DistributedVQE_EN.ipynb 52.9 KB
Newer Older
Q
Quleaf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Distributed Variational Quantum Eigensolver Based on Schmidt Decomposition\n",
    "*Copyright (c) 2021 Institute for Quantum Computing, Baidu Inc. All Rights Reserved.*"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "tags": []
   },
   "source": [
    "## Overview\n",
    "\n",
    "Retrieving ground state information of a Hamiltonian is amongst the essential questions in physics and chemistry. Currently, it is widely believed that quantum computers are advantageous in solving this kind of problem. As one of the promising algorithms to demonstrate quantum supremacy in the near term, [Variational Quantum Eigensolver (VQE)](https://qml.baidu.com/tutorials/quantum-simulation/variational-quantum-eigensolver.html)\n",
    "enables the study of quantum chemistry on Noisy Intermediate-Scale Quantum (NISQ) devices. However, various technical limitations still exist on current NISQ hardware, forbidding the deployment of large-scale quantum algorithms. For example, limited by the number of available qubits, researchers have not been able to simulate realistic large molecules with high precision. To overcome this barrier, researchers have proposed a wide range of distributed strategies [1-3]. In this tutorial, we take the distributed VQE based on Schmidt decomposition, proposed in [4], as an example to demonstrate how to implement distributed quantum algorithms using Paddle Quantum."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Schmidt Decomposition\n",
    "We start with the following trivial decomposition for any pure state $|\\psi\\rangle$ of a composite system $AB$:\n",
    "\n",
    "$$\n",
    "|\\psi\\rangle=\\sum_{ij}a_{ij}|i\\rangle\\otimes|j\\rangle,\n",
    "\\tag{1}\n",
    "$$\n",
    "\n",
    "where $|i\\rangle$ and $|j\\rangle$ are computational bases of subsystems $A$ and $B$ respectively, and $a_{ij}$ are elements of some complex matrix $a$. Then, we apply [singular value decomposition (SVD)](https://en.wikipedia.org/wiki/Singular_value_decomposition)\n",
    "on $a$, i.e., $a = udv$ with $u,v$ being unitary and $d$ diagonal. Hence, $a_{ij}=\\sum_ku_{ik}d_{kk}v_{kj}$. \n",
    "\n",
    "By defining\n",
    "\n",
    "$$\n",
    "\\begin{aligned}\n",
    "|k_A\\rangle\\equiv & \\sum_iu_{ik}|i\\rangle=u|k\\rangle,\\\\\n",
    "|k_B\\rangle\\equiv & \\sum_jv_{kj}|j\\rangle=v^T|k\\rangle,\\\\\n",
    "\\lambda_k\\equiv & d_{kk},\n",
    "\\end{aligned}\n",
    "\\tag{2}\n",
    "$$\n",
    "\n",
    "we may rewrite Eq. (1) as\n",
    "\n",
    "$$\n",
    "\\begin{aligned}\n",
    "    |\\psi\\rangle  &= \\sum_{ijk}u_{ik}d_{kk}v_{kj}|i\\rangle\\otimes|j\\rangle \\\\\n",
    "                &= \\sum_{k}\\lambda_{k}\\Big(\\sum_iu_{ik}|i\\rangle\\Big)\\otimes\\Big(\\sum_jv_{kj}|j\\rangle\\Big) \\\\\n",
    "                &=\\sum_{k}\\lambda_k(u|k\\rangle\\otimes v^T|k\\rangle)\\\\\n",
    "                &=\\sum_{k}\\lambda_k|k_A\\rangle\\otimes|k_B\\rangle.\n",
    "\\end{aligned}\n",
    "\\tag{3}\n",
    "$$\n",
    "\n",
    "The decomposition of $|\\psi\\rangle$ into the form of $\\sum_k\\lambda_k|k_A\\rangle\\otimes|k_B\\rangle$ is known as its ***Schmidt decomposition*** [5], with $\\{\\lambda_k\\}_k$ called the *Schmidt coefficients* and the number of non-zero $\\lambda_k$'s its *Schmidt rank*. In fact, the property of SVD also guarantees that $\\lambda_k\\in\\mathbb{R}^+$ and $\\sum_k\\lambda_k^2=1$. "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "tags": []
   },
   "source": [
    "## Distributed VQE Based on Schmidt Decomposition\n",
    "\n",
    "As a variation of the standard VQE [6], the distributed VQE also seeks to solve the ground state and its energy of an $N$-qubit Hamiltonian $\\hat{H}=\\sum_tc_t\\hat{H}_t^{(A)}\\otimes\\hat{H}_t^{(B)}$, where $\\hat{H}_t^{(A)},\\hat{H}_t^{(B)}$ are Hamiltonian terms on subsystems $A,B$ respectively (we have assumed that $A$, $B$ both have $N/2$ qubits).\n",
    "\n",
    "To start with, we write the trial wave function as\n",
    "\n",
    "$$\n",
    "|\\psi\\rangle\\equiv\\sum_{k=1}^S\\lambda_k\\Big(U(\\boldsymbol{\\theta})|k\\rangle\\Big)\\otimes\\Big(V(\\boldsymbol{\\phi})|k\\rangle\\Big),\n",
    "\\tag{4}\n",
    "$$\n",
    "\n",
    "for some $\\boldsymbol{\\lambda}\\equiv(\\lambda_1, \\lambda_2,...,\\lambda_S)^T$ and $1\\leq S\\leq 2^{N/2}$ a user-defined constant. According to Schmidt decomposition, the target ground state also has the form of Eq. (4) and hence can be approximated with high precision by choosing appropriate parameters $\\boldsymbol{\\lambda}, \\boldsymbol{\\theta}$ and $\\boldsymbol{\\phi}$.\n",
    "\n",
    "Now, for all $i,j=1,...,S$, we evaluate the following terms on an $N/2$-qubit quantum computer:\n",
    "\n",
    "$$\n",
    "\\begin{aligned}\n",
    "E_{ijt}^A(\\boldsymbol{\\theta}) &\\equiv \\langle i|U^\\dagger(\\boldsymbol{\\theta}) \\hat{H}_t^{(A)} U(\\boldsymbol{\\theta})|j\\rangle,\\\\\n",
    "E_{ijt}^B(\\boldsymbol{\\phi}) &\\equiv \\langle i|V^\\dagger(\\boldsymbol{\\phi}) \\hat{H}_t^{(B)} V(\\boldsymbol{\\phi}))|j\\rangle.\n",
    "\\end{aligned}\n",
    "\\tag{5}\n",
    "$$\n",
    "\n",
    "Then, on a classical computer, we construct an $S\\times S$ dimensional matrix $M(\\boldsymbol{\\theta},\\boldsymbol{\\phi})$ according to\n",
    "\n",
    "$$\n",
    "[M(\\boldsymbol{\\theta},\\boldsymbol{\\phi})]_{ij}\\equiv\\sum_tc_tE_{ijt}^A(\\boldsymbol{\\theta})E_{ijt}^B(\\boldsymbol{\\phi}).\n",
    "\\tag{6}\n",
    "$$\n",
    "\n",
    "In this way, the target ground state energy can be written as  \n",
    "$$\n",
    "\\begin{aligned}\n",
    "E_{tar}   &= \\min_{\\boldsymbol{\\lambda}, \\boldsymbol{\\theta}, \\boldsymbol{\\phi}} \\langle{\\psi}|\\hat{H}|\\psi\\rangle \\\\\n",
    "    &= \\min_{\\boldsymbol{\\lambda}, \\boldsymbol{\\theta}, \\boldsymbol{\\phi}}\\Big(\\sum_{i,j=1}^S\\lambda_i\\lambda_j[M(\\boldsymbol{\\theta},\\boldsymbol{\\phi})]_{ij}\\Big)\\\\\n",
    "    &= \\min_{\\boldsymbol{\\theta}, \\boldsymbol{\\phi}} E(\\boldsymbol{\\theta},\\boldsymbol{\\phi}),\n",
    "\\end{aligned}\n",
    "\\tag{7}\n",
    "$$\n",
    "\n",
    "where $E(\\boldsymbol{\\theta},\\boldsymbol{\\phi})\\equiv\\min_{\\boldsymbol{\\lambda}} \\boldsymbol{\\lambda}^T M(\\boldsymbol{\\theta},\\boldsymbol{\\phi})\\boldsymbol{\\lambda}$. By linear algebra, we see that $E(\\boldsymbol{\\theta},\\boldsymbol{\\phi})$ is exactly the minimal eigenvalue of $M(\\boldsymbol{\\theta},\\boldsymbol{\\phi})$, which can be solved using classical algorithms.\n",
    "\n",
    "Finally, we repeat the whole process and minimize $E(\\boldsymbol{\\theta},\\boldsymbol{\\phi})$ to approximate $E_{tar}$ using gradient-based optimization methods."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "tags": []
   },
   "source": [
    "## Paddle Quantum implementation\n",
    "\n",
    "First of all, we import necessary packages. Please make sure that you have *PaddlePaddle* >= 2.2.0 and *Paddle Quantum* >= 2.2.0, as we will use some of their latest features."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import time\n",
    "import numpy as np\n",
    "from matplotlib import pyplot as plt\n",
    "\n",
    "import paddle\n",
    "import paddle_quantum\n",
    "from paddle_quantum.ansatz import Circuit\n",
    "from paddle_quantum.qinfo import pauli_str_to_matrix, schmidt_decompose\n",
    "import warnings\n",
    "\n",
    "warnings.filterwarnings(\"ignore\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Define some global constants:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "N = 10      # Number of qubits\n",
    "SEED = 16   # Fix a random seed\n",
    "ITR = 100   # Set the number of learning iterations\n",
    "LR = 0.1    # Set the learning rate\n",
    "D = 3       # Set the depth for QNN"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The following function classically calculates the ground state information (the energy and the Schmidt rank of the ground state) of a Hamiltonian $H$, which we will use as the ground truth to benchmark our quantum models."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_ground_state_info(H):\n",
    "\n",
    "    # Calculate the eigenvalues and eigenvectors of H\n",
    "    vals, vecs = paddle.linalg.eigh(H)\n",
    "    # Retrieve the ground state\n",
    "    ground_state = paddle_quantum.State(vecs[:, 0])\n",
    "    # Retrieve the ground state energy\n",
    "    ground_state_energy = vals.tolist()[0]\n",
    "    print(f'The ground state energy is {ground_state_energy:.5f} Ha.')\n",
    "    # Run Schmidt decomposition on the ground state.\n",
    "    l, _, _ = schmidt_decompose(ground_state)\n",
    "    print(f'Schmidt rank of the ground state is {l.size}.')\n",
    "\n",
    "    return ground_state_energy"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now, we generate a Hamiltonian and calculate its ground state information."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The ground state energy is -0.99783 Ha.\n",
      "Schmidt rank of the ground state is 32.\n"
     ]
    }
   ],
   "source": [
    "# Fix a random seed\n",
    "np.random.seed(SEED)\n",
    "\n",
    "# Hard code a random a Hamiltonian\n",
    "coefs = [-0.8886258, 0.453882]\n",
    "pauli_str = ['x0,z1,z2,z4,x5,y6,y7,x8,x9', 'y0,x1,x2,x3,y4,x5,z6,z7,y8,x9']\n",
    "pauli_str_A = ['x0,z1,z2,z4', 'y0,x1,x2,x3,y4']     # pauli substring for system A\n",
    "pauli_str_B = ['x0,y1,y2,x3,x4', 'x0,z1,z2,y3,x4']  # pauli substring for system B\n",
    "\n",
    "# Convert relavent object into Tensor form\n",
    "H_mtr = paddle.to_tensor(pauli_str_to_matrix(zip(coefs, pauli_str), n=N))\n",
    "coefs = paddle.to_tensor(coefs)\n",
    "H_A = [pauli_str_to_matrix([[1., pstr]], n=N//2) for pstr in pauli_str_A]\n",
    "H_A = paddle.to_tensor(np.stack(H_A))\n",
    "H_B = [pauli_str_to_matrix([[1., pstr]], n=N-N//2) for pstr in pauli_str_B]\n",
    "H_B = paddle.to_tensor(np.stack(H_B))\n",
    "\n",
    "# calculate the ground state information\n",
    "ground_state_energy = get_ground_state_info(H_mtr)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now that we have prepared a Hamiltonian, we may build a distributed VQE to solve it."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Construct parameterized circuit\n",
    "def U_cir(N, D):\n",
    "    \n",
    "    cir = Circuit(N)  # Initialize an N-qubit-width circuit\n",
    "    cir.complex_entangled_layer('full', N, D)   # Add quantum gates\n",
    "    return cir  \n",
    "\n",
    "# Apply a parameterized circuit on the conputational bases\n",
    "# and return a tensor of shape [2**N, num_states]\n",
    "def output_states(num_states, N, cir):\n",
    "    # Create num_states-many computational bases\n",
    "    basis = paddle.eye(2**N, num_states)\n",
    "    \n",
    "    # Acquire a matrix of the parameterized circuit\n",
    "    U = cir.unitary_matrix()\n",
    "    \n",
    "    # Apply the parameterized circuit on these bases\n",
    "    vec = U @ basis                         \n",
    "    \n",
    "    return vec"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The code below is core to this tutorial. Please compare them with the formulae given in the beginning section and make sure that they are well understood."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Construct the distributed model\n",
    "class DistributedVQE(paddle.nn.Layer):\n",
    "    def __init__(self, N, D, S):\n",
    "        super().__init__()\n",
    "        paddle.seed(SEED)\n",
    "\n",
    "        self.S = S  # Define constant S\n",
    "        self.N = N\n",
    "        self.cir = [U_cir(N//2, D), U_cir(N - N//2, D)]\n",
    "        \n",
    "    # The core logic of distributed VQE\n",
    "    def forward(self):\n",
    "        # Obtain U|k> and V|k> for subsystems A and B respectively \n",
    "        vec_A = output_states(self.S, self.N//2, self.cir[0])\n",
    "        vec_B = output_states(self.S, self.N - self.N//2, self.cir[1])\n",
    "        \n",
    "        # Calculate tensor E_A, E_B, which have elements E_{ijt}^A and E_{ijt}^B, as per defined in above\n",
    "        E_A = vec_A.conj().t() @ H_A @ vec_A\n",
    "        E_B = vec_B.conj().t() @ H_B @ vec_B\n",
    "        M = (coefs.reshape([-1, 1, 1]) * E_A * E_B).sum(0)\n",
    "\n",
    "        # Find the minimal eigenvalue of M\n",
    "        eigval = paddle.linalg.eigvalsh(M)\n",
    "        loss = eigval[0]\n",
    "        \n",
    "        return loss"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Define training function."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "def train(model):\n",
    "    start_time = time.time()    # To calculate the running time of this function\n",
    "    params = sum([cir.parameters() for cir in model.cir], [])\n",
    "    # We will use Adam, a gradient-based optimizer to optimize theta and phi\n",
    "    opt = paddle.optimizer.Adam(learning_rate=LR, parameters=params)\n",
    "    summary_loss = []           # Save loss history\n",
    "\n",
    "    # Optimization iteration\n",
    "    for itr in range(ITR):\n",
    "        # Forward propagation to calculates the loss function\n",
    "        loss = model()\n",
    "        # Backward propagation to optimize the loss function\n",
    "        loss.backward()\n",
    "        opt.minimize(loss)\n",
    "        opt.clear_grad()\n",
    "        # Update optimization result\n",
    "        summary_loss.append(loss.numpy())\n",
    "        # Print itermediary result\n",
    "        if (itr+1) % 20 == 0:\n",
    "            print(f\"iter: {itr+1}, loss: {loss.tolist()[0]: .4f} Ha\")\n",
    "\n",
    "    print(f'Ground truth is  {ground_state_energy:.4f} Ha')\n",
    "    print(f'Training took {time.time() - start_time:.2f}s')\n",
    "    \n",
    "    plt.plot(list(range(ITR)), summary_loss, color='r', label='loss')\n",
    "    plt.hlines(y=ground_state_energy, xmin=0, xmax=ITR, linestyle=':',  label='ground truth')\n",
    "    plt.legend()\n",
    "    plt.title(f'Loss for {type(model).__name__} on a {N}-qubit Hamiltonian')\n",
    "    plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now, we are ready to instantiate the model and train it!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "iter: 20, loss: -0.9244 Ha\n",
      "iter: 40, loss: -0.9906 Ha\n",
      "iter: 60, loss: -0.9968 Ha\n",
      "iter: 80, loss: -0.9977 Ha\n",
      "iter: 100, loss: -0.9978 Ha\n",
      "Ground truth is  -0.9978 Ha\n",
      "Training took 7.24s\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAuCElEQVR4nO3deZgU1dn38e89CwzLsC+KgCwigiCoA6ICEsVEjQLGGDWLkESNT5Y3q8bE90k0JsYn+ibG5IlLTBR3jBoDLnEhLhhxGRREAUUIyM6AbMMAs93vH6cGm6GHWXpmauj+fa6rr+7qqq5zV5/qu0+fOl1l7o6IiKS/rLgDEBGR5qGELyKSIZTwRUQyhBK+iEiGUMIXEckQSvgiIhlCCb8JmFkbM5tlZtvM7G/NWG6xmQ1opHX91MzujB73MzM3s5zGWHcDYrnGzO6Lo2wJzGyCma0+wPzbzOy/mzOm+jCzL5nZswnTbmZHNFFZjfY5bGxpnfDNbIWZTYyh6M8DPYGu7n5+qiuLPmyV0Y5UbGarzexhMxuVuJy7t3f35XVYV40f3IR1Xe/ul6Qae1Rmo9SDmeWZ2VYzOzXJvN+Z2SMJ09PMbKGZlZjZejP7k5l1TJh/jZmVJbynxWa2NdUYG5uZXRdtR7mZXZNk/hfNbKWZ7TSzx82sSwxh4u6Xu/t1UUy17mNmdreZ/bLac03WsHD3+93903WNJcWyav0cxiWtE36MDgc+cPfy+r7wADv7WndvD+QDY4AlwBwzO63hYdY7hli5+25gBnBx4vNmlg1cBEyPpn8I/A9wBdCR8H71A541s9yEl86IPpxVt05NvhH19yFwJfBk9RlmdjRwO/AVQgOjBPhTs0YnBxd3T9sbsAKYmOT51sDNwNrodjPQOprXDXgC2Ap8DMwBsqJ5PwbWADuA94HTkqz7WqAUKAOKga8Tvlj/L7AS2AjcA3SMlu8HeLTcR8DLSdY5AVid5Pk/AoUJ0w4cET0+C1gUxboG+BHQDtgFVEaxFQO9gGuAR4D7gO3AJdFz91WL8bLo/VoH/Cih3LuBXyaLF7g3Km9XVN6V0fNjgFej93kBMCHh9f2Bl6LYn4u2syqWk6Ln2yYsf1b0vuYAHaJyvlDtvWoPFAFTo+m921fHfWkS8F4U74vAkGr72Y+Ad4BthC+lvBrWMxD4F7AZ2ATcD3SqQ/n3AddUe+564IFq6y4F8mtYR5uorrZE+8YViftV4v5TvV6r6hT4aRT3CuBL1Zelhn0sSSz77DPV9rOcaPqzwNuEfXJV4vYnLPvVaN4W4HJgVFQPW4E/Jiw/DXil+rYS9umy6H0rBmZF84dE9bw1qvdJ1WL/X8KX8A7gdWBgDZ/DumzDVMJnfxNwdZPmxKZcedw3ak74vwBeA3oA3QmJ57po3q+B24Dc6DYOMGBwVGG9EiprYA3lXkNCMgG+RmipDSAknseAe6tV+j3Rh6VNkvVNIHnCPzX6YLVLsqOtA8ZFjzsDx9W0rijeMmAK4cupDckT/oNRjMMJyXNisg9v9TKq1wNwGCHhnRWVd3o03T2aPxf4LeGLeTzhQ5X4fn4AfDlh+kHg5ujxGUA5UdKotp3TgfuT1VEt+9GRwM4ozlxCi/tDoFXC9r1B+PLsAiwGLq9hXUdE62lN2Pderoq9lhiSJfx/AD+u9lwxcHwN67iB0IDpAvQB3qV+Cb88oV5Oid6TwTUsu9/+Wi2WffaZavtZTsJ6hkf7yDHABmBKtWVvA/KATwO7gccJn+vDCI2AU6Llp5Ek4dew/+ZG9ftToBXhc7aj2rZuBkYTGhn3Aw/VsO66bMOfCZ+5EcAeEhoTjX3L1C6dLwG/cPeN7l5EaJV/JZpXBhwKHO7uZe4+x0PtVBB29KFmluvuK9x9WT3K+627L3f3YuAnwIXVuk6ucfed7r6rHtuxlvBl1CnJvLIo1g7uvsXd36plXXPd/XF3rzxADNdGMS4E7iJ0ozTEl4Gn3P2pqLzngELgLDPrS2il/be773H3l4FZ1V5/D1G3jpl1ACYTdecQfqFt8uTdaesISbbKF6JjAlW3F2qI9wLgSXd/zt3LgJsIH9CTEpa5xd3XuvvHUbwjk63I3T+M1rMn2vd+S0ieDdGe8Isi0TZCt18yXwB+5e4fu/sq4JYGlFlVLy8RWrhfaMA6qvwo8f0ntMz3cvcX3X1htI+8Q/hir/5eXefuu939WcIX0IPR53oN4cvt2AbENYbw3t7g7qXu/i/Cr/7E/f3v7v5GtJ/dT831XZdtuNbdd7n7AsKv3RENiLlOMjXh9yJ0r1RZGT0HcCPh2/1ZM1tuZldB+KAC3yO0DDea2UNm1ou6SVZeDqHftcqqem4DhFaME352VnceoQW90sxeMrMTa1lXXcpPXCbxPauvw4Hzq33YxxK+aHsBW9x9Z7WyEt0LfCp6/z8PLHP3t6N5m4BuNRyHODSaX+Vhd++UcPtUDfHuU3/uXkl4Lw5LWGZ9wuMSQsLYj5n1jPadNWa2ndBy71ZDubUpJnRhJeoA7IhGpVQdjH46YTuq12F9JKuXhu4DADclvv+EFvBeZnaCmb1gZkVmto3QZVP9vdqQ8HhXkumk9VCLXsCqqJ6rrKRh9V2XbajTuhpDpib8tYSkU6Vv9BzuvsPdf+juAwj9tj+oOjDq7g+4+9jotU44MNjQ8srZd+f0BmzHucBb1T6ERLG+6e6TCT9vHwcerqWcupTfJ+Hx3veM0LJqmzDvkFrWvYrQpZWYbNu5+w2EVnhnM2tXraxPVua+ktB6+zLhl9n0hNlzCT+LP5f4GjNrD5xJ6Jetr33qz8yM8F6sacC6rie8H8PdvQNhG6wB64HQt7y3NRgNBWxNGDBwv39yMPrMaJF17F+HiUo4cD0mq5e17K8h+3IyDwAzgT7u3pHQfdPQ9+pAqse7FuhjZon5sS8Nq+/m2oY6yYSEnxsN56u65RB+Vv1fM+tuZt2AnxFaWpjZ2WZ2RPSh3kboyqk0s8FmdqqZtSb0FVYdmKqLB4Hvm1n/KPFcTxgh0pBRPGZmh5nZzwkHV3+aZJlWUQuvY9QFsT0h1g1A18QhivXw32bWNhod8lXCwUmA+YTumC5mdgjhl1CiDYTjF1XuA84xs8+YWXZULxPMrHeUzAuBa6PtGAuckySW6cC3gZMJP6kBcPdthC66P5jZGWaWa2b9CF94mxKXrYeHgc+a2WnRKJ8fEr5UXm3AuvIJLfNtZnYY4cBpjaL48wif1ZzovcqOZt9PeB/HRYn4F8Bj7r7jANvxEzPrbGa9ge9Umz8f+GJUJ2eQvKupql7GAWcDyf5nkso+ligf+Njdd5vZaOCLKa6vJtX3z9cJX35XRu//BMI++FAD1t1c21AnmZDwnyIk56rbNYTRBIWEPsOFwFvRcwCDgOcJH8q5wJ/c/QVCy+kGQtJYT2g5/6SOMfyV0A3xMvAfwhdG9Q9bbXqZWdWohzcJB4ImRH2XyXwFWBF1G1xOOI6Auy8hfAEtj7pT6vOT/CVCd9dsws/xqrLvJfQ9rgCe5ZMvgiq/JnzBbjWzH0X9x5MJX1ZFhBb/FXyyP34ROIEwSurnhD776h4lHHyc7e7rEme4+2+idd9EONj2H0LLdWK1X0MX2L7j8IvNrEf1gtz9fUJL/A+E+j8HOMfdS2t8p2p2LXAcoTHxJOEA/oH8mbDfXgRcHT3+ShTXe4S6vZ9wgDIf+GYtZa8kvB/PEuot0XcJ27aVsL88Xm3+esJomLVRmZdH+9M+UtzHEn0T+IWZ7SA0yh6uZfmG+gvheNdWM3s8qtdzCL8INxGGul6cbFvroLm2oU4sHI8USV9m9lVC6/dkd/8o7nhaiqjlep+79445FGkmLfIPNiKNyd3vMrNywqgaJXzJWEr4khHcvXr3hUjGUZeOiEiGyISDtiIiQgvu0unWrZv369cv7jBERA4q8+bN2+Tu3ZPNa7EJv1+/fhQWFsYdhojIQcXMavwHtbp0REQyhBK+iEiGUMIXEckQLbYPX0RaprKyMlavXs3u3bvjDiWj5eXl0bt3b3Jzc2tfOKKELyL1snr1avLz8+nXrx/hHIPS3NydzZs3s3r1avr371/n16lLR0TqZffu3XTt2lXJPkZmRteuXev9K0sJX0TqTck+fg2pg/RL+Fu2wHXXgcbwi4jsI/0SfnY2/Oxn8NxzcUciIk2kffsmuwpgWku/hN+hA/TtC+++G3ckIiItSvolfIBhw2DhwrijEJEm5u5cccUVDBs2jOHDhzNjRrjY2rp16xg/fjwjR45k2LBhzJkzh4qKCqZNm7Z32d/97ncxR9/80nNY5rBhoUunrAzqMUZVROrpe9+D+fMbd50jR8LNN9dp0ccee4z58+ezYMECNm3axKhRoxg/fjwPPPAAn/nMZ7j66qupqKigpKSE+fPns2bNGt6Nfv1v3bq1ceM+CKRnC3/48JDsly6NOxIRaUKvvPIKF110EdnZ2fTs2ZNTTjmFN998k1GjRnHXXXdxzTXXsHDhQvLz8xkwYADLly/nO9/5Dv/85z/p0KFD3OE3u/Rt4UPoxx86NN5YRNJZHVvizW38+PG8/PLLPPnkk0ybNo0f/OAHXHzxxSxYsIBnnnmG2267jYcffpi//vWvcYfarNKzhX/UUZCVpQO3Imlu3LhxzJgxg4qKCoqKinj55ZcZPXo0K1eupGfPnlx66aVccsklvPXWW2zatInKykrOO+88fvnLX/LWW2/FHX6zS88Wfl4eDBqkhC+S5s4991zmzp3LiBEjMDN+85vfcMghhzB9+nRuvPFGcnNzad++Pffccw9r1qzhq1/9KpWVlQD8+te/jjn65tdir2lbUFDgKV0A5fOfhwUL1I8v0sgWL17MkCFD4g5DSF4XZjbP3QuSLZ+eXToQDtwuWwYlJXFHIiLSIqRvwh82DNxh8eK4IxERaRHSO+GD+vFFRCLpm/AHDoTWrZXwRUQi6Zvwc3LCGHydYkFEBEjnhA+hW0ctfBERIBMS/po14Rz5IiKN5JprruGmm27a7/nHH3+cRYsW1Xt9K1as4IEHHtg7fffdd/Ptb387pRiTSf+ED/Dee/HGISLNrry8vNnLPFDCP1A81RN+U8mMhK9+fJG0ct111zF48GDGjh3LRRddtLe1PWHCBL73ve9RUFDA73//e2bPns2xxx7L8OHD+drXvsaePXsA6NevH5s2bQKgsLCQCRMmAKHl/rWvfY0JEyYwYMAAbrnllr1l/upXv+LII49k7NixvP/++/vF9OqrrzJz5kyuuOIKRo4cybJly/aLZ9q0aTzyyCN7X1N1IZerrrqKOXPmMHLkyL2nbV67di1nnHEGgwYN4sorr2yU9y29E36fPtC+vcbiizShC26fy98KVwFQVlHJBbfP5e9vrwZgV2kFF9w+l1kL1gKwfXcZF9w+l3++uw6Aj3eWcsHtc3l+0QYANu6o/aLcb775Jo8++igLFizg6aefpvo/8ktLSyksLORb3/oW06ZNY8aMGSxcuJDy8nJuvfXWWte/ZMkSnnnmGd544w2uvfZaysrKmDdvHg899BDz58/nqaee4s0339zvdSeddBKTJk3ixhtvZP78+QwcOHCfeH74wx/WWOYNN9zAuHHjmD9/Pt///vcBmD9//t7YZ8yYwapVq2qNvTbpnfDNwonUlPBF0sa///1vJk+eTF5eHvn5+Zxzzjn7zL/gggsAeP/99+nfvz9HHnkkAFOnTuXll1+udf2f/exnad26Nd26daNHjx5s2LCBOXPmcO6559K2bVs6dOjApEmT6hxvVTz1ddppp9GxY0fy8vIYOnQoK1eubNB6EqXnydMSDRkCL7wQdxQiaWvGN07c+zg3O2uf6TatsveZ7pCXu890l3at9pnukZ+Xcjzt2rWrdZmcnJy9J1HbvXvfXxWtW7fe+zg7OzvlYwGJ8SSWW1lZSWlpaY2va+w4IN1b+BBa+KtXw44dcUciIo3g5JNPZtasWezevZvi4mKeeOKJpMsNHjyYFStW8OGHHwJw7733csoppwChD3/evHkAPProo7WWOX78eB5//HF27drFjh07mDVrVtLl8vPz2XGAXJNY7syZMykrK6vT6xpL+if8qjPJJTnIIiIHn1GjRjFp0iSOOeYYzjzzTIYPH07Hjh33Wy4vL4+77rqL888/n+HDh5OVlcXll18OwM9//nO++93vUlBQQHZ2dq1lHnfccVxwwQWMGDGCM888k1GjRiVd7sILL+TGG2/k2GOPZdmyZfvNv/TSS3nppZcYMWIEc+fO3dv6P+aYY8jOzmbEiBFNeq3d9D09cpXFi8M/bu+5B77yldTXJ5LhWsLpkYuLi2nfvj0lJSWMHz+eO+64g+OOOy7WmOJQ39Mjp38f/hFHhNMsLFkSdyQi0kguu+wyFi1axO7du5k6dWpGJvuGSP+En5sbkr5G6oikjeb4k1I6Sv8+fAgHbtXCF2k0LbUrOJM0pA5SSvhm1sXMnjOzpdF95yTLjDSzuWb2npm9Y2YNG5SaiiFDwqUOoyPiItJweXl5bN68WUk/Ru7O5s2bycur3zDWVLt0rgJmu/sNZnZVNP3jasuUABe7+1Iz6wXMM7Nn3H1rimXX3VFHQXl5uOThUUc1W7Ei6ah3796sXr2aoqKiuEPJaHl5efTu3bter0k14U8GJkSPpwMvUi3hu/sHCY/XmtlGoDuwNcWy667qKPaSJUr4IinKzc2lf//+cYchDZBqH35Pd18XPV4P9DzQwmY2GmgF7D9ANcy/zMwKzaywUVsPgweHex24FZEMVmsL38yeBw5JMuvqxAl3dzOrsVPPzA4F7gWmuntlsmXc/Q7gDgjj8GuLrc46dIDDDtOBWxHJaLUmfHefWNM8M9tgZoe6+7oooW+sYbkOwJPA1e7+WoOjTYVOoiYiGS7VLp2ZwNTo8VTgH9UXMLNWwN+Be9z9kerzm82QIaGFr5EFIpKhUk34NwCnm9lSYGI0jZkVmNmd0TJfAMYD08xsfnQbmWK59TdkSDiB2tq1zV60iEhLkNIoHXffDJyW5PlC4JLo8X3AfamU0yiqRucsWRL680VEMkxm/NMWPhmaqX58EclQmZPwDzkEOnZUwheRjJU5Cd8snCa5hivKi4iku8xJ+KCELyIZLfMS/saNsGlT3JGIiDS7zEv4oH58EclImZnw1a0jIhkosxJ+nz7Qvr0SvohkpMxK+GZhPP5778UdiYhIs8ushA8aqSMiGSszE/66dbBlS9yRiIg0q8xL+EcfHe41UkdEMkzmJXyN1BGRDJV5Cf/ww6FNGyV8Eck4mZfws7LCSB0lfBHJMJmX8EEjdUQkI2Vuwl+1CrZvjzsSEZFmk7kJH8LVr0REMkRmJ3x164hIBsnMhD9gALRuDe+8E3ckIiLNJjMTfnY2jBoFr74adyQiIs0mMxM+wNixMG8elJTEHYmISLPI7IRfXg5vvBF3JCIizSJzE/5JJ4XTJc+ZE3ckIiLNInMTfufOMGwYvPJK3JGIiDSLzE34ELp1Xn01dO2IiKS5zE7448ZBcbGGZ4pIRsjshD92bLhXt46IZIDMTvh9+kDfvkr4IpIRMjvhQ2jlz5kD7nFHIiLSpJTwx42D9eth+fK4IxERaVJK+OrHF5EMoYQ/dCh06QKzZ8cdiYhIk0op4ZtZFzN7zsyWRvedD7BsBzNbbWZ/TKXMRpeVBWefDbNmQWlp3NGIiDSZVFv4VwGz3X0QMDuarsl1wMspltc0zj8ftm5VK19E0lqqCX8yMD16PB2YkmwhMzse6Ak8m2J5TeP006FDB/jb3+KORESkyaSa8Hu6+7ro8XpCUt+HmWUB/w/4UW0rM7PLzKzQzAqLiopSDK0eWreGSZPg8cehrKz5yhURaUa1Jnwze97M3k1ym5y4nLs7kGww+zeBp9x9dW1lufsd7l7g7gXdu3ev80Y0ivPPhy1b4F//at5yRUSaSU5tC7j7xJrmmdkGMzvU3deZ2aHAxiSLnQiMM7NvAu2BVmZW7O4H6u9vfp/+NOTnwyOPwGc+E3c0IiKNLtUunZnA1OjxVOAf1Rdw9y+5e19370fo1rmnxSV7gLw8OOcc+Pvf1a0jImkp1YR/A3C6mS0FJkbTmFmBmd2ZanDN7vzzYfNmePHFuCMREWl05i30HDIFBQVeWFjYvIXu2gU9esB558Hddzdv2SIijcDM5rl7QbJ5+qdtojZtYNo0uP9+WLEi7mhERBqVEn51P/5x+Pftr38ddyQiIo1KCb+63r3hkkvgrrvgo4/ijkZEpNEo4SdzVTSISK18EUkjSvjJ9OkDX/86/OUvauWLSNpQwq/JT34S7m+6Kd44REQaiRJ+Tfr2hSlT4OGHobIy7mhERFKmhH8gU6bAhg3w+utxRyIikjIl/AM56yzIyQln0RQROcgp4R9Ip07wqU+F8+u00H8ki4jUlRJ+baZMgaVLYcmSuCMREUmJEn5tJk0K9+rWEZGDnBJ+bXr3hlGjlPBF5KCnhF8XkyfDG2/A2rVxRyIi0mBK+HUxZUq4nzkz1jBERFKhhF8XQ4fCEUfArFlxRyIi0mBK+HVhBqecAq+9puGZInLQUsKvq9Gj4eOPYdmyuCMREWkQJfy6OuGEcK/TLIjIQUoJv66OPhratlXCF5GDlhJ+XeXkQEGBEr6IHLSU8Otj9GiYPx/27Ik7EhGRelPCr48TToDSUliwIO5IRETqTQm/PnTgVkQOYkr49dG7Nxx6qBK+iByUlPDrwyy08pXwReQgpIRfX6NHw4cfhj9hiYgcRJTw66uqH/+NN+KNQ0SknpTw66ugIHTtqFtHRA4ySvj11aFDOHumEr6IHGSU8BuioADeeivuKERE6kUJvyFGjoQNG2D9+rgjERGpMyX8hjj22HD/9tvxxiEiUg8pJXwz62Jmz5nZ0ui+cw3L9TWzZ81ssZktMrN+qZQbuxEjwr0SvogcRFJt4V8FzHb3QcDsaDqZe4Ab3X0IMBrYmGK58erUCfr3DydSExE5SKSa8CcD06PH04Ep1Rcws6FAjrs/B+Duxe5ekmK58Tv2WLXwReSgkmrC7+nu66LH64GeSZY5EthqZo+Z2dtmdqOZZSdbmZldZmaFZlZYVFSUYmhNbOTI8I/bHTvijkREpE5qTfhm9ryZvZvkNjlxOXd3INkVvnOAccCPgFHAAGBasrLc/Q53L3D3gu7du9d3W5pX1YFbnSpZRA4SObUt4O4Ta5pnZhvM7FB3X2dmh5K8b341MN/dl0eveRwYA/ylYSG3EIkjdcaOjTcWEZE6SLVLZyYwNXo8FfhHkmXeBDqZWVWT/VRgUYrlxq9XL+jWTQduReSgkWrCvwE43cyWAhOjacyswMzuBHD3CkJ3zmwzWwgY8OcUy42fmQ7cishBpdYunQNx983AaUmeLwQuSZh+DjgmlbJapJEj4eabw2UPW7WKOxoRkQPSP21TceyxUFYGixfHHYmISK2U8FOhUyyIyEFECT8VgwZB27ZK+CJyUFDCT0V2NhxzjBK+iBwUlPBTVXVu/PLyuCMRETkgJfxUjRkDO3fCe+/FHYmIyAEp4aeq6qLmuuShiLRwSvipGjgQunaF116LOxIRkQNSwk+VWejWUcIXkRZOCb8xnHBC+PPV1q1xRyIiUiMl/MYwZky4f/PNeOMQETkAJfzGMHp06NrRgVsRacGU8BtDx44wZIj68UWkRVPCbywnnBBa+J7sol8iIvFTwm8sY8bApk2wfHnckYiIJKWE31iqDtyqW0dEWigl/MZy9NHQrp0O3IpIi6WE31iys2HUKJg7N+5IRESSUsJvTOPGhTNnbtsWdyQiIvtRwm9MEydCZSW8+GLckYiI7EcJvzGNGROugPX883FHIiKyHyX8xtSqFYwfD7Nnxx2JiMh+lPAb28SJ4URqa9bEHYmIyD6U8BvbxInhXq18EWlhlPAb2/Dh0K2b+vFFpMVRwm9sWVlw2mkh4eu8OiLSgijhN4WJE2HdOliyJO5IRET2UsJvClX9+OrWEZEWRAm/KfTrBwMGKOGLSIuihN9UJk6EF16A8vK4IxERAZTwm87pp8OOHfDGG3FHIiICKOE3nU99KlznVt06ItJCKOE3la5d4fjj4bnn4o5ERARIMeGbWRcze87Mlkb3nWtY7jdm9p6ZLTazW8zMUin3oDFxYrgC1o4dcUciIpJyC/8qYLa7DwJmR9P7MLOTgJOBY4BhwCjglBTLPTicfno4aPvSS3FHIiKScsKfDEyPHk8HpiRZxoE8oBXQGsgFNqRY7sHhpJOgTRt164hIi5Bqwu/p7uuix+uBntUXcPe5wAvAuuj2jLsvTrYyM7vMzArNrLCoqCjF0FqAvLxwFSwduBWRFqDWhG9mz5vZu0lukxOXc3cntOarv/4IYAjQGzgMONXMxiUry93vcPcCdy/o3r17gzaoxTn9dFi0SKdLFpHY5dS2gLtPrGmemW0ws0PdfZ2ZHQpsTLLYucBr7l4cveZp4ERgTgNjPrgkni754ovjjUVEMlqqXTozganR46nAP5Is8xFwipnlmFku4YBt0i6dtHTMMdC9u/rxRSR2qSb8G4DTzWwpMDGaxswKzOzOaJlHgGXAQmABsMDdZ6VY7sEjKyu08p97LlzgXEQkJrV26RyIu28GTkvyfCFwSfS4AvhGKuUc9M4+Gx58MIzJP+mkuKMRkQylf9o2h7PPDhc4f+SRuCMRkQymhN8cOnQIo3Uee0xXwRKR2CjhN5fzzoOVK2HevLgjEZEMpYTfXCZPhpwcePTRuCMRkQylhN9cunQJp0x+9FF164hILJTwm9N558HSpfDuu3FHIiIZSAm/OU2ZEi6Kom4dEYmBEn5z6tkznExNwzNFJAZK+M3twgvhvfd0rVsRaXZK+M3ty1+G/Hz44x/jjkREMowSfnPLzw9nzZwxA9LhnP8ictBQwo/DN78JpaVw5521Lysi0kiU8OMwdCiceircdlu45q2ISDNQwo/Lt74FH30ETzwRdyQikiGU8OMyaRL07g3/+79xRyIiGUIJPy45OfBf/xUucP7663FHIyIZQAk/Tt/5DvToAVdcofPriEiTU8KPU34+XHMNzJmjvnwRaXJK+HG75BI48kj48Y81YkdEmlRK17SVRpCbCzfcAJ/7HNx1F1x6ad1eV14OL7wA27eHMf2VlXD00TBsWDg+ICJSjTJDSzBlSri4+c9+Fk6h3KVLzcu6w1NPhX7/xYv3n9+mDRx/PJx2GnzmMzBqlL4ARARQl07LYAa33AKbN4dz7VRWJl9u1Sr49KfDRdHLy8PpGRYsCIn/vffggQfgG98ILf7rrgtfIj16wJVXwvr1zbtNItLimLfQ0SEFBQVeWFgYdxjN69Zbw2kXrr02tPYTLVwIZ54ZunB++Uu4/HJo1armdX38cRjy+eij4XTMrVqF7qKf/xy6dm3a7RCR2JjZPHcvSDpPCb8FcQ8nVrv/fnj66dAlA6GvfsoUaN8+PH/MMfVb79Kl4TjBPfdA//6hS+iIIxo9fBGJnxL+waSkBMaMgfffDy1xM9i4MYzkefpp6Nu34ev+97/DxdQBZs4MXT4iklYOlPB1NK+ladsWZs2C3/4Wdu0Krf5OneCnP4XOnVNb98knw2uvha6hU08NvyTOO69RwhaRlk8t/Ey0aVNo6c+dGw4Wf/vbcUckIo3kQC18jdLJRN26hQO6kyaF0ztcfbVO7SCSAZTwM1WbNmH0zmWXwfXXw1lnwbJlcUclIk1ICT+T5eSEi7Dccgu88kr4l+4vfgE7dsQdmYg0AfXhS7BmDfzgB/Dww5CVBSNHwtixMHw49OsXbr16hYPKItJiaZSO1O6ww8I/d7/7XXjmmdDiv/POMEw0UV5eOAaQeOvZM3wZHHYY9OkDAwaE6Sz9gBRpSZTwZV8nnfTJ+Pzy8tDyX7EC/vMf2LAhjPDZtCmcBqKoKDy/fj3s3Lnvelq3Dn/uOuaYcBswIPw6aNMmfBEUF4dbSQns2RNuEIagduoUvkgGDoRDDw3/RRCRlKWU8M3sfOAaYAgw2t2T9sGY2RnA74Fs4E53vyGVcqWZ5OTA4YeH2ymnHHjZHTvCl8NHH8Hy5eG2ZAm8+io8+GDDY2jbNiT+o44KtyFDwv3gwXXrXqqshIqKMArJPZxiQl8gkqFSbeG/C3wOuL2mBcwsG/hf4HRgNfCmmc1090Upli0tSX7+J0m5um3bYPXq8EeykpKQhNu3D7e2bcOvgarzAm3bBlu3hl8Ty5aF2wcfwNtvh/MCVZ1Yzix0H3XvHv6R3LFjWP/OneGXw+bN4bZt2/7x5OWFXxp5eaHsqvuqxx06hD+5dekS1t29e7h17hzmdegQlsvODl+K7uFLpaIi/Cqqepx4qzpWZhZu2dmfvD4nJ5wmu+q5rKzk91W3qnWI1FNKCd/dFwPYgXe+0cCH7r48WvYhYDLQpAn/gtvn8vnje3N+QR/KKir58p2vc+HoPpx7bG92lVYw7a43+PKYwzlnRC+27y7j0umFfPXkfpwx7FA+3lnKf903j0vHDWDi0J5s3LGb7zzwNv81YSATBvdg7dZdfH/GfL5z6iDGDurGR5tLuOKRBXz/9CMZM6Ary4qK+eljC7nyjMEcf3gX3l+/g5/9411+etYQRvTpxHtrt/GLWYv42TlDObpXRxas2sr1Ty3mF5OHMfiQfOat/Jjf/PN9rv/ccAZ2b89ryzfzu+c+4MbPj6Bv17a8snQTf/jXUn53wUh6dWrDi+9v5NYXl/GHLx5Lj/w8nl+0gT/PWc6tXz6eLu1a8c9313HXv1fw56kFdMjLZdaCtdz32kru/upo2rTK5u9vr+ahN1Zx3yUnkJudxd8KV/HIvNXM+MaJADz4xkc88c5a7r9kDAD3zl3B84s3Mv1rowH46yv/4dVlm7hz6igA7nh5GW+t3MptXzkegD+9XcSitXv44xfDcaRbZi9l+YfF3Hxh+HL47bPvs3bbbm46fwR07sz//HMJW0sO5dffDOcS+tWTi9hdVsl1Zw6CpUv5273P0m31cj6VvR02b2bVh6tpU/Ih3bp3hHbteL+8FeWHH83RZ/eHLl14ekkR+Xm5jB3UHfbsYfZbK+iWXcmIHm1g927e+mAdnbOd/vk5sGsXH73zAZ1Ld5K/c3uLHbHkWVlYdjZuRplDdnY22VlGJcaeCqdVbhbZZlQ47CmvoHVONtnGJ9O5OWRnGRXu7CmtoHVu1XxnT1llmM4yyjFKyp12bXLJzs6mtNIpLq2kY7tWZJuxu8Ip3lNB53a5ZJuxq7yS4j3ldGnXmmyDXaXl7NxTQZd2rcgy2FVWEabbtyILKCmrYGdpBd3y8zBgZ1klO/eU0yO/NZhRvKecktIKenTIAzO27y6npKyCQzrkAbBtdzm7Eqa37ipjT1klPTu03jtdWl4Z1gdsKSmjrCJxupTySqd7fnj95p2lVDh752/aWYq70719NF1cCkC39qGBUlS8BzOjW7swvbG4lOwso2s0vWHHHnISp7fvJjcniy5tw/T67btpnZNF57atYMwYLj/12xx3eCcuGz+wSfab5ujDPwxYlTC9Gjgh2YJmdhlwGUDfVM4ZI+mpdWsYNoxFY0MD41PnHA3AHY+/S15uFld/digAdz/2Dp3atuLoM8IXyuy/LaBXxzzGfnowALMeepsB3dsz4rRBAPz1gbcY2qsD35wQTih3/b3zPvnQlZbywz89z7hOMGVAe9i2jdtnvsXwHm046fBOUF7OX19dwbA+XRh9RHfIyeEPLy1n1MDujDmyJ+XA7/61jLGDe3Bi/67sKavkD8+/z4QjulDQpyMlJbu566UPGT+gE8N7tmfnrlJmvLaCk/t3ZnCPduzYtYeZhas4sV8nBnRpw/adu3l24TpG9+1I346t2V5SyotLNjCqbyd6dcxj+849vLK0iFH9utCzQx7bdpby6rJNnNC/K93zW7OleA+vL9vMmP6d6dq+NR/v2MObKz5mzMBudGnXik3bd1O4YgsnH9GVTnk5FG3dxYKVH3Ny/87kt87m4y0lLFqzlRMGdKFdbjZbtpawZP0OxgzoSpucLLZs3cUHG3Zw4oCuZOdms3lLCUuLdnLyEd1olZ1F0cclLCsqZtyg7mRlGUWbivlP0U7GH9kNA4o272Tl5hJ6DOoGQNGmnazZUkKPgeEMr5uLilm3bTeHDOwK7mwqKmZT8R4O6R/mb9pYzMc7S+nZP1xTYuOGHWzfVUaPftH0+h0U7ymnx+HhNCUb1m1nV2kF3ft2CvPXbqO0opIevcP0hrXbqXSn+2EdAVi/Nvxi7NYrml6zjSwzuvXqAO6sX72V3Jwsuh7SAYB1q7bSJjebrofkA7D2oy20a51Dl55hes3KLXRsk0vnHu3Dca4mVuuwTDN7Hjgkyayr3f0f0TIvAj9K1odvZp8HznD3S6LprwAnuPsB/8+vYZkiIvWX0rBMd5+YYvlrgD4J072j50REpBk1x0DpN4FBZtbfzFoBFwIzm6FcERFJkFLCN7NzzWw1cCLwpJk9Ez3fy8yeAnD3cuDbwDPAYuBhd38vtbBFRKS+Uh2l83fg70meXwuclTD9FPBUKmWJiEhq9N93EZEMoYQvIpIhlPBFRDKEEr6ISIZosefDN7MiYGUKq+gGbGqkcA4WmbbNmba9oG3OFKls8+Hu3j3ZjBab8FNlZoU1/dssXWXaNmfa9oK2OVM01TarS0dEJEMo4YuIZIh0Tvh3xB1ADDJtmzNte0HbnCmaZJvTtg9fRET2lc4tfBERSaCELyKSIdIu4ZvZGWb2vpl9aGZXxR1PUzCzPmb2gpktMrP3zOy70fNdzOw5M1sa3XeOO9bGZmbZZva2mT0RTfc3s9ej+p4RnYI7bZhZJzN7xMyWmNliMzsx3evZzL4f7dfvmtmDZpaXbvVsZn81s41m9m7Cc0nr1YJbom1/x8yOa2i5aZXwEy6YfiYwFLjIzIbGG1WTKAd+6O5DgTHAt6LtvAqY7e6DgNnRdLr5LuE021X+B/idux8BbAG+HktUTef3wD/d/ShgBGHb07aezeww4P8ABe4+DMgmXEMj3er5buCMas/VVK9nAoOi22XArQ0tNK0SPgkXTHf3UqDqgulpxd3Xuftb0eMdhCRwGGFbp0eLTQemxBJgEzGz3sBngTujaQNOBR6JFkmrbTazjsB44C8A7l7q7ltJ83omnLa9jZnlAG2BdaRZPbv7y8DH1Z6uqV4nA/d48BrQycwObUi56Zbwk10w/bCYYmkWZtYPOBZ4Hejp7uuiWeuBnnHF1URuBq4EKqPprsDW6CI7kH713R8oAu6KurHuNLN2pHE9u/sa4CbgI0Ki3wbMI73ruUpN9dpoeS3dEn5GMbP2wKPA99x9e+I8D+Nt02bMrZmdDWx093lxx9KMcoDjgFvd/VhgJ9W6b9KwnjsTWrT9gV5AO/bv+kh7TVWv6ZbwM+aC6WaWS0j297v7Y9HTG6p+6kX3G+OKrwmcDEwysxWErrpTCf3bnaKf/pB+9b0aWO3ur0fTjxC+ANK5nicC/3H3IncvAx4j1H0613OVmuq10fJauiX8jLhgetR3/Rdgsbv/NmHWTGBq9Hgq8I/mjq2puPtP3L23u/cj1Ou/3P1LwAvA56PF0m2b1wOrzGxw9NRpwCLSuJ4JXTljzKxttJ9XbXPa1nOCmup1JnBxNFpnDLAtoeunftw9rW6Ea+l+ACwDro47nibaxrGEn3vvAPOj21mEPu3ZwFLgeaBL3LE20fZPAJ6IHg8A3gA+BP4GtI47vkbe1pFAYVTXjwOd072egWuBJcC7wL1A63SrZ+BBwjGKMsIvua/XVK+AEUYfLgMWEkYwNahcnVpBRCRDpFuXjoiI1EAJX0QkQyjhi4hkCCV8EZEMoYQvIpIhlPBFRDKEEr6ISIb4/5Xpoi3GL8rEAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Note that we manually set S = 4 as the Hamiltonian we just created interacts weakly across the subsystems.\n",
    "# (See the Conclusion section for further description)\n",
    "vqe = DistributedVQE(N, D, S=4)\n",
    "train(vqe)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We have plotted the actual ground state energy as a dotted line in the figure above. We see that the loss curve converges to the dotted line, meaning that our distributed VQE successfully found the ground state energy of the Hamiltonian. However, to properly evaluate our model, we need to compare it with the standard VQE, which we build below:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "class StandardVQE(paddle.nn.Layer):\n",
    "    def __init__(self, N, D, S):\n",
    "        super().__init__()\n",
    "        paddle.seed(SEED)\n",
    "        self.N = N\n",
    "        self.S = S\n",
    "        self.cir = [U_cir(N, D)]\n",
    "\n",
    "    def forward(self):\n",
    "        vec = output_states(self.S, self.N, self.cir[0])\n",
    "        loss = vec.conj().t() @ H_mtr @ vec\n",
    "        return loss.cast('float64').flatten()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Instantiate and train the StandardVQE."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "iter: 20, loss: -0.8365 Ha\n",
      "iter: 40, loss: -0.9852 Ha\n",
      "iter: 60, loss: -0.9958 Ha\n",
      "iter: 80, loss: -0.9975 Ha\n",
      "iter: 100, loss: -0.9978 Ha\n",
      "Ground truth is  -0.9978 Ha\n",
      "Training took 1278.13s\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAuSklEQVR4nO3deXwU9f3H8dcnFxHCnQByJkBEkEsNeFQQC9arotYDrwpapLbVtlRrrdZWq22ttD+1v7Ye9UL9qXgr1mqVqmgLlaCgCCJySTjDFcIRcn1/f3wnuAmbc5Nssvt+Ph772J2d78x8Zmf2s9/9zndmzDmHiIjEvoRoByAiIs1DCV9EJE4o4YuIxAklfBGROKGELyISJ5TwRUTihBJ+MzKzQ8xstpkVmNmz0Y4nUmb2qJnd3ojze8fMpjbW/KT+zOwWM3uihvGfmtm45ouofszsPjO7OXg9zszymmg5Y8xseVPMuynFZcI3szVmNiEKiz4P6A50dc6d3xgzNLMbzWy1me02szwzmxUyrlUmUDM71sz2mFlamHEfmdnVwes2ZvY7M/vSzPaZ2Qozu87MLKT8O2ZWFHw+FY/Zzbk+tTGzFDN7LtgvXdWEat7vzWxb8Ph96Do2J+fcEc65d4K4avxxCMoc9F0zsylm9n4TxXeVc+62usYSwXLec84Naox5Nae4TPhR1A/43DlXWt8JzSwpzHuTgW8DE5xzaUAOMCfiKJtYkMCq3fecc/OBPPwPZOh0Q4EhwFPBW88C44HTgfb4z+K7wB+rzPJq51xayOPMxlmTRvU+cCmwKcy4acDZwAhgOHAmfj1F6sc5F3cPYA0+SVZ9vw1wN7AheNwNtAnGpQOvAjuB7cB7QEIw7mfAeqAQWA6MDzPvW4FioATYDXwH/4P7C2AtsAV4DOgYlM8EXFDuS2BumHn+Gbi7mnX8DVAGFAXL+3Pw/j3AOmAXsBAYEzLNLcAzQRyFwKdATsj4I4EPg3GzgKeB24NxnYPPJx/YEbzuHTLtO0FM/wb2AQOBk4HPgIJgXd4FpgblbwT+VWWd7gReDF6PD9atT5UyxwTr3T9kuVPruF/UZXtMDrbHVuCmGuZ1BvBR8DmvA26pYwx5wLgq7/0HmBYy/B1gfg3zyAo+y0LgzeCzfSIYNw7Iq+77EOwDzwXbtzDY3iOqlgVOpfL+vLiu3zVgCvB+yPANwMpgeUuBc6qU/TdwF/67two4Pnh/XbCdJoeUf5Sv9skD6wo8DpQH+95u4Prg/Yn4/XxnsK8MrhL7dcDH+H10FpAa7nOswzq8D/wB/91YDZzWmDmtro+oJ9+orHT1Cf/XwHygG5ARfNFuC8b9DrgPSA4eYwADBgU7Xs+gXCYwoJrl3kLwxQuGrwC+APoDacALwOMh83H4pNMOOCTM/C7F//j8FF+7T6wy/h2qJLtgmq5AEnAtvkaZGhJfEb7GnBis8/xgXAo+EU4P1v88/Je94svVFTgXaIuvbT8LvFQlli+BI4JlZwRfjvOC+U0HSvkq4fcJhvsEwwn4ZHh2MHwH8G41n/Na4MrqPoMa9ou6bI+/AYfga9v7CUkQVeY1DhgWxD0c2FwRey0xhEv4BcAxIcM5QGEN85gH/A++AjM2+Jzrk/BLQrbLdfgElVxN2SdqWZ8D5UPem0LlhH8+0DP4rCYBe4BDQ8qWApfj98nbg/3oL8H6fSNYv7Sg/KOESfjhYgEOC5Z1crCu1wfbPyWk/AdBbF2AZcBV1cy7tnUoAa4M1uF7+AqlNUe+q/TZN/cCW8Ij3E4YvL8SOD1k+BRgTfD618DLwMAq0wzE1zImVHwpalhupS8Ivvnl+yHDg4IdI4mvEkz/WuZ5CfBWsINtA34WMu4dakl2+BrHiJD43goZNwTYF7weW3Unxf8g3l7NfEcCO6rE8uuQ4csIqaXifzzzQuMN1uvG4PXJ+H8PFYnnQeDpapY9P2S6d4C9+BpcxeO2aqary/YI/dfyAXBhHfe5u4G76lAuXMIvAw4PGc4OYjkoYQB98QmyXch7T1K/hB+6XRKAjQT/BMOUrUvC313l899LSMIPM80i4Kzg9RRgRci4YcG6dw95bxswMnj9KHVP+DcDz1RZ1/UVn39Q/tKQ8XcC91X3OdayDl+EjGsbrEOPuuw7jflQG35lPfG1wwprg/cAZuB//f9pZqvM7AYA59wXwI/xO/8WM3vazHpSN+GWl4Q/sFthXU0zcM79n3NuAtAJuAq4zcxOqa58cFBzWdBTaCfQEd9cVSG0DXkvkBocP+gJrHfBHhsSb8V825rZ/Wa21sx2AXOBTmaWWM269AwdDuZbdV1n4tvlCZ6fds6VBMNbgUOrWc1Dg/EVfuic6xTyuLma6eqyPap+PgcdWAYws2PM7G0zyzezAvy2SQ9Xtg52Ax1ChjsAu51zLuiVUnEw+sZgHXY45/ZUWY/6CN0u5fgfobru0+GcHfr5A98PHWlml5nZIjPbGeyTQ6n8WW0Oeb0viKvqe2G3Qy0qbe9gXdcBvULK1HV717YOB+bjnNsbvGxIzBFRwq9sA/7AaoW+wXs45wqdc9c65/rj2/1+Ymbjg3FPOudOCKZ1wO8jWF4plXdwRx0450qcc8/i2xuHhpvWzMbg/7ZeAHQOvnwF+Np1bTYCvar0Dukb8vpafI34GOdcB/w/AqrMOzSejfhmm4rYLHQ48ALQ28xOAr6F/wGo8BZwjJlVmsbMjgniercO61RVXbZHXT0JvIJvkuqIbw5saM+aT/FNSBVGBO/hfK+UioPRv8V/rp3NrF1I+dDttAdfwwQg+EHOqLK80O2SAPQm+B5UUad9syZm1g/fTHY1vvdaJ2AJDf+salI13krbO2QfXF+fmTbzOkQknhN+spmlhjyS8L0/fmFmGWaWDvwSeALAzL5pZgODnaIA/ze73MwGmdnXzawNvv17H/7gUF08BUw3s6ygC+JvgVmujr14gu5tZ5hZezNLMLPT8G3k/w2KbMa3R1doj09g+UCSmf2SyjXHmswLpv2hmSWb2beA0VXmvQ/YaWZdgF/VMr+/A0eY2beCz/6HQI/QAkEt9TngEWCtcy43ZNxb+CaY583sCDNLNLNj8dvrMedcQ/pIR7Q9qmgPbHfOFZnZaODimgqb72KaGgymBPtkRcJ4DF/B6BX8e7wW33RxEOfcWiAXuDXo7nkCvldPhc/x/9rOMLNk/EHqNlVmc3TIdvkx/ljF/DCL2wxk1tTjqg7a4RNxPoCZXc5XFZbGVvX78AxwhpmNDz6La/Hr+p96zrc51yEi8ZzwX8MnqIrHLfgDQrn4WvIn+B4KFScWZeNrlbvxye+vzrm38V+WO/BNCJvwB3x/XscYHsb3HpiLPzBWBFxTj3XYhe/N8iW+bfRO4HvOuYo+zvcA55nZDjP7E/AG8Dr+S782WF6NTUYVnHPF+Fr2FPyB4kn4GniFu/EHM7fik8PrtcxvK/5A1x34NthsfG+Mqmbia2GPhRl3LvB2sKwi/HZ5Hd+NMdSfrXI//IXVhBXp9gj1feDXZlaIrzg8U0v55fj9sBd+O+3jq9rn/cBs/D65BP9jeX8N87oY31tpO/6H98Bn55wrCGJ7EF+T3YNvsgn1Mn777sA3pX0rpCktVMXJg9vM7MNa1i8s59xSfDfaefiEPIzw+0Fj+B2+QrfTzK4LKgWXAv+L32/PBM4M9vU6a+Z1iIhVbpIVab3MbCa+XfaM+n5pY5mZ3YLvbHBptGOR6IrnGr7Enqn4f2FHRTsQkZbooLM3RVqroNmhrgfMReKOmnREROKEmnREROJEi23SSU9Pd5mZmdEOQ0SkVVm4cOFW51zVcyuAFpzwMzMzyc3Nrb2giIgcYGbVnlmtJh0RkTihhC8iEieU8EVE4kSLbcMXkZappKSEvLw8ioqKoh1KXEtNTaV3794kJyfXeRolfBGpl7y8PNq3b09mZiYWnVvrxj3nHNu2bSMvL4+srKw6T9coTTpmdqqZLTezLyquE19lfBszmxWM/6+ZZTbGckWk+RUVFdG1a1cl+ygyM7p27Vrvf1kRJ/zgetp/AU7D3yHpIjMbUqXYd/A3ZRiIvzelTn8XacWU7KOvIdugMWr4o/G371oVXKHwaeCsKmXO4qubVzwHjLem2mN27oSbb4bPPmuS2YuItFaNkfB7Ufma6nlUvkVYpTLBzSQK8De9rsTMpplZrpnl5ufnNyyakhL44x9hxoyGTS8iLV5aWrPfHTAmtKhumc65B5xzOc65nIyMsGcG1y4jA664Ah5/HNbX605lIiIxrTES/noq34u0NwffE/JAmeC2aR3xdzlqGtdeC+XlcPfdTbYIEYk+5xw//elPGTp0KMOGDWPWrFkAbNy4kbFjxzJy5EiGDh3Ke++9R1lZGVOmTDlQ9q677opy9M2vMbplLgCyzSwLn9gv5OD7d74CTMbfAuw84F+uKa/LnJUFF1wA998PN90EnTo12aJE4tqPfwyLFjXuPEeOrHNl7YUXXmDRokUsXryYrVu3MmrUKMaOHcuTTz7JKaecwk033URZWRl79+5l0aJFrF+/niVLlgCwc+fOxo27FYi4hh+0yV+Nvw/nMuAZ59ynZvZrM5sYFHsI6GpmXwA/AQ7qutnorr8eCgvh3nubfFEiEh3vv/8+F110EYmJiXTv3p0TTzyRBQsWMGrUKB555BFuueUWPvnkE9q3b0///v1ZtWoV11xzDa+//jodOnSIdvjNrlFOvHLOvYa/KXjoe78MeV2Ev2F18xk5Ek45Be65B6ZPh9TUZl28SFxooc2mY8eOZe7cufz9739nypQp/OQnP+Gyyy5j8eLFvPHGG9x3330888wzPPzww9EOtVm1qIO2je7662HzZnjqqWhHIiJNYMyYMcyaNYuysjLy8/OZO3cuo0ePZu3atXTv3p0rr7ySqVOn8uGHH7J161bKy8s599xzuf322/nwww+jHX6zi+1LK5x0EvTqBW+8AZdfHu1oRKSRnXPOOcybN48RI0ZgZtx555306NGDmTNnMmPGDJKTk0lLS+Oxxx5j/fr1XH755ZSXlwPwu9/9LsrRN78We0/bnJwc1yg3QLn4Ynj7bdiwAXR2oEjEli1bxuDBg6MdhhB+W5jZQudcTrjysd2kA3DiibBpE6xYEe1IRESiKj4SPsDcudGNQ0QkymI/4Q8aBN26wbvvRjsSEZGoiv2EbwZjx6qGLyJxL/YTPvhmnS+/hDVroh2JiEjUxEfCHzvWP6tZR0TiWHwk/KFDoXNnNeuISKO45ZZb+MMf/nDQ+y+99BJLly6t9/zWrFnDk08+eWD40Ucf5eqrr44oxnDiI+EnJMCYMarhi8SR0tLSZl9mTQm/pniqJvymEh8JH3w7/sqVuka+SAy47bbbGDRoECeccAIXXXTRgdr2uHHj+PGPf0xOTg733HMPc+bM4cgjj2TYsGFcccUV7N+/H4DMzEy2bt0KQG5uLuPGjQN8zf2KK65g3Lhx9O/fnz/96U8Hlvmb3/yGww47jBNOOIHly5cfFNN//vMfXnnlFX76058ycuRIVq5ceVA8U6ZM4bnnnjswTcWNXG644Qbee+89Ro4ceeCyzRs2bODUU08lOzub66+/vlE+t/hK+KBmHZFGNun+eTyb6296V1JWzqT75/HiR3kA7CsuY9L985i9eAMAu4pKmHT/PF5fshGA7XuKmXT/PN5auhmALYW135R7wYIFPP/88yxevJh//OMfVD0jv7i4mNzcXH7wgx8wZcoUZs2axSeffEJpaSn31uHquZ999hlvvPEGH3zwAbfeeislJSUsXLiQp59+mkWLFvHaa6+xYMGCg6Y7/vjjmThxIjNmzGDRokUMGDCgUjzXXntttcu84447GDNmDIsWLWL69OkALFq06EDss2bNYt26ddVOX1fxk/BHjIA2bWDhwmhHIiIR+Pe//81ZZ51Famoq7du358wzz6w0ftKkSQAsX76crKwsDjvsMAAmT57M3DpU+M444wzatGlDeno63bp1Y/Pmzbz33nucc845tG3blg4dOjBx4sRa51M1nvoaP348HTt2JDU1lSFDhrB27doGzSdUbF88LVRSEmRmqmumSCOb9d3jDrxOTkyoNHxISmKl4Q6pyZWGu7RLqTTcrX3klzFv165drWWSkpIOXEStqKjyv4o2bdoceJ2YmBjxsYDQeEKXW15eTnFxcbXTNXYcEE81fFDCF4kBX/va15g9ezZFRUXs3r2bV199NWy5QYMGsWbNGr744gsAHn/8cU4MmnYzMzNZGPzbf/7552td5tixY3nppZfYt28fhYWFzJ49O2y59u3bU1hYWO18Qpf7yiuvUFJSUqfpGkt8JfysLFi9OtpRiEgERo0axcSJExk+fDinnXYaw4YNo2PHjgeVS01N5ZFHHuH8889n2LBhJCQkcNVVVwHwq1/9ih/96Efk5OSQmJhY6zKPOuooJk2axIgRIzjttNMYNWpU2HIXXnghM2bM4Mgjj2TlypUHjb/yyit59913GTFiBPPmzTtQ+x8+fDiJiYmMGDGiSe+1G/uXRw51553ws59BQQHE4e3NRBpDS7g88u7du0lLS2Pv3r2MHTuWBx54gKOOOiqqMUVDfS+PHD9t+OCbdMA36wwfHs1IRCQC06ZNY+nSpRQVFTF58uS4TPYNEV8JPyvLP69erYQv0oo1x0lKsSi+2vBDa/gi0mAttSk4njRkG8RXwk9Ph3btdOBWJAKpqals27ZNST+KnHNs27aN1NT6dWONryYdM3XNFIlQ7969ycvLIz8/P9qhxLXU1FR69+5dr2niK+GDumaKRCg5OZmsiuNh0qrEV5MOfFXD199REYkz8Zfws7Jg1y7YsSPakYiINKv4S/jqqSMicSr+En5oX3wRkTgSfwlfNXwRiVPxl/A7d4aOHVXDF5G4E1HCN7MuZvamma0InjuHKTPSzOaZ2adm9rGZNexuAI1JffFFJA5FWsO/AZjjnMsG5gTDVe0FLnPOHQGcCtxtZp0iXG5k1BdfROJQpAn/LGBm8HomcHbVAs65z51zK4LXG4AtQEaEy42M+uKLSByKNOF3d85tDF5vArrXVNjMRgMpwMF3BmhOWVmwdy/o1HARiSO1XlrBzN4CeoQZdVPogHPOmVm1VWYzOxR4HJjsnCuvpsw0YBpA3759awut4Sq6Zq5ZA926Nd1yRERakFoTvnNuQnXjzGyzmR3qnNsYJPQt1ZTrAPwduMk5N7+GZT0APAD+jle1xdZgFV0zV6+G0aObbDEiIi1JpE06rwCTg9eTgZerFjCzFOBF4DHn3HMRLq9xqC++iMShSBP+HcDJZrYCmBAMY2Y5ZvZgUOYCYCwwxcwWBY+RES43Mu3b+2vjr1oV1TBERJpTRJdHds5tA8aHeT8XmBq8fgJ4IpLlNIn+/ZXwRSSuxN+ZthWU8EUkzsR3wl+7FkpLox2JiEiziN+EP2AAlJXBunXRjkREpFnEb8Lv398/r4zuOWAiIs1FCV/t+CISJ+I34ffqBcnJSvgiEjfiN+EnJvpLLCjhi0iciN+ED75ZR234IhInlPBVwxeROKGEv3Mn7NgR7UhERJpcfCf8AQP8s2r5IhIH4jvhqy++iMSR+E74FTdCUQ1fROJAfCf89u0hI0MJX0TiQnwnfPDt+Er4IhIHlPDVF19E4oQSfv/+8OWXUFIS7UhERJqUEn7//lBe7pO+iEgMU8JXX3wRiRNK+LpMsojECSX8nj0hJUUHbkUk5inhJyRAv36wZk20IxERaVJK+OATvg7aikiMU8IHn/DXro12FCIiTUoJH6BvX9i0CYqKoh2JiEiTUcIHX8MHyMuLbhwiIk1ICR++Svhq1hGRGKaED75JB5TwRSSmKeED9O4NZuqpIyIxTQkf/IlXPXuqhi8iMU0Jv0Lfvqrhi0hMiyjhm1kXM3vTzFYEz51rKNvBzPLM7M+RLLPJqC++iMS4SGv4NwBznHPZwJxguDq3AXMjXF7T6dcP1q3zl0oWEYlBkSb8s4CZweuZwNnhCpnZ0UB34J8RLq/p9O0LxcWweXO0IxERaRKRJvzuzrmNwetN+KReiZklAH8ErqttZmY2zcxyzSw3Pz8/wtDqSX3xRSTG1ZrwzewtM1sS5nFWaDnnnANcmFl8H3jNOVfraazOuQeccznOuZyMjIw6r0SjUMIXkRiXVFsB59yE6saZ2WYzO9Q5t9HMDgW2hCl2HDDGzL4PpAEpZrbbOVdTe3/zqzj5Sj11RCRG1Zrwa/EKMBm4I3h+uWoB59wlFa/NbAqQ0+KSPUCHDtCpk2r4IhKzIm3DvwM42cxWABOCYcwsx8wejDS4Zqfr4otIDIuohu+c2waMD/N+LjA1zPuPAo9Gsswm1bevavgiErN0pm0onXwlIjFMCT9Uv35QUOAfIiIxRgk/lHrqiEgMU8IPpb74IhLDlPBDVSR81fBFJAYp4Yfq1s1fG181fBGJQUr4oRISfC1/9epoRyIi0uiU8KsaOBBWrox2FCIijU4Jv6qBA2HFCnDhrgMnItJ6KeFXlZ0NhYXQ3JdnFhFpYkr4VQ0c6J9XrIhuHCIijUwJv6rsbP/8xRfRjUNEpJEp4VfVrx8kJqqGLyIxRwm/quRkyMpSDV9EYo4SfjgVPXVERGKIEn442dnqmikiMUcJP5yBA9U1U0RijhJ+OBU9ddSsIyIxRAk/nIq++DpwKyIxRAk/nMxMdc0UkZijhB9OcrJP+qrhi0gMUcKvjrpmikiMUcKvTna2r+Gra6aIxAgl/OoMHAi7dqlrpojEDCX86qhrpojEGCX86qhrpojEGCX86qhrpojEGCX86qSk+EslK+GLSIxQwq/J4MGwbFm0oxARaRRK+DUZMgSWL4fS0mhHIiISMSX8mhxxBBQXw6pV0Y5ERCRiESV8M+tiZm+a2YrguXM15fqa2T/NbJmZLTWzzEiW22yGDPHPn34a3ThERBpBpDX8G4A5zrlsYE4wHM5jwAzn3GBgNLAlwuU2j8GD/fPSpdGNQ0SkEUSa8M8CZgavZwJnVy1gZkOAJOfcmwDOud3Oub0RLrd5pKX5njpK+CISAyJN+N2dcxuD15uA7mHKHAbsNLMXzOwjM5thZonhZmZm08ws18xy81vKJQ2GDFGTjojEhFoTvpm9ZWZLwjzOCi3nnHNAuCuNJQFjgOuAUUB/YEq4ZTnnHnDO5TjncjIyMuq7Lk1jyBD47DMoK4t2JCIiEUmqrYBzbkJ148xss5kd6pzbaGaHEr5tPg9Y5JxbFUzzEnAs8FDDQm5mRxwB+/fD6tVfXW5BRKQVirRJ5xVgcvB6MvBymDILgE5mVlFl/zrQehrF1VNHRGJEpAn/DuBkM1sBTAiGMbMcM3sQwDlXhm/OmWNmnwAG/C3C5TYf9dQRkRhRa5NOTZxz24DxYd7PBaaGDL8JDI9kWVHToQP06aOELyKtns60rYshQ5TwRaTVU8KviyFD/EXUysujHYmISIMp4dfFEUfAvn2wZk20IxERaTAl/Lqo6KmjZh0RacWU8OuioqeOumaKSCumhF8XnTpBr15K+CLSqinh19XIkbBgQbSjEBFpMCX8ujrxRH9NnU2boh2JiEiDKOHX1Ukn+ed33olqGCIiDaWEX1cjR/qzbpXwRaSVUsKvq6QkGDNGCV9EWi0l/Po46SRYvhw2bIh2JCIi9aaEXx/jxvnnd9+NahgiIg2hhF8fascXkVZMCb8+EhNh7Fh4++1oRyIiUm9K+PV10kmwYgWsXx/tSERE6kUJv77Uji8irZQSfn2NGAEdO6pZR0RaHSX8+kpMhFNOgWefhR07oh2NiEidKeE3xE03QUEBzJgR7UhEROpMCb8hhg+Hiy6Ce+7RxdREpNVQwm+oW2+F/fvht7+NdiQiInWihN9Q2dnwne/AfffB2rXRjkZEpFZK+JG4+WZISIBbbol2JCIitVLCj0Tv3nDNNTBzJixeHO1oRERqpIQfqRtvhM6d4dprwbloRyMiUi0l/Eh17uybdObMgddei3Y0IiLVUsJvDFddBYcdBtddByUl0Y5GRCQsJfzGkJwMd97pb3L+t79FOxoRkbCU8BvLxIn+wmo33girV0c7GhGRgyjhNxYzeOgh//qCC/xJWSIiLUhECd/MupjZm2a2InjuXE25O83sUzNbZmZ/MjOLZLktVv/+8OijkJvr2/NFRFqQSGv4NwBznHPZwJxguBIzOx74GjAcGAqMAk6McLkt19lnw09+An/+M8yaFe1oREQOiDThnwXMDF7PBM4OU8YBqUAK0AZIBjZHuNyW7Y474LjjYOpUfyBXRKQFiDThd3fObQxebwK6Vy3gnJsHvA1sDB5vOOeWhZuZmU0zs1wzy83Pz48wtChKToZnnoHUVDj3XNi9O9oRiYjUnvDN7C0zWxLmcVZoOeecw9fmq04/EBgM9AZ6AV83szHhluWce8A5l+Ocy8nIyGjQCrUYvXvDU0/BsmXw3e/qLFwRibqk2go45yZUN87MNpvZoc65jWZ2KLAlTLFzgPnOud3BNP8AjgPea2DMrceECXDbbfCLX8Dxx8MPfhDtiEQkjkXapPMKMDl4PRl4OUyZL4ETzSzJzJLxB2zDNunEpJ//HM44A6ZPh/di/zdORFquSBP+HcDJZrYCmBAMY2Y5ZvZgUOY5YCXwCbAYWOycmx3hcluPhAR44gnIyvLt+bp2vohEibkW2rack5PjcnNzox1G41m+HI45xif+99+Hdu0ab97OQXExtGnTePMUkVbJzBY653LCjdOZts1l0CB/EPfjj/2ZuJ9+2vB5bd/uu34OHw7duvleQampcP758MknjReziMQUJfzmdNpp/sbn//wnDB3qa/x//SusWlX7tLt2weuv+wO/ffr4YwNduvhmohtu8McI3njD/whccAGsWNH06yMirYqadKIhP9+36z/00Fc1/f794cQTYeBAyMyEjh39SVtLlsBHH/mae3k5pKTAxRf7BD98eOX5bt8Od9/tH/v3+zN+b7oJ0tKaeQVFJFpqatJRwo8m53xSf+stePNNmD/f/xiE6tEDhg3z3TrHjIFjj629/X/TJl/rnzkTevaEP/4RJk3yF3gTkZimhN+a7NkDX34JO3b4m6qkpzd8XvPnw9VXw8KFcNJJ/vo+Q4Y0Xqwi0uLooG1r0q4dDB7sa/SRJHvw/wb++1+4915YtAhGjPD33i0oaJRQRaR1UcKPdYmJ/haMn38OU6bAXXf5fw6PPOKPCYhI3FDCjxfp6f72iwsWwIABcMUV/oqe8dhsJhKnlPDjzdFH+xO/Zs70Z/2OHu0v7rZ9e7QjE5EmpoQfjxIS4LLLfDPP9Om+e+jo0f7KniISs5Tw41mHDr7L5nvvQWGhP8j7j39EOyoRaSJK+OLb8hcs8Nf5+eY34cEHa59GRFodJXzx+vb1bfvf+AZMmwbPPhvtiESkkSnhy1fS0uD55/05AJdc4s8AFpGYoYQvlbVtC7Nnw+GHw9lnq9umSAxRwpeDde7sr8yZnu6vxqkumyIxQQlfwuvZ07fjb9gAU6fqJuwiMUAJX6o3apS/0cqLL/rr9otIq6aELzWbPh1OP91fW3/RomhHIyIRUMKXmiUkwKOP+vb8b3/b3ztXRFolJXypXUYG3Hefv/vWHXdEOxoRaSAlfKmbM8+ECy+E22+P7AbsIhI1SvhSd/fc46+/M3UqlJVFOxoRqSclfKm7bt38DdLnz1fTjkgrpIQv9XPJJXD++fCLX8D3vw8lJdGOSETqKCnaAUgrYwZPPQWZmTBjhm/Pv+ceOOQQfzvFHj38NXlEpMVRwpf6S0yEO+/0N0WfOhWOPPKrcSkpMH68vw7PGWdAr15RC1NEKlPCl4a75BJ/Nu5HH/kbopeV+ZOzXnzR3zYR/A3TTzrJ/yikpfmLswHk5/vHxo3+Votr1/qbsHTv7i/rkJ3tb7o+eHC01k4k5phroddIycnJcbm6UmPr5Jxv6nnjDXj7bZg71yfzcDp2hH79/KNDB9i82f8IfP65Pz4wbpz/8TjzTGjXrllXQ6Q1MrOFzrmcsOOU8KXJlZbCpk2wd69/OOdP5kpPh9TU8NPk58PDD/sTvtas8ccITj8dJk70l27OyvLTm9W87OJi3wSVmNjoqyXSEjVZwjez84FbgMHAaOdc2AxtZqcC9wCJwIPOuVr79CnhC+Cbid5919+Y5YUX/A9HhbZtfVfR9HTo0sUndTM/zcaNsG4d7NjhyyYn+yalIUPg6KMhJ8c3Mx1+OCRF0LJZVuaXmaAOb9IyNGXCHwyUA/cD14VL+GaWCHwOnAzkAQuAi5xzS2uatxK+HKSsDJYtg1WrYPVq3+6/dav/N7B9uz+O4JxPvj16QJ8+/rm8HPbtg1274OOP/TGHvXv9PFNTYehQfw+AlBT/w+CcX1bFyWVm/rFnDxQU+EdhoX8UFfnlderk53HoodC/v/8HUtFjqX17v5ykJP9ISfHDqal+vvv2+XhCn8vK/A9au3ZfzaPiGIhzX12uOinJx1zxL6bih2ffPv/Yv7/ypa1TU/2/pdRUP11CQu3/kqRVqSnhR3TQ1jm3LFhATcVGA18451YFZZ8GzgJqTPiRmnT/PM47ujfn5/ShpKycSx/8LxeO7sM5R/ZmX3EZUx75gEuP7ceZI3qyq6iEK2fmcvnXMjl16KFs31PM955YyJVj+jNhSHe2FBZxzZMf8b1xAxg3qBsbdu5j+qxFXPP1bE7ITufLbXv56XOLmX7yYRzbvysr83dz4wufcP2pgzi6XxeWbyrkly8v4cbTBzOiTyc+3VDAr2cv5ZdnDuGInh1ZvG4nv31tGb8+ayiDerRn4drt3Pn6cn77rWEMyEhj/qpt3PXm58w4bwR9u7bl/RVb+d9/reCuSSPp2ekQ3lm+hXvfWcn/Xnwk3dqn8tbSzfztvVXce+nRdGmXwutLNvLIv9fwt8k5dEhNZvbiDTwxfy2PXj6aQ1ISefGjPJ7+YB1PTD2G5MQEns1dx3ML85j13eMAeOqDL3n14w3839RjAXh83hreWraFmVeMBuDh91fzn5VbeXDyKAAemLuSD9fu5L5vHw3AX9/5gqUbdvHni48C4E9zVrAqfzd3X+h79/zPP5ezoaCIP5w/AoDfv/4ZO/cW87tvDQfgN39fSlFJObedPRSGDuXW1Qb9B/CrHx0BwM0vLSE1OYGbzhgCwM9f+JhObVP42amHA3Dds4vp2TGVn3xjEADTn8zl6H1buLTNdvjoI5b98990Xp9Pj9QEKC4mr2A/qanJpHf0B5jXbN1NWkoS6d06Qc+e/CelG11HpDNoYE9IS+PFD1ZzRGoZh6WUwvr1bJ39Ol135mMttLm0qrKERBISEzAzyi2B/SSQkppCYnISJeWOov0ltE1OJNGVU1paSmlJGSnJiSQkJFBiCewvLadtShIJBsXlsL+0jHZtkkhISGB/OewtdXRs14aEBGNfaTl795fSpW0y5hz7SsrYV1JO57bJGBwY7tIuBczYU1LOvlJHevs2YEZhsR/frYP/sdy1r4SikjK6paWAc+zaV0JxaTnpaSkA7CoqpbgsmB7YWVRKSVk5GWl+fjv2llBaXk5Ge9+0uH1vMeXljvR2fvrte4pxQNcgnm17/MUDu6b5+W3dXYxZMB7YsruYxAT7arhwP0kJ5tcH2Fy4n+REo0tbP7xpVxFtkhLp3DYZjj2Wq8Zfw1H9OjFt7IAm2dbN0UunF7AuZDgPOCZcQTObBkwD6Nu3b9NHJnHJJSSyPTMbxmfDpZfylyc/ZEjPDnx/3EAAbn98YaUv3e0zF3D8gHSuOCELgPsf/oAJg7sx6LhMAJ57cD5Fw3ty2Gi/z/7g/nlcMCyDc7PaUVKwi5sfn8dp2Z04cUBX9u/bzx9f/YQJ/Tsxusch7N1fwl/mr2fckf0YNbg3BSRx61urOW9UX47v2ZYd+du579WPmTiwA0d0SGTn1p08/+F6Tjy8OwO7pbG9YC+zF37JuAGd6df5ELYV7uOfSzZxwrA+9OnZhY374YVFGzhzeE/6dk5lw+advLlwDacO7ET3tkls2rab/yzfxInZGXRtl8yWHXvIXZnPCVmd6ZQE2wr3s2hdAV/LzqB9uzZsLtjPh3kFnHR4N9KSjM1bC/lkfQEnHpZB2+RENm/fy6cbdjHusHRSkxLYvHU3n2/YydiBXUlJMPK37eGL/D2MHdSNpMQENm3by8r83Xz98G6YGRvzd7Nq6x4mDMoA59i8pZC8bXsYm50OzpG/pZBNBUV069/FD2/dQ/7uYrr17wpmbNqym217Skgf0BWAjRt3UbC3mPQsX37TpkJ2F5WQ0a8zAJs27mJfcSkZfYPhDQX+B6JPJzBjw/oCypyja6+OAGxYXwChw3kFJCZA154dwTk25u0kJTGBrj3agxnr1+3kkOREuvRoD8D6L3eQ1iaJLt2D4bU76HBIMp27pcGApknyoWpt0jGzt4AeYUbd5Jx7OSjzDtU36ZwHnOqcmxoMfxs4xjl3dU3LVZOOiEj9RdSk45ybEOHy1wN9QoZ7B++JiEgzao6uBQuAbDPLMrMU4ELglWZYroiIhIgo4ZvZOWaWBxwH/N3M3gje72lmrwE450qBq4E3gGXAM845XVBdRKSZRdpL50XgxTDvbwBODxl+DXgtkmWJiEhkdLaIiEicUMIXEYkTSvgiInFCCV9EJE602Ktlmlk+sDaCWaQDWxspnNYi3tY53tYXtM7xIpJ17uecywg3osUm/EiZWW51Z5vFqnhb53hbX9A6x4umWmc16YiIxAklfBGROBHLCf+BaAcQBfG2zvG2vqB1jhdNss4x24YvIiKVxXINX0REQijhi4jEiZhL+GZ2qpktN7MvzOyGaMfTFMysj5m9bWZLzexTM/tR8H4XM3vTzFYEz52jHWtjM7NEM/vIzF4NhrPM7L/B9p4VXII7ZphZJzN7zsw+M7NlZnZcrG9nM5se7NdLzOwpM0uNte1sZg+b2RYzWxLyXtjtat6fgnX/2MyOauhyYyrhBzdM/wtwGjAEuMjMhkQ3qiZRClzrnBsCHAv8IFjPG4A5zrlsYE4wHGt+hL/MdoXfA3c55wYCO4DvRCWqpnMP8Lpz7nBgBH7dY3Y7m1kv4IdAjnNuKJCIv4dGrG3nR4FTq7xX3XY9DcgOHtOAexu60JhK+ITcMN05VwxU3DA9pjjnNjrnPgxeF+KTQC/8us4Mis0Ezo5KgE3EzHoDZwAPBsMGfB14LigSU+tsZh2BscBDAM65YufcTmJ8O+Mv236ImSUBbYGNxNh2ds7NBbZXebu67XoW8Jjz5gOdzOzQhiw31hJ+uBum94pSLM3CzDKBI4H/At2dcxuDUZuA7tGKq4ncDVwPlAfDXYGdwU12IPa2dxaQDzwSNGM9aGbtiOHt7JxbD/wB+BKf6AuAhcT2dq5Q3XZttLwWawk/rphZGvA88GPn3K7Qcc73t42ZPrdm9k1gi3NuYbRjaUZJwFHAvc65I4E9VGm+icHt3Blfo80CegLtOLjpI+Y11XaNtYQfNzdMN7NkfLL/P+fcC8Hbmyv+6gXPW6IVXxP4GjDRzNbgm+q+jm/f7hT89YfY2955QJ5z7r/B8HP4H4BY3s4TgNXOuXznXAnwAn7bx/J2rlDddm20vBZrCT8ubpgetF0/BCxzzv1PyKhXgMnB68nAy80dW1Nxzv3cOdfbOZeJ367/cs5dArwNnBcUi7V13gSsM7NBwVvjgaXE8HbGN+Uca2Ztg/28Yp1jdjuHqG67vgJcFvTWORYoCGn6qR/nXEw98PfS/RxYCdwU7XiaaB1PwP/d+xhYFDxOx7dpzwFWAG8BXaIdaxOt/zjg1eB1f+AD4AvgWaBNtONr5HUdCeQG2/oloHOsb2fgVuAzYAnwONAm1rYz8BT+GEUJ/p/cd6rbroDhex+uBD7B92Bq0HJ1aQURkTgRa006IiJSDSV8EZE4oYQvIhInlPBFROKEEr6ISJxQwhcRiRNK+CIiceL/AVGmKYoZJlk+AAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "svqe = StandardVQE(N, D, S=1)\n",
    "train(svqe)  # Train the standard VQE "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Interestingly, by comparing the running time of the two models, we find that the distributed model runs 100 times faster than the standard VQE! In fact, this is easy to understand: in a distributed model, we only need to simulate two $N/2$-qubit unitary transformations, which is, of course, much more time- and space-efficient than simulating an $N$-qubit unitary transformation in the standard VQE."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "tags": []
   },
   "source": [
    "## Conclusion\n",
    "\n",
    "In this tutorial, we built a distributed VQE and demonstrated some of its advantages:\n",
    "- The capability of NISQ devices is expanded. Distributed strategies enable the deployment of quantum algorithms which require qubits that exceed the capability of current hardware.\n",
    "- The computation efficiency is improved. For classical simulation of quantum processes, distributed algorithms reduce the dimension of unitary matrices, hence reducing the space and time cost for simulating them.\n",
    "\n",
    "In the meantime, one must note that $S$, as a user-defined constant, plays a key role in the training accuracy and efficiency:\n",
    "- For Hamiltonians which encode weak inter-subsystem interactions, their ground states are weakly entangled across the subsystems [7]. Hence, the Schmidt ranks are small and can be accurately and efficiently simulated by a small $S$. In fact, our example and most physically and chemically interesting Hamiltonians fall into this category.\n",
    "- In contrast, for Hamiltonians which encode strong inter-subsystem interactions, their ground states are strongly entangled. Hence, a large $S$ may be required. But anyway, $S$ is upper-bounded by $2^{N/2}$ and thus the dimension of $M$ is upper-bounded by $2^{N/2}\\times2^{N/2}$, which is still much smaller than the dimension of the initial Hamiltonian ($2^{N}\\times 2^{N}$). Consequently, the efficiency of this algorithm is always better than the purely classical simulation."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "jp-MarkdownHeadingCollapsed": true,
    "tags": []
   },
   "source": [
    "_______\n",
    "\n",
    "# References\n",
    "\n",
    "[1] Fujii, Keisuke, et al. \"Deep Variational Quantum Eigensolver: a divide-and-conquer method for solving a larger problem with smaller size quantum computers.\" [arXiv preprint arXiv:2007.10917 (2020)](https://arxiv.org/abs/2007.10917).\n",
    "\n",
    "[2] Zhang, Yu, et al. \"Variational Quantum Eigensolver with Reduced Circuit Complexity.\" [arXiv preprint arXiv:2106.07619(2021)](https://arxiv.org/abs/2106.07619).\n",
    "\n",
    "[3] Peng, Tianyi et al. \"Simulating Large Quantum Circuits On A Small Quantum Computer\". [Physical Review Letters 125.15, (2020): 150504](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.150504).\n",
    "\n",
    "[4] Eddins, Andrew, et al. \"Doubling the size of quantum simulators by entanglement forging.\" [arXiv preprint arXiv:2104.10220 (2021)](https://arxiv.org/abs/2104.10220).\n",
    "\n",
    "[5] Nielsen, Michael A., and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2010.\n",
    "\n",
    "[6] Moll, Nikolaj, et al. \"Quantum optimization using variational algorithms on near-term quantum devices.\" [Quantum Science and Technology 3.3 (2018): 030503](https://iopscience.iop.org/article/10.1088/2058-9565/aab822).\n",
    "\n",
    "[7] Khatri, Sumeet, and Mark M. Wilde. \"Principles of quantum communication theory: A modern approach.\" [arXiv preprint arXiv:2011.04672 (2020)](https://arxiv.org/abs/2011.04672)."
   ]
  }
 ],
 "metadata": {
  "interpreter": {
   "hash": "9043b12ec77a531919bc05f05830335d23baf822720cbea14b03018197d26545"
  },
  "kernelspec": {
   "display_name": "Python 3.8.0 ('paddle-quantum-dev')",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}