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Abstract

Cross view feature fusion is the key to address the occlu-
sion problem in human pose estimation. The current fusion
methods need to train a separate model for every pair of
cameras making them difficult to scale. In this work, we in-
troduce MetaFuse, a pre-trained fusion model learned from
a large number of cameras in the Panoptic dataset. The
model can be efficiently adapted or finetuned for a new pair
of cameras using a small number of labeled images. The
strong adaptation power of MetaFuse is due in large part
to the proposed factorization of the original fusion model
into two parts— (1) a generic fusion model shared by all
cameras, and (2) lightweight camera-dependent transfor-
mations. Furthermore, the generic model is learned from
many cameras by a meta-learning style algorithm to max-
imize its adaptation capability to various camera poses.
We observe in experiments that MetaFuse finetuned on the
public datasets outperforms the state-of-the-arts by a large
margin which validates its value in practice.

1. Introduction
Estimating 3D human pose from multi-view images has

been a longstanding goal in computer vision. Most works
follow the pipeline of first estimating 2D poses in each cam-
era view and then lifting them to 3D space, for example,
by triangulation [15] or by pictorial structure model [25].
However, the latter step generally depends on the quality
of 2D poses which unfortunately may have large errors in
practice especially when occlusion occurs.

Multi-view feature fusion [39, 25] has great potential to
solve the occlusion problem because a joint occluded in one
view could be visible in other views. The most challenging
problem in multi-view fusion is to find the corresponding
locations between different cameras. In a recent work [25]
, this is successfully solved by learning a fusion network
for each pair of cameras (referred to as NaiveFuse in this
paper). However, the learned correspondence is dependent

(a) Large-Scale Pretraining of MetaFuse from many camera views.

(b) Efficient Adaptation of MetaFuse to Unseen Camera placement.

Figure 1. Concept of MetaFuse. We learn a pre-trained feature
fusion model from a large number of cameras, i.e. the green dots
in (a). Then for a new environment, we finetune the pre-trained
model for each camera pair using only a few training data to get
a customized 2D pose estimator. The feature fusion allows us to
localize the 2D joints even when occlusion occurs as in (b).

on camera poses so they need to retrain the model when
camera poses change which is not flexible.

This work aims to address the flexibility issue in multi-
view fusion. To that end, we introduce a pre-trained cross
view fusion model MetaFuse, which is learned from a large
number of camera pairs in the CMU Panoptic dataset [17].
The fusion strategies and learning methods allow it to be
rapidly adapted to unknown camera poses with only a few
labeled training data. See Figure 1 for illustration of the
concept. One of the core steps in MetaFuse is to factor-
ize NaiveFuse [25] into two parts: a generic fusion model
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shared by all cameras and a number of lightweight affine
transformations. We learn the generic fusion model to max-
imize its adaptation performance to various camera poses
by a meta-learning style algorithm. In the testing stage, for
each new pair of cameras, only the lightweight affine trans-
formations are finetuned utilizing a small number of train-
ing images from the target domain.

We evaluate MetaFuse on three public datasets includ-
ing H36M [14], Total Capture [34] and CMU Panoptic [17].
The pre-training is only performed on the Panoptic dataset
which consists of thousands of camera pairs. Then we
finetune MetaFuse on each of the three target datasets to
get customized 2D pose estimators and report results. For
example, on the H36M dataset, MetaFuse notably outper-
forms NaiveFuse [25] when 50, 100, 200 and 500 images
are used for training the fusion networks, respectively. This
validates the strong adaptation power of MetaFuse. In ad-
dition, we find that MetaFuse finetuned on 50 images 1 al-
ready outperforms the baseline without fusion by a large
margin. For example, the joint detection rate for elbow im-
proves from 83.7% to 86.3%.

We also conduct experiments on the downstream 3D
pose estimation task. On the H36M dataset, MetaFuse gets
a notably smaller 3D pose error than the state-of-the-art. It
also gets the smallest error of 32.4mm on the Total Capture
dataset. It is worth noting that in those experiments, our
approach actually uses significantly fewer training images
from the target domain compared to most of the state-of-
the-arts. The results validate the strong adaptation capabil-
ity of MetaFuse.

1.1. Overview of MetaFuse

NaiveFuse learns the spatial correspondence between a
pair of cameras in a supervised way as shown in Figure 2. It
uses a Fully Connected Layer (FCL) to densely connect the
features at different locations in the two views. A weight
in FCL, which connects two features (spatial locations) in
two views, represents the probability that they correspond
to the same 3D point. The weights are learned end-to-end
together with the pose estimation network. See Section 3
for more details. One main drawback of NaiveFuse is that it
has many parameters which requires to label a large number
of training data for every pair of cameras. This severely
limits its applications in practice.

To resolve this problem, we investigate how features in
different views are related geometrically as shown in Fig-
ure 3. We discover that NaiveFuse can be factorized into
two parts: a generic fusion model shared by all cameras as
well as a number of camera-specific affine transformations
which have only a few learnable parameters (see Section
4). In addition, inspired by the success of meta-learning

1Labeling human poses for 50 images generally takes several minutes
which is practical in many cases.
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Figure 2. The NaiveFuse model. It jointly takes two-view images
as input and outputs 2D poses simultaneously for both views in
a single CNN. The fusion module consists of multiple FCLs with
each connecting an ordered pair of views. The weights, which
encode the camera poses, are learned end-to-end from data.

in the few-shot learning literature [10, 19, 28], we propose
a meta-learning algorithm to learn the generic model on a
large number of cameras to maximize its adaptation perfor-
mance (see Section 4.2). This approach has practical values
in that, given a completely new multi-camera environment
and a small number of labeled images, it can significantly
boost the pose estimation accuracy.

2. Related work

Multi-view Pose Estimation We classify multi-view 3D
pose estimators into two classes. The first class is model
based approaches such as [21, 5, 11, 27]. They define a
body model as simple primitives such as cylinders, and
optimize their parameters such that the model projection
matches the image features. The main challenge is the dif-
ficult non-linear non-convex optimization problems which
has limited their performance to some extent.

With the development of 2D pose estimation techniques,
some approaches such as [1, 7, 6, 24, 4, 8, 25] adopt a sim-
ple two-step framework. They first estimate 2D poses from
multi-view images. Then with the aid of camera parameters
(assumed known), they recover the corresponding 3D pose
by either triangulation or by pictorial structure models. For
example in [1], the authors obtain 3D poses by direct tri-
angulation. Later the authors in [6] and in [24] propose to
apply a multi-view pictorial structure model to recover 3D
poses. This type of approaches have achieved the state-of-
the-art performance in recent years.

Some previous works such as [1, 39, 25] have explored
multi-view geometry for improving 2D human pose esti-
mation. For example, Amin et al. [1] propose to jointly
estimate 2D poses from multi-view images by exploring
multi-view consistency. It differs from our work in that
it does not actually fuse features from other views to ob-
tain better 2D heatmaps. Instead, they use the multi-view
3D geometric relation to select the joint locations from the
“imperfect” heatmaps. In [39], multi-view consistency is
used as a source of supervision to train the pose estimation
network which does not explore multi-view feature fusion.
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NaiveFuse [25] is proposed for the situation where we have
sufficient labeled images for the target environment. How-
ever, it does not work in a more practical scenario where
we can only label a few images for every target camera. To
our knowledge, no previous work has attempted to solve the
multi-view fusion problem in the context of few-shot learn-
ing which has practical values.

Meta Learning Meta-learning refers to the framework
which uses one learning system to optimize another learn-
ing system [35]. It learns from task distributions rather than
a single task [26, 28] with the target of rapid adaptation to
new tasks. It has been widely used in few-shot classifica-
tion [19, 28, 30] and reinforcement learning [9, 23] tasks.
Meta learning can be used as an optimizer. For example,
Andrychowicz et al. [3] use LSTM meta-learner to learn up-
dating base-learner, which outperforms hand-designed op-
timizers on the training tasks. For classification, Finn et al.
[10] propose Model-Agnostic Meta-Learning (MAML) to
learn good parameter initializations which can be rapidly
finetuned for new classification tasks. Sun et al. [31] pro-
pose Meta-Transfer learning that learns scaling and shifting
functions of DNN weights to prevent catastrophic forget-
ting. The proposed use of meta-learning to solve the adap-
tation problem in cross view fusion has not been studied
previously, and has practical values.

3. Preliminary for Multi-view Fusion
We first present the basics for multi-view feature fusion

[12, 39, 25] to lay the groundwork for MetaFuse. Let P be
a point in 3D space as shown in Figure 3. The projected 2D
points in view 1 and 2 are Y 1

P ∈ Z1 and Y 2
P ∈ Z2, respec-

tively. The Z1 and Z2 denote the set of pixel coordinates
in two views, respectively. The features of view 1 and 2 at
different locations are denoted as F1 = {x1

1, · · · ,x1
|Z1|}

and F2 = {x2
1, · · · ,x2

|Z2|}. The core for fusing a feature
x1
i in view one with those in view two is to establish the

correspondence between the two views:

x1
i ← x1

i +

|Z2|∑
j=1

ωj,i · x2
j , ∀i ∈ Z1, (1)

where ωj,i is a scalar representing their correspondence
relation— ωj,i is positive when x1

i and x2
j correspond to

the same 3D point. It is zero when they correspond to dif-
ferent 3D points. The most challenging task is to determine
the values of all ωj,i for each pair of cameras (i.e. to find the
corresponding points).

Discussion For each point Y 1
P in view 1, we know the

corresponding point Y 2
P has to lie on the epipolar line I . But

we cannot determine the exact location of Y 2
P on I . Instead

𝑌𝑃
1 𝑌𝑃

2

𝑃

𝐼

C3

Figure 3. Geometric illustration of multi-view feature fusion. An
image point Y 1

P back-projects to a ray in 3D defined by the first
camera center C1 and Y 1

P . This line is imaged as I in the second
view. The 3D point P which projects to Y 1

P must lie on this ray,
so the image of P must lie on I . If the camera poses change, for
example, we move the camera 2 to 3, then we can approximately
get the corresponding line by applying an appropriate affine trans-
formation to I . See section 4.

of trying to find the exact pixel to pixel correspondence, we
fuse x1

i with all features on line I . Since fusion happens in
the heatmap layer, ideally, x2

j has large values near Y 2
P and

zeros at other locations on the epipolar line I . It means the
non-corresponding locations on the line will not contribute
to the fusion. So fusing all pixels on the epipolar line is an
appropriate solution.

Implementation The above fusion strategy is imple-
mented by FCLs (which are appended to the pose estimation
network) in NaiveFuse as shown in Figure 2. The whole
network, together with the FCL parameters, can be trained
end-to-end by enforcing supervision on the fused heatmaps.
However, FCL naively connects each pixel in one view with
all pixels in the other view, whose parameters are position-
sensitive and may undergo dramatic changes even when the
camera poses change slightly. So it is almost impossible
to learn a pre-trained model that can be adapted to various
camera poses using small data as our MetaFuse. In addition,
the large FCL parameters increase the risk of over-fitting to
small datasets and harm its generalization ability.

Note that we do not claim novelty for this NaiveFuse ap-
proach as similar ideas have been explored previously such
as in [39, 25]. Our contributions are two-fold. First, it refor-
mulates NaiveFuse by factorizing it into two smaller models
which significantly reduces the number of learnable param-
eters for each pair of cameras in deployment. Second, we
present a meta-learning style algorithm to learn the refor-
mulated fusion model such that it can be rapidly adapted to
unknown camera poses with small data.
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4. MetaFuse
Let ωbase ∈ RH×W be a basic fusion model, i.e. the fu-

sion weight matrix discussed in Section 3, which connects
ONE pixel in the first view with all H × W pixels in the
second view. See Figure 3 for illustration. For other pixels
in the first view, We will construct the corresponding fu-
sion weight matrices by applying appropriate affine trans-
formations to the basic weight matrix ωbase. In addition, we
also similarly transform ωbase to obtain customized fusion
matrices for different camera pairs. In summary, this basic
fusion weight matrix (i.e. the generic model we mentioned
previously) is shared by all cameras. We will explain this in
detail in the following sections.

4.1. Geometric Interpretation

From Figure 3, we know Y 1
P corresponds to the line I

in camera 2 which is characterized by ωbase. If camera 2
changes to 3, we can obtain the epipolar line by applying
an appropriate affine transformation to I . This is equiva-
lent to applying the transformation to ωbase. Similarly, we
can also adapt ωbase for different pixels in view one. Let
ωi ∈ RH×W be the fusion model connecting the ith pixel
in view 1 with all pixels in view 2. We can compute the
corresponding fusion model by applying a dedicated trans-
formation to ωbase

ωi ← Tθi(ωbase), ∀i, (2)

where T is the affine transformation and θi is a six-
dimensional affine transformation parameter for the ith
pixel which can be learned from data. See Figure 4 for illus-
tration. We can verify that the total number of parameters
in this model is only Z2 + 6× Z1. In contrast, the number
of parameters in the original naive model is Z1×Z2 which
is much larger (Z1 and Z2 are usually 642). The notable
reduction of the learnable parameters is critical to improve
the adaptation capability of MetaFuse. Please refer to the
Spatial Transformer Network [16] for more details about
the implementation of T.

With sufficient image and pose annotations from a pair
of cameras, we can directly learn the generic model ωbase

and the affine transformation parameters θi for every pixel
by minimizing the following loss function:

LDTr(ω
base, θ) =

1

|DTr|
∑

F,Fgt∈DTr

MSE(f[ωbase;θ](F),Fgt),

(3)
where F are the initially estimated heatmaps (before fu-
sion), and f[ωbase;θ] denotes the fusion function with param-
eters ωbase and θ. See Eq.(1) and Eq.(2) for how we con-
struct the fusion function. Fgt denotes the ground-truth
pose heatmaps. Intuitively, we optimize ωbase and θ such
as to minimize the difference between the fused heatmaps

Base weight

Transformation parameters

Affine Transformation

Customized weights

𝜔𝜔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝜃𝜃1𝜃𝜃2
𝜃𝜃 

𝜔𝜔1
𝜔𝜔2

𝜔𝜔 

Figure 4. Applying different affine transformations Tθi(·) to the
generic base weight ωbase to obtain the customized fusion weight
ωi for each pixel in view one.

CNN

CNN

𝜔𝑏𝑎𝑠𝑒𝜃

𝑇𝜃 (𝜔
𝑏𝑎𝑠𝑒)

FCL

Initial 

Heatmap

Initial 

Heatmap

Fused 

Heatmap

Target 

Heatmap

−

Supervision

Image 1

Image 2

Fusion Module

2

Figure 5. The pipeline for training MetaFuse. In the first step, we
pre-train the backbone network before fusion on all training im-
ages by regular gradient descent. In the second step, we fix the
backbone parameters and meta-train ωbase and θ. In the testing
stage, for a new camera configuration, we fix ωbase and only fine-
tune the transformation parameters θ based on small training data
from the target camera.

and the ground truth heatmaps. We learn different θs for
different pixels and camera pairs. It is also worth noting
that both θ and ωbase are global variables which do not de-
pend on images. The loss function can be simply minimized
by stochastic gradient descent. However, the model trained
this way cannot generalize to new cameras with sufficient
accuracy when only a few labeled data are available.

4.2. Learning MetaFuse

We now describe how we learn MetaFuse including the
generic model (i.e. ωbase and the initializations of θ) from
a large number of cameras so that the learned fusion model
can rapidly adapt to new cameras using small data. The
algorithm is inspired by a meta-learning algorithm proposed
in [10]. We describe the main steps for learning MetaFuse
in the following subsections.

Warming Up In the first step, we train the backbone net-
work (i.e. the layers before the fusion model) to speed up
the subsequent meta-training process. All images from the
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training dataset are used for training the backbone. The
backbone parameters are directly optimized by minimizing
the MSE loss between the initial heatmaps and the ground
truth heatmaps. Note that the backbone network is only
trained in this step, and will be fixed in the subsequent meta-
training step to notably reduce the training time.

Meta-Training In this step, as shown in Figure 5, we
learn the generic fusion model ωbase and the initializations
of θ by a meta-learning style algorithm. Generally speak-
ing, the two parameters are sequentially updated by com-
puting gradients over pairs of cameras (sampled from the
dataset) which are referred to as tasks.

Task is an important concept in meta-training. In particu-
lar, every task Ti is associated with a small datasetDi which
consists of a few images and ground truth 2D pose heatmaps
sampled from the same camera pair. For example, the cam-
era pair (Cam1,Cam2) is used in task T1 while the camera
pair (Cam3,Cam4) is used in in task T2. We learn the fusion
model from many of such different tasks so that it can get
good results when adapted to a new task by only a few gra-
dient updates. Let {T1, T2, · · · , TN} be a number of tasks.
Each Ti is associated with a dataset Di consisting of data
from a particular camera pair. Specifically, eachDi consists
of two subsets: Dtraini and Dtesti . As will be clarified later,
both subsets are used for training.

We follow the model-agnostic meta-learning framework
[10] to learn the optimal initializations for ωbase and θ. In
the meta-training process, when adapted to a new task Ti,
the model parameters ωbase and θ will become ωbase′ and
θ′, respectively. The core of meta-training is that we learn
the optimal ωbase and θ which will get a small loss on this
task if it is updated based on the small dataset of the task.
Specifically, ωbase′ and θ′ can be computed by performing
gradient descent on task Ti

θ′ = θ − α∇θLDtrain
i

(ωbase, θ) (4)

ωbase′ = ωbase − α∇ωbaseLDtrain
i

(ωbase, θ). (5)

The learning rate α is a hyper-parameter. It is worth not-
ing that we do not actually update the model parameters
according to the above equations. ωbase′ and θ′ are the in-
termediate variables as will be clarified later. The core idea
of meta learning is to learn ωbase and θ such that after ap-
plying the above gradient update, the loss for the current
task (evaluated on Dtesti ) is minimized. The model pa-
rameters are trained by optimizing for the performance of
LDtest

i
(ωbase′, θ′) with respect to ωbase and θ, respectively,

across all tasks. Note that, ωbase′ and θ′ are related to the
initial parameters ωbase and θ because of Eq.(4) and Eq.(4).
More formally, the meta-objective is as follows:

min
ωbase,θ

LDtest
i
(ωbase′, θ′) (6)

The optimization is performed over the parameters ωbase
and θ, whereas the objective is computed using the updated
model parameters ωbase′ and θ′. In effect, our method aims
to optimize the model parameters such that one or a small
number of gradient steps on a new task will produce maxi-
mally effective behavior on that task. We repeat the above
steps iteratively on each taskDi ∈ {D1,D2, · · · ,DN}. Re-
call that each Di corresponds to a different camera configu-
ration. So it actually learns a generic ωbase and θ which can
be adapted to many camera configurations with the gradi-
ents computed on small data. The ωbase will be fixed after
this meta-training stage.

4.3. Finetuning MetaFuse

For a completely new camera configuration, we adapt the
meta-trained model by finetuning θ. This is realized by di-
rectly computing the gradients to θ on a small number of
labeled training data. Due to the lack of training data, the
generic model ωbase which is shared by all camera config-
urations will not be updated. The number of learnable pa-
rameters in this step is 6 × H ×W which is only several
thousands in practice.

5. Experiments
5.1. Datasets, Metrics and Details

CMU Panoptic Dataset This dataset [17] provides im-
ages captured by a large number of synchronized cameras.
We follow the convention in [37] to split the training and
testing data. We select 20 cameras (i.e. 380 ordered cam-
era pairs) from the training set to pre-train MetaFuse. Note
that we only perform pre-training on this large dataset, and
directly finetune the learned model on each target dataset
to get a customized multi-view fusion based 2D pose esti-
mator. For the sake of evaluation on this dataset, we select
six from the rest of the cameras. We run multiple trials and
report average results to reduce the randomness caused by
camera selections. In each trial, four cameras are chosen
from the six for multi-view fusion.

H36M Dataset This dataset [14] provides synchronized
four-view images. We use subjects 1, 5, 6, 7, 8 for finetun-
ing the pre-trained model, and use subjects 9, 11 for testing
purpose. It is worth noting that the camera placement is
slightly different for each of the seven subjects.

Total Capture Dataset In this dataset [34], there are five
subjects performing four actions including Roaming(R),
Walking(W), Acting(A) and Freestyle(FS) with each re-
peating 3 times. We use Roaming 1,2,3, Walking 1,3,
Freestyle 1,2 and Acting 1,2 of Subjects 1,2,3 for finetun-
ing the pre-trained model. We test on Walking 2, Freestyle
3 and Acting 3 of all subjects.
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GT Heatmap Initial Heatmap Fused Heatmap Warped #1 Warped #2 Warped #3

Figure 6. Heatmaps estimated by MetaFuse. The first figure shows the ground truth heatmap of left knee. The second shows the initially
detected heatmap. The highest response is at the wrong location. The third image shows the fused heatmap which correctly localizes the
left knee. The rest images show the heatmaps warped from the other three views.

Table 1. Description of the baselines.

Names Description

No-Fusion This is a simple baseline which does not perform multi-view fusion. It is equivalent to estimating
poses in each camera view independently. This approach has the maximum flexibility since it can
be directly applied to new environments without adaptation.

NaiveFusefull This baseline directly trains the NaiveFuse model using all images from the target camera config-
uration. This can be regarded as an upper bound for MetaFuse when there are sufficient training
images. This approach has the LEAST flexibility because it requires to label a large number of
images from each target camera configuration.

NaiveFuseK This baseline pre-trains the NaiveFuse model on the Panoptic dataset (using four selected cameras)
by regular stochastic gradient descent. Then it finetunes the pre-trained model on K images from
the target camera configuration. The approach is flexible when K is small.

AffineFuseK This baseline first pre-trains our factorized fusion model according to the description in Section 4.1
on the Panoptic dataset (using four selected cameras) by regular stochastic gradient descent. Then
it finetunes the model on the target camera configuration.

MetaFuseK It finetunes the meta-learned model on K images of the target cameras. It differs from AffineFuseK

in that it uses the meta-learning style algorithm to pre-train the model.

Metrics The 2D pose accuracy is measured by Joint De-
tection Rate (JDR). If the distance between the estimated
and the ground-truth joint location is smaller than a thresh-
old, we regard this joint as successfully detected. The
threshold is set to be half of the head size as in [2]. JDR
is computed as the percentage of the successfully detected
joints. The 3D pose estimation accuracy is measured by
the Mean Per Joint Position Error (MPJPE) between the
ground-truth 3D pose and the estimation. We do not align
the estimated 3D poses to the ground truth as in [22, 32].

Complexity The warming up step takes about 30 hours on
a single 2080Ti GPU. The meta-training stage takes about 5
hours. This stage is fast because we use the pre-computed
heatmaps. The meta-testing (finetuning) stage takes about
7 minutes. Note that, in real deployment, only meta-testing
needs to be performed for a new environment which is very
fast. In testing, it takes about 0.015 seconds to estimate a
2D pose from a single image.

Implementation Details We use a recent 2D pose es-
timator [38] as the basic network to estimate the initial
heatmaps. The ResNet50 [13] is used as its backbone. The
input image size is 256 × 256 and the resolution of the
heatmap is 64 × 64. In general, using stronger 2D pose
estimators can further improve the final 2D and 3D estima-
tion results but that is beyond the scope of this work. We
apply softmax with temperature T = 0.2 to every channel
of the fused heatmap to highlight the maximum response.

The Adam [18] optimizer is used in all phases. We train
the backbone network for 30 epochs on the target dataset
in the warming up stage. Note that we do not train the fu-
sion model in this step. The learning rate is initially set to
be 1e−3, and drops to 1e−4 at 15 epochs and 1e−5 at 25
epochs, respectively. In meta-training and meta-testing, the
learning rates are set to be 1e−3 and 5e−3, respectively. We
evaluate our approach by comparing it to the five related
baselines, which are detailed in Table 1.
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Figure 7. The 2D joint detection rates of different methods on the H36M dataset. The x-axis represents the number of samples for finetuning
the fusion model. The y-axis denotes the JDR. We show the average JDR over all joints, as well as the JDRs for several typical joints. The
method of “full” denotes NaiveFusefull which can be regarded as an upper bound for all fusion methods.

5.2. Results on the H36M Dataset

2D Results The joint detection rates (JDR) of the base-
lines and our approach are shown in Figure 7. We present
the average JDR over all joints, as well as the JDRs of sev-
eral typical joints. We can see that the JDR of No-Fusion
(the grey dashed line) is lower than our MetaFuse model
regardless of the number of images used for finetuning the
fusion model. This validates the importance of multi-view
fusion. The improvement is most significant for the wrist
and elbow joints because they are frequently occluded by
human body in this dataset.

NaiveFusefull (the grey solid line) gets the highest JDR
because it uses all training data from the H36M dataset.
However, when we use fewer data, the performance drops
significantly (the green line). In particular, NaiveFuse50

even gets worse results than No-Fusion. This is because
small training data usually leads to over-fitting for large
models. We attempted to use several regularization methods
including l2, l1 and L2,1 (group sparsity) on ω to alleviate
the over-fitting problem of NaiveFuse. But none of them
gets better performance than vanilla NaiveFuse. It means
that the use of geometric priors in MetaFuse is more effec-
tive than the regularization techniques.

Our proposed AffineFuseK , which has fewer parameters
than NaiveFuseK , also gets better result when the number
of training data is small (the blue line). However, it is still
worse than MetaFuseK . This is because the model is not
pre-trained on many cameras to improve its adaptation per-
formance by our meta-learning-style algorithm which limits
its performance on the H36M dataset.

Our approach MetaFuseK outperforms all baselines. In
particular, it outperforms No-Fusion when only 50 training
examples from the H36M dataset are used. Increasing this
number consistently improves the performance. The result
of MetaFuse500 is already similar to that of NaiveFusefull

which is trained on more than 80K images.
We also evaluate a variant of NaiveFuse which is learned

by the meta-learning algorithm. The average JDR are
87.7% and 89.3% when 50 and 100 examples are used,
which are much worse than MetaFuse. The results validate
the importance of the geometry inspired decomposition.

Table 2. The 3D MPJPE errors obtained by the state-of-the-art
methods on the H36M dataset. MetaFuse uses the pictorial model
for estimating 3D poses. “Full H36M Training” means whether
we use the full H36M dataset for adaptation or training.

Methods Full H36M Training MPJPE

PVH-TSP [34] 3 87.3mm
Pavlakos [24] 3 56.9mm
Tome [32] 3 52.8mm
Liang [20] 3 45.1mm
CrossView [25] 3 26.2mm
Volume [15] 3 20.8mm

CrossView [25] 7 43.0mm
Volume [15] 7 34.0mm
MetaFuse50 7 32.7mm
MetaFuse100 7 31.3mm
MetaFuse500 7 29.3mm

Examples Figure 6 explains how MetaFuse improves the
2D pose estimation accuracy. The target joint is the left
knee in this example. But the estimated heatmap (before
fusion) has the highest response at the incorrect location
(near right knee). By leveraging the heatmaps from the
other three views, it accurately localizes the left knee joint.
The last three images show the warped heatmaps from the
other three views. We can see the high response pixels ap-
proximately form a line (the epipolar line) in each view.

We visualize some typical poses estimated by the base-
lines and our approach in Figure 8. First, we can see that
when occlusion occurs, No-Fusion usually gets inaccurate
2D locations for the occluded joints. For instance, in the
first example, the left wrist joint is localized at a wrong lo-
cation. NaiveFuse and MetaFuse both help to localize the
wrist joint in this example, and MetaFuse is more accurate.
However, in some cases, NaiveFuse may get surprisingly
bad results as shown in the third example. The left ankle
joint is localized at a weird location even though it is visi-
ble. The main reason for this abnormal phenomenon is that
the NaiveFuse model learned from few data lacks gener-
alization capability. MetaFuse approach gets consistently
better results than the two baseline methods.
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Table 3. 3D pose estimation errors MPJPE (mm) of different methods on the Total Capture dataset.

Approach Subjects(S1,2,3) Subjects(S4,5) Mean
Walking2 Acting3 FreeStyle3 Walking2 Acting3 FreeStyle3

Tri-CPM [36] 79.0 106.5 112.1 79.0 73.7 149.3 99.8
PVH [34] 48.3 94.3 122.3 84.3 154.5 168.5 107.3
IMUPVH [34] 30.0 49.0 90.6 36.0 109.2 112.1 70.0
LSTM-AE [33] 13.0 23.0 47.0 21.8 40.9 68.5 34.1
No-Fusion 28.1 30.5 42.9 45.6 46.3 74.3 41.2
MetaFuse500 21.7 23.3 32.1 35.2 34.9 57.4 32.4

GT No Fuse Naive Fuse Meta Fuse GT No Fuse Naive Fuse Meta Fuse

#1

#3

#5

#7

#2

#4

#6

#8

Figure 8. Four groups of sample 2D poses estimated by different methods. Each group has 1x4 sub-figures which correspond to the ground
truth(GT) and three methods, respectively. The pink and cyan joints belong to the right and left body parts, respectively. The red arrows
highlight the joints whose estimations are different for the three methods.

3D Results We estimate 3D pose from multi-view 2D
poses by a pictorial structure model [25]. The results on the
H36M dataset are shown in Table 2. Our MetaFuse trained
on only 50 examples decreases the error to 32.7mm. Adding
more training data consistently decreases the error. Note
that some approaches in the table which use the full H36M
dataset for training are not comparable to our approach.

5.3. Results on Total Capture

The results are shown in Table 3. We can see that Meta-
Fuse outperforms No-Fusion by a large margin on all cat-
egories which validates its strong generalization power. In
addition, our approach also outperforms the state-of-the-art
ones including a recent work which utilizes temporal infor-
mation [33]. We notice that LSTM-AE [33] outperforms
our approach on the “Walking2” action. This is mainly be-
cause LSTM-AE uses temporal information which is very
effective for this “Walking2” action. We conduct a simple
proof-of-concept experiment where we apply the Savitzky-
Golay filter [29] to smooth the 3D poses obtained by our
approach. We find the average 3D error for the “Walking”
action of our approach decreases by about 5mm. The result
of our approach is obtained when MetaFuse is finetuned on
only 500 images. In contrast, the state-of-the-art methods
train their models on the whole dataset.

5.4. Results on Panoptic Dataset

We also conduct experiments on the Panoptic dataset.
Note that the cameras selected for testing are different

from those selected for pre-training. The 3D error of the
No-Fusion baseline is 40.47mm. Our MetaFuse approach
gets a smaller error of 37.27mm when only 50 examples
are used for meta-testing. This number further decreases
to 31.78mm when we use 200 examples. In contrast.
the errors for the NaiveFuse approach are 43.39mm and
35.60mm when the training data number is 50 and 200, re-
spectively. The results validate that our proposed fusion
model can achieve consistently good results on the three
large scale datasets.

6. Conclusion
We present a multi-view feature fusion approach which

can be trained on as few as 100 images for a new testing
environment. It is very flexible in terms of that it can be
integrated with any of the existing 2D pose estimation net-
works, and it can be adapted to any environment with any
camera configuration. The approach achieves the state-of-
the-art results on three benchmark datasets. In our future
work, we will explore the possibility to apply the fusion
model to other tasks such as semantic segmentation. Be-
sides, we can leverage synthetic data of massive cameras to
further improve the generalization ability of model.
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Supplementary Material

7. Additional Results on Panoptic Dataset

Table 4. 2D pose estimation accuracy on the Panoptic dataset. The
second column represents the number of samples for finetuning
the pre-trained model. We report results for three joints and also
the average result over all joints.

Methods Samples Shld. Knee. Ankle. Avg

No-Fusion – 89.9 79.8 89.7 88.9

NaiveFuse50
50

88.1 82.3 87.6 85.1
MetaFuse50 91.2 85.7 90.8 88.9

NaiveFuse100
100

88.8 83.7 87.6 86.5
MetaFuse100 91.4 86.3 90.9 89.5

NaiveFuse200
200

90.9 85.1 88.1 88.3
MetaFuse200 92.2 86.9 91.6 90.6

NaiveFuse500
500

91.6 85.8 89.9 90.2
MetaFuse500 93.2 88.0 91.5 91.2

Table 5. The 3D pose MPJPE errors obtained by the baseline meth-
ods on the Panoptic dataset.

Methods Samples Average MPJPE

No-Fusion – 40.47mm

NaiveFuse50 50 43.39mm
MetaFuse50 37.27mm

NaiveFuse100 100 42.58mm
MetaFuse100 36.02mm

NaiveFuse200 200 35.60mm
MetaFuse200 31.78mm

NaiveFuse500 500 33.50mm
MetaFuse500 30.88mm

8. Algorithm of Meta-Training

Algorithm 1 Meta-Training of MetaFuse
Input: {T1, T2, · · · , TN} : Each Ti is associated with a

small dataset from a particular camera pair.
α, β : Step size, hyper-parameters

Output: θ, ωbase : Pre-trained fusion model
1: Randomly initialize θ, ωbase

2: for each Ti ∈ {T1, T2, · · · , TN} do
3: Sample K images Dtraini from Ti
4: Compute θ′, ωbase′ with gradient descent onDtraini

θ′ = θ − α∇θLDtrain
i

(ωbase, θ)

ωbase′ = ωbase − α∇ωbaseLDtrain
i

(ωbase, θ)

5: Sample other K images Dtesti from Ti
6: Update θ ← θ − β∇θLDtest

i
(ωbase′, θ′)

ωbase ← ωbase − β∇ωbaseLDtest
i
(ωbase′, θ′)

7: end for
8: return θ, ωbase
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