 0; pmd = pmd_offset(pud, addr); do { #ifdef _EPT_IDLE_SPLIT_PMD_ again: #endif next = pmd_addr_end(addr, end); if (pmd_none(*pmd) || !walk->vma) { if (walk->pte_hole) err = walk->pte_hole(addr, next, walk); if (err) break; continue; } /* * This implies that each ->pmd_entry() handler * needs to know about pmd_trans_huge() pmds */ if (walk->pmd_entry) err = walk->pmd_entry(pmd, addr, next, walk); if (err) break; #ifdef _EPT_IDLE_SPLIT_PMD_ /* * Check this here so we only break down trans_huge * pages when we _need_ to */ if (!walk->pte_entry) continue; split_huge_pmd(walk->vma, pmd, addr); if (pmd_trans_unstable(pmd)) goto again; err = walk_pte_range(pmd, addr, next, walk); if (err) break; #endif } while (pmd++, addr = next, addr != end); return err; } static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, struct mm_walk *walk) { pud_t *pud; unsigned long next; int err = 0; pud = pud_offset(p4d, addr); do { #ifdef _EPT_IDLE_SPLIT_PUD_ again: #endif next = pud_addr_end(addr, end); if (pud_none(*pud) || !walk->vma) { if (walk->pte_hole) err = walk->pte_hole(addr, next, walk); if (err) break; continue; } if (walk->pud_entry) { spinlock_t *ptl = ept_idle_pud_trans_huge_lock(pud, walk->vma); if (ptl) { err = walk->pud_entry(pud, addr, next, walk); spin_unlock(ptl); if (err) break; continue; } } #ifdef _EPT_IDLE_SPLIT_PUD_ split_huge_pud(walk->vma, pud, addr); if (pud_none(*pud)) goto again; #endif if (walk->pmd_entry || walk->pte_entry) err = walk_pmd_range(pud, addr, next, walk); if (err) break; } while (pud++, addr = next, addr != end); return err; } static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, struct mm_walk *walk) { p4d_t *p4d; unsigned long next; int err = 0; p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); if (ept_idle_p4d_none_or_clear_bad(p4d)) { if (walk->pte_hole) err = walk->pte_hole(addr, next, walk); if (err) break; continue; } if (walk->pmd_entry || walk->pte_entry) err = walk_pud_range(p4d, addr, next, walk); if (err) break; } while (p4d++, addr = next, addr != end); return err; } static int walk_pgd_range(unsigned long addr, unsigned long end, struct mm_walk *walk) { pgd_t *pgd; unsigned long next; int err = 0; pgd = pgd_offset(walk->mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) { if (walk->pte_hole) err = walk->pte_hole(addr, next, walk); if (err) break; continue; } if (walk->pmd_entry || walk->pte_entry) err = walk_p4d_range(pgd, addr, next, walk); if (err) break; } while (pgd++, addr = next, addr != end); return err; } #ifdef CONFIG_HUGETLB_PAGE static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr, unsigned long end) { unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h); return boundary < end ? boundary : end; } static int walk_hugetlb_range(unsigned long addr, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->vma; struct hstate *h = hstate_vma(vma); unsigned long next; unsigned long hmask = huge_page_mask(h); unsigned long sz = huge_page_size(h); pte_t *pte; int err = 0; do { next = hugetlb_entry_end(h, addr, end); pte = ept_idle_huge_pte_offset(walk->mm, addr & hmask, sz); if (pte) err = walk->hugetlb_entry(pte, hmask, addr, next, walk); else if (walk->pte_hole) err = walk->pte_hole(addr, next, walk); if (err) break; } while (addr = next, addr != end); return err; } #else /* CONFIG_HUGETLB_PAGE */ static int walk_hugetlb_range(unsigned long addr, unsigned long end, struct mm_walk *walk) { return 0; } #endif /* CONFIG_HUGETLB_PAGE */ /* * Decide whether we really walk over the current vma on [@start, @end) * or skip it via the returned value. Return 0 if we do walk over the * current vma, and return 1 if we skip the vma. Negative values means * error, where we abort the current walk. */ static int walk_page_test(unsigned long start, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->vma; if (walk->test_walk) return walk->test_walk(start, end, walk); /* * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP * range, so we don't walk over it as we do for normal vmas. However, * Some callers are interested in handling hole range and they don't * want to just ignore any single address range. Such users certainly * define their ->pte_hole() callbacks, so let's delegate them to handle * vma(VM_PFNMAP). */ if (vma->vm_flags & VM_PFNMAP) { int err = 1; if (walk->pte_hole) err = walk->pte_hole(start, end, walk); return err ? err : 1; } return 0; } static int __walk_page_range(unsigned long start, unsigned long end, struct mm_walk *walk) { int err = 0; struct vm_area_struct *vma = walk->vma; if (vma && is_vm_hugetlb_page(vma)) { if (walk->hugetlb_entry) err = walk_hugetlb_range(start, end, walk); } else err = walk_pgd_range(start, end, walk); return err; } /** * walk_page_range - walk page table with caller specific callbacks * @start: start address of the virtual address range * @end: end address of the virtual address range * @walk: mm_walk structure defining the callbacks and the target address space * * Recursively walk the page table tree of the process represented by @walk->mm * within the virtual address range [@start, @end). During walking, we can do * some caller-specific works for each entry, by setting up pmd_entry(), * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these * callbacks, the associated entries/pages are just ignored. * The return values of these callbacks are commonly defined like below: * * - 0 : succeeded to handle the current entry, and if you don't reach the * end address yet, continue to walk. * - >0 : succeeded to handle the current entry, and return to the caller * with caller specific value. * - <0 : failed to handle the current entry, and return to the caller * with error code. * * Before starting to walk page table, some callers want to check whether * they really want to walk over the current vma, typically by checking * its vm_flags. walk_page_test() and @walk->test_walk() are used for this * purpose. * * struct mm_walk keeps current values of some common data like vma and pmd, * which are useful for the access from callbacks. If you want to pass some * caller-specific data to callbacks, @walk->private should be helpful. * * Locking: * Callers of walk_page_range() and walk_page_vma() should hold * @walk->mm->mmap_sem, because these function traverse vma list and/or * access to vma's data. */ int ept_idle_walk_page_range(unsigned long start, unsigned long end, struct mm_walk *walk) { int err = 0; unsigned long next; struct vm_area_struct *vma; if (start >= end) return -EINVAL; if (!walk->mm) return -EINVAL; VM_BUG_ON_MM(!rwsem_is_locked(&walk->mm->mmap_sem), walk->mm); vma = find_vma(walk->mm, start); do { if (!vma) { /* after the last vma */ walk->vma = NULL; next = end; } else if (start < vma->vm_start) { /* outside vma */ walk->vma = NULL; next = min(end, vma->vm_start); } else { /* inside vma */ walk->vma = vma; next = min(end, vma->vm_end); vma = vma->vm_next; err = walk_page_test(start, next, walk); if (err > 0) { /* * positive return values are purely for * controlling the pagewalk, so should never * be passed to the callers. */ err = 0; continue; } if (err < 0) break; } if (walk->vma || walk->pte_hole) err = __walk_page_range(start, next, walk); if (err) break; } while (start = next, start < end); return err; }