{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## 概览\n", "- 在这个案例中,我们将展示如何通过Paddle Quantum训练量子神经网络来将量子态进行对角化。\n", "\n", "- 首先,让我们通过下面几行代码引入必要的library和package。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "pycharm": { "is_executing": false, "name": "#%%\n" } }, "outputs": [], "source": [ "import numpy\n", "from numpy import diag\n", "import scipy\n", "from paddle import fluid\n", "from paddle_quantum.circuit import UAnsatz\n", "from paddle.complex import matmul, trace, transpose" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "$\\newcommand{\\ket}[1]{|{#1}\\rangle}$\n", "$\\newcommand{\\bra}[1]{\\langle{#1}|}$\n", "\n", "## 背景\n", "量子态对角化算法(VQSD)[1-3] 目标是输出一个量子态的特征谱,即其所有特征值。求解量子态的特征值在量子计算中有着诸多应用,比如可以用于计算保真度和冯诺依曼熵,也可以用于主成分分析。\n", "- 量子态通常是一个混合态,表示如下 $\\rho_{\\text{mixed}} = \\sum_i P_i \\ket{\\psi_i}\\bra{\\psi_i}$\n", "- 作为一个简单的例子,我们考虑一个2量子位的量子态,它的特征谱为 $(0.5, 0.3, 0.1, 0.1)$, 我们先通过随机作用一个酉矩阵来生成具有这样特征谱的量子态。\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "pycharm": { "is_executing": false, "name": "#%%\n" } }, "outputs": [], "source": [ "scipy.random.seed(1)\n", "V = scipy.stats.unitary_group.rvs(4) # 随机生成一个酉矩阵\n", "D = diag([0.5, 0.3, 0.1, 0.1]) # 输入目标态rho的谱\n", "V_H = V.conj().T \n", "rho = V @ D @ V_H # 生成 rho\n", "print(rho) # 打印量子态 rho\n", "rho = rho.astype('complex64')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 搭建量子神经网络\n", "- 在这个案例中,我们将通过训练量子神经网络QNN(也可以理解为参数化量子电路)来学习量子态的特征谱。这里,我们提供一个预设的2量子位量子电路。\n", "\n", "- 我们预设一些该参数化电路的参数,比如宽度为2量子位。\n", "\n", "- 初始化其中的变量参数,${\\bf{\\theta }}$代表我们量子神经网络中的参数组成的向量。\n", " " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "pycharm": { "is_executing": false, "name": "#%% \n" } }, "outputs": [], "source": [ "N = 2 # 量子神经网络的宽度\n", "SEED = 1 # 种子\n", "THETA_SIZE = 14 # 网络中的参数\n", "\n", "def U_theta(theta, N):\n", " \"\"\"\n", " U_theta\n", " \"\"\"\n", "\n", " cir = UAnsatz(N)\n", " cir.rz(theta[0], 1)\n", " cir.ry(theta[1], 1)\n", " cir.rz(theta[2], 1)\n", "\n", " cir.rz(theta[3], 2)\n", " cir.ry(theta[4], 2)\n", " cir.rz(theta[5], 2)\n", "\n", " cir.cnot([2, 1])\n", "\n", " cir.rz(theta[6], 1)\n", " cir.ry(theta[7], 2)\n", "\n", " cir.cnot([1, 2])\n", "\n", " cir.rz(theta[8], 1)\n", " cir.ry(theta[9], 1)\n", " cir.rz(theta[10], 1)\n", "\n", " cir.rz(theta[11], 2)\n", " cir.ry(theta[12], 2)\n", " cir.rz(theta[13], 2)\n", "\n", " return cir.state\n" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "## 配置训练模型 - 损失函数\n", "- 现在我们已经有了数据和量子神经网络的架构,我们将进一步定义训练参数、模型和损失函数。\n", "- 通过作用量子神经网络$U(\\theta)$在量子态$\\rho$后得到的量子态记为$\\tilde\\rho$,我们设定损失函数为$\\tilde\\rho$与用来标记的量子态$\\sigma=0.1 \\ket{00}\\bra{00} + 0.2 \\ket{01}\\bra{01} + 0.3 \\ket{10}\\bra{10} + 0.4 \\ket{11}\\bra{11}$的内积。\n", "- 具体的,设定损失函数为 $\\mathcal{L}(\\boldsymbol{\\theta}) = Tr(\\tilde\\rho\\sigma) .$" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "pycharm": { "is_executing": false, "name": "#%%\n" } }, "outputs": [], "source": [ "sigma = diag([0.1, 0.2, 0.3, 0.4]) # 输入用来标记的量子态sigma\n", "sigma = sigma.astype('complex64')\n", "\n", "class Net(fluid.dygraph.Layer):\n", " \"\"\"\n", " Construct the model net\n", " \"\"\"\n", "\n", " def __init__(self, shape, rho, sigma, param_attr=fluid.initializer.Uniform(low=0.0, high=2 * numpy.pi, seed=SEED),\n", " dtype='float32'):\n", " super(Net, self).__init__()\n", "\n", " self.rho = fluid.dygraph.to_variable(rho)\n", " self.sigma = fluid.dygraph.to_variable(sigma)\n", "\n", " self.theta = self.create_parameter(shape=shape, attr=param_attr, dtype=dtype, is_bias=False)\n", "\n", " def forward(self, N):\n", " \"\"\"\n", " Args:\n", " Returns:\n", " The loss.\n", " \"\"\"\n", "\n", " out_state = U_theta(self.theta, N)\n", "\n", " # rho_tilde 是将U_theta作用在rho后得到的量子态 \n", " rho_tilde = matmul(\n", " matmul(transpose(\n", " fluid.framework.ComplexVariable(out_state.real, -out_state.imag),\n", " perm=[1, 0]\n", " ), self.rho), out_state\n", " )\n", "\n", " # record the new loss\n", " loss = trace(matmul(self.sigma, rho_tilde))\n", "\n", " return loss.real, rho_tilde" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 配置训练模型 - 模型参数\n", "在进行量子神经网络的训练之前,我们还需要进行一些训练(超)参数的设置,例如学习速率与迭代次数。\n", "- 设定学习速率(learning rate)为0.1;\n", "- 设定迭代次数为50次。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "pycharm": { "is_executing": false, "name": "#%%\n" } }, "outputs": [], "source": [ "ITR = 50 #训练的总的迭代次数\n", "\n", "LR = 0.1 #学习速率" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 进行训练\n", "\n", "- 当训练模型的各项参数都设置完成后,我们将数据转化为Paddle动态图中的变量,进而进行量子神经网络的训练。\n", "- 过程中我们用的是Adam Optimizer,也可以调用Paddle中提供的其他优化器。\n", "- 我们将训练过程中的结果依次输出。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "pycharm": { "is_executing": false, "name": "#%% \n" } }, "outputs": [], "source": [ "with fluid.dygraph.guard():\n", " # net\n", " net = Net(shape=[THETA_SIZE], rho=rho, sigma=sigma)\n", "\n", " # optimizer\n", " opt = fluid.optimizer.AdagradOptimizer(learning_rate=LR, parameter_list=net.parameters())\n", " # gradient descent loop\n", " for itr in range(ITR):\n", " loss, rho_tilde = net(N)\n", "\n", " rho_tilde_np = rho_tilde.numpy()\n", " loss.backward()\n", " opt.minimize(loss)\n", " net.clear_gradients()\n", "\n", " print('iter:', itr, 'loss:', '%.4f' % loss.numpy()[0])\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 总结\n", "根据上面训练得到的结果,通过大概50次迭代,我们就比较好的完成了对角化。\n", "我们可以通过打印$\n", "\\tilde{\\rho} = U(\\boldsymbol{\\theta})\\rho U^\\dagger(\\boldsymbol{\\theta})\n", "$\n", "的来验证谱分解的效果。特别的,我们可以验证它的对角线与我们目标谱是非常接近的。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "pycharm": { "is_executing": false, "name": "#%%\n" } }, "outputs": [], "source": [ "print(rho_tilde_np)\n", "\n", "print(\"The estimated spectrum is:\", numpy.real(numpy.diag(rho_tilde_np)))\n", "print(\"The target spectrum is:\", numpy.diag(D))" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "### 参考文献\n", "\n", "[1] R. Larose, A. Tikku, É. O. Neel-judy, L. Cincio, and P. J. Coles, “Variational quantum state diagonalization,” npj Quantum Inf., no. November 2018, 2019.\n", "\n", "[2] K. M. Nakanishi, K. Mitarai, and K. Fujii, “Subspace-search variational quantum eigensolver for excited states,” Phys. Rev. Res., vol. 1, no. 3, p. 033062, Oct. 2019.\n", "\n", "[3] M. Cerezo, K. Sharma, A. Arrasmith, and P. J. Coles, “Variational Quantum State Eigensolver,” arXiv:2004.01372, no. 1, pp. 1–14, Apr. 2020.\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.10" }, "pycharm": { "stem_cell": { "cell_type": "raw", "metadata": { "collapsed": false }, "source": [] } } }, "nbformat": 4, "nbformat_minor": 1 }