未验证 提交 cac153e8 编写于 作者: F Feng Ruohang 提交者: GitHub

Merge branch 'master' into patch-1

......@@ -10,33 +10,17 @@
[TOC]
现今很多应用程序都是**数据密集型(data-intensive)**的,而非**计算密集型(compute-intensive)**的。因此CPU很少成为这类应用的瓶颈,更大的问题通常来自数据量、数据复杂性、以及数据的变更速度。
现今很多应用程序都是 **数据密集型(data-intensive)** 的,而非 **计算密集型(compute-intensive)** 的。因此CPU很少成为这类应用的瓶颈,更大的问题通常来自数据量、数据复杂性、以及数据的变更速度。
数据密集型应用通常由标准组件构建而成,标准组件提供了很多通用的功能;例如,许多应用程序都需要:
***数据库(database)***
​- 存储数据,以便自己或其他应用程序之后能再次找到 (***(数据库(database))***
​- 记住开销昂贵操作的结果,加快读取速度(***缓存(cache)***
​- 允许用户按关键字搜索数据,或以各种方式对数据进行过滤(***搜索索引(search indexes)***
-​ 向其他进程发送消息,进行异步处理(***流处理(stream processing)***
- 定期处理累积的大批量数据(***批处理(batch processing)***
​ 存储数据,以便自己或其他应用程序之后能再次找到
***缓存(cache)***
​ 记住开销昂贵操作的结果,加快读取速度
***搜索索引(search indexes)***
​ 允许用户按关键字搜索数据,或以各种方式对数据进行过滤
***流处理(stream processing)***
​ 向其他进程发送消息,进行异步处理
***批处理(batch processing)***
​ 定期处理累积的大批量数据
​ 如果这些功能听上去平淡无奇,那是因为这些**数据系统(data system)**是非常成功的抽象:我们一直不假思索地使用它们并习以为常。绝大多数工程师不会幻想从零开始编写存储引擎,因为在开发应用时,数据库已经是足够完美的工具了。
​如果这些功能听上去平淡无奇,那是因为这些 **数据系统(data system)** 是非常成功的抽象:我们一直不假思索地使用它们并习以为常。绝大多数工程师不会幻想从零开始编写存储引擎,因为在开发应用时,数据库已经是足够完美的工具了。
​ 但现实没有这么简单。不同的应用有着不同的需求,因而数据库系统也是百花齐放,有着各式各样的特性。实现缓存有很多种手段,创建搜索索引也有好几种方法,诸如此类。因此在开发应用前,我们依然有必要先弄清楚最适合手头工作的工具和方法。而且当单个工具解决不了你的问题时,组合使用这些工具可能还是有些难度的。
......@@ -80,7 +64,7 @@
***可维护性(Maintainability)***
​ 许多不同的人(工程师、运维)在不同的生命周期,都能高效地在系统上工作(使系统保持现有行为,并适应新的应用场景)。(参阅”[可维护性](#可维护性)“)
​ 许多不同的人(工程师、运维)在不同的生命周期,都能高效地在系统上工作(使系统保持现有行为,并适应新的应用场景)。(参阅”[可维护性](#可维护性)“)
......@@ -193,10 +177,10 @@
1. 发布推文时,只需将新推文插入全局推文集合即可。当一个用户请求自己的主页时间线时,首先查找他关注的所有人,查询这些被关注用户发布的推文并按时间顺序合并。在如[图1-2](img/fig1-2.png)所示的关系型数据库中,可以编写这样的查询:
```sql
SELECT tweets.*, users.*
FROM tweets
JOIN users ON tweets.sender_id = users.id
JOIN follows ON follows.followee_id = users.id
SELECT tweets.*, users.*
FROM tweets
JOIN users ON tweets.sender_id = users.id
JOIN follows ON follows.followee_id = users.id
WHERE follows.follower_id = current_user
```
![](img/fig1-2.png)
......@@ -476,4 +460,4 @@
| 上一章 | 目录 | 下一章 |
| ----------------------------------- | ------------------------------- | ------------------------------------ |
| [第一部分:数据系统基础](part-i.md) | [设计数据密集型应用](README.md) | [第二章:数据模型与查询语言](ch2.md) |
\ No newline at end of file
| [第一部分:数据系统基础](part-i.md) | [设计数据密集型应用](README.md) | [第二章:数据模型与查询语言](ch2.md) |
......@@ -676,7 +676,7 @@ GROUP BY follows.follower_id
​ Storm的Trident基于类似的想法来处理状态【78】。依赖幂等性意味着隐含了一些假设:重启一个失败的任务必须以相同的顺序重放相同的消息(基于日志的消息代理能做这些事),处理必须是确定性的,没有其他节点能同时更新相同的值【98,99】。
​ 当从一个处理节点故障转移到另一个节点时,可能需要进行**防护(fencing)**(参阅“[领导和锁](ch8.md#领导和锁)”),以防止被假死节点干扰。尽管有这么多注意事项,幂等操作是一种实现**恰好一次语义**的有效方式,仅需很小的额外开销。
​ 当从一个处理节点故障切换到另一个节点时,可能需要进行**防护(fencing)**(参阅“[领导和锁](ch8.md#领导和锁)”),以防止被假死节点干扰。尽管有这么多注意事项,幂等操作是一种实现**恰好一次语义**的有效方式,仅需很小的额外开销。
#### 失败后重建状态
......
......@@ -264,12 +264,12 @@ UPDATE users SET first_name = substring_index(name, ' ', 1); -- MySQL
大型表上运行`UPDATE`语句在任何数据库上都可能会很慢,因为每一行都需要重写。要是不可接受的话,应用程序可以将`first_name`设置为默认值`NULL`,并在读取时再填充,就像使用文档数据库一样。
读时模式更具优势,当由于某种原因(例如,数据是异构的)集合中的项目并不都具有相同的结构时。例如,因为
当由于某种原因(例如,数据是异构的)集合中的项目并不都具有相同的结构时,读时模式更具优势。例如,如果
* 存在许多不同类型的对象,将每种类型的对象放在自己的表中是不现实的。
* 数据的结构由外部系统决定。你无法控制外部系统且它随时可能变化。
这样的情况下,模式的坏处远大于它的帮助,无模式文档可能是一个更加自然的数据模型。但是,要是所有记录都具有相同的结构,那么模式是记录并强制这种结构的有效机制。第四章将更详细地讨论模式和模式演化。
上述情况下,模式的坏处远大于它的帮助,无模式文档可能是一个更加自然的数据模型。但是,要是所有记录都具有相同的结构,那么模式是记录并强制这种结构的有效机制。第四章将更详细地讨论模式和模式演化。
#### 查询的数据局部性
......@@ -591,7 +591,7 @@ CREATE INDEX edges_heads ON edges (head_vertex);
### Cypher查询语言
Cypher是属性图的声明式查询语言,为Neo4j图形数据库而发明【37】。(它是以电影“黑客帝国”中的一个角色命名的,而与密码术中的密码无关【38】。)
Cypher是属性图的声明式查询语言,为Neo4j图形数据库而发明【37】。(它是以电影“黑客帝国”中的一个角色命名的,而与密码术中的密码无关【38】。)
[例2-3]()显示了将[图2-5](img/fig2-5.png)的左边部分插入图形数据库的Cypher查询。可以类似地添加图的其余部分,为了便于阅读而省略。每个顶点都有一个像`USA`或`Idaho`这样的符号名称,查询的其他部分可以使用这些名称在顶点之间创建边,使用箭头符号:`(Idaho) - [:WITHIN] ->(USA)`创建一条标记为`WITHIN`的边,`Idaho`为尾节点,`USA`为头节点。
......
......@@ -15,7 +15,7 @@
[第2章](ch2.md)中,我们讨论了数据模型和查询语言,即程序员将数据录入数据库的格式,以及再次要回数据的机制。在本章中我们会从数据库的视角来讨论同样的问题:数据库如何存储我们提供的数据,以及如何在我们需要时重新找到数据。
作为程序员,为什么要关心数据库内部存储与检索的机理?你可能不会去从头开始实现自己的存储引擎,但是你**确实**需要从许多可用的存储引擎中选择一个合适的。而且为了调谐存储引擎以适配应用工作负载,你也需要大致了解存储引擎在底层究竟做什么。
作为程序员,为什么要关心数据库内部存储与检索的机理?你可能不会去从头开始实现自己的存储引擎,但是你**确实**需要从许多可用的存储引擎中选择一个合适的。而且为了协调存储引擎以适配应用工作负载,你也需要大致了解存储引擎在底层究竟做什么。
特别需要注意,针对**事务**性负载和**分析性**负载优化的存储引擎之间存在巨大差异。稍后我们将在 “[事务处理还是分析?](#事务处理还是分析?)” 一节中探讨这一区别,并在 “[列存储](#列存储)”中讨论一系列针对分析优化存储引擎。
......@@ -273,7 +273,7 @@ B树的基本底层写操作是用新数据覆盖磁盘上的页面。假定覆
B树索引必须至少两次写入每一段数据:一次写入预先写入日志,一次写入树页面本身(也许再次分页)。即使在该页面中只有几个字节发生了变化,也需要一次编写整个页面的开销。有些存储引擎甚至会覆盖同一个页面两次,以免在电源故障的情况下导致页面部分更新【24,25】。
由于反复压缩和合并SSTables,日志结构索引也会重写数据。这种影响 —— 在数据库的生命周期中写入数据库导致对磁盘的多次写入 —— 被称为**写放大(write amplification)**。需要特别关注的是固态硬盘,固态硬盘在磨损之前只能覆写一段时间
由于反复压缩和合并SSTables,日志结构索引也会重写数据。这种影响 —— 在数据库的生命周期中写入数据库导致对磁盘的多次写入 —— 被称为**写放大(write amplification)**。需要特别注意的是固态硬盘,固态硬盘的闪存寿命在覆写有限次数后就会耗尽
在写入繁重的应用程序中,性能瓶颈可能是数据库可以写入磁盘的速度。在这种情况下,写放大会导致直接的性能代价:存储引擎写入磁盘的次数越多,可用磁盘带宽内的每秒写入次数越少。
......
......@@ -47,7 +47,7 @@
[^i]: 除一些特殊情况外,例如某些内存映射文件或直接在压缩数据上操作(如“[列压缩](ch4.md#列压缩)”中所述)。
所以,需要在两种表示之间进行某种类型的翻译。 从内存中表示到字节序列的转换称为**编码(Encoding)**(也称为**序列化(serialization)****编组(marshalling)**),反过来称为**解码(Decoding)**[^ii](**解析(Parsing)****反序列化(deserialization)****反编组() unmarshalling)**)[^译i]。
所以,需要在两种表示之间进行某种类型的翻译。 从内存中表示到字节序列的转换称为**编码(Encoding)**(也称为**序列化(serialization)****编组(marshalling)**),反过来称为**解码(Decoding)**[^ii](**解析(Parsing)****反序列化(deserialization)****反编组( unmarshalling)**)[^译i]。
[^ii]: 请注意,**编码(encode)**与**加密(encryption)**无关。 本书不讨论加密。
[^译i]: Marshal与Serialization的区别:Marshal不仅传输对象的状态,而且会一起传输对象的方法(相关代码)。
......@@ -350,7 +350,7 @@ Avro为静态类型编程语言提供了可选的代码生成功能,但是它
#### 在不同的时间写入不同的值
数据库通常允许任何时候更新任何值。这意味着在一个单一的数据库中,可能有一些价值是五毫秒前写的,而一些价值是五年前写的。
数据库通常允许任何时候更新任何值。这意味着在一个单一的数据库中,可能有一些值是五毫秒前写的,而一些值是五年前写的。
在部署应用程序的新版本(至少是服务器端应用程序)时,您可能会在几分钟内完全用新版本替换旧版本。数据库内容也是如此:五年前的数据仍然存在于原始编码中,除非您已经明确地重写了它。这种观察有时被总结为数据超出代码。
......@@ -638,4 +638,4 @@ Actor模型是单个进程中并发的编程模型。逻辑被封装在角色中
| 上一章 | 目录 | 下一章 |
| ---------------------------- | ------------------------------- | --------------------------------- |
| [第三章:存储与检索](ch3.md) | [设计数据密集型应用](README.md) | [第二部分:分布式数据](part-ii.md)
| [第三章:存储与检索](ch3.md) | [设计数据密集型应用](README.md) | [第二部分:分布式数据](part-ii.md) |
此差异已折叠。
......@@ -207,7 +207,7 @@ SELECT COUNT(*)FROM emails WHERE recipient_id = 2 AND unread_flag = true
- 如果事务实际上成功了,但是在服务器试图向客户端确认提交成功时网络发生故障(所以客户端认为提交失败了),那么重试事务会导致事务被执行两次——除非你有一个额外的应用级除重机制。
- 如果错误是由于负载过大造成的,则重试事务将使问题变得更糟,而不是更好。为了避免这种正反馈循环,可以限制重试次数,使用指数退避算法,并单独处理与过载相关的错误(如果允许)。
- 仅在临时性错误(例如,由于死锁,异常情况,临时性网络中断和故障转移)后才值得重试。在发生永久性错误(例如,违反约束)之后重试是毫无意义的。
- 仅在临时性错误(例如,由于死锁,异常情况,临时性网络中断和故障切换)后才值得重试。在发生永久性错误(例如,违反约束)之后重试是毫无意义的。
- 如果事务在数据库之外也有副作用,即使事务被中止,也可能发生这些副作用。例如,如果你正在发送电子邮件,那你肯定不希望每次重试事务时都重新发送电子邮件。如果你想确保几个不同的系统一起提交或放弃,**二阶段提交(2PC, two-phase commit)** 可以提供帮助(“[原子提交和两阶段提交(2PC)](ch9.md#原子提交与二阶段提交(2PC))”中将讨论这个问题)。
- 如果客户端进程在重试中失效,任何试图写入数据库的数据都将丢失。
......@@ -227,7 +227,7 @@ SELECT COUNT(*)FROM emails WHERE recipient_id = 2 AND unread_flag = true
实际上不幸的是:隔离并没有那么简单。**可序列化** 会有性能损失,许多数据库不愿意支付这个代价【8】。因此,系统通常使用较弱的隔离级别来防止一部分,而不是全部的并发问题。这些隔离级别难以理解,并且会导致微妙的错误,但是它们仍然在实践中被使用【23】。
并发性错误导致的并发性错误不仅仅是一个理论问题。它们造成了很多的资金损失【24,25】,耗费了财务审计人员的调查【26】,并导致客户数据被破坏【27】。关于这类问题的一个流行的评论是“如果你正在处理财务数据,请使用ACID数据库!” —— 但是这一点没有提到。即使是很多流行的关系型数据库系统(通常被认为是“ACID”)也使用弱隔离级别,所以它们也不一定能防止这些错误的发生。
弱事务隔离级别导致的并发性错误不仅仅是一个理论问题。它们造成了很多的资金损失【24,25】,耗费了财务审计人员的调查【26】,并导致客户数据被破坏【27】。关于这类问题的一个流行的评论是“如果你正在处理财务数据,请使用ACID数据库!” —— 但是这一点没有提到。即使是很多流行的关系型数据库系统(通常被认为是“ACID”)也使用弱隔离级别,所以它们也不一定能防止这些错误的发生。
比起盲目地依赖工具,我们应该对存在的并发问题的种类,以及如何防止这些问题有深入的理解。然后就可以使用我们所掌握的工具来构建可靠和正确的应用程序。
......
......@@ -16,7 +16,7 @@
[TOC]
​ 最近几章中反复出现的主题是,系统如何处理错误的事情。例如,我们讨论了**副本故障转移**(“[处理节点中断](#ch5.md#处理节点宕机)”),**复制延迟**(“[复制延迟问题](ch6.md#复制延迟问题)”)和事务控制(“[弱隔离级别](ch7.md#弱隔离级别)”)。当我们了解可能在实际系统中出现的各种边缘情况时,我们会更好地处理它们。
​ 最近几章中反复出现的主题是,系统如何处理错误的事情。例如,我们讨论了**副本故障切换**(“[处理节点中断](#ch5.md#处理节点宕机)”),**复制延迟**(“[复制延迟问题](ch6.md#复制延迟问题)”)和事务控制(“[弱隔离级别](ch7.md#弱隔离级别)”)。当我们了解可能在实际系统中出现的各种边缘情况时,我们会更好地处理它们。
​ 但是,尽管我们已经谈了很多错误,但之前几章仍然过于乐观。现实更加黑暗。我们现在将悲观主义最大化,假设任何可能出错的东西**都会**出错[^i]。(经验丰富的系统运维会告诉你,这是一个合理的假设。如果你问得好,他们可能会一边治疗心理创伤一边告诉你一些可怕的故事)
......@@ -467,7 +467,7 @@ while(true){
​ 第三种情况,想象一个经历了一个长时间**停止世界垃圾收集暂停(stop-the-world GC Pause)**的节点。节点的所有线程被GC抢占并暂停一分钟,因此没有请求被处理,也没有响应被发送。其他节点等待,重试,不耐烦,并最终宣布节点死亡,并将其丢到灵车上。最后,GC完成,节点的线程继续,好像什么也没有发生。其他节点感到惊讶,因为所谓的死亡节点突然从棺材中抬起头来,身体健康,开始和旁观者高兴地聊天。GC后的节点最初甚至没有意识到已经经过了整整一分钟,而且自己已被宣告死亡。从它自己的角度来看,从最后一次与其他节点交谈以来,几乎没有经过任何时间。
​ 这些故事的寓意是,节点不一定能相信自己对于情况的判断。分布式系统不能完全依赖单个节点,因为节点可能随时失效,可能会使系统卡死,无法恢复。相反,许多分布式算法都依赖于法定人数,即在节点之间进行投票(参阅“[读写法定人数](ch5.md#读写法定人数)):决策需要来自多个节点的最小投票数,以减少对于某个特定节点的依赖。
​ 这些故事的寓意是,节点不一定能相信自己对于情况的判断。分布式系统不能完全依赖单个节点,因为节点可能随时失效,可能会使系统卡死,无法恢复。相反,许多分布式算法都依赖于法定人数,即在节点之间进行投票(参阅“[读写的法定人数](ch5.md#读写的法定人数)):决策需要来自多个节点的最小投票数,以减少对于某个特定节点的依赖。
​ 这也包括关于宣告节点死亡的决定。如果法定数量的节点宣告另一个节点已经死亡,那么即使该节点仍感觉自己活着,它也必须被认为是死的。个体节点必须遵守法定决定并下台。
......
......@@ -17,7 +17,7 @@
​ 现在我们将继续沿着同样的路线前进,寻求可以让应用忽略分布式系统部分问题的抽象概念。例如,分布式系统最重要的抽象之一就是**共识(consensus)****就是让所有的节点对某件事达成一致**。正如我们在本章中将会看到的那样,尽管存在网络故障和流程故障,可靠地达成共识是一个令人惊讶的棘手问题。
​ 一旦达成共识,应用可以将其用于各种目的。例如,假设你有一个单主复制的数据库。如果主库挂点,并且需要故障转移到另一个节点,剩余的数据库节点可以使用共识来选举新的领导者。正如在“[处理节点宕机](ch5.md#处理节点宕机)”中所讨论的那样,重要的是只有一个领导者,且所有的节点都认同其领导。如果两个节点都认为自己是领导者,这种情况被称为**脑裂(split brain)**,且经常导致数据丢失。正确实现共识有助于避免这种问题。
​ 一旦达成共识,应用可以将其用于各种目的。例如,假设你有一个单主复制的数据库。如果主库挂点,并且需要故障切换到另一个节点,剩余的数据库节点可以使用共识来选举新的领导者。正如在“[处理节点宕机](ch5.md#处理节点宕机)”中所讨论的那样,重要的是只有一个领导者,且所有的节点都认同其领导。如果两个节点都认为自己是领导者,这种情况被称为**脑裂(split brain)**,且经常导致数据丢失。正确实现共识有助于避免这种问题。
​ 在本章后面的“[分布式事务和共识](#分布式事务和共识)”中,我们将研究解决共识和相关问题的算法。但首先,我们首先需要探索可以在分布式系统中提供的保证和抽象的范围。
......@@ -210,7 +210,7 @@
[^iv]: 对单领域数据库进行分区(分片),以便每个分区有一个单独的领导者,不会影响线性一致性,因为线性一致性只是对单一对象的保证。 交叉分区事务是一个不同的问题(参阅“[分布式事务和共识](#分布式事务和共识)”)。
​ 从主库读取依赖一个假设,你确定领导是谁。正如在“[真理在多数人手中](ch8.md#真理被多数人定义)”中所讨论的那样,一个节点很可能会认为它是领导者,而事实上并非如此——如果具有错觉的领导者继续为请求提供服务,可能违反线性一致性【20】。使用异步复制,故障转移时甚至可能会丢失已提交的写入(参阅“[处理节点宕机](ch5.md#处理节点宕机)”),这同时违反了持久性和线性一致性。
​ 从主库读取依赖一个假设,你确定领导是谁。正如在“[真理在多数人手中](ch8.md#真理被多数人定义)”中所讨论的那样,一个节点很可能会认为它是领导者,而事实上并非如此——如果具有错觉的领导者继续为请求提供服务,可能违反线性一致性【20】。使用异步复制,故障切换时甚至可能会丢失已提交的写入(参阅“[处理节点宕机](ch5.md#处理节点宕机)”),这同时违反了持久性和线性一致性。
***共识算法(线性一致)***
......@@ -240,7 +240,7 @@
​ 仲裁条件满足( $w + r> n$ ),但是这个执行是非线性一致的:B的请求在A的请求完成后开始,但是B返回旧值,而A返回新值。 (又一次,如同Alice和Bob的例子 [图9-1]())
​ 有趣的是,通过牺牲性能,可以使Dynamo风格的法定人数线性化:读取者必须在将结果返回给应用之前,同步执行读取修复(参阅“[读时修复与反熵过程](ch5.md#读时修复与反熵过程)”) ,并且写入者必须在发送写入之前,读取法定数量节点的最新状态【24,25】。然而,由于性能损失,Riak不执行同步读取修复【26】。 Cassandra在进行法定人数读取时,**确实**在等待读取修复完成【27】;但是由于使用了最后写入为准的冲突解决方案,当同一个键有多个并发写入时,将不能保证线性一致性。
​ 有趣的是,通过牺牲性能,可以使Dynamo风格的法定人数线性化:读取者必须在将结果返回给应用之前,同步执行读修复(参阅“[读时修复与反熵过程](ch5.md#读时修复与反熵过程)”) ,并且写入者必须在发送写入之前,读取法定数量节点的最新状态【24,25】。然而,由于性能损失,Riak不执行同步读修复【26】。 Cassandra在进行法定人数读取时,**确实**在等待读修复完成【27】;但是由于使用了最后写入为准的冲突解决方案,当同一个键有多个并发写入时,将不能保证线性一致性。
​ 而且,这种方式只能实现线性一致的读写;不能实现线性一致的比较和设置操作,因为它需要一个共识算法【28】。
......@@ -468,7 +468,7 @@
​ 如果你的程序只运行在单个CPU核上,那么定义一个操作全序是很容易的:可以简单地就是CPU执行这些操作的顺序。但是在分布式系统中,让所有节点对同一个全局操作顺序达成一致可能相当棘手。在上一节中,我们讨论了按时间戳或序列号进行排序,但发现它还不如单主复制给力(如果你使用时间戳排序来实现唯一性约束,而且不能容忍任何错误)。
​ 如前所述,单主复制通过选择一个节点作为主库来确定操作的全序,并在主库的单个CPU核上对所有操作进行排序。接下来的挑战是,如果吞吐量超出单个主库的处理能力,这种情况下如何扩展系统;以及,如果主库失效(“[处理节点宕机](#处理节点宕机)”),如何处理故障转移。在分布式系统文献中,这个问题被称为**全序广播(total order broadcast)****原子广播(atomic broadcast)**[^ix]【25,57,58】。
​ 如前所述,单主复制通过选择一个节点作为主库来确定操作的全序,并在主库的单个CPU核上对所有操作进行排序。接下来的挑战是,如果吞吐量超出单个主库的处理能力,这种情况下如何扩展系统;以及,如果主库失效(“[处理节点宕机](#处理节点宕机)”),如何处理故障切换。在分布式系统文献中,这个问题被称为**全序广播(total order broadcast)****原子广播(atomic broadcast)**[^ix]【25,57,58】。
[^ix]: “原子广播”是一个传统的术语,非常混乱,而且与“原子”一词的其他用法不一致:它与ACID事务中的原子性没有任何关系,只是与原子操作(在多线程编程的意义上 )或原子寄存器(线性一致存储)有间接的联系。全序广播是另一个同义词。
......@@ -809,7 +809,7 @@
​ 答案取决于如何选择领导者。如果主库是由运维人员手动选择和配置的,那么你实际上拥有一种**独裁类型**的“共识算法”:只有一个节点被允许接受写入(即决定写入复制日志的顺序),如果该节点发生故障,则系统将无法写入,直到运维手动配置其他节点作为主库。这样的系统在实践中可以表现良好,但它无法满足共识的**终止**属性,因为它需要人为干预才能取得**进展**
​ 一些数据库会自动执行领导者选举和故障转移,如果旧主库失效,会提拔一个从库为新主库(参见“[处理节点宕机](ch5.md#处理节点宕机)”)。这使我们向容错的全序广播更进一步,从而达成共识。
​ 一些数据库会自动执行领导者选举和故障切换,如果旧主库失效,会提拔一个从库为新主库(参见“[处理节点宕机](ch5.md#处理节点宕机)”)。这使我们向容错的全序广播更进一步,从而达成共识。
​ 但是还有一个问题。我们之前曾经讨论过脑裂的问题,并且说过所有的节点都需要同意是谁领导,否则两个不同的节点都会认为自己是领导者,从而导致数据库进入不一致的状态。因此,选出一位领导者需要共识。但如果这里描述的共识算法实际上是全序广播算法,并且全序广播就像单主复制,而单主复制需要一个领导者,那么...
......
......@@ -118,9 +118,9 @@
### 故障转移(failover)
### 故障切换(failover)
在具有单一领导者的系统中,故障转移是将领导角色从一个节点转移到另一个节点的过程。请参阅第156页的“处理节点故障”。
在具有单一领导者的系统中,故障切换是将领导角色从一个节点转移到另一个节点的过程。请参阅第156页的“处理节点故障”。
......
# 第一部分 数据系统基础
# 第一部分 数据系统的基石
本书前四章介绍了数据系统底层的基础概念,无论是在单台机器上运行的单点数据系统,还是分布在多台机器上的分布式数据系统都适用。
......@@ -26,4 +26,4 @@
| 上一章 | 目录 | 下一章 |
| ------------------ | ------------------------------- | -------------------------------------------- |
| [序言](preface.md) | [设计数据密集型应用](README.md) | [第一章:可靠性、可扩展性、可维护性](ch1.md) |
\ No newline at end of file
| [序言](preface.md) | [设计数据密集型应用](README.md) | [第一章:可靠性、可扩展性、可维护性](ch1.md) |
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册