// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package eth import ( "math" "math/big" "math/rand" "testing" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/consensus/ethash" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/p2p" "github.com/ethereum/go-ethereum/p2p/enode" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/trie" ) var ( // testKey is a private key to use for funding a tester account. testKey, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") // testAddr is the Ethereum address of the tester account. testAddr = crypto.PubkeyToAddress(testKey.PublicKey) ) // testBackend is a mock implementation of the live Ethereum message handler. Its // purpose is to allow testing the request/reply workflows and wire serialization // in the `eth` protocol without actually doing any data processing. type testBackend struct { db ethdb.Database chain *core.BlockChain txpool *core.TxPool } // newTestBackend creates an empty chain and wraps it into a mock backend. func newTestBackend(blocks int) *testBackend { return newTestBackendWithGenerator(blocks, nil) } // newTestBackend creates a chain with a number of explicitly defined blocks and // wraps it into a mock backend. func newTestBackendWithGenerator(blocks int, generator func(int, *core.BlockGen)) *testBackend { // Create a database pre-initialize with a genesis block db := rawdb.NewMemoryDatabase() (&core.Genesis{ Config: params.TestChainConfig, Alloc: core.GenesisAlloc{testAddr: {Balance: big.NewInt(100_000_000_000_000_000)}}, }).MustCommit(db) chain, _ := core.NewBlockChain(db, nil, params.TestChainConfig, ethash.NewFaker(), vm.Config{}, nil, nil) bs, _ := core.GenerateChain(params.TestChainConfig, chain.Genesis(), ethash.NewFaker(), db, blocks, generator) if _, err := chain.InsertChain(bs); err != nil { panic(err) } txconfig := core.DefaultTxPoolConfig txconfig.Journal = "" // Don't litter the disk with test journals return &testBackend{ db: db, chain: chain, txpool: core.NewTxPool(txconfig, params.TestChainConfig, chain), } } // close tears down the transaction pool and chain behind the mock backend. func (b *testBackend) close() { b.txpool.Stop() b.chain.Stop() } func (b *testBackend) Chain() *core.BlockChain { return b.chain } func (b *testBackend) StateBloom() *trie.SyncBloom { return nil } func (b *testBackend) TxPool() TxPool { return b.txpool } func (b *testBackend) RunPeer(peer *Peer, handler Handler) error { // Normally the backend would do peer mainentance and handshakes. All that // is omitted and we will just give control back to the handler. return handler(peer) } func (b *testBackend) PeerInfo(enode.ID) interface{} { panic("not implemented") } func (b *testBackend) AcceptTxs() bool { panic("data processing tests should be done in the handler package") } func (b *testBackend) Handle(*Peer, Packet) error { panic("data processing tests should be done in the handler package") } // Tests that block headers can be retrieved from a remote chain based on user queries. func TestGetBlockHeaders66(t *testing.T) { testGetBlockHeaders(t, ETH66) } func testGetBlockHeaders(t *testing.T, protocol uint) { t.Parallel() backend := newTestBackend(maxHeadersServe + 15) defer backend.close() peer, _ := newTestPeer("peer", protocol, backend) defer peer.close() // Create a "random" unknown hash for testing var unknown common.Hash for i := range unknown { unknown[i] = byte(i) } // Create a batch of tests for various scenarios limit := uint64(maxHeadersServe) tests := []struct { query *GetBlockHeadersPacket // The query to execute for header retrieval expect []common.Hash // The hashes of the block whose headers are expected }{ // A single random block should be retrievable by hash and number too { &GetBlockHeadersPacket{Origin: HashOrNumber{Hash: backend.chain.GetBlockByNumber(limit / 2).Hash()}, Amount: 1}, []common.Hash{backend.chain.GetBlockByNumber(limit / 2).Hash()}, }, { &GetBlockHeadersPacket{Origin: HashOrNumber{Number: limit / 2}, Amount: 1}, []common.Hash{backend.chain.GetBlockByNumber(limit / 2).Hash()}, }, // Multiple headers should be retrievable in both directions { &GetBlockHeadersPacket{Origin: HashOrNumber{Number: limit / 2}, Amount: 3}, []common.Hash{ backend.chain.GetBlockByNumber(limit / 2).Hash(), backend.chain.GetBlockByNumber(limit/2 + 1).Hash(), backend.chain.GetBlockByNumber(limit/2 + 2).Hash(), }, }, { &GetBlockHeadersPacket{Origin: HashOrNumber{Number: limit / 2}, Amount: 3, Reverse: true}, []common.Hash{ backend.chain.GetBlockByNumber(limit / 2).Hash(), backend.chain.GetBlockByNumber(limit/2 - 1).Hash(), backend.chain.GetBlockByNumber(limit/2 - 2).Hash(), }, }, // Multiple headers with skip lists should be retrievable { &GetBlockHeadersPacket{Origin: HashOrNumber{Number: limit / 2}, Skip: 3, Amount: 3}, []common.Hash{ backend.chain.GetBlockByNumber(limit / 2).Hash(), backend.chain.GetBlockByNumber(limit/2 + 4).Hash(), backend.chain.GetBlockByNumber(limit/2 + 8).Hash(), }, }, { &GetBlockHeadersPacket{Origin: HashOrNumber{Number: limit / 2}, Skip: 3, Amount: 3, Reverse: true}, []common.Hash{ backend.chain.GetBlockByNumber(limit / 2).Hash(), backend.chain.GetBlockByNumber(limit/2 - 4).Hash(), backend.chain.GetBlockByNumber(limit/2 - 8).Hash(), }, }, // The chain endpoints should be retrievable { &GetBlockHeadersPacket{Origin: HashOrNumber{Number: 0}, Amount: 1}, []common.Hash{backend.chain.GetBlockByNumber(0).Hash()}, }, { &GetBlockHeadersPacket{Origin: HashOrNumber{Number: backend.chain.CurrentBlock().NumberU64()}, Amount: 1}, []common.Hash{backend.chain.CurrentBlock().Hash()}, }, // Ensure protocol limits are honored { &GetBlockHeadersPacket{Origin: HashOrNumber{Number: backend.chain.CurrentBlock().NumberU64() - 1}, Amount: limit + 10, Reverse: true}, backend.chain.GetBlockHashesFromHash(backend.chain.CurrentBlock().Hash(), limit), }, // Check that requesting more than available is handled gracefully { &GetBlockHeadersPacket{Origin: HashOrNumber{Number: backend.chain.CurrentBlock().NumberU64() - 4}, Skip: 3, Amount: 3}, []common.Hash{ backend.chain.GetBlockByNumber(backend.chain.CurrentBlock().NumberU64() - 4).Hash(), backend.chain.GetBlockByNumber(backend.chain.CurrentBlock().NumberU64()).Hash(), }, }, { &GetBlockHeadersPacket{Origin: HashOrNumber{Number: 4}, Skip: 3, Amount: 3, Reverse: true}, []common.Hash{ backend.chain.GetBlockByNumber(4).Hash(), backend.chain.GetBlockByNumber(0).Hash(), }, }, // Check that requesting more than available is handled gracefully, even if mid skip { &GetBlockHeadersPacket{Origin: HashOrNumber{Number: backend.chain.CurrentBlock().NumberU64() - 4}, Skip: 2, Amount: 3}, []common.Hash{ backend.chain.GetBlockByNumber(backend.chain.CurrentBlock().NumberU64() - 4).Hash(), backend.chain.GetBlockByNumber(backend.chain.CurrentBlock().NumberU64() - 1).Hash(), }, }, { &GetBlockHeadersPacket{Origin: HashOrNumber{Number: 4}, Skip: 2, Amount: 3, Reverse: true}, []common.Hash{ backend.chain.GetBlockByNumber(4).Hash(), backend.chain.GetBlockByNumber(1).Hash(), }, }, // Check a corner case where requesting more can iterate past the endpoints { &GetBlockHeadersPacket{Origin: HashOrNumber{Number: 2}, Amount: 5, Reverse: true}, []common.Hash{ backend.chain.GetBlockByNumber(2).Hash(), backend.chain.GetBlockByNumber(1).Hash(), backend.chain.GetBlockByNumber(0).Hash(), }, }, // Check a corner case where skipping overflow loops back into the chain start { &GetBlockHeadersPacket{Origin: HashOrNumber{Hash: backend.chain.GetBlockByNumber(3).Hash()}, Amount: 2, Reverse: false, Skip: math.MaxUint64 - 1}, []common.Hash{ backend.chain.GetBlockByNumber(3).Hash(), }, }, // Check a corner case where skipping overflow loops back to the same header { &GetBlockHeadersPacket{Origin: HashOrNumber{Hash: backend.chain.GetBlockByNumber(1).Hash()}, Amount: 2, Reverse: false, Skip: math.MaxUint64}, []common.Hash{ backend.chain.GetBlockByNumber(1).Hash(), }, }, // Check that non existing headers aren't returned { &GetBlockHeadersPacket{Origin: HashOrNumber{Hash: unknown}, Amount: 1}, []common.Hash{}, }, { &GetBlockHeadersPacket{Origin: HashOrNumber{Number: backend.chain.CurrentBlock().NumberU64() + 1}, Amount: 1}, []common.Hash{}, }, } // Run each of the tests and verify the results against the chain for i, tt := range tests { // Collect the headers to expect in the response var headers []*types.Header for _, hash := range tt.expect { headers = append(headers, backend.chain.GetBlockByHash(hash).Header()) } // Send the hash request and verify the response p2p.Send(peer.app, GetBlockHeadersMsg, GetBlockHeadersPacket66{ RequestId: 123, GetBlockHeadersPacket: tt.query, }) if err := p2p.ExpectMsg(peer.app, BlockHeadersMsg, BlockHeadersPacket66{ RequestId: 123, BlockHeadersPacket: headers, }); err != nil { t.Errorf("test %d: headers mismatch: %v", i, err) } // If the test used number origins, repeat with hashes as the too if tt.query.Origin.Hash == (common.Hash{}) { if origin := backend.chain.GetBlockByNumber(tt.query.Origin.Number); origin != nil { tt.query.Origin.Hash, tt.query.Origin.Number = origin.Hash(), 0 p2p.Send(peer.app, GetBlockHeadersMsg, GetBlockHeadersPacket66{ RequestId: 456, GetBlockHeadersPacket: tt.query, }) if err := p2p.ExpectMsg(peer.app, BlockHeadersMsg, BlockHeadersPacket66{ RequestId: 456, BlockHeadersPacket: headers, }); err != nil { t.Errorf("test %d: headers mismatch: %v", i, err) } } } } } // Tests that block contents can be retrieved from a remote chain based on their hashes. func TestGetBlockBodies66(t *testing.T) { testGetBlockBodies(t, ETH66) } func testGetBlockBodies(t *testing.T, protocol uint) { t.Parallel() backend := newTestBackend(maxBodiesServe + 15) defer backend.close() peer, _ := newTestPeer("peer", protocol, backend) defer peer.close() // Create a batch of tests for various scenarios limit := maxBodiesServe tests := []struct { random int // Number of blocks to fetch randomly from the chain explicit []common.Hash // Explicitly requested blocks available []bool // Availability of explicitly requested blocks expected int // Total number of existing blocks to expect }{ {1, nil, nil, 1}, // A single random block should be retrievable {10, nil, nil, 10}, // Multiple random blocks should be retrievable {limit, nil, nil, limit}, // The maximum possible blocks should be retrievable {limit + 1, nil, nil, limit}, // No more than the possible block count should be returned {0, []common.Hash{backend.chain.Genesis().Hash()}, []bool{true}, 1}, // The genesis block should be retrievable {0, []common.Hash{backend.chain.CurrentBlock().Hash()}, []bool{true}, 1}, // The chains head block should be retrievable {0, []common.Hash{{}}, []bool{false}, 0}, // A non existent block should not be returned // Existing and non-existing blocks interleaved should not cause problems {0, []common.Hash{ {}, backend.chain.GetBlockByNumber(1).Hash(), {}, backend.chain.GetBlockByNumber(10).Hash(), {}, backend.chain.GetBlockByNumber(100).Hash(), {}, }, []bool{false, true, false, true, false, true, false}, 3}, } // Run each of the tests and verify the results against the chain for i, tt := range tests { // Collect the hashes to request, and the response to expectva var ( hashes []common.Hash bodies []*BlockBody seen = make(map[int64]bool) ) for j := 0; j < tt.random; j++ { for { num := rand.Int63n(int64(backend.chain.CurrentBlock().NumberU64())) if !seen[num] { seen[num] = true block := backend.chain.GetBlockByNumber(uint64(num)) hashes = append(hashes, block.Hash()) if len(bodies) < tt.expected { bodies = append(bodies, &BlockBody{Transactions: block.Transactions(), Uncles: block.Uncles()}) } break } } } for j, hash := range tt.explicit { hashes = append(hashes, hash) if tt.available[j] && len(bodies) < tt.expected { block := backend.chain.GetBlockByHash(hash) bodies = append(bodies, &BlockBody{Transactions: block.Transactions(), Uncles: block.Uncles()}) } } // Send the hash request and verify the response p2p.Send(peer.app, GetBlockBodiesMsg, GetBlockBodiesPacket66{ RequestId: 123, GetBlockBodiesPacket: hashes, }) if err := p2p.ExpectMsg(peer.app, BlockBodiesMsg, BlockBodiesPacket66{ RequestId: 123, BlockBodiesPacket: bodies, }); err != nil { t.Errorf("test %d: bodies mismatch: %v", i, err) } } } // Tests that the state trie nodes can be retrieved based on hashes. func TestGetNodeData66(t *testing.T) { testGetNodeData(t, ETH66) } func testGetNodeData(t *testing.T, protocol uint) { t.Parallel() // Define three accounts to simulate transactions with acc1Key, _ := crypto.HexToECDSA("8a1f9a8f95be41cd7ccb6168179afb4504aefe388d1e14474d32c45c72ce7b7a") acc2Key, _ := crypto.HexToECDSA("49a7b37aa6f6645917e7b807e9d1c00d4fa71f18343b0d4122a4d2df64dd6fee") acc1Addr := crypto.PubkeyToAddress(acc1Key.PublicKey) acc2Addr := crypto.PubkeyToAddress(acc2Key.PublicKey) signer := types.HomesteadSigner{} // Create a chain generator with some simple transactions (blatantly stolen from @fjl/chain_markets_test) generator := func(i int, block *core.BlockGen) { switch i { case 0: // In block 1, the test bank sends account #1 some ether. tx, _ := types.SignTx(types.NewTransaction(block.TxNonce(testAddr), acc1Addr, big.NewInt(10_000_000_000_000_000), params.TxGas, block.BaseFee(), nil), signer, testKey) block.AddTx(tx) case 1: // In block 2, the test bank sends some more ether to account #1. // acc1Addr passes it on to account #2. tx1, _ := types.SignTx(types.NewTransaction(block.TxNonce(testAddr), acc1Addr, big.NewInt(1_000_000_000_000_000), params.TxGas, block.BaseFee(), nil), signer, testKey) tx2, _ := types.SignTx(types.NewTransaction(block.TxNonce(acc1Addr), acc2Addr, big.NewInt(1_000_000_000_000_000), params.TxGas, block.BaseFee(), nil), signer, acc1Key) block.AddTx(tx1) block.AddTx(tx2) case 2: // Block 3 is empty but was mined by account #2. block.SetCoinbase(acc2Addr) block.SetExtra([]byte("yeehaw")) case 3: // Block 4 includes blocks 2 and 3 as uncle headers (with modified extra data). b2 := block.PrevBlock(1).Header() b2.Extra = []byte("foo") block.AddUncle(b2) b3 := block.PrevBlock(2).Header() b3.Extra = []byte("foo") block.AddUncle(b3) } } // Assemble the test environment backend := newTestBackendWithGenerator(4, generator) defer backend.close() peer, _ := newTestPeer("peer", protocol, backend) defer peer.close() // Fetch for now the entire chain db var hashes []common.Hash it := backend.db.NewIterator(nil, nil) for it.Next() { if key := it.Key(); len(key) == common.HashLength { hashes = append(hashes, common.BytesToHash(key)) } } it.Release() p2p.Send(peer.app, GetNodeDataMsg, GetNodeDataPacket66{ RequestId: 123, GetNodeDataPacket: hashes, }) msg, err := peer.app.ReadMsg() if err != nil { t.Fatalf("failed to read node data response: %v", err) } if msg.Code != NodeDataMsg { t.Fatalf("response packet code mismatch: have %x, want %x", msg.Code, NodeDataMsg) } var ( data [][]byte res NodeDataPacket66 ) if err := msg.Decode(&res); err != nil { t.Fatalf("failed to decode response node data: %v", err) } data = res.NodeDataPacket // Verify that all hashes correspond to the requested data, and reconstruct a state tree for i, want := range hashes { if hash := crypto.Keccak256Hash(data[i]); hash != want { t.Errorf("data hash mismatch: have %x, want %x", hash, want) } } statedb := rawdb.NewMemoryDatabase() for i := 0; i < len(data); i++ { statedb.Put(hashes[i].Bytes(), data[i]) } accounts := []common.Address{testAddr, acc1Addr, acc2Addr} for i := uint64(0); i <= backend.chain.CurrentBlock().NumberU64(); i++ { trie, _ := state.New(backend.chain.GetBlockByNumber(i).Root(), state.NewDatabase(statedb), nil) for j, acc := range accounts { state, _ := backend.chain.State() bw := state.GetBalance(acc) bh := trie.GetBalance(acc) if (bw != nil && bh == nil) || (bw == nil && bh != nil) { t.Errorf("test %d, account %d: balance mismatch: have %v, want %v", i, j, bh, bw) } if bw != nil && bh != nil && bw.Cmp(bw) != 0 { t.Errorf("test %d, account %d: balance mismatch: have %v, want %v", i, j, bh, bw) } } } } // Tests that the transaction receipts can be retrieved based on hashes. func TestGetBlockReceipts66(t *testing.T) { testGetBlockReceipts(t, ETH66) } func testGetBlockReceipts(t *testing.T, protocol uint) { t.Parallel() // Define three accounts to simulate transactions with acc1Key, _ := crypto.HexToECDSA("8a1f9a8f95be41cd7ccb6168179afb4504aefe388d1e14474d32c45c72ce7b7a") acc2Key, _ := crypto.HexToECDSA("49a7b37aa6f6645917e7b807e9d1c00d4fa71f18343b0d4122a4d2df64dd6fee") acc1Addr := crypto.PubkeyToAddress(acc1Key.PublicKey) acc2Addr := crypto.PubkeyToAddress(acc2Key.PublicKey) signer := types.HomesteadSigner{} // Create a chain generator with some simple transactions (blatantly stolen from @fjl/chain_markets_test) generator := func(i int, block *core.BlockGen) { switch i { case 0: // In block 1, the test bank sends account #1 some ether. tx, _ := types.SignTx(types.NewTransaction(block.TxNonce(testAddr), acc1Addr, big.NewInt(10_000_000_000_000_000), params.TxGas, block.BaseFee(), nil), signer, testKey) block.AddTx(tx) case 1: // In block 2, the test bank sends some more ether to account #1. // acc1Addr passes it on to account #2. tx1, _ := types.SignTx(types.NewTransaction(block.TxNonce(testAddr), acc1Addr, big.NewInt(1_000_000_000_000_000), params.TxGas, block.BaseFee(), nil), signer, testKey) tx2, _ := types.SignTx(types.NewTransaction(block.TxNonce(acc1Addr), acc2Addr, big.NewInt(1_000_000_000_000_000), params.TxGas, block.BaseFee(), nil), signer, acc1Key) block.AddTx(tx1) block.AddTx(tx2) case 2: // Block 3 is empty but was mined by account #2. block.SetCoinbase(acc2Addr) block.SetExtra([]byte("yeehaw")) case 3: // Block 4 includes blocks 2 and 3 as uncle headers (with modified extra data). b2 := block.PrevBlock(1).Header() b2.Extra = []byte("foo") block.AddUncle(b2) b3 := block.PrevBlock(2).Header() b3.Extra = []byte("foo") block.AddUncle(b3) } } // Assemble the test environment backend := newTestBackendWithGenerator(4, generator) defer backend.close() peer, _ := newTestPeer("peer", protocol, backend) defer peer.close() // Collect the hashes to request, and the response to expect var ( hashes []common.Hash receipts [][]*types.Receipt ) for i := uint64(0); i <= backend.chain.CurrentBlock().NumberU64(); i++ { block := backend.chain.GetBlockByNumber(i) hashes = append(hashes, block.Hash()) receipts = append(receipts, backend.chain.GetReceiptsByHash(block.Hash())) } // Send the hash request and verify the response p2p.Send(peer.app, GetReceiptsMsg, GetReceiptsPacket66{ RequestId: 123, GetReceiptsPacket: hashes, }) if err := p2p.ExpectMsg(peer.app, ReceiptsMsg, ReceiptsPacket66{ RequestId: 123, ReceiptsPacket: receipts, }); err != nil { t.Errorf("receipts mismatch: %v", err) } }