#include #include #include #include "caffe/layers/accuracy_layer.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { template void AccuracyLayer::LayerSetUp( const vector*>& bottom, const vector*>& top) { top_k_ = this->layer_param_.accuracy_param().top_k(); has_ignore_label_ = this->layer_param_.accuracy_param().has_ignore_label(); if (has_ignore_label_) { ignore_label_ = this->layer_param_.accuracy_param().ignore_label(); } } template void AccuracyLayer::Reshape( const vector*>& bottom, const vector*>& top) { CHECK_LE(top_k_, bottom[0]->count() / bottom[1]->count()) << "top_k must be less than or equal to the number of classes."; label_axis_ = bottom[0]->CanonicalAxisIndex(this->layer_param_.accuracy_param().axis()); outer_num_ = bottom[0]->count(0, label_axis_); inner_num_ = bottom[0]->count(label_axis_ + 1); CHECK_EQ(outer_num_ * inner_num_, bottom[1]->count()) << "Number of labels must match number of predictions; " << "e.g., if label axis == 1 and prediction shape is (N, C, H, W), " << "label count (number of labels) must be N*H*W, " << "with integer values in {0, 1, ..., C-1}."; vector top_shape(0); // Accuracy is a scalar; 0 axes. top[0]->Reshape(top_shape); if (top.size() > 1) { // Per-class accuracy is a vector; 1 axes. vector top_shape_per_class(1); top_shape_per_class[0] = bottom[0]->shape(label_axis_); top[1]->Reshape(top_shape_per_class); nums_buffer_.Reshape(top_shape_per_class); } } template void AccuracyLayer::Forward_cpu(const vector*>& bottom, const vector*>& top) { Dtype accuracy = 0; const Dtype* bottom_data = bottom[0]->cpu_data(); const Dtype* bottom_label = bottom[1]->cpu_data(); const int dim = bottom[0]->count() / outer_num_; const int num_labels = bottom[0]->shape(label_axis_); vector maxval(top_k_+1); vector max_id(top_k_+1); if (top.size() > 1) { caffe_set(nums_buffer_.count(), Dtype(0), nums_buffer_.mutable_cpu_data()); caffe_set(top[1]->count(), Dtype(0), top[1]->mutable_cpu_data()); } int count = 0; for (int i = 0; i < outer_num_; ++i) { for (int j = 0; j < inner_num_; ++j) { const int label_value = static_cast(bottom_label[i * inner_num_ + j]); if (has_ignore_label_ && label_value == ignore_label_) { continue; } if (top.size() > 1) ++nums_buffer_.mutable_cpu_data()[label_value]; DCHECK_GE(label_value, 0); DCHECK_LT(label_value, num_labels); // Top-k accuracy std::vector > bottom_data_vector; for (int k = 0; k < num_labels; ++k) { bottom_data_vector.push_back(std::make_pair( bottom_data[i * dim + k * inner_num_ + j], k)); } std::partial_sort( bottom_data_vector.begin(), bottom_data_vector.begin() + top_k_, bottom_data_vector.end(), std::greater >()); // check if true label is in top k predictions for (int k = 0; k < top_k_; k++) { if (bottom_data_vector[k].second == label_value) { ++accuracy; if (top.size() > 1) ++top[1]->mutable_cpu_data()[label_value]; break; } } ++count; } } // LOG(INFO) << "Accuracy: " << accuracy; top[0]->mutable_cpu_data()[0] = accuracy / count; if (top.size() > 1) { for (int i = 0; i < top[1]->count(); ++i) { top[1]->mutable_cpu_data()[i] = nums_buffer_.cpu_data()[i] == 0 ? 0 : top[1]->cpu_data()[i] / nums_buffer_.cpu_data()[i]; } } // Accuracy layer should not be used as a loss function. } INSTANTIATE_CLASS(AccuracyLayer); REGISTER_LAYER_CLASS(Accuracy); } // namespace caffe