未验证 提交 065488e7 编写于 作者: B Bernard Xiong 提交者: GitHub

Merge pull request #3956 from xfwangqiang/gcc-fix

[Components]&&[BSP][imxrt]add ethernet configuration for imxrt1064-nxp-evk
......@@ -7,6 +7,7 @@
# RT-Thread Kernel
#
CONFIG_RT_NAME_MAX=8
# CONFIG_RT_USING_ARCH_DATA_TYPE is not set
# CONFIG_RT_USING_SMP is not set
CONFIG_RT_ALIGN_SIZE=4
# CONFIG_RT_THREAD_PRIORITY_8 is not set
......@@ -63,7 +64,8 @@ CONFIG_RT_USING_DEVICE=y
CONFIG_RT_USING_CONSOLE=y
CONFIG_RT_CONSOLEBUF_SIZE=128
CONFIG_RT_CONSOLE_DEVICE_NAME="uart1"
CONFIG_RT_VER_NUM=0x40001
CONFIG_RT_VER_NUM=0x40003
# CONFIG_RT_USING_CPU_FFS is not set
# CONFIG_ARCH_CPU_STACK_GROWS_UPWARD is not set
#
......@@ -108,6 +110,7 @@ CONFIG_FINSH_ARG_MAX=10
#
CONFIG_RT_USING_DEVICE_IPC=y
CONFIG_RT_PIPE_BUFSZ=512
# CONFIG_RT_USING_SYSTEM_WORKQUEUE is not set
CONFIG_RT_USING_SERIAL=y
# CONFIG_RT_SERIAL_USING_DMA is not set
CONFIG_RT_SERIAL_RB_BUFSZ=64
......@@ -115,12 +118,13 @@ CONFIG_RT_SERIAL_RB_BUFSZ=64
# CONFIG_RT_USING_HWTIMER is not set
CONFIG_RT_USING_CPUTIME=y
# CONFIG_RT_USING_I2C is not set
CONFIG_RT_USING_PHY=y
CONFIG_RT_USING_PIN=y
# CONFIG_RT_USING_ADC is not set
# CONFIG_RT_USING_DAC is not set
# CONFIG_RT_USING_PWM is not set
# CONFIG_RT_USING_MTD_NOR is not set
# CONFIG_RT_USING_MTD_NAND is not set
# CONFIG_RT_USING_MTD is not set
# CONFIG_RT_USING_PM is not set
# CONFIG_RT_USING_RTC is not set
# CONFIG_RT_USING_SDIO is not set
......@@ -128,10 +132,10 @@ CONFIG_RT_USING_PIN=y
# CONFIG_RT_USING_WDT is not set
# CONFIG_RT_USING_AUDIO is not set
# CONFIG_RT_USING_SENSOR is not set
#
# Using WiFi
#
# CONFIG_RT_USING_TOUCH is not set
# CONFIG_RT_USING_HWCRYPTO is not set
# CONFIG_RT_USING_PULSE_ENCODER is not set
# CONFIG_RT_USING_INPUT_CAPTURE is not set
# CONFIG_RT_USING_WIFI is not set
#
......@@ -145,6 +149,7 @@ CONFIG_RT_USING_PIN=y
#
CONFIG_RT_USING_LIBC=y
# CONFIG_RT_USING_PTHREADS is not set
# CONFIG_RT_USING_MODULE is not set
#
# Network
......@@ -156,14 +161,25 @@ CONFIG_RT_USING_LIBC=y
# CONFIG_RT_USING_SAL is not set
#
# light weight TCP/IP stack
# Network interface device
#
# CONFIG_RT_USING_LWIP is not set
CONFIG_RT_USING_NETDEV=y
CONFIG_NETDEV_USING_IFCONFIG=y
CONFIG_NETDEV_USING_PING=y
CONFIG_NETDEV_USING_NETSTAT=y
CONFIG_NETDEV_USING_AUTO_DEFAULT=y
# CONFIG_NETDEV_USING_IPV6 is not set
CONFIG_NETDEV_IPV4=1
CONFIG_NETDEV_IPV6=0
# CONFIG_NETDEV_IPV6_SCOPES is not set
#
# Modbus master and slave stack
# light weight TCP/IP stack
#
# CONFIG_RT_USING_MODBUS is not set
# CONFIG_RT_USING_LWIP is not set
# CONFIG_RT_USING_LWIP141 is not set
# CONFIG_RT_USING_LWIP202 is not set
# CONFIG_RT_USING_LWIP212 is not set
#
# AT commands
......@@ -178,7 +194,6 @@ CONFIG_RT_USING_LIBC=y
#
# Utilities
#
# CONFIG_RT_USING_LOGTRACE is not set
# CONFIG_RT_USING_RYM is not set
# CONFIG_RT_USING_ULOG is not set
# CONFIG_RT_USING_UTEST is not set
......@@ -230,13 +245,12 @@ CONFIG_RT_USING_LIBC=y
# CONFIG_PKG_USING_GAGENT_CLOUD is not set
# CONFIG_PKG_USING_ALI_IOTKIT is not set
# CONFIG_PKG_USING_AZURE is not set
# CONFIG_PKG_USING_TENCENT_IOTHUB is not set
# CONFIG_PKG_USING_TENCENT_IOTKIT is not set
# CONFIG_PKG_USING_NIMBLE is not set
# CONFIG_PKG_USING_OTA_DOWNLOADER is not set
# CONFIG_PKG_USING_IPMSG is not set
# CONFIG_PKG_USING_LSSDP is not set
# CONFIG_PKG_USING_AIRKISS_OPEN is not set
# CONFIG_PKG_USING_LIBRWS is not set
#
# security packages
......@@ -294,6 +308,7 @@ CONFIG_RT_USING_LIBC=y
# CONFIG_PKG_USING_SENSORS_DRIVERS is not set
# CONFIG_PKG_USING_REALTEK_AMEBA is not set
# CONFIG_PKG_USING_SHT2X is not set
# CONFIG_PKG_USING_AP3216C is not set
# CONFIG_PKG_USING_STM32_SDIO is not set
# CONFIG_PKG_USING_ICM20608 is not set
# CONFIG_PKG_USING_U8G2 is not set
......@@ -310,7 +325,6 @@ CONFIG_RT_USING_LIBC=y
# CONFIG_PKG_USING_MOTIONDRIVER2RTT is not set
# CONFIG_PKG_USING_AD7746 is not set
# CONFIG_PKG_USING_PCA9685 is not set
# CONFIG_PKG_USING_I2C_TOOLS is not set
#
# miscellaneous packages
......@@ -354,10 +368,13 @@ CONFIG_BSP_USING_LPUART=y
CONFIG_BSP_USING_LPUART1=y
# CONFIG_BSP_LPUART1_RX_USING_DMA is not set
# CONFIG_BSP_LPUART1_TX_USING_DMA is not set
# CONFIG_BSP_USING_LPUART3 is not set
#
# Onboard Peripheral Drivers
#
# CONFIG_BSP_USING_SDRAM is not set
# CONFIG_BSP_USING_ETH is not set
#
# Board extended module Drivers
......
......@@ -67,5 +67,8 @@ objs.extend(SConscript(os.path.join(libraries_path_prefix, imxrt_library, 'SCons
# include drivers
objs.extend(SConscript(os.path.join(libraries_path_prefix, 'drivers', 'SConscript')))
# include peripherals
objs.extend(SConscript(os.path.join(libraries_path_prefix, 'peripherals', 'SConscript')))
# make a building
DoBuilding(TARGET, objs)
......@@ -96,19 +96,41 @@ menu "Onboard Peripheral Drivers"
menuconfig BSP_USING_ETH
bool "Enable Ethernet"
select PHY_USING_KSZ8081
select RT_USING_NETDEV
default n
if BSP_USING_ETH
config PHY_USING_KSZ8081
bool "i.MX RT1050EVKB uses ksz8081 phy"
config BSP_USING_PHY
select RT_USING_PHY
bool "Enable ethernet phy"
default y
config FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE
bool "Enable the PHY ksz8081 RMII50M mode"
depends on PHY_USING_KSZ8081
default y
if BSP_USING_PHY
config PHY_DEVICE_ADDRESS
int "Specify address of phy device"
default 2
config PHY_USING_KSZ8081
bool "i.MX RT1064EVK uses ksz8081 phy"
default y
if PHY_USING_KSZ8081
config PHY_RESET_PORT
int "indicate port of reset"
default 1
config PHY_RESET_PIN
int "indicate pin of reset"
default 9
config FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE
bool "Enable the PHY ksz8081 RMII50M mode"
depends on PHY_USING_KSZ8081
default y
endif
endif
endif
endmenu
......
......@@ -12,10 +12,6 @@ MCUX_Config/pin_mux.c
CPPPATH = [cwd,cwd + '/MCUX_Config',cwd + '/ports']
CPPDEFINES = ['CPU_MIMXRT1052DVL6B', 'SKIP_SYSCLK_INIT', 'EVK_MCIMXRM', 'FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL=1','XIP_EXTERNAL_FLASH=1']
if GetDepend(['PHY_USING_KSZ8081']):
src += Glob('ports/phyksz8081/fsl_phy.c')
CPPPATH += [cwd + '/ports/phyksz8081']
group = DefineGroup('Drivers', src, depend = [''], CPPPATH = CPPPATH, CPPDEFINES=CPPDEFINES)
Return('group')
/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_phy.h"
#include <rtthread.h>
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @brief Defines the timeout macro. */
#define PHY_TIMEOUT_COUNT 0x3FFFFFFU
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get the ENET instance from peripheral base address.
*
* @param base ENET peripheral base address.
* @return ENET instance.
*/
extern uint32_t ENET_GetInstance(ENET_Type *base);
/*******************************************************************************
* Variables
******************************************************************************/
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to enet clocks for each instance. */
extern clock_ip_name_t s_enetClock[FSL_FEATURE_SOC_ENET_COUNT];
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*******************************************************************************
* Code
******************************************************************************/
status_t PHY_Init(ENET_Type *base, uint32_t phyAddr, uint32_t srcClock_Hz)
{
uint32_t bssReg;
uint32_t counter = PHY_TIMEOUT_COUNT;
uint32_t idReg = 0;
status_t result = kStatus_Success;
uint32_t instance = ENET_GetInstance(base);
uint32_t timeDelay;
uint32_t ctlReg = 0;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Set SMI first. */
CLOCK_EnableClock(s_enetClock[instance]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
ENET_SetSMI(base, srcClock_Hz, false);
/* Initialization after PHY stars to work. */
while ((idReg != PHY_CONTROL_ID1) && (counter != 0))
{
PHY_Read(base, phyAddr, PHY_ID1_REG, &idReg);
counter --;
}
if (!counter)
{
return kStatus_Fail;
}
/* Reset PHY. */
counter = PHY_TIMEOUT_COUNT;
result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, PHY_BCTL_RESET_MASK);
if (result == kStatus_Success)
{
#if defined(FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE)
uint32_t data = 0;
result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
if ( result != kStatus_Success)
{
return result;
}
result = PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data | PHY_CTL2_REFCLK_SELECT_MASK));
if (result != kStatus_Success)
{
return result;
}
#endif /* FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE */
/* Set the negotiation. */
result = PHY_Write(base, phyAddr, PHY_AUTONEG_ADVERTISE_REG,
(PHY_100BASETX_FULLDUPLEX_MASK | PHY_100BASETX_HALFDUPLEX_MASK |
PHY_10BASETX_FULLDUPLEX_MASK | PHY_10BASETX_HALFDUPLEX_MASK | 0x1U));
if (result == kStatus_Success)
{
result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG,
(PHY_BCTL_AUTONEG_MASK | PHY_BCTL_RESTART_AUTONEG_MASK));
if (result == kStatus_Success)
{
/* Check auto negotiation complete. */
while (counter --)
{
result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, &bssReg);
if ( result == kStatus_Success)
{
PHY_Read(base, phyAddr, PHY_CONTROL1_REG, &ctlReg);
if (((bssReg & PHY_BSTATUS_AUTONEGCOMP_MASK) != 0) && (ctlReg & PHY_LINK_READY_MASK))
{
/* Wait a moment for Phy status stable. */
for (timeDelay = 0; timeDelay < PHY_TIMEOUT_COUNT; timeDelay ++)
{
__ASM("nop");
}
break;
}
}
if (!counter)
{
return kStatus_PHY_AutoNegotiateFail;
}
}
}
}
}
return result;
}
status_t PHY_Write(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t data)
{
uint32_t counter;
/* Clear the SMI interrupt event. */
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
/* Starts a SMI write command. */
ENET_StartSMIWrite(base, phyAddr, phyReg, kENET_MiiWriteValidFrame, data);
/* Wait for SMI complete. */
for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--)
{
if (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK)
{
break;
}
}
/* Check for timeout. */
if (!counter)
{
return kStatus_PHY_SMIVisitTimeout;
}
/* Clear MII interrupt event. */
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
return kStatus_Success;
}
status_t PHY_Read(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t *dataPtr)
{
assert(dataPtr);
uint32_t counter;
/* Clear the MII interrupt event. */
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
/* Starts a SMI read command operation. */
ENET_StartSMIRead(base, phyAddr, phyReg, kENET_MiiReadValidFrame);
/* Wait for MII complete. */
for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--)
{
if (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK)
{
break;
}
}
/* Check for timeout. */
if (!counter)
{
return kStatus_PHY_SMIVisitTimeout;
}
/* Get data from MII register. */
*dataPtr = ENET_ReadSMIData(base);
/* Clear MII interrupt event. */
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
return kStatus_Success;
}
status_t PHY_EnableLoopback(ENET_Type *base, uint32_t phyAddr, phy_loop_t mode, phy_speed_t speed, bool enable)
{
status_t result;
uint32_t data = 0;
/* Set the loop mode. */
if (enable)
{
if (mode == kPHY_LocalLoop)
{
if (speed == kPHY_Speed100M)
{
data = PHY_BCTL_SPEED_100M_MASK | PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
}
else
{
data = PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
}
return PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, data);
}
else
{
/* First read the current status in control register. */
result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
if (result == kStatus_Success)
{
return PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data | PHY_CTL2_REMOTELOOP_MASK));
}
}
}
else
{
/* Disable the loop mode. */
if (mode == kPHY_LocalLoop)
{
/* First read the current status in control register. */
result = PHY_Read(base, phyAddr, PHY_BASICCONTROL_REG, &data);
if (result == kStatus_Success)
{
data &= ~PHY_BCTL_LOOP_MASK;
return PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, (data | PHY_BCTL_RESTART_AUTONEG_MASK));
}
}
else
{
/* First read the current status in control one register. */
result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
if (result == kStatus_Success)
{
return PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data & ~PHY_CTL2_REMOTELOOP_MASK));
}
}
}
return result;
}
status_t PHY_GetLinkStatus(ENET_Type *base, uint32_t phyAddr, bool *status)
{
assert(status);
status_t result = kStatus_Success;
uint32_t data;
/* Read the basic status register. */
result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, &data);
if (result == kStatus_Success)
{
if (!(PHY_BSTATUS_LINKSTATUS_MASK & data))
{
/* link down. */
*status = false;
}
else
{
/* link up. */
*status = true;
}
}
return result;
}
status_t PHY_GetLinkSpeedDuplex(ENET_Type *base, uint32_t phyAddr, phy_speed_t *speed, phy_duplex_t *duplex)
{
assert(duplex);
status_t result = kStatus_Success;
uint32_t data, ctlReg;
/* Read the control two register. */
result = PHY_Read(base, phyAddr, PHY_CONTROL1_REG, &ctlReg);
if (result == kStatus_Success)
{
data = ctlReg & PHY_CTL1_SPEEDUPLX_MASK;
if ((PHY_CTL1_10FULLDUPLEX_MASK == data) || (PHY_CTL1_100FULLDUPLEX_MASK == data))
{
/* Full duplex. */
*duplex = kPHY_FullDuplex;
}
else
{
/* Half duplex. */
*duplex = kPHY_HalfDuplex;
}
data = ctlReg & PHY_CTL1_SPEEDUPLX_MASK;
if ((PHY_CTL1_100HALFDUPLEX_MASK == data) || (PHY_CTL1_100FULLDUPLEX_MASK == data))
{
/* 100M speed. */
*speed = kPHY_Speed100M;
}
else
{ /* 10M speed. */
*speed = kPHY_Speed10M;
}
}
return result;
}
/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _FSL_PHY_H_
#define _FSL_PHY_H_
#include "fsl_enet.h"
/*!
* @addtogroup phy_driver
* @{
*/
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @brief PHY driver version */
#define FSL_PHY_DRIVER_VERSION (MAKE_VERSION(2, 0, 0)) /*!< Version 2.0.0. */
/*! @brief Defines the PHY registers. */
#define PHY_BASICCONTROL_REG 0x00U /*!< The PHY basic control register. */
#define PHY_BASICSTATUS_REG 0x01U /*!< The PHY basic status register. */
#define PHY_ID1_REG 0x02U /*!< The PHY ID one register. */
#define PHY_ID2_REG 0x03U /*!< The PHY ID two register. */
#define PHY_AUTONEG_ADVERTISE_REG 0x04U /*!< The PHY auto-negotiate advertise register. */
#define PHY_CONTROL1_REG 0x1EU /*!< The PHY control one register. */
#define PHY_CONTROL2_REG 0x1FU /*!< The PHY control two register. */
#define PHY_CONTROL_ID1 0x22U /*!< The PHY ID1*/
/*! @brief Defines the mask flag in basic control register. */
#define PHY_BCTL_DUPLEX_MASK 0x0100U /*!< The PHY duplex bit mask. */
#define PHY_BCTL_RESTART_AUTONEG_MASK 0x0200U /*!< The PHY restart auto negotiation mask. */
#define PHY_BCTL_AUTONEG_MASK 0x1000U /*!< The PHY auto negotiation bit mask. */
#define PHY_BCTL_SPEED_MASK 0x2000U /*!< The PHY speed bit mask. */
#define PHY_BCTL_LOOP_MASK 0x4000U /*!< The PHY loop bit mask. */
#define PHY_BCTL_RESET_MASK 0x8000U /*!< The PHY reset bit mask. */
#define PHY_BCTL_SPEED_100M_MASK 0x2000U /*!< The PHY 100M speed mask. */
/*!@brief Defines the mask flag of operation mode in control two register*/
#define PHY_CTL2_REMOTELOOP_MASK 0x0004U /*!< The PHY remote loopback mask. */
#define PHY_CTL2_REFCLK_SELECT_MASK 0x0080U /*!< The PHY RMII reference clock select. */
#define PHY_CTL1_10HALFDUPLEX_MASK 0x0001U /*!< The PHY 10M half duplex mask. */
#define PHY_CTL1_100HALFDUPLEX_MASK 0x0002U /*!< The PHY 100M half duplex mask. */
#define PHY_CTL1_10FULLDUPLEX_MASK 0x0005U /*!< The PHY 10M full duplex mask. */
#define PHY_CTL1_100FULLDUPLEX_MASK 0x0006U /*!< The PHY 100M full duplex mask. */
#define PHY_CTL1_SPEEDUPLX_MASK 0x0007U /*!< The PHY speed and duplex mask. */
#define PHY_CTL1_ENERGYDETECT_MASK 0x10U /*!< The PHY signal present on rx differential pair. */
#define PHY_CTL1_LINKUP_MASK 0x100U /*!< The PHY link up. */
#define PHY_LINK_READY_MASK (PHY_CTL1_ENERGYDETECT_MASK | PHY_CTL1_LINKUP_MASK)
/*! @brief Defines the mask flag in basic status register. */
#define PHY_BSTATUS_LINKSTATUS_MASK 0x0004U /*!< The PHY link status mask. */
#define PHY_BSTATUS_AUTONEGABLE_MASK 0x0008U /*!< The PHY auto-negotiation ability mask. */
#define PHY_BSTATUS_AUTONEGCOMP_MASK 0x0020U /*!< The PHY auto-negotiation complete mask. */
/*! @brief Defines the mask flag in PHY auto-negotiation advertise register. */
#define PHY_100BaseT4_ABILITY_MASK 0x200U /*!< The PHY have the T4 ability. */
#define PHY_100BASETX_FULLDUPLEX_MASK 0x100U /*!< The PHY has the 100M full duplex ability.*/
#define PHY_100BASETX_HALFDUPLEX_MASK 0x080U /*!< The PHY has the 100M full duplex ability.*/
#define PHY_10BASETX_FULLDUPLEX_MASK 0x040U /*!< The PHY has the 10M full duplex ability.*/
#define PHY_10BASETX_HALFDUPLEX_MASK 0x020U /*!< The PHY has the 10M full duplex ability.*/
/*! @brief Defines the PHY status. */
enum _phy_status
{
kStatus_PHY_SMIVisitTimeout = MAKE_STATUS(kStatusGroup_PHY, 1), /*!< ENET PHY SMI visit timeout. */
kStatus_PHY_AutoNegotiateFail = MAKE_STATUS(kStatusGroup_PHY, 2) /*!< ENET PHY AutoNegotiate Fail. */
};
/*! @brief Defines the PHY link speed. This is align with the speed for ENET MAC. */
typedef enum _phy_speed
{
kPHY_Speed10M = 0U, /*!< ENET PHY 10M speed. */
kPHY_Speed100M /*!< ENET PHY 100M speed. */
} phy_speed_t;
/*! @brief Defines the PHY link duplex. */
typedef enum _phy_duplex
{
kPHY_HalfDuplex = 0U, /*!< ENET PHY half duplex. */
kPHY_FullDuplex /*!< ENET PHY full duplex. */
} phy_duplex_t;
/*! @brief Defines the PHY loopback mode. */
typedef enum _phy_loop
{
kPHY_LocalLoop = 0U, /*!< ENET PHY local loopback. */
kPHY_RemoteLoop /*!< ENET PHY remote loopback. */
} phy_loop_t;
/*******************************************************************************
* API
******************************************************************************/
#if defined(__cplusplus)
extern "C" {
#endif
/*!
* @name PHY Driver
* @{
*/
/*!
* @brief Initializes PHY.
*
* This function initialize the SMI interface and initialize PHY.
* The SMI is the MII management interface between PHY and MAC, which should be
* firstly initialized before any other operation for PHY. The PHY initialize with auto-negotiation.
*
* @param base ENET peripheral base address.
* @param phyAddr The PHY address.
* @param srcClock_Hz The module clock frequency - system clock for MII management interface - SMI.
* @retval kStatus_Success PHY initialize success
* @retval kStatus_PHY_SMIVisitTimeout PHY SMI visit time out
* @retval kStatus_PHY_AutoNegotiateFail PHY auto negotiate fail
*/
status_t PHY_Init(ENET_Type *base, uint32_t phyAddr, uint32_t srcClock_Hz);
/*!
* @brief PHY Write function. This function write data over the SMI to
* the specified PHY register. This function is called by all PHY interfaces.
*
* @param base ENET peripheral base address.
* @param phyAddr The PHY address.
* @param phyReg The PHY register.
* @param data The data written to the PHY register.
* @retval kStatus_Success PHY write success
* @retval kStatus_PHY_SMIVisitTimeout PHY SMI visit time out
*/
status_t PHY_Write(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t data);
/*!
* @brief PHY Read function. This interface read data over the SMI from the
* specified PHY register. This function is called by all PHY interfaces.
*
* @param base ENET peripheral base address.
* @param phyAddr The PHY address.
* @param phyReg The PHY register.
* @param dataPtr The address to store the data read from the PHY register.
* @retval kStatus_Success PHY read success
* @retval kStatus_PHY_SMIVisitTimeout PHY SMI visit time out
*/
status_t PHY_Read(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t *dataPtr);
/*!
* @brief Enables/disables PHY loopback.
*
* @param base ENET peripheral base address.
* @param phyAddr The PHY address.
* @param mode The loopback mode to be enabled, please see "phy_loop_t".
* the two loopback mode should not be both set. when one loopback mode is set
* the other one should be disabled.
* @param speed PHY speed for loopback mode.
* @param enable True to enable, false to disable.
* @retval kStatus_Success PHY loopback success
* @retval kStatus_PHY_SMIVisitTimeout PHY SMI visit time out
*/
status_t PHY_EnableLoopback(ENET_Type *base, uint32_t phyAddr, phy_loop_t mode, phy_speed_t speed, bool enable);
/*!
* @brief Gets the PHY link status.
*
* @param base ENET peripheral base address.
* @param phyAddr The PHY address.
* @param status The link up or down status of the PHY.
* - true the link is up.
* - false the link is down.
* @retval kStatus_Success PHY get link status success
* @retval kStatus_PHY_SMIVisitTimeout PHY SMI visit time out
*/
status_t PHY_GetLinkStatus(ENET_Type *base, uint32_t phyAddr, bool *status);
/*!
* @brief Gets the PHY link speed and duplex.
*
* @param base ENET peripheral base address.
* @param phyAddr The PHY address.
* @param speed The address of PHY link speed.
* @param duplex The link duplex of PHY.
* @retval kStatus_Success PHY get link speed and duplex success
* @retval kStatus_PHY_SMIVisitTimeout PHY SMI visit time out
*/
status_t PHY_GetLinkSpeedDuplex(ENET_Type *base, uint32_t phyAddr, phy_speed_t *speed, phy_duplex_t *duplex);
/* @} */
#if defined(__cplusplus)
}
#endif
/*! @}*/
#endif /* _FSL_PHY_H_ */
......@@ -40,7 +40,7 @@
#define RT_USING_CONSOLE
#define RT_CONSOLEBUF_SIZE 128
#define RT_CONSOLE_DEVICE_NAME "uart1"
#define RT_VER_NUM 0x40001
#define RT_VER_NUM 0x40003
/* RT-Thread Components */
......@@ -78,11 +78,9 @@
#define RT_USING_SERIAL
#define RT_SERIAL_RB_BUFSZ 64
#define RT_USING_CPUTIME
#define RT_USING_PHY
#define RT_USING_PIN
/* Using WiFi */
/* Using USB */
......@@ -95,10 +93,17 @@
/* Socket abstraction layer */
/* light weight TCP/IP stack */
/* Network interface device */
#define RT_USING_NETDEV
#define NETDEV_USING_IFCONFIG
#define NETDEV_USING_PING
#define NETDEV_USING_NETSTAT
#define NETDEV_USING_AUTO_DEFAULT
#define NETDEV_IPV4 1
#define NETDEV_IPV6 0
/* Modbus master and slave stack */
/* light weight TCP/IP stack */
/* AT commands */
......@@ -163,6 +168,7 @@
/* Onboard Peripheral Drivers */
/* Board extended module Drivers */
......
......@@ -39,7 +39,7 @@
| :----------------- | :----------: | :------------------------------------- |
| USB 转串口 | 支持 | |
| SPI Flash | 支持 | |
| 以太网 | 暂不支持 | |
| 以太网 | 支持 | |
| SD卡 | 暂不支持 | |
| CAN | 暂不支持 | |
| **片上外设** | **支持情况** | **备注** |
......
......@@ -66,5 +66,8 @@ objs.extend(SConscript(os.path.join(libraries_path_prefix, imxrt_library, 'SCons
# include drivers
objs.extend(SConscript(os.path.join(libraries_path_prefix, 'drivers', 'SConscript')))
# include peripherals
objs.extend(SConscript(os.path.join(libraries_path_prefix, 'peripherals', 'SConscript')))
# make a building
DoBuilding(TARGET, objs)
......@@ -18,6 +18,7 @@
int main(void)
{
#ifndef PHY_USING_KSZ8081
/* set LED0 pin mode to output */
rt_pin_mode(LED0_PIN, PIN_MODE_OUTPUT);
......@@ -28,6 +29,7 @@ int main(void)
rt_pin_write(LED0_PIN, PIN_LOW);
rt_thread_mdelay(500);
}
#endif
}
void reboot(void)
......
......@@ -37,7 +37,49 @@ menu "On-chip Peripheral Drivers"
endmenu
menu "Onboard Peripheral Drivers"
config BSP_USING_SDRAM
bool "Enable SDRAM"
default n
menuconfig BSP_USING_ETH
bool "Enable Ethernet"
select RT_USING_NETDEV
default n
if BSP_USING_ETH
config BSP_USING_PHY
select RT_USING_PHY
bool "Enable ethernet phy"
default y
if BSP_USING_PHY
config PHY_DEVICE_ADDRESS
int "Specify address of phy device"
default 2
config PHY_USING_KSZ8081
bool "i.MX RT1064EVK uses ksz8081 phy"
default y
if PHY_USING_KSZ8081
config PHY_RESET_PORT
int "indicate port of reset"
default 1
config PHY_RESET_PIN
int "indicate pin of reset"
default 9
config FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE
bool "Enable the PHY ksz8081 RMII50M mode"
depends on PHY_USING_KSZ8081
default y
endif
endif
endif
endmenu
menu "Board extended module Drivers"
......
/*
* Copyright 2018 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
/*
* How to setup clock using clock driver functions:
*
......@@ -15,15 +22,15 @@
/* TEXT BELOW IS USED AS SETTING FOR TOOLS *************************************
!!GlobalInfo
product: Clocks v5.0
product: Clocks v4.1
processor: MIMXRT1064xxxxA
package_id: MIMXRT1064DVL6A
mcu_data: ksdk2_0
processor_version: 5.0.1
processor_version: 0.0.0
board: MIMXRT1064-EVK
* BE CAREFUL MODIFYING THIS COMMENT - IT IS YAML SETTINGS FOR TOOLS **********/
#include "clock_config.h"
#include "fsl_iomuxc.h"
/*******************************************************************************
* Definitions
......@@ -57,35 +64,23 @@ outputs:
- {id: CLK_1M.outFreq, value: 1 MHz}
- {id: CLK_24M.outFreq, value: 24 MHz}
- {id: CSI_CLK_ROOT.outFreq, value: 12 MHz}
- {id: ENET1_TX_CLK.outFreq, value: 2.4 MHz}
- {id: ENET2_125M_CLK.outFreq, value: 1.2 MHz}
- {id: ENET2_TX_CLK.outFreq, value: 1.2 MHz}
- {id: ENET_125M_CLK.outFreq, value: 2.4 MHz}
- {id: ENET_25M_REF_CLK.outFreq, value: 1.2 MHz}
- {id: FLEXIO1_CLK_ROOT.outFreq, value: 30 MHz}
- {id: FLEXIO2_CLK_ROOT.outFreq, value: 30 MHz}
- {id: FLEXSPI2_CLK_ROOT.outFreq, value: 264 MHz}
- {id: FLEXSPI2_CLK_ROOT.outFreq, value: 2880/11 MHz}
- {id: FLEXSPI_CLK_ROOT.outFreq, value: 2880/11 MHz}
- {id: GPT1_ipg_clk_highfreq.outFreq, value: 75 MHz}
- {id: GPT2_ipg_clk_highfreq.outFreq, value: 75 MHz}
- {id: IPG_CLK_ROOT.outFreq, value: 150 MHz}
- {id: LCDIF_CLK_ROOT.outFreq, value: 67.5/7 MHz}
- {id: LCDIF_CLK_ROOT.outFreq, value: 67.5 MHz}
- {id: LPI2C_CLK_ROOT.outFreq, value: 60 MHz}
- {id: LPSPI_CLK_ROOT.outFreq, value: 105.6 MHz}
- {id: LVDS1_CLK.outFreq, value: 1.2 GHz}
- {id: MQS_MCLK.outFreq, value: 1080/17 MHz}
- {id: PERCLK_CLK_ROOT.outFreq, value: 75 MHz}
- {id: PLL7_MAIN_CLK.outFreq, value: 24 MHz}
- {id: SAI1_CLK_ROOT.outFreq, value: 1080/17 MHz}
- {id: SAI1_MCLK1.outFreq, value: 1080/17 MHz}
- {id: SAI1_MCLK2.outFreq, value: 1080/17 MHz}
- {id: SAI1_MCLK3.outFreq, value: 30 MHz}
- {id: SAI2_CLK_ROOT.outFreq, value: 1080/17 MHz}
- {id: SAI2_MCLK1.outFreq, value: 1080/17 MHz}
- {id: SAI2_MCLK3.outFreq, value: 30 MHz}
- {id: SAI3_CLK_ROOT.outFreq, value: 1080/17 MHz}
- {id: SAI3_MCLK1.outFreq, value: 1080/17 MHz}
- {id: SAI3_MCLK3.outFreq, value: 30 MHz}
- {id: SEMC_CLK_ROOT.outFreq, value: 75 MHz}
- {id: SPDIF0_CLK_ROOT.outFreq, value: 30 MHz}
- {id: TRACE_CLK_ROOT.outFreq, value: 352/3 MHz}
......@@ -95,10 +90,10 @@ outputs:
settings:
- {id: CCM.AHB_PODF.scale, value: '1', locked: true}
- {id: CCM.ARM_PODF.scale, value: '2', locked: true}
- {id: CCM.FLEXSPI2_PODF.scale, value: '1', locked: true}
- {id: CCM.FLEXSPI2_SEL.sel, value: CCM_ANALOG.PLL3_PFD0_CLK}
- {id: CCM.FLEXSPI_PODF.scale, value: '1', locked: true}
- {id: CCM.FLEXSPI_SEL.sel, value: CCM_ANALOG.PLL3_PFD0_CLK}
- {id: CCM.LCDIF_PODF.scale, value: '8', locked: true}
- {id: CCM.LCDIF_PRED.scale, value: '7', locked: true}
- {id: CCM.LPSPI_PODF.scale, value: '5', locked: true}
- {id: CCM.PERCLK_PODF.scale, value: '2', locked: true}
- {id: CCM.SEMC_PODF.scale, value: '8'}
......@@ -107,6 +102,7 @@ settings:
- {id: CCM_ANALOG.PLL1_PREDIV.scale, value: '1', locked: true}
- {id: CCM_ANALOG.PLL1_VDIV.scale, value: '50', locked: true}
- {id: CCM_ANALOG.PLL2.denom, value: '1', locked: true}
- {id: CCM_ANALOG.PLL2.div, value: '22'}
- {id: CCM_ANALOG.PLL2.num, value: '0', locked: true}
- {id: CCM_ANALOG.PLL2_BYPASS.sel, value: CCM_ANALOG.PLL2_OUT_CLK}
- {id: CCM_ANALOG.PLL2_PFD0_BYPASS.sel, value: CCM_ANALOG.PLL2_PFD0}
......@@ -182,6 +178,77 @@ void BOARD_BootClockRUN(void)
while (DCDC_REG0_STS_DC_OK_MASK != (DCDC_REG0_STS_DC_OK_MASK & DCDC->REG0))
{
}
/* Init ARM PLL. */
CLOCK_InitArmPll(&armPllConfig_BOARD_BootClockRUN);
/* In SDK projects, SDRAM (configured by SEMC) will be initialized in either debug script or dcd.
* With this macro SKIP_SYSCLK_INIT, system pll (selected to be SEMC source clock in SDK projects) will be left unchanged.
* Note: If another clock source is selected for SEMC, user may want to avoid changing that clock as well.*/
#ifndef SKIP_SYSCLK_INIT
/* Init System PLL. */
CLOCK_InitSysPll(&sysPllConfig_BOARD_BootClockRUN);
/* Init System pfd0. */
CLOCK_InitSysPfd(kCLOCK_Pfd0, 27);
/* Init System pfd1. */
CLOCK_InitSysPfd(kCLOCK_Pfd1, 16);
/* Init System pfd2. */
CLOCK_InitSysPfd(kCLOCK_Pfd2, 24);
/* Init System pfd3. */
CLOCK_InitSysPfd(kCLOCK_Pfd3, 16);
#endif
/* In SDK projects, external flash (configured by FLEXSPI2) will be initialized by dcd.
* With this macro XIP_EXTERNAL_FLASH, usb1 pll (selected to be FLEXSPI2 clock source in SDK projects) will be left unchanged.
* Note: If another clock source is selected for FLEXSPI2, user may want to avoid changing that clock as well.*/
#if !(defined(XIP_EXTERNAL_FLASH) && (XIP_EXTERNAL_FLASH == 1))
/* Init Usb1 PLL. */
CLOCK_InitUsb1Pll(&usb1PllConfig_BOARD_BootClockRUN);
/* Init Usb1 pfd0. */
CLOCK_InitUsb1Pfd(kCLOCK_Pfd0, 33);
/* Init Usb1 pfd1. */
CLOCK_InitUsb1Pfd(kCLOCK_Pfd1, 16);
/* Init Usb1 pfd2. */
CLOCK_InitUsb1Pfd(kCLOCK_Pfd2, 17);
/* Init Usb1 pfd3. */
CLOCK_InitUsb1Pfd(kCLOCK_Pfd3, 19);
/* Disable Usb1 PLL output for USBPHY1. */
CCM_ANALOG->PLL_USB1 &= ~CCM_ANALOG_PLL_USB1_EN_USB_CLKS_MASK;
#endif
/* DeInit Audio PLL. */
CLOCK_DeinitAudioPll();
/* Bypass Audio PLL. */
CLOCK_SetPllBypass(CCM_ANALOG, kCLOCK_PllAudio, 1);
/* Set divider for Audio PLL. */
CCM_ANALOG->MISC2 &= ~CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
CCM_ANALOG->MISC2 &= ~CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK;
/* Enable Audio PLL output. */
CCM_ANALOG->PLL_AUDIO |= CCM_ANALOG_PLL_AUDIO_ENABLE_MASK;
/* DeInit Video PLL. */
CLOCK_DeinitVideoPll();
/* Bypass Video PLL. */
CCM_ANALOG->PLL_VIDEO |= CCM_ANALOG_PLL_VIDEO_BYPASS_MASK;
/* Set divider for Video PLL. */
CCM_ANALOG->MISC2 = (CCM_ANALOG->MISC2 & (~CCM_ANALOG_MISC2_VIDEO_DIV_MASK)) | CCM_ANALOG_MISC2_VIDEO_DIV(0);
/* Enable Video PLL output. */
CCM_ANALOG->PLL_VIDEO |= CCM_ANALOG_PLL_VIDEO_ENABLE_MASK;
/* DeInit Enet PLL. */
CLOCK_DeinitEnetPll();
/* Bypass Enet PLL. */
CLOCK_SetPllBypass(CCM_ANALOG, kCLOCK_PllEnet, 1);
/* Set Enet output divider. */
CCM_ANALOG->PLL_ENET = (CCM_ANALOG->PLL_ENET & (~CCM_ANALOG_PLL_ENET_DIV_SELECT_MASK)) | CCM_ANALOG_PLL_ENET_DIV_SELECT(1);
/* Enable Enet output. */
CCM_ANALOG->PLL_ENET |= CCM_ANALOG_PLL_ENET_ENABLE_MASK;
/* Set Enet2 output divider. */
CCM_ANALOG->PLL_ENET = (CCM_ANALOG->PLL_ENET & (~CCM_ANALOG_PLL_ENET_ENET2_DIV_SELECT_MASK)) | CCM_ANALOG_PLL_ENET_ENET2_DIV_SELECT(0);
/* Enable Enet2 output. */
CCM_ANALOG->PLL_ENET |= CCM_ANALOG_PLL_ENET_ENET2_REF_EN_MASK;
/* Enable Enet25M output. */
CCM_ANALOG->PLL_ENET |= CCM_ANALOG_PLL_ENET_ENET_25M_REF_EN_MASK;
/* DeInit Usb2 PLL. */
CLOCK_DeinitUsb2Pll();
/* Bypass Usb2 PLL. */
CLOCK_SetPllBypass(CCM_ANALOG, kCLOCK_PllUsb2, 1);
/* Enable Usb2 PLL output. */
CCM_ANALOG->PLL_USB2 |= CCM_ANALOG_PLL_USB2_ENABLE_MASK;
/* Set AHB_PODF. */
CLOCK_SetDiv(kCLOCK_AhbDiv, 0);
/* Disable IPG clock gate. */
......@@ -193,8 +260,14 @@ void BOARD_BootClockRUN(void)
CLOCK_SetDiv(kCLOCK_IpgDiv, 3);
/* Set ARM_PODF. */
CLOCK_SetDiv(kCLOCK_ArmDiv, 1);
/* Set preperiph clock source. */
CLOCK_SetMux(kCLOCK_PrePeriphMux, 3);
/* Set periph clock source. */
CLOCK_SetMux(kCLOCK_PeriphMux, 0);
/* Set PERIPH_CLK2_PODF. */
CLOCK_SetDiv(kCLOCK_PeriphClk2Div, 0);
/* Set periph clock2 clock source. */
CLOCK_SetMux(kCLOCK_PeriphClk2Mux, 0);
/* Disable PERCLK clock gate. */
CLOCK_DisableClock(kCLOCK_Gpt1);
CLOCK_DisableClock(kCLOCK_Gpt1S);
......@@ -203,6 +276,8 @@ void BOARD_BootClockRUN(void)
CLOCK_DisableClock(kCLOCK_Pit);
/* Set PERCLK_PODF. */
CLOCK_SetDiv(kCLOCK_PerclkDiv, 1);
/* Set per clock source. */
CLOCK_SetMux(kCLOCK_PerclkMux, 0);
/* Disable USDHC1 clock gate. */
CLOCK_DisableClock(kCLOCK_Usdhc1);
/* Set USDHC1_PODF. */
......@@ -241,9 +316,9 @@ void BOARD_BootClockRUN(void)
/* Disable Flexspi2 clock gate. */
CLOCK_DisableClock(kCLOCK_FlexSpi2);
/* Set FLEXSPI2_PODF. */
CLOCK_SetDiv(kCLOCK_Flexspi2Div, 1);
CLOCK_SetDiv(kCLOCK_Flexspi2Div, 0);
/* Set Flexspi2 clock source. */
CLOCK_SetMux(kCLOCK_Flexspi2Mux, 3);
CLOCK_SetMux(kCLOCK_Flexspi2Mux, 1);
#endif
/* Disable CSI clock gate. */
CLOCK_DisableClock(kCLOCK_Csi);
......@@ -325,9 +400,9 @@ void BOARD_BootClockRUN(void)
/* Disable LCDIF clock gate. */
CLOCK_DisableClock(kCLOCK_LcdPixel);
/* Set LCDIF_PRED. */
CLOCK_SetDiv(kCLOCK_LcdifPreDiv, 6);
CLOCK_SetDiv(kCLOCK_LcdifPreDiv, 1);
/* Set LCDIF_CLK_PODF. */
CLOCK_SetDiv(kCLOCK_LcdifDiv, 7);
CLOCK_SetDiv(kCLOCK_LcdifDiv, 3);
/* Set Lcdif pre clock source. */
CLOCK_SetMux(kCLOCK_LcdifPreMux, 5);
/* Disable SPDIF clock gate. */
......@@ -356,85 +431,6 @@ void BOARD_BootClockRUN(void)
CLOCK_SetMux(kCLOCK_Flexio2Mux, 3);
/* Set Pll3 sw clock source. */
CLOCK_SetMux(kCLOCK_Pll3SwMux, 0);
/* Init ARM PLL. */
CLOCK_InitArmPll(&armPllConfig_BOARD_BootClockRUN);
/* In SDK projects, SDRAM (configured by SEMC) will be initialized in either debug script or dcd.
* With this macro SKIP_SYSCLK_INIT, system pll (selected to be SEMC source clock in SDK projects) will be left unchanged.
* Note: If another clock source is selected for SEMC, user may want to avoid changing that clock as well.*/
#ifndef SKIP_SYSCLK_INIT
/* Init System PLL. */
CLOCK_InitSysPll(&sysPllConfig_BOARD_BootClockRUN);
/* Init System pfd0. */
CLOCK_InitSysPfd(kCLOCK_Pfd0, 27);
/* Init System pfd1. */
CLOCK_InitSysPfd(kCLOCK_Pfd1, 16);
/* Init System pfd2. */
CLOCK_InitSysPfd(kCLOCK_Pfd2, 24);
/* Init System pfd3. */
CLOCK_InitSysPfd(kCLOCK_Pfd3, 16);
#endif
/* In SDK projects, external flash (configured by FLEXSPI2) will be initialized by dcd.
* With this macro XIP_EXTERNAL_FLASH, usb1 pll (selected to be FLEXSPI2 clock source in SDK projects) will be left unchanged.
* Note: If another clock source is selected for FLEXSPI2, user may want to avoid changing that clock as well.*/
#if !(defined(XIP_EXTERNAL_FLASH) && (XIP_EXTERNAL_FLASH == 1))
/* Init Usb1 PLL. */
CLOCK_InitUsb1Pll(&usb1PllConfig_BOARD_BootClockRUN);
/* Init Usb1 pfd0. */
CLOCK_InitUsb1Pfd(kCLOCK_Pfd0, 33);
/* Init Usb1 pfd1. */
CLOCK_InitUsb1Pfd(kCLOCK_Pfd1, 16);
/* Init Usb1 pfd2. */
CLOCK_InitUsb1Pfd(kCLOCK_Pfd2, 17);
/* Init Usb1 pfd3. */
CLOCK_InitUsb1Pfd(kCLOCK_Pfd3, 19);
/* Disable Usb1 PLL output for USBPHY1. */
CCM_ANALOG->PLL_USB1 &= ~CCM_ANALOG_PLL_USB1_EN_USB_CLKS_MASK;
#endif
/* DeInit Audio PLL. */
CLOCK_DeinitAudioPll();
/* Bypass Audio PLL. */
CLOCK_SetPllBypass(CCM_ANALOG, kCLOCK_PllAudio, 1);
/* Set divider for Audio PLL. */
CCM_ANALOG->MISC2 &= ~CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
CCM_ANALOG->MISC2 &= ~CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK;
/* Enable Audio PLL output. */
CCM_ANALOG->PLL_AUDIO |= CCM_ANALOG_PLL_AUDIO_ENABLE_MASK;
/* DeInit Video PLL. */
CLOCK_DeinitVideoPll();
/* Bypass Video PLL. */
CCM_ANALOG->PLL_VIDEO |= CCM_ANALOG_PLL_VIDEO_BYPASS_MASK;
/* Set divider for Video PLL. */
CCM_ANALOG->MISC2 = (CCM_ANALOG->MISC2 & (~CCM_ANALOG_MISC2_VIDEO_DIV_MASK)) | CCM_ANALOG_MISC2_VIDEO_DIV(0);
/* Enable Video PLL output. */
CCM_ANALOG->PLL_VIDEO |= CCM_ANALOG_PLL_VIDEO_ENABLE_MASK;
/* DeInit Enet PLL. */
CLOCK_DeinitEnetPll();
/* Bypass Enet PLL. */
CLOCK_SetPllBypass(CCM_ANALOG, kCLOCK_PllEnet, 1);
/* Set Enet output divider. */
CCM_ANALOG->PLL_ENET = (CCM_ANALOG->PLL_ENET & (~CCM_ANALOG_PLL_ENET_DIV_SELECT_MASK)) | CCM_ANALOG_PLL_ENET_DIV_SELECT(1);
/* Enable Enet output. */
CCM_ANALOG->PLL_ENET |= CCM_ANALOG_PLL_ENET_ENABLE_MASK;
/* Set Enet2 output divider. */
CCM_ANALOG->PLL_ENET = (CCM_ANALOG->PLL_ENET & (~CCM_ANALOG_PLL_ENET_ENET2_DIV_SELECT_MASK)) | CCM_ANALOG_PLL_ENET_ENET2_DIV_SELECT(0);
/* Enable Enet2 output. */
CCM_ANALOG->PLL_ENET |= CCM_ANALOG_PLL_ENET_ENET2_REF_EN_MASK;
/* Enable Enet25M output. */
CCM_ANALOG->PLL_ENET |= CCM_ANALOG_PLL_ENET_ENET_25M_REF_EN_MASK;
/* DeInit Usb2 PLL. */
CLOCK_DeinitUsb2Pll();
/* Bypass Usb2 PLL. */
CLOCK_SetPllBypass(CCM_ANALOG, kCLOCK_PllUsb2, 1);
/* Enable Usb2 PLL output. */
CCM_ANALOG->PLL_USB2 |= CCM_ANALOG_PLL_USB2_ENABLE_MASK;
/* Set preperiph clock source. */
CLOCK_SetMux(kCLOCK_PrePeriphMux, 3);
/* Set periph clock source. */
CLOCK_SetMux(kCLOCK_PeriphMux, 0);
/* Set periph clock2 clock source. */
CLOCK_SetMux(kCLOCK_PeriphClk2Mux, 0);
/* Set per clock source. */
CLOCK_SetMux(kCLOCK_PerclkMux, 0);
/* Set lvds1 clock source. */
CCM_ANALOG->MISC1 = (CCM_ANALOG->MISC1 & (~CCM_ANALOG_MISC1_LVDS1_CLK_SEL_MASK)) | CCM_ANALOG_MISC1_LVDS1_CLK_SEL(0);
/* Set clock out1 divider. */
......@@ -451,26 +447,6 @@ void BOARD_BootClockRUN(void)
CCM->CCOSR &= ~CCM_CCOSR_CLKO1_EN_MASK;
/* Disable clock out2. */
CCM->CCOSR &= ~CCM_CCOSR_CLKO2_EN_MASK;
/* Set SAI1 MCLK1 clock source. */
IOMUXC_SetSaiMClkClockSource(IOMUXC_GPR, kIOMUXC_GPR_SAI1MClk1Sel, 0);
/* Set SAI1 MCLK2 clock source. */
IOMUXC_SetSaiMClkClockSource(IOMUXC_GPR, kIOMUXC_GPR_SAI1MClk2Sel, 0);
/* Set SAI1 MCLK3 clock source. */
IOMUXC_SetSaiMClkClockSource(IOMUXC_GPR, kIOMUXC_GPR_SAI1MClk3Sel, 0);
/* Set SAI2 MCLK3 clock source. */
IOMUXC_SetSaiMClkClockSource(IOMUXC_GPR, kIOMUXC_GPR_SAI2MClk3Sel, 0);
/* Set SAI3 MCLK3 clock source. */
IOMUXC_SetSaiMClkClockSource(IOMUXC_GPR, kIOMUXC_GPR_SAI3MClk3Sel, 0);
/* Set MQS configuration. */
IOMUXC_MQSConfig(IOMUXC_GPR,kIOMUXC_MqsPwmOverSampleRate32, 0);
/* Set ENET1 Tx clock source. */
IOMUXC_EnableMode(IOMUXC_GPR, kIOMUXC_GPR_ENET1RefClkMode, false);
/* Set ENET2 Tx clock source. */
IOMUXC_EnableMode(IOMUXC_GPR, IOMUXC_GPR_GPR1_ENET2_CLK_SEL_MASK, false);
/* Set GPT1 High frequency reference clock source. */
IOMUXC_GPR->GPR5 &= ~IOMUXC_GPR_GPR5_VREF_1M_CLK_GPT1_MASK;
/* Set GPT2 High frequency reference clock source. */
IOMUXC_GPR->GPR5 &= ~IOMUXC_GPR_GPR5_VREF_1M_CLK_GPT2_MASK;
/* Set SystemCoreClock variable. */
SystemCoreClock = BOARD_BOOTCLOCKRUN_CORE_CLOCK;
}
......
......@@ -13,7 +13,7 @@ MCUX_Config/pin_mux.c
CPPPATH = [cwd,cwd + '/MCUX_Config',cwd + '/ports']
CPPDEFINES = ['CPU_MIMXRT1064DVL6A', 'STD=C99', 'SKIP_SYSCLK_INIT', 'EVK_MCIMXRM', 'FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL','XIP_EXTERNAL_FLASH=1', 'XIP_BOOT_HEADER_ENABLE=1']
CPPDEFINES = ['CPU_MIMXRT1064DVL6A', 'SKIP_SYSCLK_INIT', 'EVK_MCIMXRM', 'FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL=1','XIP_EXTERNAL_FLASH=1', 'XIP_BOOT_HEADER_ENABLE=1', 'XIP_BOOT_HEADER_DCD_ENABLE=1']
if rtconfig.CROSS_TOOL == 'keil':
CPPDEFINES.append('__FPU_PRESENT=1')
......
......@@ -12,6 +12,8 @@
#include <rtthread.h>
#include "board.h"
#include "pin_mux.h"
#include "fsl_iomuxc.h"
#include "fsl_gpio.h"
#ifdef BSP_USING_DMA
#include "fsl_dmamux.h"
......@@ -109,6 +111,347 @@ void imxrt_dma_init(void)
EDMA_Init(DMA0, &config);
}
#endif
#ifdef BSP_USING_LPUART
void imxrt_uart_pins_init(void)
{
#ifdef BSP_USING_LPUART1
IOMUXC_SetPinMux(
IOMUXC_GPIO_AD_B0_12_LPUART1_TX, /* GPIO_AD_B0_12 is configured as LPUART1_TX */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinMux(
IOMUXC_GPIO_AD_B0_13_LPUART1_RX, /* GPIO_AD_B0_13 is configured as LPUART1_RX */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_AD_B0_12_LPUART1_TX, /* GPIO_AD_B0_12 PAD functional properties : */
0x10B0u); /* Slew Rate Field: Slow Slew Rate
Drive Strength Field: R0/6
Speed Field: medium(100MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Keeper
Pull Up / Down Config. Field: 100K Ohm Pull Down
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_AD_B0_13_LPUART1_RX, /* GPIO_AD_B0_13 PAD functional properties : */
0x10B0u); /* Slew Rate Field: Slow Slew Rate
Drive Strength Field: R0/6
Speed Field: medium(100MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Keeper
Pull Up / Down Config. Field: 100K Ohm Pull Down
Hyst. Enable Field: Hysteresis Disabled */
#endif
#ifdef BSP_USING_LPUART2
IOMUXC_SetPinMux(
IOMUXC_GPIO_AD_B1_02_LPUART2_TX,
0U);
IOMUXC_SetPinMux(
IOMUXC_GPIO_AD_B1_03_LPUART2_RX,
0U);
IOMUXC_SetPinConfig(
IOMUXC_GPIO_AD_B1_02_LPUART2_TX,
0x10B0u);
IOMUXC_SetPinConfig(
IOMUXC_GPIO_AD_B1_03_LPUART2_RX,
0x10B0u);
#endif
#ifdef BSP_USING_LPUART3
IOMUXC_SetPinMux(
IOMUXC_GPIO_AD_B1_06_LPUART3_TX,
0U);
IOMUXC_SetPinMux(
IOMUXC_GPIO_AD_B1_07_LPUART3_RX,
0U);
IOMUXC_SetPinConfig(
IOMUXC_GPIO_AD_B1_06_LPUART3_TX,
0x10B0u);
IOMUXC_SetPinConfig(
IOMUXC_GPIO_AD_B1_07_LPUART3_RX,
0x10B0u);
#endif
#ifdef BSP_USING_LPUART4
IOMUXC_SetPinMux(
IOMUXC_GPIO_B1_00_LPUART4_TX,
0U);
IOMUXC_SetPinMux(
IOMUXC_GPIO_B1_01_LPUART4_RX,
0U);
IOMUXC_SetPinConfig(
IOMUXC_GPIO_B1_00_LPUART4_TX,
0x10B0u);
IOMUXC_SetPinConfig(
IOMUXC_GPIO_B1_01_LPUART4_RX,
0x10B0u);
#endif
#ifdef BSP_USING_LPUART5
IOMUXC_SetPinMux(
IOMUXC_GPIO_B1_12_LPUART5_TX,
0U);
IOMUXC_SetPinMux(
IOMUXC_GPIO_B1_13_LPUART5_RX,
0U);
IOMUXC_SetPinConfig(
IOMUXC_GPIO_B1_12_LPUART5_TX,
0x10B0u);
IOMUXC_SetPinConfig(
IOMUXC_GPIO_B1_13_LPUART5_RX,
0x10B0u);
#endif
#ifdef BSP_USING_LPUART6
IOMUXC_SetPinMux(
IOMUXC_GPIO_AD_B0_02_LPUART6_TX,
0U);
IOMUXC_SetPinMux(
IOMUXC_GPIO_AD_B0_03_LPUART6_RX,
0U);
IOMUXC_SetPinConfig(
IOMUXC_GPIO_AD_B0_02_LPUART6_TX,
0x10B0u);
IOMUXC_SetPinConfig(
IOMUXC_GPIO_AD_B0_03_LPUART6_RX,
0x10B0u);
#endif
#ifdef BSP_USING_LPUART7
IOMUXC_SetPinMux(
IOMUXC_GPIO_EMC_31_LPUART7_TX,
0U);
IOMUXC_SetPinMux(
IOMUXC_GPIO_EMC_32_LPUART7_RX,
0U);
IOMUXC_SetPinConfig(
IOMUXC_GPIO_EMC_31_LPUART7_TX,
0x10B0u);
IOMUXC_SetPinConfig(
IOMUXC_GPIO_EMC_32_LPUART7_RX,
0x10B0u);
#endif
#ifdef BSP_USING_LPUART8
IOMUXC_SetPinMux(
IOMUXC_GPIO_AD_B1_10_LPUART8_TX,
0U);
IOMUXC_SetPinMux(
IOMUXC_GPIO_AD_B1_11_LPUART8_RX,
0U);
IOMUXC_SetPinConfig(
IOMUXC_GPIO_AD_B1_10_LPUART8_TX,
0x10B0u);
IOMUXC_SetPinConfig(
IOMUXC_GPIO_AD_B1_11_LPUART8_RX,
0x10B0u);
#endif
}
#endif /* BSP_USING_LPUART */
#ifdef BSP_USING_ETH
void imxrt_enet_pins_init(void)
{
CLOCK_EnableClock(kCLOCK_Iomuxc); /* iomuxc clock (iomuxc_clk_enable): 0x03u */
IOMUXC_SetPinMux(
IOMUXC_GPIO_AD_B0_09_GPIO1_IO09, /* GPIO_AD_B0_09 is configured as GPIO1_IO09 */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinMux(
IOMUXC_GPIO_AD_B0_10_GPIO1_IO10, /* GPIO_AD_B0_10 is configured as GPIO1_IO10 */
0U);
IOMUXC_SetPinMux(
IOMUXC_GPIO_B1_04_ENET_RX_DATA00, /* GPIO_B1_04 is configured as ENET_RX_DATA00 */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinMux(
IOMUXC_GPIO_B1_05_ENET_RX_DATA01, /* GPIO_B1_05 is configured as ENET_RX_DATA01 */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinMux(
IOMUXC_GPIO_B1_06_ENET_RX_EN, /* GPIO_B1_06 is configured as ENET_RX_EN */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinMux(
IOMUXC_GPIO_B1_07_ENET_TX_DATA00, /* GPIO_B1_07 is configured as ENET_TX_DATA00 */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinMux(
IOMUXC_GPIO_B1_08_ENET_TX_DATA01, /* GPIO_B1_08 is configured as ENET_TX_DATA01 */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinMux(
IOMUXC_GPIO_B1_09_ENET_TX_EN, /* GPIO_B1_09 is configured as ENET_TX_EN */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinMux(
IOMUXC_GPIO_B1_10_ENET_REF_CLK, /* GPIO_B1_10 is configured as ENET_REF_CLK */
1U); /* Software Input On Field: Force input path of pad GPIO_B1_10 */
IOMUXC_SetPinMux(
IOMUXC_GPIO_B1_11_ENET_RX_ER, /* GPIO_B1_11 is configured as ENET_RX_ER */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinMux(
IOMUXC_GPIO_EMC_40_ENET_MDC, /* GPIO_EMC_40 is configured as ENET_MDC */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinMux(
IOMUXC_GPIO_EMC_41_ENET_MDIO, /* GPIO_EMC_41 is configured as ENET_MDIO */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_AD_B0_09_GPIO1_IO09, /* GPIO_AD_B0_09 PAD functional properties : */
0xB0A9u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/5
Speed Field: medium(100MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Pull
Pull Up / Down Config. Field: 100K Ohm Pull Up
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_AD_B0_10_GPIO1_IO10, /* GPIO_AD_B0_10 PAD functional properties : */
0xB0A9u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/5
Speed Field: medium(100MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Pull
Pull Up / Down Config. Field: 100K Ohm Pull Up
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_B1_04_ENET_RX_DATA00, /* GPIO_B1_04 PAD functional properties : */
0xB0E9u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/5
Speed Field: max(200MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Pull
Pull Up / Down Config. Field: 100K Ohm Pull Up
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_B1_05_ENET_RX_DATA01, /* GPIO_B1_05 PAD functional properties : */
0xB0E9u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/5
Speed Field: max(200MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Pull
Pull Up / Down Config. Field: 100K Ohm Pull Up
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_B1_06_ENET_RX_EN, /* GPIO_B1_06 PAD functional properties : */
0xB0E9u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/5
Speed Field: max(200MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Pull
Pull Up / Down Config. Field: 100K Ohm Pull Up
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_B1_07_ENET_TX_DATA00, /* GPIO_B1_07 PAD functional properties : */
0xB0E9u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/5
Speed Field: max(200MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Pull
Pull Up / Down Config. Field: 100K Ohm Pull Up
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_B1_08_ENET_TX_DATA01, /* GPIO_B1_08 PAD functional properties : */
0xB0E9u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/5
Speed Field: max(200MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Pull
Pull Up / Down Config. Field: 100K Ohm Pull Up
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_B1_09_ENET_TX_EN, /* GPIO_B1_09 PAD functional properties : */
0xB0E9u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/5
Speed Field: max(200MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Pull
Pull Up / Down Config. Field: 100K Ohm Pull Up
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_B1_10_ENET_REF_CLK, /* GPIO_B1_10 PAD functional properties : */
0x31u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/6
Speed Field: low(50MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Disabled
Pull / Keep Select Field: Keeper
Pull Up / Down Config. Field: 100K Ohm Pull Down
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_B1_11_ENET_RX_ER, /* GPIO_B1_11 PAD functional properties : */
0xB0E9u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/5
Speed Field: max(200MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Pull
Pull Up / Down Config. Field: 100K Ohm Pull Up
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_EMC_40_ENET_MDC, /* GPIO_EMC_40 PAD functional properties : */
0xB0E9u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/5
Speed Field: max(200MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Pull
Pull Up / Down Config. Field: 100K Ohm Pull Up
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_EMC_41_ENET_MDIO, /* GPIO_EMC_41 PAD functional properties : */
0xB829u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/5
Speed Field: low(50MHz)
Open Drain Enable Field: Open Drain Enabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Pull
Pull Up / Down Config. Field: 100K Ohm Pull Up
Hyst. Enable Field: Hysteresis Disabled */
}
#ifndef BSP_USING_PHY
void imxrt_enet_phy_reset_by_gpio(void)
{
gpio_pin_config_t gpio_config = {kGPIO_DigitalOutput, 0, kGPIO_NoIntmode};
GPIO_PinInit(GPIO1, 9, &gpio_config);
GPIO_PinInit(GPIO1, 10, &gpio_config);
/* pull up the ENET_INT before RESET. */
GPIO_WritePinOutput(GPIO1, 10, 1);
GPIO_WritePinOutput(GPIO1, 9, 0);
rt_thread_delay(100);
GPIO_WritePinOutput(GPIO1, 9, 1);
}
#endif /* BSP_USING_PHY */
#endif /* BSP_USING_ETH */
#ifdef BSP_USING_PHY
void imxrt_phy_pins_init( void )
{
IOMUXC_SetPinMux(
IOMUXC_GPIO_AD_B0_09_GPIO1_IO09, /* GPIO_AD_B0_09 is configured as GPIO1_IO09 */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_AD_B0_09_GPIO1_IO09, /* GPIO_B0_00 PAD functional properties : */
0x10B0u); /* Slew Rate Field: Slow Slew Rate
Drive Strength Field: R0/6
Speed Field: medium(100MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Keeper
Pull Up / Down Config. Field: 100K Ohm Pull Down
Hyst. Enable Field: Hysteresis Disabled */
}
#endif /* BSP_USING_PHY */
/**
* This function will initial rt1050 board.
*/
......@@ -121,6 +464,18 @@ void rt_hw_board_init()
NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
SysTick_Config(SystemCoreClock / RT_TICK_PER_SECOND);
#ifdef BSP_USING_LPUART
imxrt_uart_pins_init();
#endif
#ifdef BSP_USING_ETH
imxrt_enet_pins_init();
#endif
#ifdef BSP_USING_PHY
imxrt_phy_pins_init();
#endif
#ifdef BSP_USING_DMA
imxrt_dma_init();
#endif
......
......@@ -45,5 +45,11 @@ extern int heap_end;
void rt_hw_board_init(void);
#ifdef BSP_USING_ETH
void imxrt_enet_pins_init(void);
void imxrt_enet_phy_reset_by_gpio(void);
#endif
#endif
......@@ -66,6 +66,8 @@
#define m_data3_start 0x00000000 ; ITCM 128KB
#define m_data3_size 0x00020000
#define m_ncache_start 0x81E00000
#define m_ncache_size 0x00200000
/* Sizes */
#if (defined(__stack_size__))
......@@ -124,7 +126,7 @@ LR_IROM1 m_text_start m_text_size
RTT_HEAP +0 EMPTY RTT_HEAP_SIZE{}
; ncache RW data
RW_m_ncache m_data2_start m_data2_size
RW_m_ncache m_ncache_start m_ncache_size
{
* (NonCacheable.init)
* (NonCacheable)
......
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-05 zylx The first version for STM32F4xx
* 2019-4-25 misonyo port to IMXRT
*/
#ifndef SDRAM_PORT_H__
#define SDRAM_PORT_H__
/* parameters for sdram peripheral */
#define SDRAM_BANK_ADDR ((uint32_t)0x80000000U)
/* region#0/1/2/3: kSEMC_SDRAM_CS0/1/2/3 */
#define SDRAM_REGION kSEMC_SDRAM_CS0
/* CS pin: kSEMC_MUXCSX0/1/2/3 */
#define SDRAM_CS_PIN kSEMC_MUXCSX0
/* size(kbyte):32MB = 32*1024*1KBytes */
#define SDRAM_SIZE ((uint32_t)0x8000)
/* data width: kSEMC_PortSize8Bit,kSEMC_PortSize16Bit */
#define SDRAM_DATA_WIDTH kSEMC_PortSize16Bit
/* column bit numbers: kSEMC_SdramColunm_9/10/11/12bit */
#define SDRAM_COLUMN_BITS kSEMC_SdramColunm_9bit
/* cas latency clock number: kSEMC_LatencyOne/Two/Three */
#define SDRAM_CAS_LATENCY kSEMC_LatencyThree
/* Timing configuration for W9825G6KH */
/* TRP:precharge to active command time (ns) */
#define SDRAM_TRP 18
/* TRCD:active to read/write command delay time (ns) */
#define SDRAM_TRCD 18
/* The time between two refresh commands,Use the maximum of the (Trfc , Txsr).(ns) */
#define SDRAM_REFRESH_RECOVERY 67
/* TWR:write recovery time (ns). */
#define SDRAM_TWR 12
/* TRAS:active to precharge command time (ns). */
#define SDRAM_TRAS 42
/* TRC time (ns). */
#define SDRAM_TRC 60
/* active to active time (ns). */
#define SDRAM_ACT2ACT 60
/* refresh time (ns). 64ms */
#define SDRAM_REFRESH_ROW 64 * 1000000 / 8192
#endif /* SDRAM_PORT_H__ */
......@@ -48,7 +48,7 @@ if PLATFORM == 'gcc':
DEVICE = ' -mcpu=' + CPU + ' -mthumb -mfpu=fpv5-d16 -mfloat-abi=hard -ffunction-sections -fdata-sections'
CFLAGS = DEVICE + ' -Wall -D__FPU_PRESENT -eentry'
AFLAGS = ' -c' + DEVICE + ' -x assembler-with-cpp -Wa,-mimplicit-it=thumb -D__START=entry'
LFLAGS = DEVICE + ' -lm -lgcc -lc' + ' -nostartfiles -Wl,--gc-sections,-Map=rtthread.map,-cref,-u,Reset_Handler -T board/linker_scripts/link.lds'
LFLAGS = DEVICE + ' -lm -lgcc -lc' + ' -nostartfiles -Wl,--gc-sections,-Map=rtthread.map,-cref,-u,Reset_Handler -T board/linker_scripts/link.lds -Xlinker -print-memory-usage'
CPATH = ''
LPATH = ''
......@@ -57,8 +57,8 @@ if PLATFORM == 'gcc':
AFLAGS += ' -D__STARTUP_CLEAR_BSS'
if BUILD == 'debug':
CFLAGS += ' -gdwarf-2'
AFLAGS += ' -gdwarf-2'
CFLAGS += ' -g'
AFLAGS += ' -g'
CFLAGS += ' -O0'
else:
CFLAGS += ' -O2 -Os'
......
......@@ -44,6 +44,9 @@ if GetDepend('BSP_USING_LCD'):
if GetDepend('BSP_USING_ETH'):
src += ['drv_eth.c']
if GetDepend('BSP_USING_PHY'):
src += ['drv_mdio.c']
if GetDepend('BSP_USING_USB_DEVICE'):
src += ['drv_usbd.c']
......
......@@ -7,6 +7,7 @@
* Date Author Notes
* 2017-10-10 Tanek the first version
* 2019-5-10 misonyo add DMA TX and RX function
* 2020-10-14 wangqiang use phy device in phy monitor thread
*/
#include <rtthread.h>
......@@ -19,7 +20,6 @@
#include "fsl_enet.h"
#include "fsl_gpio.h"
#include "fsl_phy.h"
#include "fsl_cache.h"
#include "fsl_iomuxc.h"
#include "fsl_common.h"
......@@ -537,31 +537,47 @@ struct pbuf *rt_imxrt_eth_rx(rt_device_t dev)
return NULL;
}
#ifdef BSP_USING_PHY
static struct rt_phy_device *phy_dev = RT_NULL;
static void phy_monitor_thread_entry(void *parameter)
{
phy_speed_t speed;
phy_duplex_t duplex;
bool link = false;
rt_uint32_t speed;
rt_uint32_t duplex;
rt_bool_t link = RT_FALSE;
imxrt_enet_phy_reset_by_gpio();
PHY_Init(imxrt_eth_device.enet_base, PHY_ADDRESS, CLOCK_GetFreq(kCLOCK_AhbClk));
phy_dev = (struct rt_phy_device *)rt_device_find("rtt-phy");
if ((RT_NULL == phy_dev) || (RT_NULL == phy_dev->ops))
{
// TODO print warning information
LOG_E("Can not find phy device called \"rtt-phy\"");
return ;
}
if (RT_NULL == phy_dev->ops->init)
{
LOG_E("phy driver error!");
return ;
}
rt_phy_status status = phy_dev->ops->init(imxrt_eth_device.enet_base, PHY_DEVICE_ADDRESS, CLOCK_GetFreq(kCLOCK_AhbClk));
if (PHY_STATUS_OK != status)
{
LOG_E("Phy device initialize unsuccessful!\n");
return ;
}
while (1)
{
bool new_link = false;
status_t status = PHY_GetLinkStatus(imxrt_eth_device.enet_base, PHY_ADDRESS, &new_link);
rt_bool_t new_link = RT_FALSE;
rt_phy_status status = phy_dev->ops->get_link_status(&new_link);
if ((status == kStatus_Success) && (link != new_link))
if ((PHY_STATUS_OK == status) && (link != new_link))
{
link = new_link;
if (link) // link up
if (link) // link up
{
PHY_GetLinkSpeedDuplex(imxrt_eth_device.enet_base,
PHY_ADDRESS, &speed, &duplex);
phy_dev->ops->get_link_speed_duplex(&speed, &duplex);
if (kPHY_Speed10M == speed)
if (PHY_SPEED_10M == speed)
{
dbg_log(DBG_LOG, "10M\n");
}
......@@ -570,7 +586,7 @@ static void phy_monitor_thread_entry(void *parameter)
dbg_log(DBG_LOG, "100M\n");
}
if (kPHY_HalfDuplex == duplex)
if (PHY_HALF_DUPLEX == duplex)
{
dbg_log(DBG_LOG, "half dumplex\n");
}
......@@ -579,8 +595,7 @@ static void phy_monitor_thread_entry(void *parameter)
dbg_log(DBG_LOG, "full dumplex\n");
}
if ((imxrt_eth_device.speed != (enet_mii_speed_t)speed)
|| (imxrt_eth_device.duplex != (enet_mii_duplex_t)duplex))
if ((imxrt_eth_device.speed != (enet_mii_speed_t)speed) || (imxrt_eth_device.duplex != (enet_mii_duplex_t)duplex))
{
imxrt_eth_device.speed = (enet_mii_speed_t)speed;
imxrt_eth_device.duplex = (enet_mii_duplex_t)duplex;
......@@ -605,6 +620,7 @@ static void phy_monitor_thread_entry(void *parameter)
rt_thread_delay(RT_TICK_PER_SECOND * 2);
}
}
#endif
static int rt_hw_imxrt_eth_init(void)
{
......@@ -657,6 +673,7 @@ static int rt_hw_imxrt_eth_init(void)
/* start phy monitor */
{
#ifdef BSP_USING_PHY
rt_thread_t tid;
tid = rt_thread_create("phy",
phy_monitor_thread_entry,
......@@ -666,6 +683,7 @@ static int rt_hw_imxrt_eth_init(void)
2);
if (tid != RT_NULL)
rt_thread_startup(tid);
#endif
}
return state;
......@@ -673,50 +691,47 @@ static int rt_hw_imxrt_eth_init(void)
INIT_DEVICE_EXPORT(rt_hw_imxrt_eth_init);
#endif
#ifdef RT_USING_FINSH
#if defined(RT_USING_FINSH) && defined(RT_USING_PHY)
#include <finsh.h>
void phy_read(uint32_t phyReg)
void phy_read(rt_uint32_t phy_reg)
{
uint32_t data;
status_t status;
rt_uint32_t data;
status = PHY_Read(imxrt_eth_device.enet_base, PHY_ADDRESS, phyReg, &data);
if (kStatus_Success == status)
rt_phy_status status = phy_dev->ops->read(phy_reg, &data);
if (PHY_STATUS_OK == status)
{
rt_kprintf("PHY_Read: %02X --> %08X", phyReg, data);
rt_kprintf("PHY_Read: %02X --> %08X", phy_reg, data);
}
else
{
rt_kprintf("PHY_Read: %02X --> faild", phyReg);
rt_kprintf("PHY_Read: %02X --> faild", phy_reg);
}
}
void phy_write(uint32_t phyReg, uint32_t data)
void phy_write(rt_uint32_t phy_reg, rt_uint32_t data)
{
status_t status;
status = PHY_Write(imxrt_eth_device.enet_base, PHY_ADDRESS, phyReg, data);
if (kStatus_Success == status)
rt_phy_status status = phy_dev->ops->write(phy_reg, data);
if (PHY_STATUS_OK == status)
{
rt_kprintf("PHY_Write: %02X --> %08X\n", phyReg, data);
rt_kprintf("PHY_Write: %02X --> %08X\n", phy_reg, data);
}
else
{
rt_kprintf("PHY_Write: %02X --> faild\n", phyReg);
rt_kprintf("PHY_Write: %02X --> faild\n", phy_reg);
}
}
void phy_dump(void)
{
uint32_t data;
status_t status;
rt_uint32_t data;
rt_phy_status status;
int i;
for (i = 0; i < 32; i++)
{
status = PHY_Read(imxrt_eth_device.enet_base, PHY_ADDRESS, i, &data);
if (kStatus_Success != status)
status = phy_dev->ops->read(i, &data);
if (PHY_STATUS_OK != status)
{
rt_kprintf("phy_dump: %02X --> faild", i);
break;
......@@ -730,10 +745,11 @@ void phy_dump(void)
{
rt_kprintf("%02X --> %08X\n", i, data);
}
}
}
#endif
#if defined(RT_USING_FINSH) && defined(RT_USING_LWIP)
void enet_reg_dump(void)
{
ENET_Type *enet_base = imxrt_eth_device.enet_base;
......
/*
* Copyright (c) 2006-2020, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-09-29 WangQiang the first version
*
*/
#include <rtthread.h>
#ifdef BSP_USING_PHY
#define LOG_TAG "drv.mdio"
#include <drv_log.h>
#include <rtdevice.h>
#include "drv_mdio.h"
/*! @brief Defines the timeout macro. */
#define PHY_TIMEOUT_COUNT 0x3FFFFFFU
/*!
* @brief Get the ENET instance from peripheral base address.
*
* @param base ENET peripheral base address.
* @return ENET instance.
*/
extern uint32_t ENET_GetInstance(ENET_Type *base);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to enet clocks for each instance. */
extern clock_ip_name_t s_enetClock[FSL_FEATURE_SOC_ENET_COUNT];
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
static rt_bool_t rt_hw_mdio_init(void *bus, rt_uint32_t src_clock_hz)
{
struct rt_mdio_bus *bus_obj = (struct rt_mdio_bus *)bus;
uint32_t instance = ENET_GetInstance((ENET_Type *)(bus_obj->hw_obj));
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Set SMI first. */
CLOCK_EnableClock(s_enetClock[instance]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
ENET_SetSMI((ENET_Type *)(bus_obj->hw_obj), src_clock_hz, RT_FALSE);
return RT_TRUE;
}
static rt_size_t rt_hw_mdio_read(void *bus, rt_uint32_t addr, rt_uint32_t reg, void *data, rt_uint32_t size)
{
RT_ASSERT(data);
struct rt_mdio_bus *bus_obj = (struct rt_mdio_bus *)bus;
rt_uint32_t counter;
rt_uint32_t *data_ptr = (rt_uint32_t *)data;
if (4 != size)
{
return 0;
}
/* Clear the MII interrupt event. */
ENET_ClearInterruptStatus((ENET_Type *)(bus_obj->hw_obj), ENET_EIR_MII_MASK);
/* Starts a SMI read command operation. */
ENET_StartSMIRead((ENET_Type *)(bus_obj->hw_obj), addr, reg, kENET_MiiReadValidFrame);
/* Wait for MII complete. */
for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--)
{
if (ENET_GetInterruptStatus((ENET_Type *)(bus_obj->hw_obj)) & ENET_EIR_MII_MASK)
{
break;
}
}
/* Check for timeout. */
if (!counter)
{
// return kStatus_PHY_SMIVisitTimeout;
return 0;
}
/* Get data from MII register. */
*data_ptr = ENET_ReadSMIData((ENET_Type *)(bus_obj->hw_obj));
/* Clear MII interrupt event. */
ENET_ClearInterruptStatus((ENET_Type *)bus_obj->hw_obj, ENET_EIR_MII_MASK);
return 4;
}
static rt_size_t rt_hw_mdio_write(void *bus, rt_uint32_t addr, rt_uint32_t reg, void *data, rt_uint32_t size)
{
struct rt_mdio_bus *bus_obj = (struct rt_mdio_bus *)bus;
uint32_t counter;
rt_uint32_t *data_ptr = (rt_uint32_t *)data;
if (4 != size)
{
return 0;
}
/* Clear the SMI interrupt event. */
ENET_ClearInterruptStatus((ENET_Type *)(bus_obj->hw_obj), ENET_EIR_MII_MASK);
/* Starts a SMI write command. */
ENET_StartSMIWrite((ENET_Type *)(bus_obj->hw_obj), addr, reg, kENET_MiiWriteValidFrame, *data_ptr);
/* Wait for SMI complete. */
for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--)
{
if (ENET_GetInterruptStatus((ENET_Type *)(bus_obj->hw_obj)) & ENET_EIR_MII_MASK)
{
break;
}
}
/* Check for timeout. */
if (!counter)
{
return 0;
}
/* Clear MII interrupt event. */
ENET_ClearInterruptStatus((ENET_Type *)(bus_obj->hw_obj), ENET_EIR_MII_MASK);
return size;
}
static struct rt_mdio_bus_ops imxrt_mdio_ops =
{
.init = rt_hw_mdio_init,
.read = rt_hw_mdio_read,
.write = rt_hw_mdio_write,
.uninit = RT_NULL,
};
static rt_mdio_t mdio_bus;
rt_mdio_t *rt_hw_mdio_register(void *hw_obj, char *name)
{
mdio_bus.hw_obj = hw_obj;
mdio_bus.name = name;
mdio_bus.ops = &imxrt_mdio_ops;
return &mdio_bus;
}
rt_mdio_t *rt_hw_mdio_get(void)
{
return &mdio_bus;
}
#endif
/*
* Copyright (c) 2006-2020, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-09-29 WangQiang the first version
*
*/
#ifndef DRV_MDIO_H__
#define DRV_MDIO_H__
#include <rtdevice.h>
#include "fsl_enet.h"
rt_mdio_t *rt_hw_mdio_register(void *hw_obj, char *name);
rt_mdio_t *rt_hw_mdio_get(void);
#endif /*DRV_MDIO_H__*/
from building import *
src = []
cwd = []
CPPDEFINES = []
cwd = GetCurrentDir()
if GetDepend('BSP_USING_PHY') and GetDepend('PHY_USING_KSZ8081'):
src += ['phyksz8081.c']
path = [cwd]
group = DefineGroup('Peripherals', src, depend = [''], CPPPATH = path, CPPDEFINES=CPPDEFINES)
Return('group')
/*
* Copyright (c) 2006-2020, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-10-14 wangqiang the first version
*/
#include <rtthread.h>
#ifdef PHY_USING_KSZ8081
#include <rtdevice.h>
#include "drv_gpio.h"
#include "drv_mdio.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @brief Defines the PHY registers. */
#define PHY_BASICCONTROL_REG 0x00U /*!< The PHY basic control register. */
#define PHY_BASICSTATUS_REG 0x01U /*!< The PHY basic status register. */
#define PHY_ID1_REG 0x02U /*!< The PHY ID one register. */
#define PHY_ID2_REG 0x03U /*!< The PHY ID two register. */
#define PHY_AUTONEG_ADVERTISE_REG 0x04U /*!< The PHY auto-negotiate advertise register. */
#define PHY_CONTROL1_REG 0x1EU /*!< The PHY control one register. */
#define PHY_CONTROL2_REG 0x1FU /*!< The PHY control two register. */
#define PHY_CONTROL_ID1 0x22U /*!< The PHY ID1*/
/*! @brief Defines the mask flag in basic control register. */
#define PHY_BCTL_DUPLEX_MASK 0x0100U /*!< The PHY duplex bit mask. */
#define PHY_BCTL_RESTART_AUTONEG_MASK 0x0200U /*!< The PHY restart auto negotiation mask. */
#define PHY_BCTL_AUTONEG_MASK 0x1000U /*!< The PHY auto negotiation bit mask. */
#define PHY_BCTL_SPEED_MASK 0x2000U /*!< The PHY speed bit mask. */
#define PHY_BCTL_LOOP_MASK 0x4000U /*!< The PHY loop bit mask. */
#define PHY_BCTL_RESET_MASK 0x8000U /*!< The PHY reset bit mask. */
#define PHY_BCTL_SPEED_100M_MASK 0x2000U /*!< The PHY 100M speed mask. */
/*!@brief Defines the mask flag of operation mode in control two register*/
#define PHY_CTL2_REMOTELOOP_MASK 0x0004U /*!< The PHY remote loopback mask. */
#define PHY_CTL2_REFCLK_SELECT_MASK 0x0080U /*!< The PHY RMII reference clock select. */
#define PHY_CTL1_10HALFDUPLEX_MASK 0x0001U /*!< The PHY 10M half duplex mask. */
#define PHY_CTL1_100HALFDUPLEX_MASK 0x0002U /*!< The PHY 100M half duplex mask. */
#define PHY_CTL1_10FULLDUPLEX_MASK 0x0005U /*!< The PHY 10M full duplex mask. */
#define PHY_CTL1_100FULLDUPLEX_MASK 0x0006U /*!< The PHY 100M full duplex mask. */
#define PHY_CTL1_SPEEDUPLX_MASK 0x0007U /*!< The PHY speed and duplex mask. */
#define PHY_CTL1_ENERGYDETECT_MASK 0x10U /*!< The PHY signal present on rx differential pair. */
#define PHY_CTL1_LINKUP_MASK 0x100U /*!< The PHY link up. */
#define PHY_LINK_READY_MASK (PHY_CTL1_ENERGYDETECT_MASK | PHY_CTL1_LINKUP_MASK)
/*! @brief Defines the mask flag in basic status register. */
#define PHY_BSTATUS_LINKSTATUS_MASK 0x0004U /*!< The PHY link status mask. */
#define PHY_BSTATUS_AUTONEGABLE_MASK 0x0008U /*!< The PHY auto-negotiation ability mask. */
#define PHY_BSTATUS_AUTONEGCOMP_MASK 0x0020U /*!< The PHY auto-negotiation complete mask. */
/*! @brief Defines the mask flag in PHY auto-negotiation advertise register. */
#define PHY_100BaseT4_ABILITY_MASK 0x200U /*!< The PHY have the T4 ability. */
#define PHY_100BASETX_FULLDUPLEX_MASK 0x100U /*!< The PHY has the 100M full duplex ability.*/
#define PHY_100BASETX_HALFDUPLEX_MASK 0x080U /*!< The PHY has the 100M full duplex ability.*/
#define PHY_10BASETX_FULLDUPLEX_MASK 0x040U /*!< The PHY has the 10M full duplex ability.*/
#define PHY_10BASETX_HALFDUPLEX_MASK 0x020U /*!< The PHY has the 10M full duplex ability.*/
/*! @brief Defines the timeout macro. */
#define PHY_TIMEOUT_COUNT 0x3FFFFFFU
/* defined the Reset pin, PORT and PIN config by menuconfig */
#define RESET_PIN GET_PIN(PHY_RESET_PORT, PHY_RESET_PIN)
/*******************************************************************************
* Prototypes
******************************************************************************/
/*******************************************************************************
* Variables
******************************************************************************/
static struct rt_phy_device phy_ksz8081;
/*******************************************************************************
* Code
******************************************************************************/
static inline rt_bool_t read_reg(rt_mdio_t *bus, rt_uint32_t addr, rt_uint32_t reg_id, rt_uint32_t *value)
{
if (4 != bus->ops->read(bus, addr, reg_id, value, 4))
{
return RT_FALSE;
}
return RT_TRUE;
}
static inline rt_bool_t write_reg(rt_mdio_t *bus, rt_uint32_t addr, rt_uint32_t reg_id, rt_uint32_t value)
{
if (4 != bus->ops->write(bus, addr, reg_id, &value, 4))
{
return RT_FALSE;
}
return RT_TRUE;
}
static rt_phy_status rt_phy_init(void *object, rt_uint32_t phy_addr, rt_uint32_t src_clock_hz)
{
rt_bool_t ret;
rt_phy_status result;
rt_uint32_t counter = PHY_TIMEOUT_COUNT;
rt_uint32_t id_reg = 0;
rt_uint32_t time_delay;
rt_uint32_t bss_reg;
rt_uint32_t ctl_reg = 0;
// reset phy device by gpio
rt_pin_mode(RESET_PIN, PIN_MODE_OUTPUT);
rt_pin_write(RESET_PIN, PIN_LOW);
rt_thread_mdelay(100);
rt_pin_write(RESET_PIN, PIN_HIGH);
rt_mdio_t *mdio_bus = rt_hw_mdio_register(object, "phy_mdio");
if (RT_NULL == mdio_bus)
{
return PHY_STATUS_FAIL;
}
phy_ksz8081.bus = mdio_bus;
phy_ksz8081.addr = phy_addr;
ret = mdio_bus->ops->init(mdio_bus, src_clock_hz);
if ( !ret )
{
return PHY_STATUS_FAIL;
}
/* Initialization after PHY stars to work. */
while ((id_reg != PHY_CONTROL_ID1) && (counter != 0))
{
phy_ksz8081.ops->read(PHY_ID1_REG, &id_reg);
counter--;
}
if (!counter)
{
return PHY_STATUS_FAIL;
}
/* Reset PHY. */
counter = PHY_TIMEOUT_COUNT;
result = phy_ksz8081.ops->write(PHY_BASICCONTROL_REG, PHY_BCTL_RESET_MASK);
if (PHY_STATUS_OK == result)
{
#if defined(FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE)
rt_uint32_t data = 0;
result = phy_ksz8081.ops->read(PHY_CONTROL2_REG, &data);
if (PHY_STATUS_FAIL == result)
{
return PHY_STATUS_FAIL;
}
result = phy_ksz8081.ops->write(PHY_CONTROL2_REG, (data | PHY_CTL2_REFCLK_SELECT_MASK));
if (PHY_STATUS_FAIL == result)
{
return PHY_STATUS_FAIL;
}
#endif /* FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE */
/* Set the negotiation. */
result = phy_ksz8081.ops->write(PHY_AUTONEG_ADVERTISE_REG,
(PHY_100BASETX_FULLDUPLEX_MASK | PHY_100BASETX_HALFDUPLEX_MASK |
PHY_10BASETX_FULLDUPLEX_MASK | PHY_10BASETX_HALFDUPLEX_MASK | 0x1U));
if (PHY_STATUS_OK == result)
{
result = phy_ksz8081.ops->write(PHY_BASICCONTROL_REG, (PHY_BCTL_AUTONEG_MASK | PHY_BCTL_RESTART_AUTONEG_MASK));
if (PHY_STATUS_OK == result)
{
/* Check auto negotiation complete. */
while (counter--)
{
result = phy_ksz8081.ops->read(PHY_BASICSTATUS_REG, &bss_reg);
if (PHY_STATUS_OK == result)
{
phy_ksz8081.ops->read(PHY_CONTROL1_REG, &ctl_reg);
if (((bss_reg & PHY_BSTATUS_AUTONEGCOMP_MASK) != 0) && (ctl_reg & PHY_LINK_READY_MASK))
{
/* Wait a moment for Phy status stable. */
for (time_delay = 0; time_delay < PHY_TIMEOUT_COUNT; time_delay++)
{
__ASM("nop");
}
break;
}
}
if (!counter)
{
return PHY_STATUS_FAIL;
}
}
}
}
}
return PHY_STATUS_OK;
}
static rt_phy_status rt_phy_read(rt_uint32_t reg, rt_uint32_t *data)
{
rt_mdio_t *mdio_bus = phy_ksz8081.bus;
rt_uint32_t device_id = phy_ksz8081.addr;
if (read_reg(mdio_bus, device_id, reg, data))
{
return PHY_STATUS_OK;
}
return PHY_STATUS_FAIL;
}
static rt_phy_status rt_phy_write(rt_uint32_t reg, rt_uint32_t data)
{
rt_mdio_t *mdio_bus = phy_ksz8081.bus;
rt_uint32_t device_id = phy_ksz8081.addr;
if (write_reg(mdio_bus, device_id, reg, data))
{
return PHY_STATUS_OK;
}
return PHY_STATUS_FAIL;
}
static rt_phy_status rt_phy_loopback(rt_uint32_t mode, rt_uint32_t speed, rt_bool_t enable)
{
rt_uint32_t data = 0;
rt_phy_status result;
/* Set the loop mode. */
if (enable)
{
if (PHY_LOCAL_LOOP == mode)
{
if (PHY_SPEED_100M == speed)
{
data = PHY_BCTL_SPEED_100M_MASK | PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
}
else
{
data = PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
}
return phy_ksz8081.ops->write(PHY_BASICCONTROL_REG, data);
}
else
{
/* First read the current status in control register. */
result = phy_ksz8081.ops->read(PHY_CONTROL2_REG, &data);
if (PHY_STATUS_OK == result)
{
return phy_ksz8081.ops->write(PHY_CONTROL2_REG, (data | PHY_CTL2_REMOTELOOP_MASK));
}
}
}
else
{
/* Disable the loop mode. */
if (PHY_LOCAL_LOOP == mode)
{
/* First read the current status in control register. */
result = phy_ksz8081.ops->read(PHY_BASICCONTROL_REG, &data);
if (PHY_STATUS_OK == result)
{
data &= ~PHY_BCTL_LOOP_MASK;
return phy_ksz8081.ops->write(PHY_BASICCONTROL_REG, (data | PHY_BCTL_RESTART_AUTONEG_MASK));
}
}
else
{
/* First read the current status in control one register. */
result = phy_ksz8081.ops->read(PHY_CONTROL2_REG, &data);
if (PHY_STATUS_OK == result)
{
return phy_ksz8081.ops->write(PHY_CONTROL2_REG, (data & ~PHY_CTL2_REMOTELOOP_MASK));
}
}
}
return result;
}
static rt_phy_status get_link_status(rt_bool_t *status)
{
rt_phy_status result;
rt_uint32_t data;
/* Read the basic status register. */
result = phy_ksz8081.ops->read(PHY_BASICSTATUS_REG, &data);
if (PHY_STATUS_OK == result)
{
if (!(PHY_BSTATUS_LINKSTATUS_MASK & data))
{
/* link down. */
*status = RT_FALSE;
}
else
{
/* link up. */
*status = RT_TRUE;
}
}
return result;
}
static rt_phy_status get_link_speed_duplex(rt_uint32_t *speed, rt_uint32_t *duplex)
{
rt_phy_status result = PHY_STATUS_OK;
rt_uint32_t data, ctl_reg;
/* Read the control two register. */
result = phy_ksz8081.ops->read(PHY_CONTROL1_REG, &ctl_reg);
if (PHY_STATUS_OK == result)
{
data = ctl_reg & PHY_CTL1_SPEEDUPLX_MASK;
if ((PHY_CTL1_10FULLDUPLEX_MASK == data) || (PHY_CTL1_100FULLDUPLEX_MASK == data))
{
/* Full duplex. */
*duplex = PHY_FULL_DUPLEX;
}
else
{
/* Half duplex. */
*duplex = PHY_HALF_DUPLEX;
}
data = ctl_reg & PHY_CTL1_SPEEDUPLX_MASK;
if ((PHY_CTL1_100HALFDUPLEX_MASK == data) || (PHY_CTL1_100FULLDUPLEX_MASK == data))
{
/* 100M speed. */
*speed = PHY_SPEED_100M;
}
else
{ /* 10M speed. */
*speed = PHY_SPEED_10M;
}
}
return result;
}
static struct rt_phy_ops phy_ops =
{
.init = rt_phy_init,
.read = rt_phy_read,
.write = rt_phy_write,
.loopback = rt_phy_loopback,
.get_link_status = get_link_status,
.get_link_speed_duplex = get_link_speed_duplex,
};
static int rt_phy_ksz8081_register( void )
{
phy_ksz8081.ops = &phy_ops;
rt_hw_phy_register(&phy_ksz8081, "rtt-phy");
return 1;
}
INIT_DEVICE_EXPORT(rt_phy_ksz8081_register);
#endif /* PHY_USING_KSZ8081 */
......@@ -21,3 +21,6 @@ def dist_do_building(BSP_ROOT, dist_dir=None):
print("=> copy bsp drivers")
bsp_copy_files(os.path.join(library_path, 'drivers'), os.path.join(library_dir, 'drivers'))
shutil.copyfile(os.path.join(library_path, 'Kconfig'), os.path.join(library_dir, 'Kconfig'))
print("=> copy bsp peripherals")
bsp_copy_files(os.path.join(library_path, 'peripherals'), os.path.join(library_dir, 'peripherals'))
......@@ -103,6 +103,10 @@ if RT_USING_I2C
endif
endif
config RT_USING_PHY
bool "Using ethernet phy device drivers"
default n
config RT_USING_PIN
bool "Using generic GPIO device drivers"
default y
......
/*
* Copyright (c) 2006-2020, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-10-14 wangqiang the first version
*/
#ifndef __PHY_H__
#define __PHY_H__
#include <rtthread.h>
#ifdef __cplusplus
extern "C"
{
#endif
/* Defines the PHY link speed. This is align with the speed for MAC. */
enum phy_speed
{
PHY_SPEED_10M = 0U, /* PHY 10M speed. */
PHY_SPEED_100M /* PHY 100M speed. */
};
/* Defines the PHY link duplex. */
enum phy_duplex
{
PHY_HALF_DUPLEX = 0U, /* PHY half duplex. */
PHY_FULL_DUPLEX /* PHY full duplex. */
};
/*! @brief Defines the PHY loopback mode. */
enum phy_loop
{
PHY_LOCAL_LOOP = 0U, /* PHY local loopback. */
PHY_REMOTE_LOOP /* PHY remote loopback. */
};
struct rt_phy_msg
{
rt_uint32_t reg;
rt_uint32_t value;
};
typedef struct rt_phy_msg rt_phy_msg_t;
struct rt_phy_device
{
struct rt_device parent;
struct rt_mdio_bus *bus;
rt_uint32_t addr;
struct rt_phy_ops *ops;
};
typedef struct rt_phy_device rt_phy_t;
enum {
PHY_STATUS_OK = 0,
PHY_STATUS_FAIL,
PHY_STATUS_TIMEOUT,
};
typedef rt_int32_t rt_phy_status;
struct rt_phy_ops
{
rt_phy_status (*init)(void *object, rt_uint32_t phy_addr, rt_uint32_t src_clock_hz);
rt_phy_status (*read)(rt_uint32_t reg, rt_uint32_t *data);
rt_phy_status (*write)(rt_uint32_t reg, rt_uint32_t data);
rt_phy_status (*loopback)(rt_uint32_t mode, rt_uint32_t speed, rt_bool_t enable);
rt_phy_status (*get_link_status)(rt_bool_t *status);
rt_phy_status (*get_link_speed_duplex)(rt_uint32_t *speed, rt_uint32_t *duplex);
};
rt_err_t rt_hw_phy_register(struct rt_phy_device *phy, const char *name);
#ifdef __cplusplus
}
#endif
#endif /* __PHY_H__*/
/*
* Copyright (c) 2006-2020, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-10-14 wangqiang the first version
*/
#ifndef __MDIO_H__
#define __MDIO_H__
#include <rtthread.h>
#ifdef __cplusplus
extern "C"
{
#endif
struct rt_mdio_bus_ops
{
rt_bool_t (*init)(void *bus, rt_uint32_t src_clock_hz);
rt_size_t (*read)(void *bus, rt_uint32_t addr, rt_uint32_t reg, void *data, rt_uint32_t size);
rt_size_t (*write)(void *bus, rt_uint32_t addr, rt_uint32_t reg, void *data, rt_uint32_t size);
rt_bool_t (*uninit)(void *bus);
};
struct rt_mdio_bus
{
void *hw_obj;
char *name;
struct rt_mdio_bus_ops *ops;
};
typedef struct rt_mdio_bus rt_mdio_t;
#ifdef __cplusplus
}
#endif
#endif
......@@ -69,6 +69,11 @@ extern "C" {
#endif /* RT_USING_I2C_BITOPS */
#endif /* RT_USING_I2C */
#ifdef RT_USING_PHY
#include "drivers/phy.h"
#include "drivers/phy_mdio.h"
#endif /* RT_USING_PHY */
#ifdef RT_USING_SDIO
#include "drivers/mmcsd_core.h"
#include "drivers/sd.h"
......
from building import *
cwd = GetCurrentDir()
src = Glob('*.c')
CPPPATH = [cwd + '/../include']
group = DefineGroup('DeviceDrivers', src, depend = ['RT_USING_PHY'], CPPPATH = CPPPATH)
Return('group')
/*
* Copyright (c) 2006-2020, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-09-27 wangqiang first version
*/
#include <rthw.h>
#include <rtthread.h>
#include <rtdevice.h>
#define DBG_TAG "PHY"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
static rt_size_t phy_device_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t count)
{
struct rt_phy_device *phy = (struct rt_phy_device *)dev->user_data;
struct rt_phy_msg *msg = (struct rt_phy_msg *)buffer;
return phy->bus->ops->read(phy->bus, phy->addr, msg->reg, &(msg->value), 4);
}
static rt_size_t phy_device_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t count)
{
struct rt_phy_device *phy = (struct rt_phy_device *)dev->user_data;
struct rt_phy_msg *msg = (struct rt_phy_msg *)buffer;
return phy->bus->ops->write(phy->bus, phy->addr, msg->reg, &(msg->value), 4);
}
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops phy_ops =
{
RT_NULL,
RT_NULL,
RT_NULL,
phy_device_read,
phy_device_write,
RT_NULL,
};
#endif
/*
* phy device register
*/
rt_err_t rt_hw_phy_register(struct rt_phy_device *phy, const char *name)
{
rt_err_t ret;
struct rt_device *device;
device = &(phy->parent);
device->type = RT_Device_Class_PHY;
device->rx_indicate = RT_NULL;
device->tx_complete = RT_NULL;
#ifdef RT_USING_DEVICE_OPS
device->ops = phy_ops;
#else
device->init = NULL;
device->open = NULL;
device->close = NULL;
device->read = phy_device_read;
device->write = phy_device_write;
device->control = NULL;
#endif
device->user_data = phy;
/* register a character device */
ret = rt_device_register(device, name, RT_DEVICE_FLAG_RDWR);
return ret;
}
......@@ -821,6 +821,7 @@ static char *const device_type_str[] =
"Miscellaneous Device",
"Sensor Device",
"Touch Device",
"Phy Device",
"Unknown"
};
......
......@@ -871,6 +871,7 @@ enum rt_device_class_type
RT_Device_Class_Miscellaneous, /**< Miscellaneous device */
RT_Device_Class_Sensor, /**< Sensor device */
RT_Device_Class_Touch, /**< Touch device */
RT_Device_Class_PHY, /**< PHY device */
RT_Device_Class_Unknown /**< unknown device */
};
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册