# Copyright (c) 2020 Paddle Quantum Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Using a H generator to define the H under WINDOWS """ from numpy import array, kron, trace import scipy __all__ = [ "H_generator", "H2_generator", ] def H_generator(): """ Generate a Hamiltonian with trivial descriptions :return: a Hamiltonian, 'mat' """ beta = 1 sigma_I = array([[1, 0], [0, 1]]) sigma_Z = array([[1, 0], [0, -1]]) sigma_X = array([[0, 1], [1, 0]]) sigma_Y = array([[0, -1j], [1j, 0]]) # H = kron(kron(sigma_X, sigma_I), sigma_X) + 0.9 * kron(kron(sigma_Z, sigma_I), sigma_I) \ # - 0.3 * kron(kron(sigma_I, sigma_I), sigma_Y) H = 0.4 * kron(sigma_Z, sigma_I) + 0.4 * kron( sigma_I, sigma_Z) + 0.2 * kron(sigma_X, sigma_X) rho = scipy.linalg.expm(-1 * beta * H) / trace(scipy.linalg.expm(-1 * beta * H)) return H.astype('complex64'), rho.astype('complex64') def H2_generator(): """ Generate a Hamiltonian with trivial descriptions Returns: A Hamiltonian, 'mat' """ beta = 1 sigma_I = array([[1, 0], [0, 1]]) sigma_Z = array([[1, 0], [0, -1]]) sigma_X = array([[0, 1], [1, 0]]) sigma_Y = array([[0, -1j], [1j, 0]]) H = (-0.04207897647782276) * kron(kron(kron(sigma_I, sigma_I), sigma_I), sigma_I) \ + (0.17771287465139946) * kron(kron(kron(sigma_Z, sigma_I), sigma_I), sigma_I) \ + (0.1777128746513994) * kron(kron(kron(sigma_I, sigma_Z), sigma_I), sigma_I) \ + (-0.24274280513140462) * kron(kron(kron(sigma_I, sigma_I), sigma_Z), sigma_I) \ + (-0.24274280513140462) * kron(kron(kron(sigma_I, sigma_I), sigma_I), sigma_Z) \ + (0.17059738328801052) * kron(kron(kron(sigma_Z, sigma_Z), sigma_I), sigma_I) \ + (0.04475014401535161) * kron(kron(kron(sigma_Y, sigma_X), sigma_X), sigma_Y) \ + (-0.04475014401535161) * kron(kron(kron(sigma_Y, sigma_Y), sigma_X), sigma_X) \ + (-0.04475014401535161) * kron(kron(kron(sigma_X, sigma_X), sigma_Y), sigma_Y) \ + (0.04475014401535161) * kron(kron(kron(sigma_X, sigma_Y), sigma_Y), sigma_X) \ + (0.12293305056183798) * kron(kron(kron(sigma_Z, sigma_I), sigma_Z), sigma_I) \ + (0.1676831945771896) * kron(kron(kron(sigma_Z, sigma_I), sigma_I), sigma_Z) \ + (0.1676831945771896) * kron(kron(kron(sigma_I, sigma_Z), sigma_Z), sigma_I) \ + (0.12293305056183798) * kron(kron(kron(sigma_I, sigma_Z), sigma_I), sigma_Z) \ + (0.17627640804319591) * kron(kron(kron(sigma_I, sigma_I), sigma_Z), sigma_Z) rho = scipy.linalg.expm(-1 * beta * H) / trace(scipy.linalg.expm(-1 * beta * H)) N = 4 return H.astype('complex64'), rho.astype('complex64'), N