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Efficient Transformer for Single Image
Super-Resolution

Zhisheng Lu, Hong Liu*, Juncheng Li, and Linlin Zhang

Abstract—Single image super-resolution task has witnessed the
great strides with the development of deep learning. However,
most existing studies focus on building a more complex neural
network with a massive number of layers, bringing heavy com-
putational cost and memory storage. Recently, as Transformer
yields brilliant results in NLP tasks, more and more researchers
start to explore the application of Transformer in computer vision
tasks. But with the heavy computational cost and high GPU
memory occupation of vision Transformer, the network can not
be designed too deep. To address this problem, we propose a
novel Efficient Super-Resolution Transformer (ESRT) for fast and
accurate image super-resolution. ESRT is a hybrid Transformer
where a CNN-based SR network is first designed in the front
to extract deep features. Specifically, there are two backbones
for formatting the ESRT: lightweight CNN backbone (LCB) and
lightweight Transformer backbone (LTB). Among them, LCB
is a lightweight SR network to extract deep SR features at
a low computational cost by dynamically adjusting the size of
the feature map. LTB is made up with an efficient Transformer
(ET) with small GPU memory occupation, which benefited from
the novel efficient multi-head attention (EMHA). In EMHA, a
feature split module (FSM) is proposed to split the long sequence
into sub-segments and then these sub-segments are applied by
attention operation. This module can significantly decreases the
GPU memory occupation. Extensive experiments show that our
ESRT achieves competitive results. Compared with the original
Transformer which occupies 16057M GPU memory, the proposed
ET only occupies 4191M GPU memory with better performance.

Index Terms—Image super-resolution, transformer, high-
frequency information, lightweight network.

I. INTRODUCTION

S INGLE image super-resolution (SISR) aims at recovering
a high-resolution (HR) image from its degraded low-

resolution (LR) counterpart. SISR is still an active area for
offering the promise of overcoming resolution limitations in
many applications, such as video transmission, smart camera,
and so on. However, SISR is an ill-posed problem since
there exist infinite HR images that can be downsampled to
an identical LR image. To address this issue, numerous deep
neural networks have been proposed. Although these methods
have achieved outstanding performance, they cannot be easily
utilized in real applications due to high computation cost and
memory storage.
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Fig. 1: Examples of similar patches in the images. These
patches can help to recover details from each other.

The typical pattern to lighten the network is reducing the
number of parameters. There are many ways to achieve this.
The most effective and simple approach is to use the recurrent
mechanism. For example, SRFBN [1] uses a feedback manner
to share the weights of several middle layers and enhance
the reconstruction ability of the model iteratively. RNN-based
models [1], [2], [3], [4] decrease the number of parameters
effectively compared to the standard CNN and obtain good
performance. However, these models repeat the forward pro-
cess several times, resulting in a long inference time and a
large number of operations. Meanwhile, some works focus on
neural architecture search (NAS) [5], [6] to design effective
networks automatically. For instance, FALSR [5] proposes
an elastic search tactic at both micro and macro level and
acquire a great trade-off between restoration capacity and
time complexity. But NAS-based methods usually have limited
performances for the constraints of search space and strategy.

Nowadays, more and more lightweight SR works pay at-
tention to the efficient architecture design, such as channel
grouping [7], [8], multi-scale structure [9], [10] and informa-
tion distillation [11], [12]. As we all know, the computation
cost of the model is related to not only the complexity of the
network but also the size of the feature map in the pipeline.
Former works generally concentrate on constructing a more
efficient network structure, but the reduced network capacity
leads to poor performance. As Fig. 1 shows, the inner areas
of the boxes with the same color are very similar to each
other. Like the reference-based super-resolution task, these
similar image patches can be used as reference images for
each other, so that the texture details of the certain patch
can be restored with reference patches. Transformer has a
strong feature expression ability to model such a long-term
dependency in the image, so we explore the feasibility of using
Transformer in the lightweight SR task.

Vision-Transformer usually needs to occupy heavy GPU
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memory, which greatly limits the development of Transformer
in computer vision tasks. In this work, an Efficient SR
Transformer (ESRT) architecture is proposed to enhance the
ability to capture the long-distance context dependence for
the SR network while significantly decrease the GPU memory
cost. It is worth noting that, training a Transformer usually
needs a very large dataset, but SR datasets are usually very
small (DIV2K [13] only has 1000 images). Therefore, we
propose a hybrid Transformer architecture for ESRT and uses
a ”CNN+Transformer” pattern to handle the small SR dataset.

Specifically, ESRT can be divided into two parts:
lightweight CNN backbone (LCB) and lightweight Trans-
former backbone (LTB). For LCB, we consider more on
reducing the shape of the feature map in the middle layers
and maintain a deep network depth to ensure large network
capacity. Firstly, inspired by the high-pass filter which can
obtain the high-frequency information in the image, we design
a high-frequency filtering module (HFM) which is differential
and can capture the texture details of the image. With the aid
of HFM, a novel high preserving block (HPB) is proposed
to extract the potential features efficiently by size variation.
Specifically, before size reduction, the high-frequency infor-
mation is preserved by HFM and then is added back to the re-
fined features to prevent the resolved image from visually un-
naturally. By this operation, our HPB can not only efficiently
extract SR features but save computational cost. For feature
extraction, a novel adaptive residual feature block (ARFB) is
proposed as the basic feature extraction unit with the ability to
adaptively adjust the weight of the residual path and identity
path. In residual path, ARFB uses Reduction and Expansion
operation to reduce the number of parameters. In LTB, an
efficient Transformer (ET) is proposed to be embedded into
the behind of LCB. Meanwhile, a novel efficient multi-head
attention (EMHA) is designed to significantly decrease the
GPU memory cost In the ET. EMHA just considers the
relationship between image blocks in a local region, as the
pixel in SR image is commonly related to its neighbor pixels.
Even though it is a local region, it is much wider than a
regular convolution and has more useful context information.
ET can efficiently explore the relationship between similar
local blocks in the image, making the super-resolved region
having more references.

Based on LCB and LTB, we build an Efficient SR-
Transformer named ESRT. Compared with the recurrent mech-
anism, our method significantly reduces the inference time
when processing the image. In comparison to the NAS-based
approach, ESRT paves a new way to design a better efficient
architecture manually. Meanwhile, our HPB and ARFB are
general units that can be embedded into previous SR models
to replace their feature extraction module, making them more
lightweight while maintain high performance. Compared with
other common vision-Transformer, our ESRT occupies less
GPU memory and takes less time, while significantly improves
the performance of SR networks at low resource consumption.
Meanwhile, ESRT achieves state-of-the-art performance with
few parameters and little computational cost compared with
other lightweight SR models. The main contributions of this
paper are summarized as follows:

• A novel hybrid Transformer that contains two backbones
is proposed to effectively enhance the feature expression
ability and the long-term dependence of similar patches in
the captured image, so as to achieve better performance.

• A lightweight CNN backbone (LCB) is proposed to
solve the small SR datasets for Transformer. LCB is
used to obtain the basic feature extraction ability at a
low computational cost. It is worth noting that, only
use the LCB, the model can also achieve comparable
performance with other lightweight methods.

• A lightweight Transformer backbone (LTB) is proposed
to capture long-term dependency among similar patches
in the image. Meanwhile, an efficient Transformer (ET)
is designed in the LTB, which can significantly decrease
the GPU memory cost and computational cost compared
to the original Transformer architecture.

II. RELATED WORK

A. Deep Learning based SR Models

SRCNN [14] is the first work that introduces deep CNN to
solve the SR problem, where there are only three convolution
layers. FSRCNN [15] proposes a post-upsampling mode to
reduce the computational cost. VDSR [16] deepens the depth
of the network by employing the skip connections for learning
the residual information. DRRN [2] and MemNet [4] utilize
the recurrent mechanism to refine the SR result iteratively.
EDSR [17] optimizes the residual block by removing unnec-
essary modules and expands the model size, which wined the
champion of the NTIRE2017 challenge. RCAN [18] proposes
a very deep residual network with residual-in-residual archi-
tecture and channel attention mechanism. SAN [19] presents
a second-order attention network to enhance the feature ex-
pression and feature correlation learning. EBRN [20] thinks
that the lower-frequency and higher-frequency information
in images have different levels of complexity and should
be restored by models of different representational capacity.
SRFBN [1] transmits the high-level information to low-level
features through feedback connections in a top-down manner.
CS-NL [21] proposes the concept of cross-scale feature corre-
lation and designs the cross-scale non-local attention module.
Although all these works achieve superior performance in the
SR task, they typically spend highly on computation cost and
memory cost, which is not suitable for practical applications.

B. Lightweight SR Models

Building a lightweight SR model has attracted extensive
concern for saving computing resources. They can be mainly
divided into two categories: the architecture manual-designed
methods and the neural architecture search-based methods. For
the first category, early models mainly focus on the recursive
mechanism. DRCN [3] first applies the recursive operation
into the SR model and DRRN [2] deepens the recursive
neural network with weight-shared residual block. Moreover,
CARN [7] adds the channel splitting technology on the basis
of recursive operation. Later approaches pay more attention to
designing an efficient feature extraction module. For example,
MSRN [9] proposes a multi-scale block to adaptively detect
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Fig. 2: The overall architecture of the proposed Efficient SR Transformer (ESRT).

the image features in different scales. IDN [12] compresses
the model size by using the group convolution and combine
short-term and long-term features. IMDN [11] improves the
architecture of IDN and introduces the information multi-
distillation blocks to extract the hierarchical features effec-
tively. PISR [22] proposes a novel distillation framework,
which consists of a teacher network and a student network,
that allows boosting the performance of FSRCNN [15] which
has extremely small parameters. LatticeNet [23] designs the
lattice block that simulates the realization of Fast Fourier
Transformation with the butterfly structure.

As for neural architecture search-based methods, MoreM-
NAS [6] presents a new multi-objective oriented algorithm by
leveraging good virtues from both evolution algorithms and
reinforced learning methods. Besides, FALSR [5] propose an
elastic search tactic at both micro and macro level, based
on a hybrid controller. Although the researches based on
lightweight SR models has made good progress, there still
remain many challenges to overcome.

C. Transformers in Vision

The breakthroughs from Transformer networks in the NLP
area lead to great interest in the computer vision community.
The key idea of Transformer is ”selfattention” which can
capture long-term information between sequence elements. By
adapting Transformer in vision tasks, it has been successfully
applied in image recognition [24], [25], object detection [26],
[27], low-level image processing [28], [29], action recogni-
tion [30], [31] and so on. Among them, ViT [24] is the first
work to replace the standard convolution with Transformer.
To produce the sequence elements, ViT flattened the 2D
image patches in a vector and fed them into the Transformer.
DETR [26] is a Transformer for object detection task. DETR
can model the prediction of a set of objects and model
their relationships. DETR discards some complex hand-crafted
operations (like NMS) and modules (like RPN [32]). Through
this manner, there is no need to design some strong prior
knowledge for this task. Although Transformers in vision has
achieved great progress, they still need heavy GPU resources
to train the whole model, which is not friendly to most

researchers. Hence, building efficient vision-Transformer has
become a research hotspot recently.

III. PROPOSED METHOD

In this section, we first describe the overall architecture
of the proposed Efficient SR Transformer (ESRT). Then we
present the LCB with novel high preserving block (HPB) and
high-frequency filtering module (HFM). HPB first isolates the
high-frequency information with the help of HFM. The size of
the feature map is reduced to decrease the redundant features
and save memory cost. In HPB, an adaptive residual feature
block (ARFB) is also introduced as the basic feature extraction
unit. Next, we present the LTB with an efficient Transformer
(ET). Finally, we present the difference between our ESRT
and other SR methods.

A. Overall Architecture

As shown in Fig. 2, our ESRT mainly consists of four
parts: shallow feature extraction, lightweight CNN backbone
(LCB), lightweight Transformer backbone (LTB), and image
reconstruction. We define ISR and ILR as the input and output
of ESRT, respectively. Therefore, we first extract the shallow
feature F0 from ILR with one convolution layer:

F0 = fs(ILR), (1)

where fs denotes the shallow feature extraction function.
F0 is then used for LCB with several HPBs, which can be
formulated as:

Fn = ζn(ζn−1(...(ζ1(F0)))), (2)

where ζn denotes the mapping of n-th HPB and Fn represents
the output of n-th HPB. All outputs of HPB are concatenated
to be sent to LTB with several ETs to fuse all intermediate
features in LCB:

Fd = φn(φn−1(...(φ1([F1, F2, ..., Fn])))), (3)

where Fd is the output of LTB and φ stands for the function
of ET. To get the ISR, Fd, and F0 are simultaneously fed into
the reconstruction module:

ISR = f(fp(f(Fd))) + fp(f(F0)), (4)
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Fig. 3: The schematic diagram of the propose HFM.
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Fig. 4: Visual activation maps of TL, TU , and obtained
high-frequency information. Best viewed in color.

where f and fp stand for the convolution layer and PixelShuf-
fle layer, respectively.

B. Lightweight CNN Backbone (LCB)

Lightweight CNN Backbone (LCB) is built like other SR
models, which served as the front part of ESRT. The function
of LCB is to extract the latent SR features in advance so that
the model has the initial ability of super-resolution. According
to the Fig. 2, we can observe that LCB is mainly composed of
a series of high preserving blocks (HPBs). Here we introduce
the LCB in detail.

1) High-frequency Filtering Module: Before introducing
the HPB, we first present the high-frequency filtering module
(HFM) which is embedded in HPB. Since the Fourier trans-
form is difficult to embed in CNN, a differentiable HFM is
proposed. The target of HFM is to estimate the high frequency
information of the image from the LR space. Assuming the
size of the input feature map TL is C ×H ×W , an average
pooling layer is first applied to TL:

TA = avgpool(TL, k), (5)

where k denotes the kernel size (same to the stride) of pooling
layer. As shown in Fig. 3, the size of the intermediate feature
map TA is C×H

k ×
W
k . Each value in TA can be viewed as the

average intensity of each specified small area of TL. After that,
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Fig. 5: The architecture of the proposed ARFB.

TA is upsampled to get a new tensor TU of size C ×H ×W .
TU is regarded as an expression of the average smoothness
information compared with the original TL. Finally, TU is
element-wise subtracted from TL to obtain the high-frequency
information.

The visual activation maps of TL, TU , and high-frequency
information are also shown in Fig. 4. It can be observed that
the TU is more smooth than the TL as it is the average infor-
mation of the TL. And the high-frequency information retains
the details and edges of the feature map before downsampling.
Hence it is essential to save these information.

2) Adaptive Residual Feature Block: Plenty of works have
proven that the depth of the model is highly correlated to
the performance. As explored in ResNet and VDSR, when the
depth grows, the residual architecture can mitigate the gradient
vanishing problem and augment the representation capacity of
the model. In this paper, a novel Adaptive Residual Feature
Block (ARFB) is proposed as the basic feature extraction block
which is efficient and fast.

As Fig. 5 shows, ARFB contains two residual units (RUs)
and two convolution layers. To save memory and number of
parameters, RU is made up of two modules: Reduction and
Expansion. For Reduction, the channels of the feature map are
reduced by half and recovered in Expansion. Like EDSR [17],
BN [33] is not used in RU. Meanwhile, a residual scaling with
adaptive weights (RSA) is designed to dynamically adjust the
importance of residual path and identity path. Compared with
fixed residual scaling, RSA can improve the flow of gradients
and automatically adjust the content of the residual feature
maps for the input feature map. Assume that xru is the input
of RU, the process of RU can be formulated as:

yru = λres · fex(fre(xru)) + λx · x, (6)

where yru is the output of RU, fre and fex represent the
Reduction and Expansion, respectively. λres and λx are two
adaptive weights for two paths.
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For ARFB, the outputs of two RUs are concatenated fol-
lowed by a 1 × 1 convolution layer, to fully utilize the
hierarchical features. In the end, a 3× 3 convolution layer is
adopted to reduce the channels of the feature map and extract
valid information from the fused features.

3) High Preserving Block: The main target of SISR is the
amplification of resolution while retaining the texture details of
the image. Hence, previous SR networks commonly keep the
spatial resolution of the feature map unchanged in the pipeline.
In this work, to lessen the computational cost of the network,
a novel high preserving block (HPB) is proposed to reduce
the shape of processing features. However, the reduction of
the size of the feature map always leads to the loss of image
details, which cause the visually unnatural SR images. To
solve this problem, in HPB, we creatively preserve the high-
frequency information with the aid of HFM while reducing
the size of feature maps.

The architecture of HPB is shown in Fig. 6. Firstly, an
ARFB is adopted to extract the input features Fn−1 for HFM.
HFM then calculates the high-frequency information (marked
as Phigh) of the features. After the Phigh is obtained, we
reduce the size of the feature map to reduce computational
cost and feature redundancy. The downsampled feature map
is denoted as F

′

n−1. For F
′

n−1, several ARFBs are utilized
to explore the potential information for completing the SR
image. It is worth noting that these ARFBs share weights
to reduce parameters. Meanwhile, a single ARFB is used to
process the Phigh to align the feature space with F

′

n−1. After
feature extraction, F

′

n−1 is upsampled to the original size by
bilinear interpolation. Next, we fuse the F

′

n−1 with P
′

high for
preserving the initial details and obtain the feature F

′′

n−1. This
operation can be expressed as:

F
′′

n−1 = [fa(Phigh), ↑ f�
5

a (↓ F
′

n−1)], (7)

where fa denotes the operation of ARFB, f�
5

a means that
ARFB is called five times, ↑ denotes the upsampling, and ↓
denotes the downsampling.

For F
′′

n−1, as it is concatenated by two features, a 1 × 1
convolution layer is used to reduce the channel number. Then,
a channel attention module [34] is employed to highlight
channels with high activated values. After that there is a
ARFB to extract the final features. Finally, the global residual
connection is proposed to add the original features Fn−1 to Fn.
The goal of this operation is to learn the residual information
from the input and stabilize the training.

C. Lightweight Transformer Backbone (LTB)

Recent years, Transformer has made great progress in
computer vision task as its strong selfattention mechanism.
In SISR, similar image blocks within the image can be used
as reference images to each other, so that the texture details
of the currenct image block can be restored with reference
to other image blocks, which is proper to use Transformer.
However, previous variants of vision Transformer commonly
need heavy GPU memory cost, which hinders the develop-
ment of Transformer in the vision area. In this paper, we
propose a lightweight Transformer backbone (LTB), which is
composed of efficient Transformer (ET), to capture the long-
term dependence of similar local regions in the image at a low
computational cost.

1) Pre- and Post-processing for ET: Typically, the standard
Transformer takes a 1-D sequence as input, learning the long-
distance dependency of the sequence. However, for the vision
task, the input is always a 2-D image. The common way to
turn a 2-D image into a 1-D sequence is to sort the pixels in the
image one by one. But this method will lose the unique local
correlation of the image, leading to suboptimal performance.
In ViT [24], the 1-D sequence is generated by non-overlapping
block partitioning, which means there is no pixel overlap
between each block. In this paper, this pre-processing way
is eliminated as the experimental result is not good. Hence, a
novel processing way is proposed to handle the feature map.

To handle the 2-D feature maps for LR images, we use
unfolding technique to split the feature maps into patches.
Each patch is considered as a ”word”. Specifically, the feature
map Fori ∈ RC×H×W are unfolded (by k × k kernel) into a
sequence of patches, i.e., Fpi

∈ Rk2×C , i = {1, ..., N}, where
N = H ×W is the amount of patches. Here, the learnable
position embeddings are eliminated for each patch because
the ”Unfold” operation automatically reflects the position
information for each patch. It is redundant to add the location
embedding. Those patches Fp are directly sent to the ET. The
output of ET has the same shape as the input and we use the
”Fold” operation to reconstruct the feature map.

2) The Architecture of ET: The main architecture of ET is
shown in Fig. 8. For simplicity and efficiency, like ViT [24],
ET only uses the encoder structure of the standard Trans-
former. In the ET encoder, there consists of an efficient
multi-head attention (EMHA) and an MLP. Meanwhile, layer-
normalization (Norm) [35] is employed before every block,
and residual connection is also applied after each block. As-
sume that the input embeddings are Ei, the output embeddings
Eo can be obtained by:

Em1 = EMHA(Norm(Ei)) + Ei,

Eo =MLP (Norm(Em1)) + Em1.
(8)

Efficient Multi-Head Attention (EMHA). In EMHA, there
are several modifications to make the EMHA more efficient
and occupy lower GPU memory cost compared with the
original MHA [36]. Assume the shape of the input embedding
Ei is B×C ×N . Firstly, a Reduction layer is used to reduce
the number of channels by half (B×C1×N,C1 = C

2 ). After
that, a linear layer is adopted to project the feature map into
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Fig. 8: The architecture of the propose Efficient Transformer (ET).

three elements: Q (query), K (keys), V (values). As employed
in Transformer, we linearly project the Q, K, V m times to
perform the multi-head attention. m is the number of heads.
Next, the shape of three elements is reshaped and permuted
to B ×m×N × C1

m .
In original MHA, Q, K, V are directly used to calculate

the self-attention with large scale matrix multiplication, which
is a huge memory expense. Assume Q and K calculate the
self-attention matrix with shape B ×m ×N ×N . Then this
matrix computes the self-attention with V , the dimension in 3-
th and 4-th are N×N . For SISR, the images usually have high
resolution, causing that N is very large and the calculation of
self-attention matrix consumes a lot of GPU memory cost and
computational cost.

In the SR task, the predicted pixels in super-resolved images
commonly only depend on the local adjacent areas in LR.
Hence, in ET, a Feature Split Module (FSM) is used to split
Q, K, and V into s equal segments with splitting factor s.
Therefore, the dimension in 3-th and 4-th of the last self-matrix
is N

s ×
N
s , which can significantly reduce the computational

and GPU memory cost. We denote this segments as Q1, ..., Qs,
K1, ...,Ks, and V1, ..., Vs. Each triplet of these segments
is applied with Scaled Dot-Product Attention (SDPA), re-
spectively. The structure of SDPA is also shown in Fig. 8,
which just omits the Mask operation. Afterwards, all the
outputs (O1, O2, ..., Os) of SDPA are concatenated together
to generate the whole output feature O. Finally, an Expansion
layer is used to recover the number of channels.

D. Implements Details

In our proposed ESRT, we set 3×3 as the size of all convolu-
tion layer except that in the Reduction module, whose kernel
size is 1×1. Each convolution layer has 32 channels except for
the fusion layer which is twice. For image reconstruction part,
following most previous methods, we use PixelShuffle [37]
to upscale the last coarse features to fine features. The k in
HFP is 2 which means that the feature map is down-scaled by
half. In ESRT, the number of HPB is set to 3 and we set the
initial value of learnable weight in ARFB to 1. Meanwhile, the
number of ET in LTB is set to 1 to save the GPU memory.
The splitting factor s in ET is set to 4, the k in pre- and post-
process of ET is set to 3, and the head number m in EMHA
is set to 8, respectively.

IV. EXPERIMENTS

A. Datasets and Metrics

Our model is trained with the DIV2K [13] dataset, which is
widely used in SISR task. DIV2K contains 800 RGB training
images and 100 validation images with rich textures (2K
resolution). For evaluation, we use five benchmark datasets to
validate the effectiveness of our method, including Set5 [38],
Set14 [39], B100 [40], Urban100 [41], and Manga109 [42].
Meanwhile, Peak signal-to-noise ratio (PSNR) and structure
similarity index (SSIM) are used to evaluate the performance
of the reconstructed SR images. Following previous works, we
calculate the results on Y channel of YCbCr color space.
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Fig. 9: Trade-off between the number of parameters and
performance on Urban100 (×2).

Training Setting. Following previous works, we randomly
crop 16 LR image patches with the size of 48× 48 as inputs
of the model for training in each epoch. Random horizontal
flipping and 90 degree rotation are used for data augment.
The initial learning rate is 2 × 10−4 and decreased half for
every 200 epochs. The model is trained by Adam optimizer
with momentum equal to 0.9. L1 loss is used as it can produce
more sharp images compared with L2 loss. We implement our
model on Pytorch platform. Training an ESRT roughly takes
two days with one GTX1080Ti GPU for the whole training.

B. Comparisons With State-of-The-Art Methods

1) Objective Evaluation: In TABLE I, we compare our
ESRT with 13 state-of-the-art lightweight SR models, includ-
ing SRCNN [14], FSRCNN [15], VDSR [16], DRCN [3],
LapSRN [43], DRRN [2], MemNet [4], EDSR-baseline [17],
SRMDNF [44], CARN [7], FALSR [5], IMDN [11], and
LatticeNet [23]. Most of them achieve the best results at the
time with a well-designed structure in the lightweight SR task.

TABLE I shows the performance comparison for ×2, ×3,
and ×4 SR. Obviously, our ESRT achieves the best results
under all scaling factors. These CNN-based models use a well-
designed network to learn the mapping function between LR
and HR in a lightweight manner. They use channel splitting or
reducing the number of layers to lighten the model, but they all
ignore the model depth which is also of great importance for
SR. Our ESRT reduces the computation cost of each module
while ensuring that the network is very deep. According to
TABLE II we can see that our ESRT can achieve 163 layers
while other methods’ layers are extremely shallow compared
with our method. This is benefited from our HPB and ARFB
which can efficiently extract SR features while preserving
the high-frequency information. It is worth noting that ESRT
performs much better on the Urban100 dataset. The reason
is that the images in this dataset usually have many similar
patches in each image. Hence, profit from our LTB, ESRT can
easily capture the long-term dependencies among these similar
image patches and explore their relevance.

Also, the parameters comparison of these models is also
provided in TABLE I. We can clearly observe that al-
though EDSR-baseline (the champion of NTIRE2017 Super-

Resolution Challenge) has a close performance to our ESRT,
it has almost twice the parameters compared to ESRT. More-
over, LatticeNet has close parameters to ESRT, but ESRT
performs better on Set14, B100, Urban100, and Manga109.
We also visualize the trade-off analysis between the number
of parameters and performance among these lightweight SR
models in Fig. 9. All experiments fully demonstrated that
our ESRT achieves a great trade-off between model size and
performance.

2) Comparison on Computational Cost: In TABLE II, the
GFlops of other SR methods and our ESRT is calculated as the
input size is 1280×720 on ×4 scale. It can be seen that IMDN
has the least amount of computation as it uses the channel
splitting in many convolution layers. The GFlops of our ESRT
is 67.7G which is the second-least among these methods. With
so little computation, our method can even achieve 168 layers,
which extremely surpasses the other methods. Such many
layers are the reason why ESRT performs well. This table also
shows the running time of these methods. Our ESRT needs
0.01085 seconds for inference, which is longer than IMDN
but still meets the actual needs. From the last two rows, we
can see that the addition of ET only adds little running time
(only 0.00189s). In summary, our ESRT is an efficient and
accurate lightweight SR model.

3) Subjective Evaluation: In Fig. 10, we provide the visual
comparison between ESRT and other lightweight SR models
on ×2, ×3, and ×4. Obviously, SR images reconstructed by
our ESRT have more refined details, especially in the edges
and lines. It is worth noting that in ×4 scale, the gap between
our method and other SR models is more apparent. This further
validates the effectiveness of the propose ESRT.

C. Network Investigations

1) Study of High Preserving Block (HPB): HPB is an
important component of ESRT, which not only can reduce
the model size but maintain the high SR performance of the
model. As mentioned in Sec. III-B3, HPB is mainly composed
of HFM, ARFB, and CA. In TABLE III, we provide a series
of ablation studies to explore their effectiveness.

A. High Pathway: In cases 1 and 2, we investigate the
effectiveness of high pathway in HPB. Case 1 presents that the
HPB does not use in the HFM to extract the high-frequency
information and the red line in Fig. 6 is eliminated. This means
that the high-frequency information cannot be preserved and
added to the recovered features, which may cause the super-
resolved image visually unnatural. According to the results,
we can observe that the join of the high pathway adds almost
100K parameters and improve the 0.17dB PSNR. The above
experiment illustrates the effectiveness and necessity of the
high pathway.

B. Channel Attention (CA): In case 3, we drop the CA
in HPB to investigate its effectiveness. Compared with case
2, case 3 achieves the worse results with little parameter
reduction. This is because the CA can obtain the correlation
between channels and augment the representation ability of
some important channels, making the network focusing on
more useful information.
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TABLE I: Average PSNR/SSIM comparison on Set5, Set14, BSD100, Urban100, and Manga109. Best and second best
results are highlighted and underlined, respectively.

Method Scale Params Set5 Set14 BSD100 Urban100 Manga109
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

Bicubic

×2

- 33.66 / 0.9299 30.24 / 0.8688 29.56 / 0.8431 26.88 / 0.8403 30.80 / 0.9339
SRCNN [14] 8K 36.66 / 0.9542 32.45 / 0.9067 31.36 / 0.8879 29.50 / 0.8946 35.60 / 0.9663
FSRCNN [15] 13K 37.00 / 0.9558 32.63 / 0.9088 31.53 / 0.8920 29.88 / 0.9020 36.67 / 0.9710
VDSR [16] 666K 37.53 / 0.9587 33.03 / 0.9124 31.90 / 0.8960 30.76 / 0.9140 37.22 / 0.9750
DRCN [3] 1,774K 37.63 / 0.9588 33.04 / 0.9118 31.85 / 0.8942 30.75 / 0.9133 37.55 / 0.9732
LapSRN [43] 251K 37.52 / 0.9591 32.99 / 0.9124 31.80 / 0.8952 30.41 / 0.9103 37.27 / 0.9740
DRRN [2] 298K 37.74 / 0.9591 33.23 / 0.9136 32.05 / 0.8973 31.23 / 0.9188 37.88 / 0.9749
MemNet [4] 678K 37.78 / 0.9597 33.28 / 0.9142 32.08 / 0.8978 31.31 / 0.9195 37.72 / 0.9740
EDSR-baseline [17] 1,370K 37.99 /0.9604 33.57 /0.9175 32.16 / 0.8994 31.98 / 0.9272 38.54 / 0.9769
SRMDNF [44] 1,511K 37.79 / 0.9601 33.32 / 0.9159 32.05 / 0.8985 31.33 / 0.9204 38.07 / 0.9761
CARN [7] 1,592K 37.76 / 0.9590 33.52 / 0.9166 32.09 / 0.8978 31.92 / 0.9256 38.36 / 0.9765
IMDN [11] 694K 38.00 / 0.9605 33.63 / 0.9177 32.19 / 0.8996 32.17 / 0.9283 38.88 / 0.9774
LatticeNet [23] 756K 38.15 / 0.9610 33.78 / 0.9193 32.25 / 0.9005 32.43 / 0.9302 —– / —–
ESRT(ours) 677K 38.03 / 0.9600 33.75 / 0.9184 32.25 / 0.9001 32.58 / 0.9318 39.12 / 0.9774
Bicubic

×3

- 30.39 / 0.8682 27.55 / 0.7742 27.21 / 0.7385 24.46 / 0.7349 26.95 / 0.8556
SRCNN [14] 8K 32.75 / 0.9090 29.30 / 0.8215 28.41 / 0.7863 26.24 / 0.7989 30.48 / 0.9117
FSRCNN [15] 13K 33.18 / 0.9140 29.37 / 0.8240 28.53 / 0.7910 26.43 / 0.8080 31.10 / 0.9210
VDSR [16] 666K 33.66 / 0.9213 29.77 / 0.8314 28.82 / 0.7976 27.14 / 0.8279 32.01 / 0.9340
DRCN [3] 1,774K 33.82 / 0.9226 29.76 / 0.8311 28.80 / 0.7963 27.15 / 0.8276 32.24 / 0.9343
LapSRN [43] 502K 33.81 / 0.9220 29.79 / 0.8325 28.82 / 0.7980 27.07 / 0.8275 32.21 / 0.9350
DRRN [2] 298K 34.03 / 0.9244 29.96 / 0.8349 28.95 / 0.8004 27.53 / 0.8378 32.71 / 0.9379
MemNet [4] 678K 34.09 / 0.9248 30.00 / 0.8350 28.96 / 0.8001 27.56 / 0.8376 32.51 / 0.9369
EDSR-baseline [17] 1,555K 34.37 / 0.9270 30.28 / 0.8417 29.09 / 0.8052 28.15 / 0.8527 33.45 / 0.9439
SRMDNF [44] 1,528K 34.12 / 0.9254 30.04 / 0.8382 28.97 / 0.8025 27.57 / 0.8398 33.00 / 0.9403
CARN [7] 1,592K 34.29 / 0.9255 30.29 / 0.8407 29.06 / 0.8034 28.06 / 0.8493 33.50 / 0.9440
IMDN [11] 703K 34.36 / 0.9270 30.32 / 0.8417 29.09 / 0.8046 28.17 / 0.8519 33.61 / 0.9445
LatticeNet [23] 765K 34.53 / 0.9281 30.39 / 0.8424 29.15 / 0.8059 28.33 / 0.8538 —–/ —–
ESRT(ours) 770K 34.42 / 0.9268 30.43 / 0.8433 29.15 / 0.8063 28.46 / 0.8574 33.95 / 0.9455
Bicubic

×4

- 28.42 / 0.8104 26.00 / 0.7027 25.96 / 0.6675 23.14 / 0.6577 24.89 / 0.7866
SRCNN [14] 8K 30.48 / 0.8628 27.50 / 0.7513 26.90 / 0.7101 24.52 / 0.7221 27.58 / 0.8555
FSRCNN [15] 13K 30.72 / 0.8660 27.61 / 0.7550 26.98 / 0.7150 24.62 / 0.7280 27.90 / 0.8610
VDSR [16] 666K 31.35 / 0.8838 28.01 / 0.7674 27.29 / 0.7251 25.18 / 0.7524 28.83 / 0.8870
DRCN [3] 1,774K 31.53 / 0.8854 28.02 / 0.7670 27.23 / 0.7233 25.14 / 0.7510 28.93 / 0.8854
LapSRN [43] 502K 31.54 / 0.8852 28.09 / 0.7700 27.32 / 0.7275 25.21 / 0.7562 29.09 / 0.8900
DRRN [2] 298K 31.68 / 0.8888 28.21 / 0.7720 27.38 / 0.7284 25.44 / 0.7638 29.45 / 0.8946
MemNet [4] 678K 31.74 / 0.8893 28.26 / 0.7723 27.40 / 0.7281 25.50 / 0.7630 29.42 / 0.8942
EDSR-baseline [17] 1,518K 32.09 / 0.8938 28.58 / 0.7813 27.57 / 0.7357 26.04 / 0.7849 30.35 / 0.9067
SRMDNF [44] 1,552K 31.96 / 0.8925 28.35 / 0.7787 27.49 / 0.7337 25.68 / 0.7731 30.09 / 0.9024
CARN [7] 1,592K 32.13 / 0.8937 28.60 / 0.7806 27.58 / 0.7349 26.07 / 0.7837 30.47 / 0.9084
IMDN [11] 715K 32.21 / 0.8948 28.58 / 0.7811 27.56 / 0.7353 26.04 / 0.7838 30.45 / 0.9075
LatticeNet [23] 777K 32.30 / 0.8962 28.68 / 0.7830 27.62 / 0.7367 26.25 / 0.7873 —–/ —–
ESRT(ours) 751K 32.19 / 0.8947 28.69 / 0.7833 27.69 / 0.7379 26.39 / 0.7962 30.75 / 0.9100

C. Adaptive Residual Feature Block (ARFB): In TA-
BLE III, RF stands for the residual block proposed in
EDSR [17], which is widely used in SISR. In Case 2 and Case
4, we compare the performance and the number of parameters
between ARFB and RB (in EDSR [17]). We can see that if
ESRT replaces ARFB with RB as the basic feature extraction
unit, the PSNR just rises 0.01dB but the parameters go up
to 972K. This means that our ARFB significantly reduces the
number of parameters without losing too much performance.

All the above experiments fully demonstrated the effective-
ness of HPB. Meanwhile, these experiments indicate the ne-
cessity and effectiveness of the introduction of these modules
and mechanisms within HPB.

2) Study of Efficient Transformer (ET): To capture the long-
term dependencies of similar local regions in the image, we
add the ET behind the LCB. To illustrate the efficiency and
effectiveness of ET, we provide the following experiments:

A. TR v.s. w/o TR: Firstly, we analyze the model with and
without Transformer in TABLE IV. We can see that if ESRT
drops the ET, the model performance descends obviously from

32.18dB to 31.96dB. From this, it can be inferred that the
correlation of long-term image patches is beneficial for image
super-resolution. We think the reason is that a natural scene
picture has many similar pixel blocks and these blocks always
can complete other missing information as a reference. Hence,
the addition of Transformer provides this completion message.

B. TR v.s. Original TR: Secondly, we compare the model
with the original Transformer in vision (we use the ViT [24]
version) to our ESRT (’1 ET’). From TABLE IV we can see
that for the original TR, it increases the 417M parameters
while our ET just adds 197M parameters. This benefits from
the Reduction module to reduce the number of channels.
Also, for GPU memory, the original TR needs to occupy
16057M memory which even cannot run on some common
NVIDIA GPUs like 1080Ti and 2080Ti. Contrastly, our ET
just occupies 4191M GPU memory, which only 1/4 of the
original ET. More surprising is that the performance of the
model with the original Transformer is even worse than our
ESRT. This is because the model with the original Transformer
needs more data to train while the datasets are usually small
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TABLE II: Network structure settings comparison between our ESRT and other lightweight SR models.

Method Input #Layers Residual learning Parameters GFlops(x4) Running time
SRCNN [14] LR+bicubic 3 No 0.008M 52.7G 0.00111s
VDSR [16] LR+bicu 20 Yes 0.67M 612.6G 0.00597s

LapSRN [43] LR 27 Yes 0.25M 149.4G 0.00330s
DRRN [2] LR+bicubic 52 No 0.30M 6796.9G 0.08387s
CARN [7] LR 34 Yes 1.6M 90.9G 0.00278s
IMDN [7] LR 34 Yes 0.7M 40.9G 0.00258s

ESRT w/o ET LR - - - - 0.00896s
ESRT LR 163 Yes 0.68M 67.7G 0.01085s

Bicubic SRCNN IMDNLapSRN CARN ESRT（Ours） Ground-Truth2：

Bicubic SRCNN IMDNLapSRN CARN ESRT（Ours） Ground-Truth3：

Bicubic SRCNN IMDNLapSRN CARN ESRT（Ours） Ground-Truth4：

Fig. 10: Visual comparison with other SR methods. Our ESRT can reconstruct realistic SR images with sharper edges.
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TABLE III: Study of each component in HPB. The
experiment is performed on Set5 (×4).

Case Index 1 2 3 4
High pathway

√ √ √

CA
√ √ √

ARFB
√ √ √

RB
√

Parameters(K)×4 658 751 724 972
PSNR(dB) ×4 32.02 32.19 32.08 32.20
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Fig. 11: Performance comparison of cases in TABLE III.

in the SISR task.
C. The Number of ET: In general, increasing the number

of convolutional layers can increase the model performance.
In view of this, we add the number of ET. From TABLE IV,
we can see that if we add the number of ET to two, the PSNR
is much higher than the model with only 1 ET, while the
parameters add up to 949K. And if we add the number of
ET to three, the PSNR is the same as the ‘2 ET’ model.
This indicates that the performance of the model cannot be
improved simply by increasing the number of ET. In this work,
to keep consistent with other lightweight models in the aspect
of parameters, only one ET is used in ESRT.

D. The Splitting Factor s: In MHA, a Feature Split Module
(FSM) is used to split the original Q, K, and V into s segments

TABLE IV: Study of Efficient Transformer. The experiment
is performed on Set5 (×4).

Case PSNR(dB) Parameters(K) GPU memory (M)
w/o TR 31.96 554 1931M

Original TR 32.14 971 16057M
1 ET 32.18 751 4191M
2 ET 32.25 949 6499M
3 ET 32.25 1147 8217M
s=2 32.15 751 6731M
s=4 32.18 751 4191M
s=6 32.04 751 3159M

TABLE V: Adding ET into RCAN.

Scale Model #Param Set5 Set14 B100 Urban100

×2 RCAN 16M 38.27 34.12 32.46 33.54
RCAN/2+ET 8.5M 38.25 34.15 32.42 33.61

×3 RCAN 16M 34.74 30.65 29.32 29.09
RCAN/2+ET 8.7M 34.69 30.63 29.35 29.16

×4 RCAN 16M 32.63 28.87 27.77 26.82
RCAN/2+ET 8.7M 32.60 28.90 27.76 26.87

2

3

4

LR HRESRT

Fig. 12: Visual comparison on RealSR dataset.

to save the GPU memory. Commonly, the s is smaller, the
split segments are shorter and the GPU memory occupation is
less. In TABLE IV, we investigate the different value of s. As
shown in TABLE IV, the model achieves the best performance
when s is set to 4. Meanwhile, we can observe that GPU
memory is not relevant to s linearly. The change of s does
not affect the number of parameters.

3) The Universality of ET: In order to verify the effec-
tiveness and universality of the proposed ET, we add the ET
into RCAN [18]. It is worth noting that we only use the half
structure of RCAN (group number=5, original=10) and add
the ET before the reconstruction part. According TABLE V
we can see that the performance of the model ”RCAN/2+ET”
is close to the original RCAN with fewer parameters. It is
worth noting that the PSNR on Urban100 of ”RCAN/2+ET” is
always higher than the original RCAN. This is because our ET
can effectively model the relationship between image blocks,
so it can effectively improve the model performance.

4) Study of Pure Transformer: In general, the pure
Transformer-based architecture is more efficient and scalable
than previous CNN-based architecture in both model size and
computational scale. And the hybrid Transformer can perform
better than the pure Transformer model on a smaller model.
To verify whether this property exists in the proposed ET,
we test the performance of pure Transformer-based ESRT.
Specifically, we modify ESRT to the pure Transformer by
removing the LCB, to test the effectiveness of ET in the setting
of pure Transformer. We define the modified Transformer
as ”Pure-ESRT”. The result is shown in TABLE VI. It can
be seen that if the number of ET in LTB is 1 in both
Pure-ESRT and ESRT, the performance of Pure-ESRT will
significantly decrease compared with ESRT. This means that
LCB can effectively make up for the feature extraction ability
of Transformer with little computation cost. Meanwhile, if the
number of ET is small, the Pure-ESRT performs badly without
the huge pretrained dataset.

Meanwhile, we also tested the PSNR of Pure-ESRT when
adding the quantity of ET. The model ”2ET” has a huge
improvement compared to ”1ET”. Moreover, ”4ET” has a
close performance to the ESRT on five datasets. However,
the parameters and GPU memory cost of ”4ET” are higher
than ESRT. When the number of ET is continued to increase
to 6, Pure-ESRT outperforms ESRT on all five benchmarks,
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TABLE VI: The performance of Pure-ESRT.

Model Parameter GPU occupy Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR / SSIM

ESRT 751K 4191M 32.19/0.8947 28.69/0.7833 27.69/0.7379 26.39/0.7962 30.75/0.9100
1ET 357K 3967M 31.01/0.8751 27.85/0.7636 27.10/0.7203 25.00/0.7459 28.22/0.8726
2ET 564K 5685M 31.77/0.8878 28.39/0.7758 27.42/0.7312 25.73/0.7728 29.76/0.8978
3ET 771K 7409M 32.10/0.8926 28.59/0.7808 27.57/0.7360 26.13/0.7853 30.32/0.9057
4ET 978K 9121M 32.29/0.8948 28.71/0.7830 27.64/0.7384 26.42/0.7936 30.69/0.9109
6ET 1392K 12647M 32.36/0.8965 28.80/0.7850 27.70/0.7405 26.69/0.8016 30.97/0.9135
8ET 1806K 16163M 32.40/0.8751 28.84/0.7858 27.73/0.7412 26.83/0.8048 31.11/0.9146

SAN [19] 15700K 12912M 32.64/0.9003 28.92/0.7888 27.78/0.7436 26.79/0.8068 31.18/0.9169

TABLE VII: PSNR/SSIM comparison on the RealSR dataset.

Scale Bicubic SRCNN [14] VDSR [16] SRResNet [45] IMDN [11] ESRT
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

×2 32.61 0.907 33.40 0.916 33.64 0.917 33.69 0.919 33.85 0.923 33.92 0.924
×3 29.34 0.841 29.96 0.845 30.14 0.856 30.18 0.859 30.29 0.857 30.38 0.857
×4 27.99 0.806 28.44 0.801 28.63 0.821 28.67 0.824 28.68 0.815 28.78 0.815

especially on Set5 and Urban100. For ”8ET”, the performance
of the model continues to increase, but the increased am-
plification is not obvious. From the table, we can see that
the biggest PSNR improvement with each increase in the
number of ET is the Urban100 benchmark. This illustrates
that Transformer architecture is able to model similar areas
within the image in the SR task. We can see that our ”8ET”
model has close performance compared with the state-of-the-
art method SAN [19] and our model has fewer parameters
(only one-ninth the size of SAN). Our model even performs
better on Urban100 benchmark than SAN. The increase of
ET can improve the performance of Pure-ESRT, which also
reflects that the built Pure-ESRT can achieve comparable SR
performance compared with a well-designed CNN model.

D. Real World Image Super-resolution

To further verify the validity of the model, we also compare
our ESRT with some classic lightweight SR models (e.g.,
SRCNN [14], VDSR [16], SRResNet [45], and IMDN [11])
on the real image dataset (RealSR [46]). All these models
are retrained on RealSR dataset for a fair comparison. It is
worth noting that as the shape of LR and HR is the same, the
PixelShuffle is removed in our model and only one convolution
layer is applied to change the feature map into SR images. The
patch size is 128× 128 during training. Other settings are the
same as the training for DIV2K. The results are shown in
TABLE VII. According to the table, the bicubic interpolation
obtains the least average accuracy in three scales, indicating
its low suitability for handling the real scene. Contrastly, our
ESRT achieves the best PSNR and SSIM in all three scales
with a large margin. Particularly, compared to IMDN, the
performance of ESRT gains 0.07dB, 0.09dB, and 0.10dB for
scaling factors ×2, ×3, and ×4, respectively. Simultaneously,
we provide the visual comparisons in Fig. 12. Obviously, our
ESRT recovers line edges effectively, such as some Chinese
words and English words. Also, ESRT can restore the texture
details well, such as the grid lines in the air conditioner. All
these experiments shows that our method can still obtain a
good SR property in the real world.

V. DISCUSSIONS

Here, we will give a brief view of the benefits and limita-
tions of the proposed methods.

Benefits of LCB. LCB solves the problem of Transformer’s
poor feature extraction ability on small datasets. It is a
lightweight architecture that can efficiently extract deep SR
features. Meanwhile, LCB can be easily embedded into any SR
model to reduce parameters and calculation costs, and maintain
good performance.

Benefits of ET. ET solves the problem of heavy GPU
memory consumption and large parameters in other vision
Transformer. Meanwhile, ET can model the dependence be-
tween long-term sub-image blocks in the LR, enhancing the
structural information of every image region. It has been
improved that model such a long-term dependency of similar
local regions is helpful for SR task. Meanwhile, ET is a
lightweight and universal module that can be embedded into
any present SR model to further improve model performance.

Limitations of ESRT. As we know, CNN with few layers
has a small receptive field while with many layers has a heavy
computational cost. By contrast, Transformer can capture
the global contextual information by attention mechanism to
establish long-term dependence in a sequence, to extract more
powerful features. However, the current ESRT mainly consists
of a convolutional neural network and a Transformer. This
means that the convolution operations are not completely
eliminated in the model. In future work, we will explore
a full Transformer SR model to further improve the model
performance and reduce the computational cost.

VI. CONCLUSION

In this work, we propose a novel efficient SR Transformer
(ESRT) for lightweight SISR. ESRT first utilizes a lightweight
CNN backbone (LCB) to extract deep features and then
uses a lightweight Transformer backbone (LTB) to model the
long-term dependence between similar local regions in the
image. In LCB, we propose a high preserving block (HPB)
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to reduce the computational cost by down-sampling and up-
sampling the feature map progressively and retain the high-
frequency information to the restored feature map with the
help of the designed high-frequency filtering module. In LTB,
an efficient Transformer is designed to enhance the feature
representation ability at a low computational cost and GPU
memory occupation with the help of proposed efficient multi-
head attention (EMHA). Extensive benchmark and real-world
datasets demonstrate that our ESRT achieves the best trade-off
between model performance and computation cost.
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