classification.py 335.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Module: Classification
# Author: Moez Ali <moez.ali@queensu.ca>
# License: MIT


def setup(data,  
          target,   
          train_size = 0.7, 
          sampling = True, 
          sample_estimator = None,
          categorical_features = None,
          categorical_imputation = 'constant',
          ordinal_features = None,
M
Moez Ali 已提交
14 15
          high_cardinality_features = None,
          high_cardinality_method = 'frequency',
16 17 18 19 20 21 22 23
          numeric_features = None,
          numeric_imputation = 'mean',
          date_features = None,
          ignore_features = None,
          normalize = False,
          normalize_method = 'zscore',
          transformation = False,
          transformation_method = 'yeo-johnson',
M
Moez Ali 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
          handle_unknown_categorical = True,
          unknown_categorical_method = 'least_frequent',
          pca = False,
          pca_method = 'linear',
          pca_components = None,
          ignore_low_variance = False,
          combine_rare_levels = False,
          rare_level_threshold = 0.10,
          bin_numeric_features = None,
          remove_outliers = False,
          outliers_threshold = 0.05,
          remove_multicollinearity = False,
          multicollinearity_threshold = 0.9,
          create_clusters = False,
          cluster_iter = 20,
          polynomial_features = False,                 
          polynomial_degree = 2,                       
          trigonometry_features = False,               
          polynomial_threshold = 0.1,                 
          group_features = None,                        
          group_names = None,                         
          feature_selection = False,                     
          feature_selection_threshold = 0.8,             
          feature_interaction = False,                   
          feature_ratio = False,                         
          interaction_threshold = 0.01,
          data_split_shuffle = True, #added in pycaret==1.0.1
          folds_shuffle = False, #added in pycaret==1.0.1
          n_jobs = -1, #added in pycaret==1.0.1
          html = True, #added in pycaret==1.0.1
54
          session_id = None,
55 56 57
          experiment_name = None, #added in pycaret==1.0.1
          logging = True, #added in pycaret==1.0.1
          log_profile = False, #added in pycaret==1.0.1
58
          silent=False,
M
Moez Ali 已提交
59
          verbose=True, #added in pycaret==1.0.1
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
          profile = False):
    
    """
        
    Description:
    ------------    
    This function initializes the environment in pycaret and creates the transformation
    pipeline to prepare the data for modeling and deployment. setup() must called before
    executing any other function in pycaret. It takes two mandatory parameters:
    dataframe {array-like, sparse matrix} and name of the target column. 
    
    All other parameters are optional.

        Example
        -------
        from pycaret.datasets import get_data
        juice = get_data('juice')
        
        experiment_name = setup(data = juice,  target = 'Purchase')

        'juice' is a pandas DataFrame and 'Purchase' is the name of target column.
        
    Parameters
    ----------
    data : {array-like, sparse matrix}, shape (n_samples, n_features) where n_samples 
    is the number of samples and n_features is the number of features.

    target: string
    Name of the target column to be passed in as a string. The target variable could 
    be binary or multiclass. In case of a multiclass target, all estimators are wrapped
    with a OneVsRest classifier.

    train_size: float, default = 0.7
    Size of the training set. By default, 70% of the data will be used for training 
    and validation. The remaining data will be used for a test / hold-out set.

    sampling: bool, default = True
    When the sample size exceeds 25,000 samples, pycaret will build a base estimator
    at various sample sizes from the original dataset. This will return a performance 
    plot of AUC, Accuracy, Recall, Precision, Kappa and F1 values at various sample 
    levels, that will assist in deciding the preferred sample size for modeling. 
    The desired sample size must then be entered for training and validation in the 
    pycaret environment. When sample_size entered is less than 1, the remaining dataset 
    (1 - sample) is used for fitting the model only when finalize_model() is called.
    
    sample_estimator: object, default = None
    If None, Logistic Regression is used by default.
    
    categorical_features: string, default = None
    If the inferred data types are not correct, categorical_features can be used to
    overwrite the inferred type. If when running setup the type of 'column1' is
    inferred as numeric instead of categorical, then this parameter can be used 
    to overwrite the type by passing categorical_features = ['column1'].
    
    categorical_imputation: string, default = 'constant'
    If missing values are found in categorical features, they will be imputed with
    a constant 'not_available' value. The other available option is 'mode' which 
    imputes the missing value using most frequent value in the training dataset. 
    
    ordinal_features: dictionary, default = None
    When the data contains ordinal features, they must be encoded differently using 
    the ordinal_features param. If the data has a categorical variable with values
    of 'low', 'medium', 'high' and it is known that low < medium < high, then it can 
    be passed as ordinal_features = { 'column_name' : ['low', 'medium', 'high'] }. 
    The list sequence must be in increasing order from lowest to highest.
    
    high_cardinality_features: string, default = None
    When the data containts features with high cardinality, they can be compressed
    into fewer levels by passing them as a list of column names with high cardinality.
    Features are compressed using method defined in high_cardinality_method param.
    
    high_cardinality_method: string, default = 'frequency'
    When method set to 'frequency' it will replace the original value of feature
    with the frequency distribution and convert the feature into numeric. Other
    available method is 'clustering' which performs the clustering on statistical
    attribute of data and replaces the original value of feature with cluster label.
    The number of clusters is determined using a combination of Calinski-Harabasz and 
    Silhouette criterion. 
          
    numeric_features: string, default = None
    If the inferred data types are not correct, numeric_features can be used to
    overwrite the inferred type. If when running setup the type of 'column1' is 
    inferred as a categorical instead of numeric, then this parameter can be used 
    to overwrite by passing numeric_features = ['column1'].    

    numeric_imputation: string, default = 'mean'
    If missing values are found in numeric features, they will be imputed with the 
    mean value of the feature. The other available option is 'median' which imputes 
    the value using the median value in the training dataset. 
    
    date_features: string, default = None
    If the data has a DateTime column that is not automatically detected when running
    setup, this parameter can be used by passing date_features = 'date_column_name'. 
    It can work with multiple date columns. Date columns are not used in modeling. 
    Instead, feature extraction is performed and date columns are dropped from the 
    dataset. If the date column includes a time stamp, features related to time will 
    also be extracted.
    
    ignore_features: string, default = None
    If any feature should be ignored for modeling, it can be passed to the param
    ignore_features. The ID and DateTime columns when inferred, are automatically 
    set to ignore for modeling. 
    
    normalize: bool, default = False
    When set to True, the feature space is transformed using the normalized_method
    param. Generally, linear algorithms perform better with normalized data however, 
    the results may vary and it is advised to run multiple experiments to evaluate
    the benefit of normalization.
    
    normalize_method: string, default = 'zscore'
    Defines the method to be used for normalization. By default, normalize method
    is set to 'zscore'. The standard zscore is calculated as z = (x - u) / s. The
    other available options are:
    
    'minmax'    : scales and translates each feature individually such that it is in 
                  the range of 0 - 1.
    
    'maxabs'    : scales and translates each feature individually such that the maximal 
                  absolute value of each feature will be 1.0. It does not shift/center 
                  the data, and thus does not destroy any sparsity.
    
    'robust'    : scales and translates each feature according to the Interquartile range.
                  When the dataset contains outliers, robust scaler often gives better
                  results.
    
    transformation: bool, default = False
    When set to True, a power transformation is applied to make the data more normal /
    Gaussian-like. This is useful for modeling issues related to heteroscedasticity or 
    other situations where normality is desired. The optimal parameter for stabilizing 
    variance and minimizing skewness is estimated through maximum likelihood.
    
    transformation_method: string, default = 'yeo-johnson'
    Defines the method for transformation. By default, the transformation method is set
    to 'yeo-johnson'. The other available option is 'quantile' transformation. Both 
    the transformation transforms the feature set to follow a Gaussian-like or normal
    distribution. Note that the quantile transformer is non-linear and may distort linear 
    correlations between variables measured at the same scale.
    
    handle_unknown_categorical: bool, default = True
    When set to True, unknown categorical levels in new / unseen data are replaced by
    the most or least frequent level as learned in the training data. The method is 
    defined under the unknown_categorical_method param.
    
    unknown_categorical_method: string, default = 'least_frequent'
    Method used to replace unknown categorical levels in unseen data. Method can be
    set to 'least_frequent' or 'most_frequent'.
    
    pca: bool, default = False
    When set to True, dimensionality reduction is applied to project the data into 
    a lower dimensional space using the method defined in pca_method param. In 
    supervised learning pca is generally performed when dealing with high feature
    space and memory is a constraint. Note that not all datasets can be decomposed
    efficiently using a linear PCA technique and that applying PCA may result in loss 
    of information. As such, it is advised to run multiple experiments with different 
    pca_methods to evaluate the impact. 

    pca_method: string, default = 'linear'
    The 'linear' method performs Linear dimensionality reduction using Singular Value 
    Decomposition. The other available options are:
    
    kernel      : dimensionality reduction through the use of RVF kernel.  
    
    incremental : replacement for 'linear' pca when the dataset to be decomposed is 
                  too large to fit in memory
    
    pca_components: int/float, default = 0.99
    Number of components to keep. if pca_components is a float, it is treated as a 
    target percentage for information retention. When pca_components is an integer
    it is treated as the number of features to be kept. pca_components must be strictly
    less than the original number of features in the dataset.
    
    ignore_low_variance: bool, default = False
    When set to True, all categorical features with statistically insignificant variances 
    are removed from the dataset. The variance is calculated using the ratio of unique 
    values to the number of samples, and the ratio of the most common value to the 
    frequency of the second most common value.
    
    combine_rare_levels: bool, default = False
    When set to True, all levels in categorical features below the threshold defined 
    in rare_level_threshold param are combined together as a single level. There must be 
    atleast two levels under the threshold for this to take effect. rare_level_threshold
    represents the percentile distribution of level frequency. Generally, this technique 
    is applied to limit a sparse matrix caused by high numbers of levels in categorical 
    features. 
    
    rare_level_threshold: float, default = 0.1
    Percentile distribution below which rare categories are combined. Only comes into
    effect when combine_rare_levels is set to True.
    
    bin_numeric_features: list, default = None
    When a list of numeric features is passed they are transformed into categorical
    features using KMeans, where values in each bin have the same nearest center of a 
    1D k-means cluster. The number of clusters are determined based on the 'sturges' 
    method. It is only optimal for gaussian data and underestimates the number of bins 
    for large non-gaussian datasets.
    
    remove_outliers: bool, default = False
    When set to True, outliers from the training data are removed using PCA linear
    dimensionality reduction using the Singular Value Decomposition technique.
    
    outliers_threshold: float, default = 0.05
    The percentage / proportion of outliers in the dataset can be defined using
    the outliers_threshold param. By default, 0.05 is used which means 0.025 of the 
    values on each side of the distribution's tail are dropped from training data.
    
    remove_multicollinearity: bool, default = False
    When set to True, the variables with inter-correlations higher than the threshold
    defined under the multicollinearity_threshold param are dropped. When two features
    are highly correlated with each other, the feature that is less correlated with 
    the target variable is dropped. 
    
    multicollinearity_threshold: float, default = 0.9
    Threshold used for dropping the correlated features. Only comes into effect when 
    remove_multicollinearity is set to True.
    
    create_clusters: bool, default = False
    When set to True, an additional feature is created where each instance is assigned
    to a cluster. The number of clusters is determined using a combination of 
    Calinski-Harabasz and Silhouette criterion. 
    
    cluster_iter: int, default = 20
    Number of iterations used to create a cluster. Each iteration represents cluster 
    size. Only comes into effect when create_clusters param is set to True.
    
    polynomial_features: bool, default = False
    When set to True, new features are created based on all polynomial combinations 
    that exist within the numeric features in a dataset to the degree defined in 
    polynomial_degree param. 
    
    polynomial_degree: int, default = 2
    Degree of polynomial features. For example, if an input sample is two dimensional 
    and of the form [a, b], the polynomial features with degree = 2 are: 
    [1, a, b, a^2, ab, b^2].
    
    trigonometry_features: bool, default = False
    When set to True, new features are created based on all trigonometric combinations 
    that exist within the numeric features in a dataset to the degree defined in the
    polynomial_degree param.
    
    polynomial_threshold: float, default = 0.1
    This is used to compress a sparse matrix of polynomial and trigonometric features.
    Polynomial and trigonometric features whose feature importance based on the 
    combination of Random Forest, AdaBoost and Linear correlation falls within the 
    percentile of the defined threshold are kept in the dataset. Remaining features 
    are dropped before further processing.
    
    group_features: list or list of list, default = None
    When a dataset contains features that have related characteristics, the group_features
    param can be used for statistical feature extraction. For example, if a dataset has 
    numeric features that are related with each other (i.e 'Col1', 'Col2', 'Col3'), a list 
    containing the column names can be passed under group_features to extract statistical 
    information such as the mean, median, mode and standard deviation.
    
    group_names: list, default = None
    When group_features is passed, a name of the group can be passed into the group_names 
    param as a list containing strings. The length of a group_names list must equal to the 
    length  of group_features. When the length doesn't match or the name is not passed, new 
    features are sequentially named such as group_1, group_2 etc.
    
    feature_selection: bool, default = False
    When set to True, a subset of features are selected using a combination of various
    permutation importance techniques including Random Forest, Adaboost and Linear 
    correlation with target variable. The size of the subset is dependent on the 
    feature_selection_param. Generally, this is used to constrain the feature space 
    in order to improve efficiency in modeling. When polynomial_features and 
    feature_interaction  are used, it is highly recommended to define the 
    feature_selection_threshold param with a lower value.

    feature_selection_threshold: float, default = 0.8
    Threshold used for feature selection (including newly created polynomial features).
    A higher value will result in a higher feature space. It is recommended to do multiple
    trials with different values of feature_selection_threshold specially in cases where 
    polynomial_features and feature_interaction are used. Setting a very low value may be 
    efficient but could result in under-fitting.
    
    feature_interaction: bool, default = False 
    When set to True, it will create new features by interacting (a * b) for all numeric 
    variables in the dataset including polynomial and trigonometric features (if created). 
    This feature is not scalable and may not work as expected on datasets with large 
    feature space.
    
    feature_ratio: bool, default = False
    When set to True, it will create new features by calculating the ratios (a / b) of all 
    numeric variables in the dataset. This feature is not scalable and may not work as 
    expected on datasets with large feature space.
    
    interaction_threshold: bool, default = 0.01
    Similar to polynomial_threshold, It is used to compress a sparse matrix of newly 
    created features through interaction. Features whose importance based on the 
    combination  of  Random Forest, AdaBoost and Linear correlation falls within the 
    percentile of the  defined threshold are kept in the dataset. Remaining features 
    are dropped before further processing.
    
M
Moez Ali 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
    data_split_shuffle: bool, default = True
    If set to False, prevents shuffling of rows when splitting data

    folds_shuffle: bool, default = True
    If set to False, prevents shuffling of rows when using cross validation

    n_jobs: int, default = -1
    The number of jobs to run in parallel (for functions that supports parallel 
    processing) -1 means using all processors. To run all functions on single processor 
    set n_jobs to None.

    html: bool, default = True
    If set to False, prevents runtime display of monitor. This must be set to False
    when using environment that doesnt support HTML.

368 369 370 371 372
    session_id: int, default = None
    If None, a random seed is generated and returned in the Information grid. The 
    unique number is then distributed as a seed in all functions used during the 
    experiment. This can be used for later reproducibility of the entire experiment.
    
373 374 375 376 377 378 379 380 381 382 383
    experiment_name: str, default = None
    Name of experiment for logging. When set to None, 'clf' is by default used as 
    alias for the experiment name.

    logging: bool, default = True
    When set to True, all metrics and parameters are logged on MLFlow server.

    log_profile: bool, default = False
    When set to True, data profile is also logged on MLflow as a html file. By default,
    its set to False. 

384 385 386 387 388
    silent: bool, default = False
    When set to True, confirmation of data types is not required. All preprocessing will 
    be performed assuming automatically inferred data types. Not recommended for direct use 
    except for established pipelines.
    
M
Moez Ali 已提交
389 390 391
    verbose: Boolean, default = True
    Information grid is not printed when verbose is set to False.

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
    profile: bool, default = False
    If set to true, a data profile for Exploratory Data Analysis will be displayed 
    in an interactive HTML report. 
    
    Returns:
    --------

    info grid:    Information grid is printed.
    -----------      

    environment:  This function returns various outputs that are stored in variables
    -----------   as tuples. They are used by other functions in pycaret.

    Warnings:
    ---------
    None
      
       
    """
    
    #testing
    #no active test
    
    #exception checking   
    import sys
    
    #checking train size parameter
    if type(train_size) is not float:
        sys.exit('(Type Error): train_size parameter only accepts float value.')
    
    #checking sampling parameter
    if type(sampling) is not bool:
        sys.exit('(Type Error): sampling parameter only accepts True or False.')
        
    #checking sampling parameter
    if target not in data.columns:
        sys.exit('(Value Error): Target parameter doesnt exist in the data provided.')   

    #checking session_id
    if session_id is not None:
        if type(session_id) is not int:
            sys.exit('(Type Error): session_id parameter must be an integer.')   
    
    #checking sampling parameter
    if type(profile) is not bool:
        sys.exit('(Type Error): profile parameter only accepts True or False.')
        
    #checking normalize parameter
    if type(normalize) is not bool:
        sys.exit('(Type Error): normalize parameter only accepts True or False.')
        
    #checking transformation parameter
    if type(transformation) is not bool:
        sys.exit('(Type Error): transformation parameter only accepts True or False.')
        
    #checking categorical imputation
    allowed_categorical_imputation = ['constant', 'mode']
    if categorical_imputation not in allowed_categorical_imputation:
        sys.exit("(Value Error): categorical_imputation param only accepts 'constant' or 'mode' ")
     
    #ordinal_features
    if ordinal_features is not None:
        if type(ordinal_features) is not dict:
            sys.exit("(Type Error): ordinal_features must be of type dictionary with column name as key and ordered values as list. ")
    
    #ordinal features check
    if ordinal_features is not None:
        data_cols = data.columns
        data_cols = data_cols.drop(target)
        ord_keys = ordinal_features.keys()
                        
        for i in ord_keys:
            if i not in data_cols:
                sys.exit("(Value Error) Column name passed as a key in ordinal_features param doesnt exist. ")
                
        for k in ord_keys:
            if data[k].nunique() != len(ordinal_features.get(k)):
                sys.exit("(Value Error) Levels passed in ordinal_features param doesnt match with levels in data. ")

        for i in ord_keys:
            value_in_keys = ordinal_features.get(i)
            value_in_data = list(data[i].unique().astype(str))
            for j in value_in_keys:
                if j not in value_in_data:
                    text =  "Column name '" + str(i) + "' doesnt contain any level named '" + str(j) + "'."
                    sys.exit(text)
    
    #high_cardinality_features
    if high_cardinality_features is not None:
        if type(high_cardinality_features) is not list:
            sys.exit("(Type Error): high_cardinality_features param only accepts name of columns as a list. ")
        
    if high_cardinality_features is not None:
        data_cols = data.columns
        data_cols = data_cols.drop(target)
        for i in high_cardinality_features:
            if i not in data_cols:
                sys.exit("(Value Error): Column type forced is either target column or doesn't exist in the dataset.")
                
    #high_cardinality_methods
    high_cardinality_allowed_methods = ['frequency', 'clustering']     
    if high_cardinality_method not in high_cardinality_allowed_methods:
        sys.exit("(Value Error): high_cardinality_method param only accepts 'frequency' or 'clustering' ")
        
    #checking numeric imputation
    allowed_numeric_imputation = ['mean', 'median']
    if numeric_imputation not in allowed_numeric_imputation:
        sys.exit("(Value Error): numeric_imputation param only accepts 'mean' or 'median' ")
        
    #checking normalize method
    allowed_normalize_method = ['zscore', 'minmax', 'maxabs', 'robust']
    if normalize_method not in allowed_normalize_method:
        sys.exit("(Value Error): normalize_method param only accepts 'zscore', 'minxmax', 'maxabs' or 'robust'. ")        
    
    #checking transformation method
    allowed_transformation_method = ['yeo-johnson', 'quantile']
    if transformation_method not in allowed_transformation_method:
        sys.exit("(Value Error): transformation_method param only accepts 'yeo-johnson' or 'quantile'. ")        
    
    #handle unknown categorical
    if type(handle_unknown_categorical) is not bool:
        sys.exit('(Type Error): handle_unknown_categorical parameter only accepts True or False.')
        
    #unknown categorical method
    unknown_categorical_method_available = ['least_frequent', 'most_frequent']
    
    if unknown_categorical_method not in unknown_categorical_method_available:
        sys.exit("(Type Error): unknown_categorical_method only accepts 'least_frequent' or 'most_frequent'.")
    
    #check pca
    if type(pca) is not bool:
        sys.exit('(Type Error): PCA parameter only accepts True or False.')
        
    #pca method check
    allowed_pca_methods = ['linear', 'kernel', 'incremental']
    if pca_method not in allowed_pca_methods:
        sys.exit("(Value Error): pca method param only accepts 'linear', 'kernel', or 'incremental'. ")    
    
    #pca components check
    if pca is True:
M
Moez Ali 已提交
532
        if pca_method != 'linear':
533 534 535 536 537 538
            if pca_components is not None:
                if(type(pca_components)) is not int:
                    sys.exit("(Type Error): pca_components parameter must be integer when pca_method is not 'linear'. ")

    #pca components check 2
    if pca is True:
M
Moez Ali 已提交
539
        if pca_method != 'linear':
540 541 542 543 544 545
            if pca_components is not None:
                if pca_components > len(data.columns)-1:
                    sys.exit("(Type Error): pca_components parameter cannot be greater than original features space.")                
 
    #pca components check 3
    if pca is True:
M
Moez Ali 已提交
546
        if pca_method == 'linear':
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
            if pca_components is not None:
                if type(pca_components) is not float:
                    if pca_components > len(data.columns)-1: 
                        sys.exit("(Type Error): pca_components parameter cannot be greater than original features space or float between 0 - 1.")      

    #check ignore_low_variance
    if type(ignore_low_variance) is not bool:
        sys.exit('(Type Error): ignore_low_variance parameter only accepts True or False.')
        
    #check ignore_low_variance
    if type(combine_rare_levels) is not bool:
        sys.exit('(Type Error): combine_rare_levels parameter only accepts True or False.')
        
    #check rare_level_threshold
    if type(rare_level_threshold) is not float:
        sys.exit('(Type Error): rare_level_threshold must be a float between 0 and 1. ')
    
    #bin numeric features
    if bin_numeric_features is not None:
        all_cols = list(data.columns)
        all_cols.remove(target)
        
        for i in bin_numeric_features:
            if i not in all_cols:
                sys.exit("(Value Error): Column type forced is either target column or doesn't exist in the dataset.")

    #remove_outliers
    if type(remove_outliers) is not bool:
        sys.exit('(Type Error): remove_outliers parameter only accepts True or False.')    
    
    #outliers_threshold
    if type(outliers_threshold) is not float:
        sys.exit('(Type Error): outliers_threshold must be a float between 0 and 1. ')   
        
    #remove_multicollinearity
    if type(remove_multicollinearity) is not bool:
        sys.exit('(Type Error): remove_multicollinearity parameter only accepts True or False.')
        
    #multicollinearity_threshold
    if type(multicollinearity_threshold) is not float:
        sys.exit('(Type Error): multicollinearity_threshold must be a float between 0 and 1. ')  
    
    #create_clusters
    if type(create_clusters) is not bool:
        sys.exit('(Type Error): create_clusters parameter only accepts True or False.')
        
    #cluster_iter
    if type(cluster_iter) is not int:
        sys.exit('(Type Error): cluster_iter must be a integer greater than 1. ')                 

    #polynomial_features
    if type(polynomial_features) is not bool:
        sys.exit('(Type Error): polynomial_features only accepts True or False. ')   
    
    #polynomial_degree
    if type(polynomial_degree) is not int:
        sys.exit('(Type Error): polynomial_degree must be an integer. ')
        
    #polynomial_features
    if type(trigonometry_features) is not bool:
        sys.exit('(Type Error): trigonometry_features only accepts True or False. ')    
        
    #polynomial threshold
    if type(polynomial_threshold) is not float:
        sys.exit('(Type Error): polynomial_threshold must be a float between 0 and 1. ')      
        
    #group features
    if group_features is not None:
        if type(group_features) is not list:
            sys.exit('(Type Error): group_features must be of type list. ')     
    
    if group_names is not None:
        if type(group_names) is not list:
            sys.exit('(Type Error): group_names must be of type list. ')         
    
    #cannot drop target
    if ignore_features is not None:
        if target in ignore_features:
            sys.exit("(Value Error): cannot drop target column. ")  
                
    #feature_selection
    if type(feature_selection) is not bool:
        sys.exit('(Type Error): feature_selection only accepts True or False. ')   
        
    #feature_selection_threshold
    if type(feature_selection_threshold) is not float:
        sys.exit('(Type Error): feature_selection_threshold must be a float between 0 and 1. ')  
        
    #feature_interaction
    if type(feature_interaction) is not bool:
        sys.exit('(Type Error): feature_interaction only accepts True or False. ')  
        
    #feature_ratio
    if type(feature_ratio) is not bool:
        sys.exit('(Type Error): feature_ratio only accepts True or False. ')     
        
    #interaction_threshold
    if type(interaction_threshold) is not float:
        sys.exit('(Type Error): interaction_threshold must be a float between 0 and 1. ')  
        
        
    #forced type check
    all_cols = list(data.columns)
    all_cols.remove(target)
    
    #categorical
    if categorical_features is not None:
        for i in categorical_features:
            if i not in all_cols:
                sys.exit("(Value Error): Column type forced is either target column or doesn't exist in the dataset.")
        
    #numeric
    if numeric_features is not None:
        for i in numeric_features:
            if i not in all_cols:
                sys.exit("(Value Error): Column type forced is either target column or doesn't exist in the dataset.")    
    
    #date features
    if date_features is not None:
        for i in date_features:
            if i not in all_cols:
                sys.exit("(Value Error): Column type forced is either target column or doesn't exist in the dataset.")      
    
    #drop features
    if ignore_features is not None:
        for i in ignore_features:
            if i not in all_cols:
                sys.exit("(Value Error): Feature ignored is either target column or doesn't exist in the dataset.") 
    
676 677 678 679 680 681 682 683 684 685 686 687 688
    #logging
    if type(logging) is not bool:
        sys.exit("(Type Error): logging parameter only accepts True or False. ")

    #log_profile
    if type(log_profile) is not bool:
        sys.exit("(Type Error): log_profile parameter only accepts True or False. ")

    #experiment_name
    if experiment_name is not None:
        if type(experiment_name) is not str:
            sys.exit("(Type Error): experiment_name parameter must be string if not None. ")
      
689 690 691 692 693 694 695 696 697 698
    #silent
    if type(silent) is not bool:
        sys.exit("(Type Error): silent parameter only accepts True or False. ")
    
    #pre-load libraries
    import pandas as pd
    import ipywidgets as ipw
    from IPython.display import display, HTML, clear_output, update_display
    import datetime, time
    
699 700 701 702 703
    #import mlflow and logging utils
    import mlflow
    import mlflow.sklearn
    import secrets
    
704 705 706 707
    #pandas option
    pd.set_option('display.max_columns', 500)
    pd.set_option('display.max_rows', 500)
   
M
Moez Ali 已提交
708 709 710 711 712 713
    #global html_param
    global html_param
    
    #create html_param
    html_param = html

714 715 716 717
    #silent parameter to also set sampling to False
    if silent:
        sampling = False

718 719 720 721 722 723 724
    #progress bar
    if sampling:
        max_steps = 10 + 3
    else:
        max_steps = 3
        
    progress = ipw.IntProgress(value=0, min=0, max=max_steps, step=1 , description='Processing: ')
M
Moez Ali 已提交
725 726 727
    if verbose:
        if html_param:
            display(progress)
728 729 730 731 732 733 734
    
    timestampStr = datetime.datetime.now().strftime("%H:%M:%S")
    monitor = pd.DataFrame( [ ['Initiated' , '. . . . . . . . . . . . . . . . . .', timestampStr ], 
                             ['Status' , '. . . . . . . . . . . . . . . . . .' , 'Loading Dependencies' ],
                             ['ETC' , '. . . . . . . . . . . . . . . . . .',  'Calculating ETC'] ],
                              columns=['', ' ', '   ']).set_index('')
    
M
Moez Ali 已提交
735 736 737
    if verbose:
        if html_param:
            display(monitor, display_id = 'monitor')
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
    
    #general dependencies
    import numpy as np
    from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import train_test_split
    from sklearn import metrics
    import random
    import seaborn as sns
    import matplotlib.pyplot as plt
    import plotly.express as px
    
    #define highlight function for function grid to display
    def highlight_max(s):
        is_max = s == True
        return ['background-color: lightgreen' if v else '' for v in is_max]
        
    #cufflinks
    import cufflinks as cf
    cf.go_offline()
    cf.set_config_file(offline=False, world_readable=True)

    #ignore warnings
    import warnings
    warnings.filterwarnings('ignore') 
    
    #copy original data for pandas profiler
    data_before_preprocess = data.copy()
    
    #declaring global variables to be accessed by other functions
M
Moez Ali 已提交
767
    global X, y, X_train, X_test, y_train, y_test, seed, prep_pipe, experiment__,\
768
         folds_shuffle_param, n_jobs_param, create_model_container, master_model_container, display_container, exp_name_log, logging_param
769 770 771 772 773 774 775 776 777 778 779 780
    
    #generate seed to be used globally
    if session_id is None:
        seed = random.randint(150,9000)
    else:
        seed = session_id
        
    """
    preprocessing starts here
    """
    
    monitor.iloc[1,1:] = 'Preparing Data for Modeling'
M
Moez Ali 已提交
781 782 783
    if verbose:
        if html_param:
            update_display(monitor, display_id = 'monitor')
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
            
    #define parameters for preprocessor
    
    #categorical features
    if categorical_features is None:
        cat_features_pass = []
    else:
        cat_features_pass = categorical_features
    
    #numeric features
    if numeric_features is None:
        numeric_features_pass = []
    else:
        numeric_features_pass = numeric_features
     
    #drop features
    if ignore_features is None:
        ignore_features_pass = []
    else:
        ignore_features_pass = ignore_features
     
    #date features
    if date_features is None:
        date_features_pass = []
    else:
        date_features_pass = date_features
        
    #categorical imputation strategy
    if categorical_imputation == 'constant':
        categorical_imputation_pass = 'not_available'
    elif categorical_imputation == 'mode':
        categorical_imputation_pass = 'most frequent'
    
    #transformation method strategy
    if transformation_method == 'yeo-johnson':
        trans_method_pass = 'yj'
    elif transformation_method == 'quantile':
        trans_method_pass = 'quantile'
    
    #pass method
    if pca_method == 'linear':
        pca_method_pass = 'pca_liner'
            
    elif pca_method == 'kernel':
        pca_method_pass = 'pca_kernal'
            
    elif pca_method == 'incremental':
        pca_method_pass = 'incremental'
            
    elif pca_method == 'pls':
        pca_method_pass = 'pls'
        
    #pca components
    if pca is True:
        if pca_components is None:
            if pca_method == 'linear':
                pca_components_pass = 0.99
            else:
                pca_components_pass = int((len(data.columns)-1)*0.5)
                
        else:
            pca_components_pass = pca_components
            
    else:
        pca_components_pass = 0.99
    
    if bin_numeric_features is None:
        apply_binning_pass = False
        features_to_bin_pass = []
    
    else:
        apply_binning_pass = True
        features_to_bin_pass = bin_numeric_features
    
    #trignometry
    if trigonometry_features is False:
        trigonometry_features_pass = []
    else:
        trigonometry_features_pass = ['sin', 'cos', 'tan']
    
    #group features
    #=============#
    
    #apply grouping
    if group_features is not None:
        apply_grouping_pass = True
    else:
        apply_grouping_pass = False
    
    #group features listing
    if apply_grouping_pass is True:
        
        if type(group_features[0]) is str:
            group_features_pass = []
            group_features_pass.append(group_features)
        else:
            group_features_pass = group_features
            
    else:
        
        group_features_pass = [[]]
    
    #group names
    if apply_grouping_pass is True:

        if (group_names is None) or (len(group_names) != len(group_features_pass)):
            group_names_pass = list(np.arange(len(group_features_pass)))
            group_names_pass = ['group_' + str(i) for i in group_names_pass]

        else:
            group_names_pass = group_names
            
    else:
        group_names_pass = []
    
    #feature interactions
    
    if feature_interaction or feature_ratio:
        apply_feature_interactions_pass = True
    else:
        apply_feature_interactions_pass = False
    
    interactions_to_apply_pass = []
    
    if feature_interaction:
        interactions_to_apply_pass.append('multiply')
    
    if feature_ratio:
        interactions_to_apply_pass.append('divide')
    
    #unknown categorical
    if unknown_categorical_method == 'least_frequent':
        unknown_categorical_method_pass = 'least frequent'
    elif unknown_categorical_method == 'most_frequent':
        unknown_categorical_method_pass = 'most frequent'
    
    #ordinal_features
    if ordinal_features is not None:
        apply_ordinal_encoding_pass = True
    else:
        apply_ordinal_encoding_pass = False
        
    if apply_ordinal_encoding_pass is True:
        ordinal_columns_and_categories_pass = ordinal_features
    else:
        ordinal_columns_and_categories_pass = {}
    
    if high_cardinality_features is not None:
        apply_cardinality_reduction_pass = True
    else:
        apply_cardinality_reduction_pass = False
        
    if high_cardinality_method == 'frequency':
        cardinal_method_pass = 'count'
    elif high_cardinality_method == 'clustering':
        cardinal_method_pass = 'cluster'
        
    if apply_cardinality_reduction_pass:
        cardinal_features_pass = high_cardinality_features
    else:
        cardinal_features_pass = []
    
    if silent:
        display_dtypes_pass = False
    else:
        display_dtypes_pass = True
        
    #import library
M
Moez Ali 已提交
952
    import pycaret.preprocess as preprocess
953 954 955 956
    
    data = preprocess.Preprocess_Path_One(train_data = data, 
                                          target_variable = target,
                                          categorical_features = cat_features_pass,
957 958 959 960 961
                                          apply_ordinal_encoding = apply_ordinal_encoding_pass,
                                          ordinal_columns_and_categories = ordinal_columns_and_categories_pass,
                                          apply_cardinality_reduction = apply_cardinality_reduction_pass, 
                                          cardinal_method = cardinal_method_pass, 
                                          cardinal_features = cardinal_features_pass, 
962 963 964 965 966 967 968 969 970
                                          numerical_features = numeric_features_pass,
                                          time_features = date_features_pass,
                                          features_todrop = ignore_features_pass,
                                          numeric_imputation_strategy = numeric_imputation,
                                          categorical_imputation_strategy = categorical_imputation_pass,
                                          scale_data = normalize,
                                          scaling_method = normalize_method,
                                          Power_transform_data = transformation,
                                          Power_transform_method = trans_method_pass,
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
                                          apply_untrained_levels_treatment= handle_unknown_categorical, 
                                          untrained_levels_treatment_method = unknown_categorical_method_pass,
                                          apply_pca = pca,
                                          pca_method = pca_method_pass,
                                          pca_variance_retained_or_number_of_components = pca_components_pass, 
                                          apply_zero_nearZero_variance = ignore_low_variance, 
                                          club_rare_levels = combine_rare_levels,
                                          rara_level_threshold_percentage = rare_level_threshold, 
                                          apply_binning = apply_binning_pass, 
                                          features_to_binn = features_to_bin_pass, 
                                          remove_outliers = remove_outliers, 
                                          outlier_contamination_percentage = outliers_threshold, 
                                          outlier_methods = ['pca'],
                                          remove_multicollinearity = remove_multicollinearity, 
                                          maximum_correlation_between_features = multicollinearity_threshold, 
                                          remove_perfect_collinearity = True,
                                          cluster_entire_data = create_clusters, 
                                          range_of_clusters_to_try = cluster_iter, 
                                          apply_polynomial_trigonometry_features = polynomial_features, 
                                          max_polynomial = polynomial_degree, 
                                          trigonometry_calculations = trigonometry_features_pass, 
                                          top_poly_trig_features_to_select_percentage = polynomial_threshold, 
                                          apply_grouping = apply_grouping_pass, 
                                          features_to_group_ListofList = group_features_pass, 
                                          group_name = group_names_pass, 
                                          apply_feature_selection = feature_selection, 
                                          feature_selection_top_features_percentage = feature_selection_threshold, 
                                          apply_feature_interactions = apply_feature_interactions_pass, 
                                          feature_interactions_to_apply = interactions_to_apply_pass, 
                                          feature_interactions_top_features_to_select_percentage=interaction_threshold, 
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
                                          display_types = display_dtypes_pass, #this is for inferred input box
                                          target_transformation = False, #not needed for classification
                                          random_state = seed)

    progress.value += 1
    

    if hasattr(preprocess.dtypes, 'replacement'):
            label_encoded = preprocess.dtypes.replacement
            label_encoded = str(label_encoded).replace("'", '')
            label_encoded = str(label_encoded).replace("{", '')
            label_encoded = str(label_encoded).replace("}", '')

    else:
        label_encoded = 'None'
    
    try:
        res_type = ['quit','Quit','exit','EXIT','q','Q','e','E','QUIT','Exit']
        res = preprocess.dtypes.response

        if res in res_type:
            sys.exit("(Process Exit): setup has been interupted with user command 'quit'. setup must rerun." )
            
    except:
        pass
        
    #save prep pipe
    prep_pipe = preprocess.pipe
    
    #generate values for grid show
    missing_values = data_before_preprocess.isna().sum().sum()
    if missing_values > 0:
        missing_flag = True
    else:
        missing_flag = False
    
    if normalize is True:
        normalize_grid = normalize_method
    else:
        normalize_grid = 'None'
        
    if transformation is True:
        transformation_grid = transformation_method
    else:
        transformation_grid = 'None'
    
    if pca is True:
        pca_method_grid = pca_method
    else:
        pca_method_grid = 'None'
   
    if pca is True:
        pca_components_grid = pca_components_pass
    else:
        pca_components_grid = 'None'
        
    if combine_rare_levels:
        rare_level_threshold_grid = rare_level_threshold
    else:
        rare_level_threshold_grid = 'None'
    
    if bin_numeric_features is None:
        numeric_bin_grid = False
    else:
        numeric_bin_grid = True
    
    if remove_outliers is False:
        outliers_threshold_grid = None
    else:
        outliers_threshold_grid = outliers_threshold
    
    if remove_multicollinearity is False:
        multicollinearity_threshold_grid = None
    else:
        multicollinearity_threshold_grid = multicollinearity_threshold
    
    if create_clusters is False:
        cluster_iter_grid = None
    else:
        cluster_iter_grid = cluster_iter
    
    if polynomial_features:
        polynomial_degree_grid = polynomial_degree
    else:
        polynomial_degree_grid = None
    
    if polynomial_features or trigonometry_features:
        polynomial_threshold_grid = polynomial_threshold
    else:
        polynomial_threshold_grid = None
    
    if feature_selection:
        feature_selection_threshold_grid = feature_selection_threshold
    else:
        feature_selection_threshold_grid = None
    
    if feature_interaction or feature_ratio:
        interaction_threshold_grid = interaction_threshold
    else:
        interaction_threshold_grid = None
        
    if ordinal_features is not None:
        ordinal_features_grid = True
    else:
        ordinal_features_grid = False
        
    if handle_unknown_categorical:
        unknown_categorical_method_grid = unknown_categorical_method
    else:
        unknown_categorical_method_grid = None
    
    if group_features is not None:
        group_features_grid = True
    else:
        group_features_grid = False
    
    if high_cardinality_features is not None:
        high_cardinality_features_grid = True
    else:
        high_cardinality_features_grid = False
    
    if high_cardinality_features_grid:
        high_cardinality_method_grid = high_cardinality_method
    else:
        high_cardinality_method_grid = None
    
    learned_types = preprocess.dtypes.learent_dtypes
    learned_types.drop(target, inplace=True)

    float_type = 0 
    cat_type = 0

    for i in preprocess.dtypes.learent_dtypes:
        if 'float' in str(i):
            float_type += 1
        elif 'object' in str(i):
            cat_type += 1
        elif 'int' in str(i):
            float_type += 1
    
    """
    preprocessing ends here
    """
    
    #reset pandas option
    pd.reset_option("display.max_rows") 
    pd.reset_option("display.max_columns")
      
    #create an empty list for pickling later.
    experiment__ = []
M
Moez Ali 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

    #create folds_shuffle_param
    folds_shuffle_param = folds_shuffle

    #create n_jobs_param
    n_jobs_param = n_jobs

    #create create_model_container
    create_model_container = []

    #create master_model_container
    master_model_container = []

1164 1165 1166
    #create display container
    display_container = []

1167 1168 1169 1170 1171 1172
    #create logging parameter
    logging_param = logging

    #create exp_name_log param incase logging is False
    exp_name_log = 'no_logging'

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
    #sample estimator
    if sample_estimator is None:
        model = LogisticRegression()
    else:
        model = sample_estimator
        
    model_name = str(model).split("(")[0]
    if 'CatBoostClassifier' in model_name:
        model_name = 'CatBoostClassifier'
        
    #creating variables to be used later in the function
    X = data.drop(target,axis=1)
    y = data[target]
    
    #determining target type
    if y.value_counts().count() > 2:
        target_type = 'Multiclass'
    else:
        target_type = 'Binary'
    
    progress.value += 1
    
    if sampling is True and data.shape[0] > 25000: #change this back to 25000
    
        split_perc = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99]
        split_perc_text = ['10%','20%','30%','40%','50%','60%', '70%', '80%', '90%', '100%']
        split_perc_tt = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99]
        split_perc_tt_total = []
        split_percent = []

        metric_results = []
        metric_name = []
        
        counter = 0
        
        for i in split_perc:
            
            progress.value += 1
            
            t0 = time.time()
            
            '''
            MONITOR UPDATE STARTS
            '''
            
            perc_text = split_perc_text[counter]
            monitor.iloc[1,1:] = 'Fitting Model on ' + perc_text + ' sample'
M
Moez Ali 已提交
1220 1221 1222
            if verbose:
                if html_param:
                    update_display(monitor, display_id = 'monitor')
1223 1224 1225 1226 1227

            '''
            MONITOR UPDATE ENDS
            '''
    
M
Moez Ali 已提交
1228 1229
            X_, X__, y_, y__ = train_test_split(X, y, test_size=1-i, stratify=y, random_state=seed, shuffle=data_split_shuffle)
            X_train, X_test, y_train, y_test = train_test_split(X_, y_, test_size=0.3, stratify=y_, random_state=seed, shuffle=data_split_shuffle)
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
            model.fit(X_train,y_train)
            pred_ = model.predict(X_test)
            try:
                pred_prob = model.predict_proba(X_test)[:,1]
            except:
                pred_prob = 0
            
            #accuracy
            acc = metrics.accuracy_score(y_test,pred_)
            metric_results.append(acc)
            metric_name.append('Accuracy')
            split_percent.append(i)
            
            #auc
            if y.value_counts().count() > 2:
                pass
            else:
                try:
                    auc = metrics.roc_auc_score(y_test,pred_prob)
                    metric_results.append(auc)
                    metric_name.append('AUC')
                    split_percent.append(i)
                except:
                    pass
                
            #recall
            if y.value_counts().count() > 2:
                recall = metrics.recall_score(y_test,pred_, average='macro')
                metric_results.append(recall)
                metric_name.append('Recall')
                split_percent.append(i)
            else:    
                recall = metrics.recall_score(y_test,pred_)
                metric_results.append(recall)
                metric_name.append('Recall')
                split_percent.append(i)
                
            #recall
            if y.value_counts().count() > 2:
                precision = metrics.precision_score(y_test,pred_, average='weighted')
                metric_results.append(precision)
                metric_name.append('Precision')
                split_percent.append(i)
            else:    
                precision = metrics.precision_score(y_test,pred_)
                metric_results.append(precision)
                metric_name.append('Precision')
                split_percent.append(i)                

            #F1
            if y.value_counts().count() > 2:
                f1 = metrics.f1_score(y_test,pred_, average='weighted')
                metric_results.append(f1)
                metric_name.append('F1')
                split_percent.append(i)
            else:    
                f1 = metrics.precision_score(y_test,pred_)
                metric_results.append(f1)
                metric_name.append('F1')
                split_percent.append(i)
                
            #Kappa
            kappa = metrics.cohen_kappa_score(y_test,pred_)
            metric_results.append(kappa)
            metric_name.append('Kappa')
            split_percent.append(i)
            
            t1 = time.time()
                       
            '''
            Time calculation begins
            '''
          
            tt = t1 - t0
            total_tt = tt / i
            split_perc_tt.pop(0)
            
            for remain in split_perc_tt:
                ss = total_tt * remain
                split_perc_tt_total.append(ss)
                
            ttt = sum(split_perc_tt_total) / 60
            ttt = np.around(ttt, 2)
        
            if ttt < 1:
                ttt = str(np.around((ttt * 60), 2))
                ETC = ttt + ' Seconds Remaining'

            else:
                ttt = str (ttt)
                ETC = ttt + ' Minutes Remaining'
                
            monitor.iloc[2,1:] = ETC
M
Moez Ali 已提交
1323 1324 1325
            if verbose:
                if html_param:
                    update_display(monitor, display_id = 'monitor')
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
            
            
            '''
            Time calculation Ends
            '''
            
            split_perc_tt_total = []
            counter += 1

        model_results = pd.DataFrame({'Sample' : split_percent, 'Metric' : metric_results, 'Metric Name': metric_name})
        fig = px.line(model_results, x='Sample', y='Metric', color='Metric Name', line_shape='linear', range_y = [0,1])
        fig.update_layout(plot_bgcolor='rgb(245,245,245)')
        title= str(model_name) + ' Metrics and Sample %'
        fig.update_layout(title={'text': title, 'y':0.95,'x':0.45,'xanchor': 'center','yanchor': 'top'})
        fig.show()
        
        monitor.iloc[1,1:] = 'Waiting for input'
M
Moez Ali 已提交
1343 1344 1345
        if verbose:
            if html_param:
                update_display(monitor, display_id = 'monitor')
1346 1347 1348 1349
        
        
        print('Please Enter the sample % of data you would like to use for modeling. Example: Enter 0.3 for 30%.')
        print('Press Enter if you would like to use 100% of the data.')
M
Moez Ali 已提交
1350
                
1351 1352 1353 1354
        sample_size = input("Sample Size: ")
        
        if sample_size == '' or sample_size == '1':
            
M
Moez Ali 已提交
1355
            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1-train_size, stratify=y, random_state=seed, shuffle=data_split_shuffle)
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
            
            '''
            Final display Starts
            '''
            clear_output()
            if profile:
                print('Setup Succesfully Completed! Loading Profile Now... Please Wait!')
            else:
                print('Setup Succesfully Completed!')
            
            functions = pd.DataFrame ( [ ['session_id', seed ],
                                         ['Target Type', target_type],
                                         ['Label Encoded', label_encoded],
                                         ['Original Data', data_before_preprocess.shape ],
                                         ['Missing Values ', missing_flag],
                                         ['Numeric Features ', str(float_type) ],
                                         ['Categorical Features ', str(cat_type) ],
                                         ['Ordinal Features ', ordinal_features_grid], #new
                                         ['High Cardinality Features ', high_cardinality_features_grid], #latest
                                         ['High Cardinality Method ', high_cardinality_method_grid], #latest
                                         ['Sampled Data', '(' + str(X_train.shape[0] + X_test.shape[0]) + ', ' + str(data_before_preprocess.shape[1]) + ')' ], 
                                         ['Transformed Train Set', X_train.shape ], 
                                         ['Transformed Test Set',X_test.shape ],
                                         ['Numeric Imputer ', numeric_imputation],
                                         ['Categorical Imputer ', categorical_imputation],
                                         ['Normalize ', normalize ],
                                         ['Normalize Method ', normalize_grid ],
                                         ['Transformation ', transformation ],
                                         ['Transformation Method ', transformation_grid ],
                                         ['PCA ', pca],
                                         ['PCA Method ', pca_method_grid],
                                         ['PCA Components ', pca_components_grid],
                                         ['Ignore Low Variance ', ignore_low_variance],
                                         ['Combine Rare Levels ', combine_rare_levels],
                                         ['Rare Level Threshold ', rare_level_threshold_grid],
                                         ['Numeric Binning ', numeric_bin_grid],
                                         ['Remove Outliers ', remove_outliers],
                                         ['Outliers Threshold ', outliers_threshold_grid],
                                         ['Remove Multicollinearity ', remove_multicollinearity],
                                         ['Multicollinearity Threshold ', multicollinearity_threshold_grid],
                                         ['Clustering ', create_clusters],
                                         ['Clustering Iteration ', cluster_iter_grid],
                                         ['Polynomial Features ', polynomial_features], #new
                                         ['Polynomial Degree ', polynomial_degree_grid], #new
                                         ['Trignometry Features ', trigonometry_features], #new
                                         ['Polynomial Threshold ', polynomial_threshold_grid], #new
                                         ['Group Features ', group_features_grid], #new
                                         ['Feature Selection ', feature_selection], #new
                                         ['Features Selection Threshold ', feature_selection_threshold_grid], #new
                                         ['Feature Interaction ', feature_interaction], #new
                                         ['Feature Ratio ', feature_ratio], #new
                                         ['Interaction Threshold ', interaction_threshold_grid], #new
                                       ], columns = ['Description', 'Value'] )

            #functions_ = functions.style.hide_index()
            functions_ = functions.style.apply(highlight_max)
M
Moez Ali 已提交
1412 1413 1414 1415 1416
            if verbose:
                if html_param:
                    display(functions_)
                else:
                    print(functions_.data)
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
            
            if profile:
                try:
                    import pandas_profiling
                    pf = pandas_profiling.ProfileReport(data_before_preprocess)
                    clear_output()
                    display(pf)
                except:
                    print('Data Profiler Failed. No output to show, please continue with Modeling.')
            
            '''
            Final display Ends
            '''   
            
            #log into experiment
            experiment__.append(('Classification Setup Config', functions))
            experiment__.append(('X_training Set', X_train))
            experiment__.append(('y_training Set', y_train))
            experiment__.append(('X_test Set', X_test))
            experiment__.append(('y_test Set', y_test)) 
            experiment__.append(('Transformation Pipeline', prep_pipe))
        
        else:
            
            sample_n = float(sample_size)
            X_selected, X_discard, y_selected, y_discard = train_test_split(X, y, test_size=1-sample_n, stratify=y, 
M
Moez Ali 已提交
1443
                                                                random_state=seed, shuffle=data_split_shuffle)
1444 1445
            
            X_train, X_test, y_train, y_test = train_test_split(X_selected, y_selected, test_size=1-train_size, stratify=y_selected, 
M
Moez Ali 已提交
1446
                                                                random_state=seed, shuffle=data_split_shuffle)
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
            clear_output()
            
            
            '''
            Final display Starts
            '''

                
            clear_output()
            if profile:
                print('Setup Succesfully Completed! Loading Profile Now... Please Wait!')
            else:
                print('Setup Succesfully Completed!')
                
            functions = pd.DataFrame ( [ ['session_id', seed ],
                                         ['Target Type', target_type],
                                         ['Label Encoded', label_encoded],
                                         ['Original Data', data_before_preprocess.shape ],
                                         ['Missing Values ', missing_flag],
                                         ['Numeric Features ', str(float_type) ],
                                         ['Categorical Features ', str(cat_type) ],
                                         ['Ordinal Features ', ordinal_features_grid], #new
                                         ['High Cardinality Features ', high_cardinality_features_grid],
                                         ['High Cardinality Method ', high_cardinality_method_grid], #latest
                                         ['Sampled Data', '(' + str(X_train.shape[0] + X_test.shape[0]) + ', ' + str(data_before_preprocess.shape[1]) + ')' ], 
                                         ['Transformed Train Set', X_train.shape ], 
                                         ['Transformed Test Set',X_test.shape ],
                                         ['Numeric Imputer ', numeric_imputation],
                                         ['Categorical Imputer ', categorical_imputation],
                                         ['Normalize ', normalize ],
                                         ['Normalize Method ', normalize_grid ],
                                         ['Transformation ', transformation ],
                                         ['Transformation Method ', transformation_grid ],
                                         ['PCA ', pca],
                                         ['PCA Method ', pca_method_grid],
                                         ['PCA Components ', pca_components_grid],
                                         ['Ignore Low Variance ', ignore_low_variance],
                                         ['Combine Rare Levels ', combine_rare_levels],
                                         ['Rare Level Threshold ', rare_level_threshold_grid],
                                         ['Numeric Binning ', numeric_bin_grid],
                                         ['Remove Outliers ', remove_outliers],
                                         ['Outliers Threshold ', outliers_threshold_grid],
                                         ['Remove Multicollinearity ', remove_multicollinearity],
                                         ['Multicollinearity Threshold ', multicollinearity_threshold_grid],
                                         ['Clustering ', create_clusters],
                                         ['Clustering Iteration ', cluster_iter_grid],
                                         ['Polynomial Features ', polynomial_features], #new
                                         ['Polynomial Degree ', polynomial_degree_grid], #new
                                         ['Trignometry Features ', trigonometry_features], #new
                                         ['Polynomial Threshold ', polynomial_threshold_grid], #new
                                         ['Group Features ', group_features_grid], #new
                                         ['Feature Selection ', feature_selection], #new
                                         ['Features Selection Threshold ', feature_selection_threshold_grid], #new
                                         ['Feature Interaction ', feature_interaction], #new
                                         ['Feature Ratio ', feature_ratio], #new
                                         ['Interaction Threshold ', interaction_threshold_grid], #new
                                       ], columns = ['Description', 'Value'] )
            
            #functions_ = functions.style.hide_index()
            functions_ = functions.style.apply(highlight_max)
M
Moez Ali 已提交
1507 1508 1509 1510 1511
            if verbose:
                if html_param:
                    display(functions_)
                else:
                    print(functions_.data)
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
            
            if profile:
                try:
                    import pandas_profiling
                    pf = pandas_profiling.ProfileReport(data_before_preprocess)
                    clear_output()
                    display(pf)
                except:
                    print('Data Profiler Failed. No output to show, please continue with Modeling.')
            
            '''
            Final display Ends
            ''' 
            
            #log into experiment
            experiment__.append(('Classification Setup Config', functions))
            experiment__.append(('X_training Set', X_train))
            experiment__.append(('y_training Set', y_train))
            experiment__.append(('X_test Set', X_test))
            experiment__.append(('y_test Set', y_test)) 
            experiment__.append(('Transformation Pipeline', prep_pipe))

    else:
        
        monitor.iloc[1,1:] = 'Splitting Data'
M
Moez Ali 已提交
1537 1538 1539 1540
        if verbose:
            if html_param:
                update_display(monitor, display_id = 'monitor')
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1-train_size, stratify=y, random_state=seed, shuffle=data_split_shuffle)
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
        progress.value += 1
        
        clear_output()
        
        '''
        Final display Starts
        '''
        clear_output()
        if profile:
            print('Setup Succesfully Completed! Loading Profile Now... Please Wait!')
        else:
            print('Setup Succesfully Completed!')
            
        functions = pd.DataFrame ( [ ['session_id', seed ],
                                     ['Target Type', target_type],
                                     ['Label Encoded', label_encoded],
                                     ['Original Data', data_before_preprocess.shape ],
                                     ['Missing Values ', missing_flag],
                                     ['Numeric Features ', str(float_type) ],
                                     ['Categorical Features ', str(cat_type) ],
                                     ['Ordinal Features ', ordinal_features_grid], #new
                                     ['High Cardinality Features ', high_cardinality_features_grid],
                                     ['High Cardinality Method ', high_cardinality_method_grid], #latest
                                     ['Sampled Data', '(' + str(X_train.shape[0] + X_test.shape[0]) + ', ' + str(data_before_preprocess.shape[1]) + ')' ], 
                                     ['Transformed Train Set', X_train.shape ], 
                                     ['Transformed Test Set',X_test.shape ],
                                     ['Numeric Imputer ', numeric_imputation],
                                     ['Categorical Imputer ', categorical_imputation],
                                     ['Normalize ', normalize ],
                                     ['Normalize Method ', normalize_grid ],
                                     ['Transformation ', transformation ],
                                     ['Transformation Method ', transformation_grid ],
                                     ['PCA ', pca],
                                     ['PCA Method ', pca_method_grid],
                                     ['PCA Components ', pca_components_grid],
                                     ['Ignore Low Variance ', ignore_low_variance],
                                     ['Combine Rare Levels ', combine_rare_levels],
                                     ['Rare Level Threshold ', rare_level_threshold_grid],
                                     ['Numeric Binning ', numeric_bin_grid],
                                     ['Remove Outliers ', remove_outliers],
                                     ['Outliers Threshold ', outliers_threshold_grid],
                                     ['Remove Multicollinearity ', remove_multicollinearity],
                                     ['Multicollinearity Threshold ', multicollinearity_threshold_grid],
                                     ['Clustering ', create_clusters],
                                     ['Clustering Iteration ', cluster_iter_grid],
                                     ['Polynomial Features ', polynomial_features], #new
                                     ['Polynomial Degree ', polynomial_degree_grid], #new
                                     ['Trignometry Features ', trigonometry_features], #new
                                     ['Polynomial Threshold ', polynomial_threshold_grid], #new
                                     ['Group Features ', group_features_grid], #new
                                     ['Feature Selection ', feature_selection], #new
                                     ['Features Selection Threshold ', feature_selection_threshold_grid], #new
                                     ['Feature Interaction ', feature_interaction], #new
                                     ['Feature Ratio ', feature_ratio], #new
                                     ['Interaction Threshold ', interaction_threshold_grid], #new
                                   ], columns = ['Description', 'Value'] )
        
        #functions = functions.style.hide_index()
        functions_ = functions.style.apply(highlight_max)
M
Moez Ali 已提交
1600 1601 1602 1603 1604
        if verbose:
            if html_param:
                display(functions_)
            else:
                print(functions_.data)
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
        
        if profile:
            try:
                import pandas_profiling
                pf = pandas_profiling.ProfileReport(data_before_preprocess)
                clear_output()
                display(pf)
            except:
                print('Data Profiler Failed. No output to show, please continue with Modeling.')
            
        '''
        Final display Ends
        '''   
        
        #log into experiment
        experiment__.append(('Classification Setup Config', functions))
        experiment__.append(('X_training Set', X_train))
        experiment__.append(('y_training Set', y_train))
        experiment__.append(('X_test Set', X_test))
        experiment__.append(('y_test Set', y_test))
        experiment__.append(('Transformation Pipeline', prep_pipe))
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668

    #mlflow create experiment (name defined here)
    if logging_param:
        uniquekey = secrets.token_hex(nbytes=6)
        if experiment_name is None:
            exp_name_ = 'clf'
        else:
            exp_name_ = experiment_name
        exp_name_log = exp_name_ + '-' + str(seed) + '-' + str(uniquekey)
        mlflow.create_experiment(exp_name_log)

        #mlflow logging
        mlflow.set_experiment(exp_name_log)
        with mlflow.start_run(run_name='Session Initialized') as run:
            
            k = functions.copy()
            k.set_index('Description',drop=True,inplace=True)
            kdict = k.to_dict()
            params = kdict.get('Value')
            mlflow.log_params(params)

            # Log the transformation pipeline
            save_model(prep_pipe, 'Transformation Pipeline', verbose=False)
            mlflow.log_artifact('Transformation Pipeline' + '.pkl')

            # Log pandas profile
            if log_profile:
                import pandas_profiling
                pf = pandas_profiling.ProfileReport(data_before_preprocess)
                pf.to_file("data_profile.html")
                mlflow.log_artifact("data_profile.html")
                clear_output()
                display(functions_)

            # Log training and testing set
            X_train.join(y_train).to_csv('Train.csv')
            X_test.join(y_test).to_csv('Test.csv')
            mlflow.log_artifact("Train.csv")
            mlflow.log_artifact("Test.csv")

    return X, y, X_train, X_test, y_train, y_test, seed, prep_pipe, experiment__,\
        folds_shuffle_param, n_jobs_param, html_param, create_model_container, master_model_container, display_container, exp_name_log, logging_param

1669 1670 1671 1672 1673 1674

def create_model(estimator = None, 
                 ensemble = False, 
                 method = None, 
                 fold = 10, 
                 round = 4,  
M
Moez Ali 已提交
1675
                 verbose = True,
P
PyCaret 已提交
1676
                 system = True, #added in pycaret==1.0.1
M
Moez Ali 已提交
1677
                 **kwargs): #added in pycaret==1.0.1
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743

    """  
     
    Description:
    ------------
    This function creates a model and scores it using Stratified Cross Validation. 
    The output prints a score grid that shows Accuracy, AUC, Recall, Precision, 
    F1 and Kappa by fold (default = 10 Fold). 

    This function returns a trained model object. 

    setup() function must be called before using create_model()

        Example
        -------
        from pycaret.datasets import get_data
        juice = get_data('juice')
        experiment_name = setup(data = juice,  target = 'Purchase')
        
        lr = create_model('lr')

        This will create a trained Logistic Regression model.

    Parameters
    ----------
    estimator : string, default = None

    Enter abbreviated string of the estimator class. All estimators support binary or 
    multiclass problem. List of estimators supported:

    Estimator                   Abbreviated String     Original Implementation 
    ---------                   ------------------     -----------------------
    Logistic Regression         'lr'                   linear_model.LogisticRegression
    K Nearest Neighbour         'knn'                  neighbors.KNeighborsClassifier
    Naives Bayes                'nb'                   naive_bayes.GaussianNB
    Decision Tree               'dt'                   tree.DecisionTreeClassifier
    SVM (Linear)                'svm'                  linear_model.SGDClassifier
    SVM (RBF)                   'rbfsvm'               svm.SVC
    Gaussian Process            'gpc'                  gaussian_process.GPC
    Multi Level Perceptron      'mlp'                  neural_network.MLPClassifier
    Ridge Classifier            'ridge'                linear_model.RidgeClassifier
    Random Forest               'rf'                   ensemble.RandomForestClassifier
    Quadratic Disc. Analysis    'qda'                  discriminant_analysis.QDA
    AdaBoost                    'ada'                  ensemble.AdaBoostClassifier
    Gradient Boosting           'gbc'                  ensemble.GradientBoostingClassifier
    Linear Disc. Analysis       'lda'                  discriminant_analysis.LDA
    Extra Trees Classifier      'et'                   ensemble.ExtraTreesClassifier
    Extreme Gradient Boosting   'xgboost'              xgboost.readthedocs.io
    Light Gradient Boosting     'lightgbm'             github.com/microsoft/LightGBM
    CatBoost Classifier         'catboost'             https://catboost.ai

    ensemble: Boolean, default = False
    True would result in an ensemble of estimator using the method parameter defined. 

    method: String, 'Bagging' or 'Boosting', default = None.
    method must be defined when ensemble is set to True. Default method is set to None. 

    fold: integer, default = 10
    Number of folds to be used in Kfold CV. Must be at least 2. 

    round: integer, default = 4
    Number of decimal places the metrics in the score grid will be rounded to. 

    verbose: Boolean, default = True
    Score grid is not printed when verbose is set to False.

P
PyCaret 已提交
1744 1745 1746
    system: Boolean, default = True
    Must remain True all times. Only to be changed by internal functions.

M
Moez Ali 已提交
1747 1748 1749
    **kwargs: 
    Additional keyword arguments to pass to the estimator.

1750 1751 1752 1753
    Returns:
    --------

    score grid:   A table containing the scores of the model across the kfolds. 
1754 1755 1756
    -----------   Scoring metrics used are Accuracy, AUC, Recall, Precision, F1, 
                  Kappa and MCC. Mean and standard deviation of the scores across 
                  the folds are highlighted in yellow.
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789

    model:        trained model object
    -----------

    Warnings:
    ---------
    - 'svm' and 'ridge' doesn't support predict_proba method. As such, AUC will be
      returned as zero (0.0)
     
    - If target variable is multiclass (more than 2 classes), AUC will be returned 
      as zero (0.0)

    - 'rbfsvm' and 'gpc' uses non-linear kernel and hence the fit time complexity is 
      more than quadratic. These estimators are hard to scale on datasets with more 
      than 10,000 samples.
    
      
  
    """


    '''
    
    ERROR HANDLING STARTS HERE
    
    '''
    
    #exception checking   
    import sys
    
    #checking error for estimator (string)
    available_estimators = ['lr', 'knn', 'nb', 'dt', 'svm', 'rbfsvm', 'gpc', 'mlp', 'ridge', 'rf', 'qda', 'ada', 
                            'gbc', 'lda', 'et', 'xgboost', 'lightgbm', 'catboost']
1790 1791 1792 1793 1794 1795

    #only raise exception of estimator is of type string.
    if type(estimator) is str:
        if estimator not in available_estimators:
            sys.exit('(Value Error): Estimator Not Available. Please see docstring for list of available estimators.')

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
    #checking error for ensemble:
    if type(ensemble) is not bool:
        sys.exit('(Type Error): Ensemble parameter can only take argument as True or False.') 
    
    #checking error for method:
    
    #1 Check When method given and ensemble is not set to True.
    if ensemble is False and method is not None:
        sys.exit('(Type Error): Method parameter only accepts value when ensemble is set to True.')

    #2 Check when ensemble is set to True and method is not passed.
    if ensemble is True and method is None:
        sys.exit("(Type Error): Method parameter missing. Pass method = 'Bagging' or 'Boosting'.")
        
    #3 Check when ensemble is set to True and method is passed but not allowed.
    available_method = ['Bagging', 'Boosting']
    if ensemble is True and method not in available_method:
        sys.exit("(Value Error): Method parameter only accepts two values 'Bagging' or 'Boosting'.")
        
    #checking fold parameter
    if type(fold) is not int:
        sys.exit('(Type Error): Fold parameter only accepts integer value.')
    
    #checking round parameter
    if type(round) is not int:
        sys.exit('(Type Error): Round parameter only accepts integer value.')
 
    #checking verbose parameter
    if type(verbose) is not bool:
        sys.exit('(Type Error): Verbose parameter can only take argument as True or False.') 
        
    #checking boosting conflict with estimators
    boosting_not_supported = ['lda','qda','ridge','mlp','gpc','svm','knn', 'catboost']
M
Moez Ali 已提交
1829
    if method == 'Boosting' and estimator in boosting_not_supported:
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
        sys.exit("(Type Error): Estimator does not provide class_weights or predict_proba function and hence not supported for the Boosting method. Change the estimator or method to 'Bagging'.")
    
    
    
    '''
    
    ERROR HANDLING ENDS HERE
    
    '''
    
    
    #pre-load libraries
    import pandas as pd
    import ipywidgets as ipw
    from IPython.display import display, HTML, clear_output, update_display
    import datetime, time
1846 1847 1848 1849 1850

    #import mlflow
    import mlflow
    import mlflow.sklearn

1851 1852
    #progress bar
    progress = ipw.IntProgress(value=0, min=0, max=fold+4, step=1 , description='Processing: ')
M
Moez Ali 已提交
1853 1854 1855 1856
    master_display = pd.DataFrame(columns=['Accuracy','AUC','Recall', 'Prec.', 'F1', 'Kappa', 'MCC'])
    if verbose:
        if html_param:
            display(progress)
1857 1858 1859 1860 1861 1862 1863 1864
    
    #display monitor
    timestampStr = datetime.datetime.now().strftime("%H:%M:%S")
    monitor = pd.DataFrame( [ ['Initiated' , '. . . . . . . . . . . . . . . . . .', timestampStr ], 
                             ['Status' , '. . . . . . . . . . . . . . . . . .' , 'Loading Dependencies' ],
                             ['ETC' , '. . . . . . . . . . . . . . . . . .',  'Calculating ETC'] ],
                              columns=['', ' ', '   ']).set_index('')
    
M
Moez Ali 已提交
1865 1866 1867
    if verbose:
        if html_param:
            display(monitor, display_id = 'monitor')
1868 1869
    
    if verbose:
M
Moez Ali 已提交
1870 1871 1872
        if html_param:
            display_ = display(master_display, display_id=True)
            display_id = display_.display_id
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
    
    #ignore warnings
    import warnings
    warnings.filterwarnings('ignore') 
    
    #Storing X_train and y_train in data_X and data_y parameter
    data_X = X_train.copy()
    data_y = y_train.copy()
    
    #reset index
    data_X.reset_index(drop=True, inplace=True)
    data_y.reset_index(drop=True, inplace=True)
  
    #general dependencies
    import numpy as np
    from sklearn import metrics
    from sklearn.model_selection import StratifiedKFold
    
    progress.value += 1
    
    #cross validation setup starts here
1894
    kf = StratifiedKFold(fold, random_state=seed, shuffle=folds_shuffle_param)
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918

    score_auc =np.empty((0,0))
    score_acc =np.empty((0,0))
    score_recall =np.empty((0,0))
    score_precision =np.empty((0,0))
    score_f1 =np.empty((0,0))
    score_kappa =np.empty((0,0))
    score_mcc =np.empty((0,0))
    score_training_time =np.empty((0,0))
    avgs_auc =np.empty((0,0))
    avgs_acc =np.empty((0,0))
    avgs_recall =np.empty((0,0))
    avgs_precision =np.empty((0,0))
    avgs_f1 =np.empty((0,0))
    avgs_kappa =np.empty((0,0))
    avgs_mcc =np.empty((0,0))
    avgs_training_time =np.empty((0,0))
    
  
    '''
    MONITOR UPDATE STARTS
    '''
    
    monitor.iloc[1,1:] = 'Selecting Estimator'
M
Moez Ali 已提交
1919 1920 1921
    if verbose:
        if html_param:
            update_display(monitor, display_id = 'monitor')
1922 1923 1924 1925 1926 1927 1928 1929
    
    '''
    MONITOR UPDATE ENDS
    '''
        
    if estimator == 'lr':

        from sklearn.linear_model import LogisticRegression
M
Moez Ali 已提交
1930
        model = LogisticRegression(random_state=seed, **kwargs)
1931 1932 1933 1934 1935
        full_name = 'Logistic Regression'

    elif estimator == 'knn':
        
        from sklearn.neighbors import KNeighborsClassifier
M
Moez Ali 已提交
1936
        model = KNeighborsClassifier(n_jobs=n_jobs_param, **kwargs)
P
PyCaret 已提交
1937
        full_name = 'K Neighbors Classifier'
1938 1939 1940 1941

    elif estimator == 'nb':

        from sklearn.naive_bayes import GaussianNB
M
Moez Ali 已提交
1942
        model = GaussianNB(**kwargs)
1943 1944 1945 1946 1947
        full_name = 'Naive Bayes'

    elif estimator == 'dt':

        from sklearn.tree import DecisionTreeClassifier
M
Moez Ali 已提交
1948
        model = DecisionTreeClassifier(random_state=seed, **kwargs)
P
PyCaret 已提交
1949
        full_name = 'Decision Tree Classifier'
1950 1951 1952 1953

    elif estimator == 'svm':

        from sklearn.linear_model import SGDClassifier
M
Moez Ali 已提交
1954
        model = SGDClassifier(max_iter=1000, tol=0.001, random_state=seed, n_jobs=n_jobs_param, **kwargs)
P
PyCaret 已提交
1955
        full_name = 'SVM - Linear Kernel'
1956 1957 1958 1959

    elif estimator == 'rbfsvm':

        from sklearn.svm import SVC
M
Moez Ali 已提交
1960
        model = SVC(gamma='auto', C=1, probability=True, kernel='rbf', random_state=seed, **kwargs)
P
PyCaret 已提交
1961
        full_name = 'SVM - Radial Kernel'
1962 1963 1964 1965

    elif estimator == 'gpc':

        from sklearn.gaussian_process import GaussianProcessClassifier
M
Moez Ali 已提交
1966
        model = GaussianProcessClassifier(random_state=seed, n_jobs=n_jobs_param, **kwargs)
1967 1968 1969 1970 1971
        full_name = 'Gaussian Process Classifier'

    elif estimator == 'mlp':

        from sklearn.neural_network import MLPClassifier
M
Moez Ali 已提交
1972
        model = MLPClassifier(max_iter=500, random_state=seed, **kwargs)
P
PyCaret 已提交
1973
        full_name = 'MLP Classifier'    
1974 1975 1976 1977

    elif estimator == 'ridge':

        from sklearn.linear_model import RidgeClassifier
M
Moez Ali 已提交
1978
        model = RidgeClassifier(random_state=seed, **kwargs)
1979 1980 1981 1982 1983
        full_name = 'Ridge Classifier'        

    elif estimator == 'rf':

        from sklearn.ensemble import RandomForestClassifier
M
Moez Ali 已提交
1984
        model = RandomForestClassifier(n_estimators=10, random_state=seed, n_jobs=n_jobs_param, **kwargs)
1985 1986 1987 1988 1989
        full_name = 'Random Forest Classifier'    

    elif estimator == 'qda':

        from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
M
Moez Ali 已提交
1990
        model = QuadraticDiscriminantAnalysis(**kwargs)
1991 1992 1993 1994 1995
        full_name = 'Quadratic Discriminant Analysis' 

    elif estimator == 'ada':

        from sklearn.ensemble import AdaBoostClassifier
M
Moez Ali 已提交
1996
        model = AdaBoostClassifier(random_state=seed, **kwargs)
P
PyCaret 已提交
1997
        full_name = 'Ada Boost Classifier'        
1998 1999 2000 2001

    elif estimator == 'gbc':

        from sklearn.ensemble import GradientBoostingClassifier    
M
Moez Ali 已提交
2002
        model = GradientBoostingClassifier(random_state=seed, **kwargs)
2003 2004 2005 2006 2007
        full_name = 'Gradient Boosting Classifier'    

    elif estimator == 'lda':

        from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
M
Moez Ali 已提交
2008
        model = LinearDiscriminantAnalysis(**kwargs)
2009 2010 2011 2012 2013
        full_name = 'Linear Discriminant Analysis'

    elif estimator == 'et':

        from sklearn.ensemble import ExtraTreesClassifier 
M
Moez Ali 已提交
2014
        model = ExtraTreesClassifier(random_state=seed, n_jobs=n_jobs_param, **kwargs)
2015 2016 2017 2018 2019
        full_name = 'Extra Trees Classifier'

    elif estimator == 'xgboost':

        from xgboost import XGBClassifier
M
Moez Ali 已提交
2020
        model = XGBClassifier(random_state=seed, verbosity=0, n_jobs=n_jobs_param, **kwargs)
2021 2022 2023 2024 2025
        full_name = 'Extreme Gradient Boosting'
        
    elif estimator == 'lightgbm':
        
        import lightgbm as lgb
M
Moez Ali 已提交
2026
        model = lgb.LGBMClassifier(random_state=seed, n_jobs=n_jobs_param, **kwargs)
2027 2028 2029 2030
        full_name = 'Light Gradient Boosting Machine'
        
    elif estimator == 'catboost':
        from catboost import CatBoostClassifier
M
Moez Ali 已提交
2031
        model = CatBoostClassifier(random_state=seed, silent=True, thread_count=n_jobs_param, **kwargs) # Silent is True to suppress CatBoost iteration results 
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
        full_name = 'CatBoost Classifier'
        
    else:
        model = estimator
        full_name = str(model).split("(")[0]
    
    progress.value += 1
    
    #checking method when ensemble is set to True. 

    if method == 'Bagging':
        
        from sklearn.ensemble import BaggingClassifier
M
Moez Ali 已提交
2045
        model = BaggingClassifier(model,bootstrap=True,n_estimators=10, random_state=seed, n_jobs=n_jobs_param)
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055

    elif method == 'Boosting':
        
        from sklearn.ensemble import AdaBoostClassifier
        model = AdaBoostClassifier(model, n_estimators=10, random_state=seed)
    
    
    #multiclass checking
    if y.value_counts().count() > 2:
        from sklearn.multiclass import OneVsRestClassifier
M
Moez Ali 已提交
2056
        model = OneVsRestClassifier(model, n_jobs=n_jobs_param)
2057 2058 2059 2060 2061 2062 2063
    
    
    '''
    MONITOR UPDATE STARTS
    '''
    
    monitor.iloc[1,1:] = 'Initializing CV'
M
Moez Ali 已提交
2064 2065 2066
    if verbose:
        if html_param:
            update_display(monitor, display_id = 'monitor')
2067 2068 2069 2070 2071 2072 2073
    
    '''
    MONITOR UPDATE ENDS
    '''
    
    
    fold_num = 1
M
Moez Ali 已提交
2074
    
2075 2076 2077 2078 2079 2080 2081 2082 2083
    for train_i , test_i in kf.split(data_X,data_y):
        
        t0 = time.time()
        
        '''
        MONITOR UPDATE STARTS
        '''
    
        monitor.iloc[1,1:] = 'Fitting Fold ' + str(fold_num) + ' of ' + str(fold)
M
Moez Ali 已提交
2084 2085 2086
        if verbose:
            if html_param:
                update_display(monitor, display_id = 'monitor')
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151

        '''
        MONITOR UPDATE ENDS
        '''
    
        Xtrain,Xtest = data_X.iloc[train_i], data_X.iloc[test_i]
        ytrain,ytest = data_y.iloc[train_i], data_y.iloc[test_i]
        time_start=time.time()
        if hasattr(model, 'predict_proba'):
            
            model.fit(Xtrain,ytrain)
            pred_prob = model.predict_proba(Xtest)
            pred_prob = pred_prob[:,1]
            pred_ = model.predict(Xtest)
            sca = metrics.accuracy_score(ytest,pred_)
            
            if y.value_counts().count() > 2:
                sc = 0
                recall = metrics.recall_score(ytest,pred_, average='macro')                
                precision = metrics.precision_score(ytest,pred_, average = 'weighted')
                f1 = metrics.f1_score(ytest,pred_, average='weighted')
                
            else:
                try:
                    sc = metrics.roc_auc_score(ytest,pred_prob)
                except:
                    sc = 0
                recall = metrics.recall_score(ytest,pred_)                
                precision = metrics.precision_score(ytest,pred_)
                f1 = metrics.f1_score(ytest,pred_)
        else:
            model.fit(Xtrain,ytrain)
            pred_prob = 0.00
            pred_ = model.predict(Xtest)
            sca = metrics.accuracy_score(ytest,pred_)
            
            if y.value_counts().count() > 2:
                sc = 0
                recall = metrics.recall_score(ytest,pred_, average='macro')                
                precision = metrics.precision_score(ytest,pred_, average = 'weighted')
                f1 = metrics.f1_score(ytest,pred_, average='weighted')

            else:
                try:
                    sc = metrics.roc_auc_score(ytest,pred_prob)
                except:
                    sc = 0
                recall = metrics.recall_score(ytest,pred_)                
                precision = metrics.precision_score(ytest,pred_)
                f1 = metrics.f1_score(ytest,pred_)
                
        time_end=time.time()
        kappa = metrics.cohen_kappa_score(ytest,pred_)
        mcc = metrics.matthews_corrcoef(ytest,pred_)
        training_time=time_end-time_start
        score_acc = np.append(score_acc,sca)
        score_auc = np.append(score_auc,sc)
        score_recall = np.append(score_recall,recall)
        score_precision = np.append(score_precision,precision)
        score_f1 =np.append(score_f1,f1)
        score_kappa =np.append(score_kappa,kappa)
        score_mcc=np.append(score_mcc,mcc)
        score_training_time = np.append(score_training_time,training_time)
   
        progress.value += 1
M
Moez Ali 已提交
2152
                
2153 2154 2155 2156 2157 2158 2159 2160
        '''
        
        This section handles time calculation and is created to update_display() as code loops through 
        the fold defined.
        
        '''
        
        fold_results = pd.DataFrame({'Accuracy':[sca], 'AUC': [sc], 'Recall': [recall], 
M
Moez Ali 已提交
2161
                                     'Prec.': [precision], 'F1': [f1], 'Kappa': [kappa], 'MCC':[mcc]}).round(round)
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
        master_display = pd.concat([master_display, fold_results],ignore_index=True)
        fold_results = []
        
        '''
        TIME CALCULATION SUB-SECTION STARTS HERE
        '''
        t1 = time.time()
        
        tt = (t1 - t0) * (fold-fold_num) / 60
        tt = np.around(tt, 2)
        
        if tt < 1:
            tt = str(np.around((tt * 60), 2))
            ETC = tt + ' Seconds Remaining'
                
        else:
            tt = str (tt)
            ETC = tt + ' Minutes Remaining'
            
        '''
        MONITOR UPDATE STARTS
        '''

        monitor.iloc[2,1:] = ETC
M
Moez Ali 已提交
2186 2187 2188
        if verbose:
            if html_param:
                update_display(monitor, display_id = 'monitor')
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200

        '''
        MONITOR UPDATE ENDS
        '''
            
        fold_num += 1
        
        '''
        TIME CALCULATION ENDS HERE
        '''
        
        if verbose:
M
Moez Ali 已提交
2201 2202
            if html_param:
                update_display(master_display, display_id = display_id)
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
            
        
        '''
        
        Update_display() ends here
        
        '''
            
    mean_acc=np.mean(score_acc)
    mean_auc=np.mean(score_auc)
    mean_recall=np.mean(score_recall)
    mean_precision=np.mean(score_precision)
    mean_f1=np.mean(score_f1)
    mean_kappa=np.mean(score_kappa)
    mean_mcc=np.mean(score_mcc)
    mean_training_time=np.mean(score_training_time)
    
    std_acc=np.std(score_acc)
    std_auc=np.std(score_auc)
    std_recall=np.std(score_recall)
    std_precision=np.std(score_precision)
    std_f1=np.std(score_f1)
    std_kappa=np.std(score_kappa)
    std_mcc=np.std(score_mcc)
    std_training_time=np.std(score_training_time)
    
    avgs_acc = np.append(avgs_acc, mean_acc)
    avgs_acc = np.append(avgs_acc, std_acc) 
    avgs_auc = np.append(avgs_auc, mean_auc)
    avgs_auc = np.append(avgs_auc, std_auc)
    avgs_recall = np.append(avgs_recall, mean_recall)
    avgs_recall = np.append(avgs_recall, std_recall)
    avgs_precision = np.append(avgs_precision, mean_precision)
    avgs_precision = np.append(avgs_precision, std_precision)
    avgs_f1 = np.append(avgs_f1, mean_f1)
    avgs_f1 = np.append(avgs_f1, std_f1)
    avgs_kappa = np.append(avgs_kappa, mean_kappa)
    avgs_kappa = np.append(avgs_kappa, std_kappa)
    avgs_mcc = np.append(avgs_mcc, mean_mcc)
    avgs_mcc = np.append(avgs_mcc, std_mcc)
    
    avgs_training_time = np.append(avgs_training_time, mean_training_time)
    avgs_training_time = np.append(avgs_training_time, std_training_time)
    
    progress.value += 1
    
    model_results = pd.DataFrame({'Accuracy': score_acc, 'AUC': score_auc, 'Recall' : score_recall, 'Prec.' : score_precision , 
M
Moez Ali 已提交
2250
                     'F1' : score_f1, 'Kappa' : score_kappa, 'MCC': score_mcc})
2251
    model_avgs = pd.DataFrame({'Accuracy': avgs_acc, 'AUC': avgs_auc, 'Recall' : avgs_recall, 'Prec.' : avgs_precision , 
M
Moez Ali 已提交
2252
                     'F1' : avgs_f1, 'Kappa' : avgs_kappa, 'MCC': avgs_mcc},index=['Mean', 'SD'])
2253 2254 2255 2256 2257

    
    model_results = model_results.append(model_avgs)
    model_results = model_results.round(round)
    
M
Moez Ali 已提交
2258 2259 2260 2261
    # yellow the mean
    model_results=model_results.style.apply(lambda x: ['background: yellow' if (x.name == 'Mean') else '' for i in x], axis=1)
    model_results = model_results.set_precision(round)

2262
    #refitting the model on complete X_train, y_train
M
Moez Ali 已提交
2263 2264 2265 2266 2267
    monitor.iloc[1,1:] = 'Finalizing Model'
    monitor.iloc[2,1:] = 'Almost Finished'    
    if verbose:
        if html_param:
            update_display(monitor, display_id = 'monitor')
2268 2269 2270
    
    model.fit(data_X, data_y)
    
2271
    #mlflow logging
P
PyCaret 已提交
2272 2273 2274 2275 2276 2277 2278
    if logging_param and system:
        mlflow.set_experiment(exp_name_log)
        with mlflow.start_run(run_name=full_name) as run:
            params = model.get_params()
            mlflow.log_metrics({"Accuracy": avgs_acc[0], "AUC": avgs_auc[0], "Recall": avgs_recall[0], "Precision" : avgs_precision[0],
                                "F1": avgs_f1[0], "Kappa": avgs_kappa[0], "MCC": avgs_mcc[0]})
            mlflow.log_params(params)
2279

P
PyCaret 已提交
2280 2281 2282 2283 2284 2285 2286 2287
            #log other parameter of create_model function
            mlflow.log_param("ensemble", ensemble)
            mlflow.log_param("ensemble_method", method)
            mlflow.log_param("fold", fold)
            mlflow.log_param("round", round)

            # Log the sklearn model and register as version 1
            #mlflow.sklearn.log_model(model, full_name)
2288

2289 2290 2291 2292 2293 2294 2295 2296
    progress.value += 1
    
    #storing into experiment
    tup = (full_name,model)
    experiment__.append(tup)
    nam = str(full_name) + ' Score Grid'
    tup = (nam, model_results)
    experiment__.append(tup)
M
Moez Ali 已提交
2297 2298 2299

    #storing results in create_model_container
    create_model_container.append(model_results.data)
2300 2301
    display_container.append(model_results.data)

M
Moez Ali 已提交
2302 2303 2304
    #storing results in master_model_container
    master_model_container.append(model)

2305 2306
    if verbose:
        clear_output()
M
Moez Ali 已提交
2307 2308 2309 2310 2311 2312 2313

        if html_param:
            display(model_results)
        else:
            print(model_results.data)

    return model
2314 2315 2316 2317 2318 2319

def ensemble_model(estimator,
                   method = 'Bagging', 
                   fold = 10,
                   n_estimators = 10,
                   round = 4,  
2320 2321
                   choose_better = True, #added in pycaret==1.0.1
                   optimize = 'Accuracy', #added in pycaret==1.0.1
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
                   verbose = True):
    """
       
    
    Description:
    ------------
    This function ensembles the trained base estimator using the method defined in 
    'method' param (default = 'Bagging'). The output prints a score grid that shows 
    Accuracy, AUC, Recall, Precision, F1 and Kappa by fold (default = 10 Fold). 

    This function returns a trained model object.  

    Model must be created using create_model() or tune_model().

        Example
        -------
        from pycaret.datasets import get_data
        juice = get_data('juice')
        experiment_name = setup(data = juice,  target = 'Purchase')
        dt = create_model('dt')
        
        ensembled_dt = ensemble_model(dt)

        This will return an ensembled Decision Tree model using 'Bagging'.
        
    Parameters
    ----------
    estimator : object, default = None

    method: String, default = 'Bagging'
    Bagging method will create an ensemble meta-estimator that fits base 
    classifiers each on random subsets of the original dataset. The other
    available method is 'Boosting' which will create a meta-estimators by
    fitting a classifier on the original dataset and then fits additional 
    copies of the classifier on the same dataset but where the weights of 
    incorrectly classified instances are adjusted such that subsequent 
    classifiers focus more on difficult cases.
    
    fold: integer, default = 10
    Number of folds to be used in Kfold CV. Must be at least 2.
    
    n_estimators: integer, default = 10
    The number of base estimators in the ensemble.
    In case of perfect fit, the learning procedure is stopped early.

    round: integer, default = 4
    Number of decimal places the metrics in the score grid will be rounded to.

2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
    choose_better: Boolean, default = True
    When set to set to True, base estimator is returned when the metric doesn't 
    improve by ensemble_model. This gurantees the returned object would perform 
    atleast equivalent to base estimator created using create_model or model 
    returned by compare_models.

    optimize: string, default = 'Accuracy'
    Only used when choose_better is set to True. optimize parameter is used
    to compare emsembled model with base estimator. Values accepted in 
    optimize parameter are 'Accuracy', 'AUC', 'Recall', 'Precision', 'F1', 
    'Kappa', 'MCC'.

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
    verbose: Boolean, default = True
    Score grid is not printed when verbose is set to False.

    Returns:
    --------

    score grid:   A table containing the scores of the model across the kfolds. 
    -----------   Scoring metrics used are Accuracy, AUC, Recall, Precision, F1 
                  and Kappa. Mean and standard deviation of the scores across the 
                  folds are also returned.

    model:        trained ensembled model object
    -----------

    Warnings:
    ---------  
    - If target variable is multiclass (more than 2 classes), AUC will be returned 
      as zero (0.0).
        
        
    
    """
    
    
    '''
    
    ERROR HANDLING STARTS HERE
    
    '''
    
    #exception checking   
    import sys
        
    #Check for allowed method
    available_method = ['Bagging', 'Boosting']
    if method not in available_method:
        sys.exit("(Value Error): Method parameter only accepts two values 'Bagging' or 'Boosting'.")
    
    
    #check boosting conflict
    if method == 'Boosting':
        
        from sklearn.ensemble import AdaBoostClassifier
        
        try:
            if hasattr(estimator,'n_classes_'):
                if estimator.n_classes_ > 2:
                    check_model = estimator.estimator
                    check_model = AdaBoostClassifier(check_model, n_estimators=10, random_state=seed)
                    from sklearn.multiclass import OneVsRestClassifier
                    check_model = OneVsRestClassifier(check_model)
                    check_model.fit(X_train, y_train)
            else:
                check_model = AdaBoostClassifier(estimator, n_estimators=10, random_state=seed)
                check_model.fit(X_train, y_train)
        except:
            sys.exit("(Type Error): Estimator does not provide class_weights or predict_proba function and hence not supported for the Boosting method. Change the estimator or method to 'Bagging'.") 
        
    #checking fold parameter
    if type(fold) is not int:
        sys.exit('(Type Error): Fold parameter only accepts integer value.')
    
    #checking n_estimators parameter
    if type(n_estimators) is not int:
        sys.exit('(Type Error): n_estimators parameter only accepts integer value.')
    
    #checking round parameter
    if type(round) is not int:
        sys.exit('(Type Error): Round parameter only accepts integer value.')
 
    #checking verbose parameter
    if type(verbose) is not bool:
        sys.exit('(Type Error): Verbose parameter can only take argument as True or False.') 
    
    '''
    
    ERROR HANDLING ENDS HERE
    
    '''    
    
    #pre-load libraries
    import pandas as pd
    import datetime, time
    import ipywidgets as ipw
    from IPython.display import display, HTML, clear_output, update_display
    
    #progress bar
    progress = ipw.IntProgress(value=0, min=0, max=fold+4, step=1 , description='Processing: ')
2470 2471 2472 2473
    master_display = pd.DataFrame(columns=['Accuracy','AUC','Recall', 'Prec.', 'F1', 'Kappa', 'MCC'])
    if verbose:
        if html_param:
            display(progress)
2474 2475 2476 2477 2478 2479 2480 2481
    
    #display monitor
    timestampStr = datetime.datetime.now().strftime("%H:%M:%S")
    monitor = pd.DataFrame( [ ['Initiated' , '. . . . . . . . . . . . . . . . . .', timestampStr ], 
                             ['Status' , '. . . . . . . . . . . . . . . . . .' , 'Loading Dependencies' ],
                             ['ETC' , '. . . . . . . . . . . . . . . . . .',  'Calculating ETC'] ],
                              columns=['', ' ', '   ']).set_index('')
    
2482 2483 2484
    if verbose:
        if html_param:
            display(monitor, display_id = 'monitor')
2485 2486
    
    if verbose:
2487 2488 2489
        if html_param:
            display_ = display(master_display, display_id=True)
            display_id = display_.display_id
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
        
    #dependencies
    import numpy as np
    from sklearn import metrics
    from sklearn.model_selection import StratifiedKFold   
    
    #ignore warnings
    import warnings
    warnings.filterwarnings('ignore')    
    
    #Storing X_train and y_train in data_X and data_y parameter
    data_X = X_train.copy()
    data_y = y_train.copy()
    
    #reset index
    data_X.reset_index(drop=True, inplace=True)
    data_y.reset_index(drop=True, inplace=True)
    
    progress.value += 1
    
    #defining estimator as model
    model = estimator
    
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
    if optimize == 'Accuracy':
        compare_dimension = 'Accuracy' 
    elif optimize == 'AUC':
        compare_dimension = 'AUC' 
    elif optimize == 'Recall':
        compare_dimension = 'Recall'
    elif optimize == 'Precision':
        compare_dimension = 'Prec.'
    elif optimize == 'F1':
        compare_dimension = 'F1' 
    elif optimize == 'Kappa':
        compare_dimension = 'Kappa'
    elif optimize == 'MCC':
        compare_dimension = 'MCC' 
    
    def get_model_name(e):
        return str(e).split("(")[0]

    mn = get_model_name(estimator)

    if 'catboost' in str(estimator):
        mn = 'CatBoostClassifier'
    
    model_dict = {'ExtraTreesClassifier' : 'et',
                'GradientBoostingClassifier' : 'gbc', 
                'RandomForestClassifier' : 'rf',
                'LGBMClassifier' : 'lightgbm',
                'XGBClassifier' : 'xgboost',
                'AdaBoostClassifier' : 'ada', 
                'DecisionTreeClassifier' : 'dt', 
                'RidgeClassifier' : 'ridge',
                'LogisticRegression' : 'lr',
                'KNeighborsClassifier' : 'knn',
                'GaussianNB' : 'nb',
                'SGDClassifier' : 'svm',
                'SVC' : 'rbfsvm',
                'GaussianProcessClassifier' : 'gpc',
                'MLPClassifier' : 'mlp',
                'QuadraticDiscriminantAnalysis' : 'qda',
                'LinearDiscriminantAnalysis' : 'lda',
                'CatBoostClassifier' : 'catboost',
                'BaggingClassifier' : 'Bagging'}

    estimator__ = model_dict.get(mn)

2558 2559 2560 2561 2562
    '''
    MONITOR UPDATE STARTS
    '''
    
    monitor.iloc[1,1:] = 'Selecting Estimator'
2563 2564 2565
    if verbose:
        if html_param:
            update_display(monitor, display_id = 'monitor')
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
    
    '''
    MONITOR UPDATE ENDS
    '''
    
    if hasattr(estimator,'n_classes_'):
        if estimator.n_classes_ > 2:
            model = estimator.estimator
            
    if method == 'Bagging':
        from sklearn.ensemble import BaggingClassifier
2577
        model = BaggingClassifier(model,bootstrap=True,n_estimators=n_estimators, random_state=seed, n_jobs=n_jobs_param)
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
        
    else:
        from sklearn.ensemble import AdaBoostClassifier
        model = AdaBoostClassifier(model, n_estimators=n_estimators, random_state=seed)
    
    if y.value_counts().count() > 2:
        from sklearn.multiclass import OneVsRestClassifier
        model = OneVsRestClassifier(model)
        
    progress.value += 1
    
    '''
    MONITOR UPDATE STARTS
    '''
    
    monitor.iloc[1,1:] = 'Initializing CV'
2594 2595 2596
    if verbose:
        if html_param:
            update_display(monitor, display_id = 'monitor')
2597 2598 2599 2600 2601
    
    '''
    MONITOR UPDATE ENDS
    '''
    
2602
    kf = StratifiedKFold(fold, random_state=seed, shuffle=folds_shuffle_param)
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
    
    score_auc =np.empty((0,0))
    score_acc =np.empty((0,0))
    score_recall =np.empty((0,0))
    score_precision =np.empty((0,0))
    score_f1 =np.empty((0,0))
    score_kappa =np.empty((0,0))
    score_mcc =np.empty((0,0))
    score_training_time =np.empty((0,0))
    avgs_auc =np.empty((0,0))
    avgs_acc =np.empty((0,0))
    avgs_recall =np.empty((0,0))
    avgs_precision =np.empty((0,0))
    avgs_f1 =np.empty((0,0))
    avgs_kappa =np.empty((0,0))
    avgs_mcc =np.empty((0,0))
    avgs_training_time =np.empty((0,0))
    
    
    fold_num = 1 
    
    for train_i , test_i in kf.split(data_X,data_y):
        
        t0 = time.time()
        
        '''
        MONITOR UPDATE STARTS
        '''
    
        monitor.iloc[1,1:] = 'Fitting Fold ' + str(fold_num) + ' of ' + str(fold)
2633 2634 2635
        if verbose:
            if html_param:
                update_display(monitor, display_id = 'monitor')
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707

        '''
        MONITOR UPDATE ENDS
        '''
        
        Xtrain,Xtest = data_X.iloc[train_i], data_X.iloc[test_i]
        ytrain,ytest = data_y.iloc[train_i], data_y.iloc[test_i]
        time_start=time.time()
        if hasattr(model, 'predict_proba'):
        
            model.fit(Xtrain,ytrain)
            pred_prob = model.predict_proba(Xtest)
            pred_prob = pred_prob[:,1]
            pred_ = model.predict(Xtest)
            sca = metrics.accuracy_score(ytest,pred_)
            
            if y.value_counts().count() > 2:
                sc = 0
                recall = metrics.recall_score(ytest,pred_, average='macro')                
                precision = metrics.precision_score(ytest,pred_, average = 'weighted')
                f1 = metrics.f1_score(ytest,pred_, average='weighted')
                
            else:
                try:
                    sc = metrics.roc_auc_score(ytest,pred_prob)
                except:
                    sc = 0
                recall = metrics.recall_score(ytest,pred_)                
                precision = metrics.precision_score(ytest,pred_)
                f1 = metrics.f1_score(ytest,pred_)
        else:
            
            model.fit(Xtrain,ytrain)
            pred_prob = 0.00
            pred_ = model.predict(Xtest)
            sca = metrics.accuracy_score(ytest,pred_)
            
            if y.value_counts().count() > 2:
                sc = 0
                recall = metrics.recall_score(ytest,pred_, average='macro')                
                precision = metrics.precision_score(ytest,pred_, average = 'weighted')
                f1 = metrics.f1_score(ytest,pred_, average='weighted')

            else:
                try:
                    sc = metrics.roc_auc_score(ytest,pred_prob)
                except:
                    sc = 0
                recall = metrics.recall_score(ytest,pred_)                
                precision = metrics.precision_score(ytest,pred_)
                f1 = metrics.f1_score(ytest,pred_)
                
        time_end=time.time()
        kappa = metrics.cohen_kappa_score(ytest,pred_)
        mcc = metrics.matthews_corrcoef(ytest,pred_)
        training_time=time_end-time_start
        score_acc = np.append(score_acc,sca)
        score_auc = np.append(score_auc,sc)
        score_recall = np.append(score_recall,recall)
        score_precision = np.append(score_precision,precision)
        score_f1 =np.append(score_f1,f1)
        score_kappa =np.append(score_kappa,kappa) 
        score_mcc =np.append(score_mcc,mcc)
        score_training_time =np.append(score_training_time,training_time)
        progress.value += 1
        
                
        '''
        This section is created to update_display() as code loops through the fold defined.
        '''
        
        fold_results = pd.DataFrame({'Accuracy':[sca], 'AUC': [sc], 'Recall': [recall], 
2708
                                     'Prec.': [precision], 'F1': [f1], 'Kappa': [kappa], 'MCC':[mcc]}).round(round)
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
        master_display = pd.concat([master_display, fold_results],ignore_index=True)
        fold_results = []
        
        '''
        
        TIME CALCULATION SUB-SECTION STARTS HERE
        
        '''
        t1 = time.time()
        
        tt = (t1 - t0) * (fold-fold_num) / 60
        tt = np.around(tt, 2)
        
        if tt < 1:
            tt = str(np.around((tt * 60), 2))
            ETC = tt + ' Seconds Remaining'
                
        else:
            tt = str (tt)
            ETC = tt + ' Minutes Remaining'
            
2730 2731 2732
        if verbose:
            if html_param:
                update_display(ETC, display_id = 'ETC')
2733 2734 2735 2736 2737 2738 2739 2740 2741
            
        fold_num += 1
        
        
        '''
        MONITOR UPDATE STARTS
        '''

        monitor.iloc[2,1:] = ETC
2742 2743 2744
        if verbose:
            if html_param:
                update_display(monitor, display_id = 'monitor')
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756

        '''
        MONITOR UPDATE ENDS
        '''
        
        '''
        
        TIME CALCULATION ENDS HERE
        
        '''

        if verbose:
2757 2758
            if html_param:
                update_display(master_display, display_id = display_id)
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
        
        '''
        
        Update_display() ends here
        
        '''
        
    mean_acc=np.mean(score_acc)
    mean_auc=np.mean(score_auc)
    mean_recall=np.mean(score_recall)
    mean_precision=np.mean(score_precision)
    mean_f1=np.mean(score_f1)
    mean_kappa=np.mean(score_kappa)
    mean_mcc=np.mean(score_mcc)
    mean_training_time=np.mean(score_training_time)
    std_acc=np.std(score_acc)
    std_auc=np.std(score_auc)
    std_recall=np.std(score_recall)
    std_precision=np.std(score_precision)
    std_f1=np.std(score_f1)
    std_kappa=np.std(score_kappa)
    std_mcc=np.std(score_mcc)
    std_training_time=np.std(score_training_time)

    avgs_acc = np.append(avgs_acc, mean_acc)
    avgs_acc = np.append(avgs_acc, std_acc) 
    avgs_auc = np.append(avgs_auc, mean_auc)
    avgs_auc = np.append(avgs_auc, std_auc)
    avgs_recall = np.append(avgs_recall, mean_recall)
    avgs_recall = np.append(avgs_recall, std_recall)
    avgs_precision = np.append(avgs_precision, mean_precision)
    avgs_precision = np.append(avgs_precision, std_precision)
    avgs_f1 = np.append(avgs_f1, mean_f1)
    avgs_f1 = np.append(avgs_f1, std_f1)
    avgs_kappa = np.append(avgs_kappa, mean_kappa)
    avgs_kappa = np.append(avgs_kappa, std_kappa)
    
    avgs_mcc = np.append(avgs_mcc, mean_mcc)
    avgs_mcc = np.append(avgs_mcc, std_mcc)
    
    avgs_training_time = np.append(avgs_training_time, mean_training_time)
    avgs_training_time = np.append(avgs_training_time, std_training_time)

    model_results = pd.DataFrame({'Accuracy': score_acc, 'AUC': score_auc, 'Recall' : score_recall, 'Prec.' : score_precision , 
2803 2804
                     'F1' : score_f1, 'Kappa' : score_kappa, 'MCC':score_mcc})
    model_results_unpivot = pd.melt(model_results,value_vars=['Accuracy', 'AUC', 'Recall', 'Prec.', 'F1', 'Kappa','MCC'])
2805 2806
    model_results_unpivot.columns = ['Metric', 'Measure']
    model_avgs = pd.DataFrame({'Accuracy': avgs_acc, 'AUC': avgs_auc, 'Recall' : avgs_recall, 'Prec.' : avgs_precision , 
2807
                     'F1' : avgs_f1, 'Kappa' : avgs_kappa,'MCC':avgs_mcc},index=['Mean', 'SD'])
2808 2809 2810 2811

    model_results = model_results.append(model_avgs)
    model_results = model_results.round(round)  
    
2812 2813 2814 2815
    # yellow the mean
    model_results=model_results.style.apply(lambda x: ['background: yellow' if (x.name == 'Mean') else '' for i in x], axis=1)
    model_results = model_results.set_precision(round)

2816 2817 2818
    progress.value += 1
    
    #refitting the model on complete X_train, y_train
2819 2820 2821 2822
    monitor.iloc[1,1:] = 'Finalizing Model'
    if verbose:
        if html_param:
            update_display(monitor, display_id = 'monitor')
2823 2824 2825
    
    model.fit(data_X, data_y)
    
2826 2827
    #storing results in create_model_container
    create_model_container.append(model_results.data)
2828
    display_container.append(model_results.data)
2829 2830 2831 2832

    #storing results in master_model_container
    master_model_container.append(model)

2833 2834
    progress.value += 1
    
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
    '''
    When choose_better sets to True. optimize metric in scoregrid is
    compared with base model created using create_model so that ensemble_model
    functions return the model with better score only. This will ensure 
    model performance is atleast equivalent to what is seen is compare_models 
    '''
    if choose_better:

        if verbose:
            if html_param:
                monitor.iloc[1,1:] = 'Compiling Final Results'
                monitor.iloc[2,1:] = 'Almost Finished'
                update_display(monitor, display_id = 'monitor')

        #creating base model for comparison
        base_model = create_model(estimator=estimator, verbose = False)
        base_model_results = create_model_container[-1][compare_dimension][-2:][0]
        ensembled_model_results = create_model_container[-2][compare_dimension][-2:][0]

        if ensembled_model_results > base_model_results:
            model = model
        else:
            model = base_model
   
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
    #storing into experiment
    model_name = str(model).split("(")[0]
    tup = (model_name,model)
    experiment__.append(tup)
    
    nam = str(model_name) + ' Score Grid'
    tup = (nam, model_results)
    experiment__.append(tup)
    
    if verbose:
        clear_output()
2870 2871 2872 2873
        if html_param:
            display(model_results)
        else:
            print(model_results.data)
2874 2875
    else:
        clear_output()
2876 2877
        
    return model
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041

def plot_model(estimator, 
               plot = 'auc'): 
    
    
    """
          
    Description:
    ------------
    This function takes a trained model object and returns a plot based on the
    test / hold-out set. The process may require the model to be re-trained in
    certain cases. See list of plots supported below. 
    
    Model must be created using create_model() or tune_model().

        Example:
        --------
        from pycaret.datasets import get_data
        juice = get_data('juice')
        experiment_name = setup(data = juice,  target = 'Purchase')
        lr = create_model('lr')
        
        plot_model(lr)

        This will return an AUC plot of a trained Logistic Regression model.

    Parameters
    ----------
    estimator : object, default = none
    A trained model object should be passed as an estimator. 

    plot : string, default = auc
    Enter abbreviation of type of plot. The current list of plots supported are:

    Name                        Abbreviated String     Original Implementation 
    ---------                   ------------------     -----------------------
    Area Under the Curve         'auc'                 .. / rocauc.html
    Discrimination Threshold     'threshold'           .. / threshold.html
    Precision Recall Curve       'pr'                  .. / prcurve.html
    Confusion Matrix             'confusion_matrix'    .. / confusion_matrix.html
    Class Prediction Error       'error'               .. / class_prediction_error.html
    Classification Report        'class_report'        .. / classification_report.html
    Decision Boundary            'boundary'            .. / boundaries.html
    Recursive Feat. Selection    'rfe'                 .. / rfecv.html
    Learning Curve               'learning'            .. / learning_curve.html
    Manifold Learning            'manifold'            .. / manifold.html
    Calibration Curve            'calibration'         .. / calibration_curve.html
    Validation Curve             'vc'                  .. / validation_curve.html
    Dimension Learning           'dimension'           .. / radviz.html
    Feature Importance           'feature'                   N/A 
    Model Hyperparameter         'parameter'                 N/A 

    ** https://www.scikit-yb.org/en/latest/api/classifier/<reference>

    Returns:
    --------

    Visual Plot:  Prints the visual plot. 
    ------------

    Warnings:
    ---------
    -  'svm' and 'ridge' doesn't support the predict_proba method. As such, AUC and 
        calibration plots are not available for these estimators.
       
    -   When the 'max_features' parameter of a trained model object is not equal to 
        the number of samples in training set, the 'rfe' plot is not available.
              
    -   'calibration', 'threshold', 'manifold' and 'rfe' plots are not available for
         multiclass problems.
           
             

    """  
    
    
    '''
    
    ERROR HANDLING STARTS HERE
    
    '''
    
    #exception checking   
    import sys
    
    #checking plots (string)
    available_plots = ['auc', 'threshold', 'pr', 'confusion_matrix', 'error', 'class_report', 'boundary', 'rfe', 'learning',
                       'manifold', 'calibration', 'vc', 'dimension', 'feature', 'parameter']
    
    if plot not in available_plots:
        sys.exit('(Value Error): Plot Not Available. Please see docstring for list of available Plots.')
    
    #multiclass plot exceptions:
    multiclass_not_available = ['calibration', 'threshold', 'manifold', 'rfe']
    if y.value_counts().count() > 2:
        if plot in multiclass_not_available:
            sys.exit('(Value Error): Plot Not Available for multiclass problems. Please see docstring for list of available Plots.')
        
    #exception for CatBoost
    if 'CatBoostClassifier' in str(type(estimator)):
        sys.exit('(Estimator Error): CatBoost estimator is not compatible with plot_model function, try using Catboost with interpret_model instead.')
        
    #checking for auc plot
    if not hasattr(estimator, 'predict_proba') and plot == 'auc':
        sys.exit('(Type Error): AUC plot not available for estimators with no predict_proba attribute.')
    
    #checking for auc plot
    if not hasattr(estimator, 'predict_proba') and plot == 'auc':
        sys.exit('(Type Error): AUC plot not available for estimators with no predict_proba attribute.')
    
    #checking for calibration plot
    if not hasattr(estimator, 'predict_proba') and plot == 'calibration':
        sys.exit('(Type Error): Calibration plot not available for estimators with no predict_proba attribute.')
     
    #checking for rfe
    if hasattr(estimator,'max_features') and plot == 'rfe' and estimator.max_features_ != X_train.shape[1]:
        sys.exit('(Type Error): RFE plot not available when max_features parameter is not set to None.')
        
    #checking for feature plot
    if not ( hasattr(estimator, 'coef_') or hasattr(estimator,'feature_importances_') ) and plot == 'feature':
        sys.exit('(Type Error): Feature Importance plot not available for estimators that doesnt support coef_ or feature_importances_ attribute.')
    
    '''
    
    ERROR HANDLING ENDS HERE
    
    '''
    
    #pre-load libraries
    import pandas as pd
    import ipywidgets as ipw
    from IPython.display import display, HTML, clear_output, update_display
    
    #progress bar
    progress = ipw.IntProgress(value=0, min=0, max=5, step=1 , description='Processing: ')
    display(progress)
    
    #ignore warnings
    import warnings
    warnings.filterwarnings('ignore') 
    
    #general dependencies
    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    
    progress.value += 1
    
    #defining estimator as model locally
    model = estimator
    
    progress.value += 1
    
        
    if plot == 'auc':
        
        from yellowbrick.classifier import ROCAUC
        progress.value += 1
        visualizer = ROCAUC(model)
        visualizer.fit(X_train, y_train)
        progress.value += 1
        visualizer.score(X_test, y_test)
        progress.value += 1
        clear_output()
3042
        visualizer.show(outpath="image2.png")
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
        visualizer.poof()
        
    elif plot == 'threshold':
        
        from yellowbrick.classifier import DiscriminationThreshold
        progress.value += 1
        visualizer = DiscriminationThreshold(model, random_state=seed)
        visualizer.fit(X_train, y_train)
        progress.value += 1
        visualizer.score(X_test, y_test)
        progress.value += 1
        clear_output()
        visualizer.poof()
    
    elif plot == 'pr':
        
        from yellowbrick.classifier import PrecisionRecallCurve
        progress.value += 1
        visualizer = PrecisionRecallCurve(model, random_state=seed)
        visualizer.fit(X_train, y_train)
        progress.value += 1
        visualizer.score(X_test, y_test)
        progress.value += 1
        clear_output()
        visualizer.poof()

    elif plot == 'confusion_matrix':
        
        from yellowbrick.classifier import ConfusionMatrix
        progress.value += 1
        visualizer = ConfusionMatrix(model, random_state=seed, fontsize = 15, cmap="Greens")
        visualizer.fit(X_train, y_train)
        progress.value += 1
        visualizer.score(X_test, y_test)
        progress.value += 1
        clear_output()
        visualizer.poof()
    
    elif plot == 'error':
        
        from yellowbrick.classifier import ClassPredictionError
        progress.value += 1
        visualizer = ClassPredictionError(model, random_state=seed)
        visualizer.fit(X_train, y_train)
        progress.value += 1
        visualizer.score(X_test, y_test)
        progress.value += 1
        clear_output()
        visualizer.poof()

    elif plot == 'class_report':
        
        from yellowbrick.classifier import ClassificationReport
        progress.value += 1
        visualizer = ClassificationReport(model, random_state=seed, support=True)
        visualizer.fit(X_train, y_train)
        progress.value += 1
        visualizer.score(X_test, y_test)
        progress.value += 1
        clear_output()
        visualizer.poof()
        
    elif plot == 'boundary':
        
        from sklearn.preprocessing import StandardScaler
        from sklearn.decomposition import PCA
        from yellowbrick.contrib.classifier import DecisionViz        
        from copy import deepcopy
        model2 = deepcopy(estimator)
        
        progress.value += 1
        
        X_train_transformed = X_train.copy()
        X_test_transformed = X_test.copy()
        X_train_transformed = X_train_transformed.select_dtypes(include='float64')
        X_test_transformed = X_test_transformed.select_dtypes(include='float64')
        X_train_transformed = StandardScaler().fit_transform(X_train_transformed)
        X_test_transformed = StandardScaler().fit_transform(X_test_transformed)
        pca = PCA(n_components=2, random_state = seed)
        X_train_transformed = pca.fit_transform(X_train_transformed)
        X_test_transformed = pca.fit_transform(X_test_transformed)
        
        progress.value += 1
        
        y_train_transformed = y_train.copy()
        y_test_transformed = y_test.copy()
        y_train_transformed = np.array(y_train_transformed)
        y_test_transformed = np.array(y_test_transformed)
        
        viz_ = DecisionViz(model2)
        viz_.fit(X_train_transformed, y_train_transformed, features=['Feature One', 'Feature Two'], classes=['A', 'B'])
        viz_.draw(X_test_transformed, y_test_transformed)
        progress.value += 1
        clear_output()
        viz_.poof()
        
    elif plot == 'rfe':
        
        from yellowbrick.model_selection import RFECV 
        progress.value += 1
        visualizer = RFECV(model, cv=10)
        progress.value += 1
        visualizer.fit(X_train, y_train)
        progress.value += 1
        clear_output()
        visualizer.poof()
           
    elif plot == 'learning':
        
        from yellowbrick.model_selection import LearningCurve
        progress.value += 1
        sizes = np.linspace(0.3, 1.0, 10)  
M
Moez Ali 已提交
3155
        visualizer = LearningCurve(model, cv=10, train_sizes=sizes, n_jobs=n_jobs_param, random_state=seed)
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
        progress.value += 1
        visualizer.fit(X_train, y_train)
        progress.value += 1
        clear_output()
        visualizer.poof()
        
    elif plot == 'manifold':
        
        from yellowbrick.features import Manifold
        
        progress.value += 1
        X_train_transformed = X_train.select_dtypes(include='float64') 
        visualizer = Manifold(manifold='tsne', random_state = seed)
        progress.value += 1
        visualizer.fit_transform(X_train_transformed, y_train)
        progress.value += 1
        clear_output()
        visualizer.poof()       
        
    elif plot == 'calibration':      
                
        from sklearn.calibration import calibration_curve
        
        model_name = str(model).split("(")[0]
        
        plt.figure(figsize=(7, 6))
        ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)

        ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
        progress.value += 1
        prob_pos = model.predict_proba(X_test)[:, 1]
        prob_pos = (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min())
        fraction_of_positives, mean_predicted_value = calibration_curve(y_test, prob_pos, n_bins=10)
        progress.value += 1
        ax1.plot(mean_predicted_value, fraction_of_positives, "s-",label="%s" % (model_name, ))
    
        ax1.set_ylabel("Fraction of positives")
        ax1.set_ylim([0, 1])
        ax1.set_xlim([0, 1])
        ax1.legend(loc="lower right")
        ax1.set_title('Calibration plots  (reliability curve)')
        ax1.set_facecolor('white')
        ax1.grid(b=True, color='grey', linewidth=0.5, linestyle = '-')
        plt.tight_layout()
        progress.value += 1
        clear_output()
        plt.show() 
        
    elif plot == 'vc':
        
        model_name = str(model).split("(")[0]
        
        #SGD Classifier
        if model_name == 'SGDClassifier':
            param_name='l1_ratio'
            param_range = np.arange(0,1, 0.01)
            
        elif model_name == 'LinearDiscriminantAnalysis':
            sys.exit('(Value Error): Shrinkage Parameter not supported in Validation Curve Plot.')
        
        #tree based models
        elif hasattr(model, 'max_depth'):
            param_name='max_depth'
            param_range = np.arange(1,11)
        
        #knn
        elif hasattr(model, 'n_neighbors'):
            param_name='n_neighbors'
            param_range = np.arange(1,11)            
            
        #MLP / Ridge
        elif hasattr(model, 'alpha'):
            param_name='alpha'
            param_range = np.arange(0,1,0.1)     
            
        #Logistic Regression
        elif hasattr(model, 'C'):
            param_name='C'
            param_range = np.arange(1,11)
            
        #Bagging / Boosting 
        elif hasattr(model, 'n_estimators'):
            param_name='n_estimators'
            param_range = np.arange(1,100,10)   
            
        #Bagging / Boosting / gbc / ada / 
        elif hasattr(model, 'n_estimators'):
            param_name='n_estimators'
            param_range = np.arange(1,100,10)   
            
        #Naive Bayes
        elif hasattr(model, 'var_smoothing'):
            param_name='var_smoothing'
            param_range = np.arange(0.1, 1, 0.01)
            
        #QDA
        elif hasattr(model, 'reg_param'):
            param_name='reg_param'
            param_range = np.arange(0,1,0.1)
            
        #GPC
        elif hasattr(model, 'max_iter_predict'):
            param_name='max_iter_predict'
            param_range = np.arange(100,1000,100)        
        
        else:
            clear_output()
            sys.exit('(Type Error): Plot not supported for this estimator. Try different estimator.')
        #max_iter_predict
            
        progress.value += 1
            
        from yellowbrick.model_selection import ValidationCurve
        viz = ValidationCurve(model, param_name=param_name, param_range=param_range,cv=10, 
                              random_state=seed)
        viz.fit(X_train, y_train)
        progress.value += 1
        clear_output()
        viz.poof()
        
    elif plot == 'dimension':
    
        from yellowbrick.features import RadViz
        from sklearn.preprocessing import StandardScaler
        from sklearn.decomposition import PCA
        progress.value += 1
        X_train_transformed = X_train.select_dtypes(include='float64') 
        X_train_transformed = StandardScaler().fit_transform(X_train_transformed)
        y_train_transformed = np.array(y_train)
        
        features=min(round(len(X_train.columns) * 0.3,0),5)
        features = int(features)
        
        pca = PCA(n_components=features, random_state=seed)
        X_train_transformed = pca.fit_transform(X_train_transformed)
        progress.value += 1
        #classes = ["1", "0"]
        classes = y_train.unique().tolist()
        visualizer = RadViz(classes=classes, alpha=0.25)
        visualizer.fit(X_train_transformed, y_train_transformed)     
        visualizer.transform(X_train_transformed)
        progress.value += 1
        clear_output()
        visualizer.poof()
        
    elif plot == 'feature':
        
        if hasattr(estimator,'coef_'):
            variables = abs(model.coef_[0])
        else:
            variables = abs(model.feature_importances_)
        col_names = np.array(X_train.columns)
        coef_df = pd.DataFrame({'Variable': X_train.columns, 'Value': variables})
        sorted_df = coef_df.sort_values(by='Value')
        sorted_df = sorted_df.sort_values(by='Value', ascending=False)
        sorted_df = sorted_df.head(10)
        sorted_df = sorted_df.sort_values(by='Value')
        my_range=range(1,len(sorted_df.index)+1)
        progress.value += 1
        plt.figure(figsize=(8,5))
        plt.hlines(y=my_range, xmin=0, xmax=sorted_df['Value'], color='skyblue')
        plt.plot(sorted_df['Value'], my_range, "o")
        progress.value += 1
        plt.yticks(my_range, sorted_df['Variable'])
        plt.title("Feature Importance Plot")
        plt.xlabel('Variable Importance')
        plt.ylabel('Features')
        progress.value += 1
        clear_output()
    
    elif plot == 'parameter':
        
        clear_output()
        param_df = pd.DataFrame.from_dict(estimator.get_params(estimator), orient='index', columns=['Parameters'])
        display(param_df)

3332

3333
def compare_models(blacklist = None,
3334
                   whitelist = None, #added in pycaret==1.0.1
3335 3336 3337
                   fold = 10, 
                   round = 4, 
                   sort = 'Accuracy',
M
Moez Ali 已提交
3338 3339 3340
                   n_select = 1, #added in pycaret==1.0.1
                   turbo = True,
                   verbose = True): #added in pycaret==1.0.1
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
    
    """
      
    Description:
    ------------
    This function uses all models in the model library and scores them using Stratified 
    Cross Validation. The output prints a score grid that shows Accuracy, AUC, Recall,
    Precision, F1 and Kappa by fold (default CV = 10 Folds) of all the available models 
    in the model library.
    
    When turbo is set to True ('rbfsvm', 'gpc' and 'mlp') are excluded due to longer
3352
    training time. By default turbo param is set to True.
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386

    List of models that support binary or multiclass problems in Model Library:

    Estimator                   Abbreviated String     sklearn Implementation 
    ---------                   ------------------     -----------------------
    Logistic Regression         'lr'                   linear_model.LogisticRegression
    K Nearest Neighbour         'knn'                  neighbors.KNeighborsClassifier
    Naives Bayes                'nb'                   naive_bayes.GaussianNB
    Decision Tree               'dt'                   tree.DecisionTreeClassifier
    SVM (Linear)                'svm'                  linear_model.SGDClassifier
    SVM (RBF)                   'rbfsvm'               svm.SVC
    Gaussian Process            'gpc'                  gaussian_process.GPC
    Multi Level Perceptron      'mlp'                  neural_network.MLPClassifier
    Ridge Classifier            'ridge'                linear_model.RidgeClassifier
    Random Forest               'rf'                   ensemble.RandomForestClassifier
    Quadratic Disc. Analysis    'qda'                  discriminant_analysis.QDA 
    AdaBoost                    'ada'                  ensemble.AdaBoostClassifier
    Gradient Boosting           'gbc'                  ensemble.GradientBoostingClassifier
    Linear Disc. Analysis       'lda'                  discriminant_analysis.LDA 
    Extra Trees Classifier      'et'                   ensemble.ExtraTreesClassifier
    Extreme Gradient Boosting   'xgboost'              xgboost.readthedocs.io
    Light Gradient Boosting     'lightgbm'             github.com/microsoft/LightGBM
    CatBoost Classifier         'catboost'             https://catboost.ai

        Example:
        --------
        from pycaret.datasets import get_data
        juice = get_data('juice')
        experiment_name = setup(data = juice,  target = 'Purchase')
        
        compare_models() 

        This will return the averaged score grid of all the models except 'rbfsvm', 'gpc' 
        and 'mlp'. When turbo param is set to False, all models including 'rbfsvm', 'gpc' 
M
Moez Ali 已提交
3387
        and 'mlp' are used but this may result in longer TT (Sec)s.
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
        
        compare_models( blacklist = [ 'knn', 'gbc' ] , turbo = False) 

        This will return a comparison of all models except K Nearest Neighbour and
        Gradient Boosting Classifier.
        
        compare_models( blacklist = [ 'knn', 'gbc' ] , turbo = True) 

        This will return comparison of all models except K Nearest Neighbour, 
        Gradient Boosting Classifier, SVM (RBF), Gaussian Process Classifier and
        Multi Level Perceptron.
        

    Parameters
    ----------
    blacklist: string, default = None
    In order to omit certain models from the comparison, the abbreviation string 
    (see above list) can be passed as list in blacklist param. This is normally
3406 3407 3408 3409 3410
    done to be more efficient with time.

    whitelist: string, default = None
    In order to run only certain models for the comparison, the abbreviation string 
    (see above list) can be passed as a list in whitelist param. 
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421

    fold: integer, default = 10
    Number of folds to be used in Kfold CV. Must be at least 2. 

    round: integer, default = 4
    Number of decimal places the metrics in the score grid will be rounded to.
  
    sort: string, default = 'Accuracy'
    The scoring measure specified is used for sorting the average score grid
    Other options are 'AUC', 'Recall', 'Precision', 'F1' and 'Kappa'.

M
Moez Ali 已提交
3422 3423 3424 3425
    n_select: int, default = 3
    Number of top_n models to return. use negative argument for bottom selection.
    for example, n_select = -3 means bottom 3 models.

3426 3427
    turbo: Boolean, default = True
    When turbo is set to True, it blacklists estimators that have longer
M
Moez Ali 已提交
3428 3429 3430 3431
    training time.

    verbose: Boolean, default = True
    Score grid is not printed when verbose is set to False.
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
    
    Returns:
    --------

    score grid:   A table containing the scores of the model across the kfolds. 
    -----------   Scoring metrics used are Accuracy, AUC, Recall, Precision, F1 
                  and Kappa. Mean and standard deviation of the scores across the 
                  folds are also returned.

    Warnings:
    ---------
    - compare_models() though attractive, might be time consuming with large 
      datasets. By default turbo is set to True, which blacklists models that
      have longer training times. Changing turbo parameter to False may result 
      in very high training times with datasets where number of samples exceed 
      10,000.
      
    - If target variable is multiclass (more than 2 classes), AUC will be 
      returned as zero (0.0)
      
    - This function doesn't return model object.
      
             
    
    """
    
    '''
    
    ERROR HANDLING STARTS HERE
    
    '''
    
    #exception checking   
    import sys
    
    #checking error for blacklist (string)
    available_estimators = ['lr', 'knn', 'nb', 'dt', 'svm', 'rbfsvm', 'gpc', 'mlp', 'ridge', 'rf', 'qda', 'ada', 
                            'gbc', 'lda', 'et', 'xgboost', 'lightgbm', 'catboost']
    
    if blacklist != None:
        for i in blacklist:
            if i not in available_estimators:
                sys.exit('(Value Error): Estimator Not Available. Please see docstring for list of available estimators.')
        
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
    if whitelist != None:   
        for i in whitelist:
            if i not in available_estimators:
                sys.exit('(Value Error): Estimator Not Available. Please see docstring for list of available estimators.')

    #whitelist and blacklist together check
    if whitelist is not None:
        if blacklist is not None:
            sys.exit('(Type Error): Cannot use blacklist parameter when whitelist is used to compare models.')

3486 3487 3488 3489 3490 3491 3492 3493 3494
    #checking fold parameter
    if type(fold) is not int:
        sys.exit('(Type Error): Fold parameter only accepts integer value.')
    
    #checking round parameter
    if type(round) is not int:
        sys.exit('(Type Error): Round parameter only accepts integer value.')
 
    #checking sort parameter
M
Moez Ali 已提交
3495
    allowed_sort = ['Accuracy', 'Recall', 'Precision', 'F1', 'AUC', 'Kappa', 'MCC', 'TT (Sec)']
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
    if sort not in allowed_sort:
        sys.exit('(Value Error): Sort method not supported. See docstring for list of available parameters.')
    
    #checking optimize parameter for multiclass
    if y.value_counts().count() > 2:
        if sort == 'AUC':
            sys.exit('(Type Error): AUC metric not supported for multiclass problems. See docstring for list of other optimization parameters.')
            
    '''
    
    ERROR HANDLING ENDS HERE
    
    '''
    
    #pre-load libraries
    import pandas as pd
    import time, datetime
    import ipywidgets as ipw
    from IPython.display import display, HTML, clear_output, update_display
    
    #progress bar
    if blacklist is None:
        len_of_blacklist = 0
    else:
        len_of_blacklist = len(blacklist)
        
    if turbo:
        len_mod = 15 - len_of_blacklist
    else:
        len_mod = 18 - len_of_blacklist
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
    
    #n_select param
    if type(n_select) is list:
        n_select_num = len(n_select)
    else:
        n_select_num = abs(n_select)

    if whitelist is not None:
        wl = len(whitelist)
        bl = len_of_blacklist
        len_mod = wl - bl

    if whitelist is not None:
        opt = 10
    else:
        opt = 25
3542
        
3543
    progress = ipw.IntProgress(value=0, min=0, max=(fold*len_mod)+opt+n_select_num, step=1 , description='Processing: ')
M
Moez Ali 已提交
3544 3545 3546 3547
    master_display = pd.DataFrame(columns=['Model', 'Accuracy','AUC','Recall', 'Prec.', 'F1', 'Kappa', 'MCC', 'TT (Sec)'])
    if verbose:
        if html_param:
            display(progress)
3548 3549 3550 3551 3552 3553 3554 3555 3556
    
    #display monitor
    timestampStr = datetime.datetime.now().strftime("%H:%M:%S")
    monitor = pd.DataFrame( [ ['Initiated' , '. . . . . . . . . . . . . . . . . .', timestampStr ], 
                             ['Status' , '. . . . . . . . . . . . . . . . . .' , 'Loading Dependencies' ],
                             ['Estimator' , '. . . . . . . . . . . . . . . . . .' , 'Compiling Library' ],
                             ['ETC' , '. . . . . . . . . . . . . . . . . .',  'Calculating ETC'] ],
                              columns=['', ' ', '   ']).set_index('')
    
M
Moez Ali 已提交
3557 3558 3559 3560 3561
    if verbose:
        if html_param:
            display(monitor, display_id = 'monitor')
            display_ = display(master_display, display_id=True)
            display_id = display_.display_id
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
    
    
    #ignore warnings
    import warnings
    warnings.filterwarnings('ignore') 
    
    #general dependencies
    import numpy as np
    import random
    from sklearn import metrics
    from sklearn.model_selection import StratifiedKFold
    import pandas.io.formats.style
    
    #defining X_train and y_train as data_X and data_y
    data_X = X_train
    data_y=y_train
    
    progress.value += 1
    
    #import sklearn dependencies
    from sklearn.linear_model import LogisticRegression
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.naive_bayes import GaussianNB
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.linear_model import SGDClassifier
    from sklearn.svm import SVC
    from sklearn.gaussian_process import GaussianProcessClassifier
    from sklearn.neural_network import MLPClassifier
    from sklearn.linear_model import RidgeClassifier
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
    from sklearn.ensemble import AdaBoostClassifier
    from sklearn.ensemble import GradientBoostingClassifier
    from sklearn.discriminant_analysis import LinearDiscriminantAnalysis 
    from sklearn.ensemble import ExtraTreesClassifier
    from sklearn.multiclass import OneVsRestClassifier
    from xgboost import XGBClassifier
    from catboost import CatBoostClassifier
    try:
        import lightgbm as lgb
    except:
        pass
    
   
    progress.value += 1
    
    #defining sort parameter (making Precision equivalent to Prec. )
    if sort == 'Precision':
        sort = 'Prec.'
    else:
        sort = sort
    
    
    '''
    MONITOR UPDATE STARTS
    '''
    
    monitor.iloc[1,1:] = 'Loading Estimator'
M
Moez Ali 已提交
3620 3621 3622
    if verbose:
        if html_param:
            update_display(monitor, display_id = 'monitor')
3623 3624 3625 3626 3627
    
    '''
    MONITOR UPDATE ENDS
    '''
    #creating model object 
3628
    lr = LogisticRegression(random_state=seed) #dont add n_jobs_param here. It slows doesn Logistic Regression somehow.
M
Moez Ali 已提交
3629
    knn = KNeighborsClassifier(n_jobs=n_jobs_param)
3630 3631
    nb = GaussianNB()
    dt = DecisionTreeClassifier(random_state=seed)
M
Moez Ali 已提交
3632
    svm = SGDClassifier(max_iter=1000, tol=0.001, random_state=seed, n_jobs=n_jobs_param)
3633
    rbfsvm = SVC(gamma='auto', C=1, probability=True, kernel='rbf', random_state=seed)
M
Moez Ali 已提交
3634
    gpc = GaussianProcessClassifier(random_state=seed, n_jobs=n_jobs_param)
3635 3636
    mlp = MLPClassifier(max_iter=500, random_state=seed)
    ridge = RidgeClassifier(random_state=seed)
M
Moez Ali 已提交
3637
    rf = RandomForestClassifier(n_estimators=10, random_state=seed, n_jobs=n_jobs_param)
3638 3639 3640 3641
    qda = QuadraticDiscriminantAnalysis()
    ada = AdaBoostClassifier(random_state=seed)
    gbc = GradientBoostingClassifier(random_state=seed)
    lda = LinearDiscriminantAnalysis()
M
Moez Ali 已提交
3642 3643 3644 3645
    et = ExtraTreesClassifier(random_state=seed, n_jobs=n_jobs_param)
    xgboost = XGBClassifier(random_state=seed, verbosity=0, n_jobs=n_jobs_param)
    lightgbm = lgb.LGBMClassifier(random_state=seed, n_jobs=n_jobs_param)
    catboost = CatBoostClassifier(random_state=seed, silent = True, thread_count=n_jobs_param) 
3646 3647 3648
    
    progress.value += 1
    
M
Moez Ali 已提交
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
    model_dict = {'Logistic Regression' : 'lr',
                   'Linear Discriminant Analysis' : 'lda', 
                   'Ridge Classifier' : 'ridge', 
                   'Extreme Gradient Boosting' : 'xgboost',
                   'Ada Boost Classifier' : 'ada', 
                   'CatBoost Classifier' : 'catboost', 
                   'Light Gradient Boosting Machine' : 'lightgbm', 
                   'Gradient Boosting Classifier' : 'gbc', 
                   'Random Forest Classifier' : 'rf',
                   'Naive Bayes' : 'nb', 
                   'Extra Trees Classifier' : 'et',
                   'Decision Tree Classifier' : 'dt', 
                   'K Neighbors Classifier' : 'knn', 
                   'Quadratic Discriminant Analysis' : 'qda',
                   'SVM - Linear Kernel' : 'svm',
                   'Gaussian Process Classifier' : 'gpc',
                   'MLP Classifier' : 'mlp',
                   'SVM - Radial Kernel' : 'rbfsvm'}

3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
    model_library = [lr, knn, nb, dt, svm, rbfsvm, gpc, mlp, ridge, rf, qda, ada, gbc, lda, et, xgboost, lightgbm, catboost]

    model_names = ['Logistic Regression',
                   'K Neighbors Classifier',
                   'Naive Bayes',
                   'Decision Tree Classifier',
                   'SVM - Linear Kernel',
                   'SVM - Radial Kernel',
                   'Gaussian Process Classifier',
                   'MLP Classifier',
                   'Ridge Classifier',
                   'Random Forest Classifier',
                   'Quadratic Discriminant Analysis',
                   'Ada Boost Classifier',
                   'Gradient Boosting Classifier',
                   'Linear Discriminant Analysis',
                   'Extra Trees Classifier',
                   'Extreme Gradient Boosting',
                   'Light Gradient Boosting Machine',
3687
                   'CatBoost Classifier']          
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
    
    #checking for blacklist models
    
    model_library_str = ['lr', 'knn', 'nb', 'dt', 'svm', 
                         'rbfsvm', 'gpc', 'mlp', 'ridge', 
                         'rf', 'qda', 'ada', 'gbc', 'lda', 
                         'et', 'xgboost', 'lightgbm', 'catboost']
    
    model_library_str_ = ['lr', 'knn', 'nb', 'dt', 'svm', 
                          'rbfsvm', 'gpc', 'mlp', 'ridge', 
                          'rf', 'qda', 'ada', 'gbc', 'lda', 
                          'et', 'xgboost', 'lightgbm', 'catboost']
    
    if blacklist is not None:
        
        if turbo:
            internal_blacklist = ['rbfsvm', 'gpc', 'mlp']
            compiled_blacklist = blacklist + internal_blacklist
            blacklist = list(set(compiled_blacklist))
            
        else:
            blacklist = blacklist
        
        for i in blacklist:
            model_library_str_.remove(i)
        
        si = []
        
        for i in model_library_str_:
            s = model_library_str.index(i)
            si.append(s)
        
        model_library_ = []
        model_names_= []
        for i in si:
            model_library_.append(model_library[i])
            model_names_.append(model_names[i])
            
        model_library = model_library_
        model_names = model_names_
        
        
    if blacklist is None and turbo is True:
        
        model_library = [lr, knn, nb, dt, svm, ridge, rf, qda, ada, gbc, lda, et, xgboost, lightgbm, catboost]

        model_names = ['Logistic Regression',
                       'K Neighbors Classifier',
                       'Naive Bayes',
                       'Decision Tree Classifier',
                       'SVM - Linear Kernel',
                       'Ridge Classifier',
                       'Random Forest Classifier',
                       'Quadratic Discriminant Analysis',
                       'Ada Boost Classifier',
                       'Gradient Boosting Classifier',
                       'Linear Discriminant Analysis',
                       'Extra Trees Classifier',
                       'Extreme Gradient Boosting',
                       'Light Gradient Boosting Machine',
                       'CatBoost Classifier']
        
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
    #checking for whitelist models
    if whitelist is not None:

        model_library = []
        model_names = []

        for i in whitelist:
            if i == 'lr':
                model_library.append(lr)
                model_names.append('Logistic Regression')
            elif i == 'knn':
                model_library.append(knn)
                model_names.append('K Neighbors Classifier')                
            elif i == 'nb':
                model_library.append(nb)
                model_names.append('Naive Bayes')   
            elif i == 'dt':
                model_library.append(dt)
                model_names.append('Decision Tree Classifier')   
            elif i == 'svm':
                model_library.append(svm)
                model_names.append('SVM - Linear Kernel')   
            elif i == 'rbfsvm':
                model_library.append(rbfsvm)
                model_names.append('SVM - Radial Kernel')
            elif i == 'gpc':
                model_library.append(gpc)
                model_names.append('Gaussian Process Classifier')   
            elif i == 'mlp':
                model_library.append(mlp)
                model_names.append('MLP Classifier')   
            elif i == 'ridge':
                model_library.append(ridge)
                model_names.append('Ridge Classifier')   
            elif i == 'rf':
                model_library.append(rf)
                model_names.append('Random Forest Classifier')   
            elif i == 'qda':
                model_library.append(qda)
                model_names.append('Quadratic Discriminant Analysis')   
            elif i == 'ada':
                model_library.append(ada)
                model_names.append('Ada Boost Classifier')   
            elif i == 'gbc':
                model_library.append(gbc)
                model_names.append('Gradient Boosting Classifier')   
            elif i == 'lda':
                model_library.append(lda)
                model_names.append('Linear Discriminant Analysis')   
            elif i == 'et':
                model_library.append(et)
                model_names.append('Extra Trees Classifier')   
            elif i == 'xgboost':
                model_library.append(xgboost)
                model_names.append('Extreme Gradient Boosting') 
            elif i == 'lightgbm':
                model_library.append(lightgbm)
                model_names.append('Light Gradient Boosting Machine') 
            elif i == 'catboost':
                model_library.append(catboost)
                model_names.append('CatBoost Classifier')   

3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
    #multiclass check
    model_library_multiclass = []
    if y.value_counts().count() > 2:
        for i in model_library:
            model = OneVsRestClassifier(i)
            model_library_multiclass.append(model)
            
        model_library = model_library_multiclass
        
    progress.value += 1

    
    '''
    MONITOR UPDATE STARTS
    '''
    
    monitor.iloc[1,1:] = 'Initializing CV'
M
Moez Ali 已提交
3829 3830 3831
    if verbose:
        if html_param:
            update_display(monitor, display_id = 'monitor')
3832 3833 3834 3835 3836 3837
    
    '''
    MONITOR UPDATE ENDS
    '''
    
    #cross validation setup starts here
3838
    kf = StratifiedKFold(fold, random_state=seed, shuffle=folds_shuffle_param)
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869

    score_acc =np.empty((0,0))
    score_auc =np.empty((0,0))
    score_recall =np.empty((0,0))
    score_precision =np.empty((0,0))
    score_f1 =np.empty((0,0))
    score_kappa =np.empty((0,0))
    score_acc_running = np.empty((0,0)) ##running total
    score_mcc=np.empty((0,0))
    score_training_time=np.empty((0,0))
    avg_acc = np.empty((0,0))
    avg_auc = np.empty((0,0))
    avg_recall = np.empty((0,0))
    avg_precision = np.empty((0,0))
    avg_f1 = np.empty((0,0))
    avg_kappa = np.empty((0,0))
    avg_mcc=np.empty((0,0))
    avg_training_time=np.empty((0,0))
    
    
    name_counter = 0
      
    for model in model_library:
        
        progress.value += 1
        
        '''
        MONITOR UPDATE STARTS
        '''
        monitor.iloc[2,1:] = model_names[name_counter]
        monitor.iloc[3,1:] = 'Calculating ETC'
M
Moez Ali 已提交
3870 3871 3872
        if verbose:
            if html_param:
                update_display(monitor, display_id = 'monitor')
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890

        '''
        MONITOR UPDATE ENDS
        '''
        
        fold_num = 1
        
        for train_i , test_i in kf.split(data_X,data_y):
        
            progress.value += 1
            
            t0 = time.time()
            
            '''
            MONITOR UPDATE STARTS
            '''
                
            monitor.iloc[1,1:] = 'Fitting Fold ' + str(fold_num) + ' of ' + str(fold)
M
Moez Ali 已提交
3891 3892 3893
            if verbose:
                if html_param:
                    update_display(monitor, display_id = 'monitor')
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
            
            '''
            MONITOR UPDATE ENDS
            '''            
     
            Xtrain,Xtest = data_X.iloc[train_i], data_X.iloc[test_i]
            ytrain,ytest = data_y.iloc[train_i], data_y.iloc[test_i]
            time_start=time.time()
            if hasattr(model, 'predict_proba'):
                
                model.fit(Xtrain,ytrain)
                pred_prob = model.predict_proba(Xtest)
                pred_prob = pred_prob[:,1]
                pred_ = model.predict(Xtest)
                sca = metrics.accuracy_score(ytest,pred_)

                if y.value_counts().count() > 2:
                    sc = 0
                    recall = metrics.recall_score(ytest,pred_, average='macro')                
                    precision = metrics.precision_score(ytest,pred_, average = 'weighted')
                    f1 = metrics.f1_score(ytest,pred_, average='weighted')

                else:
                    try:
                        sc = metrics.roc_auc_score(ytest,pred_prob)
                    except:
                        sc = 0
                    recall = metrics.recall_score(ytest,pred_)                
                    precision = metrics.precision_score(ytest,pred_)
                    f1 = metrics.f1_score(ytest,pred_)
            else:
                model.fit(Xtrain,ytrain)
                pred_prob = 0.00
                pred_ = model.predict(Xtest)
                sca = metrics.accuracy_score(ytest,pred_)

                if y.value_counts().count() > 2:
                    sc = 0
                    recall = metrics.recall_score(ytest,pred_, average='macro')                
                    precision = metrics.precision_score(ytest,pred_, average = 'weighted')
                    f1 = metrics.f1_score(ytest,pred_, average='weighted')

                else:
                    try:
                        sc = metrics.roc_auc_score(ytest,pred_prob)
                    except:
                        sc = 0
                    recall = metrics.recall_score(ytest,pred_)                
                    precision = metrics.precision_score(ytest,pred_)
                    f1 = metrics.f1_score(ytest,pred_)
            time_end=time.time()
            mcc = metrics.matthews_corrcoef(ytest,pred_)
            kappa = metrics.cohen_kappa_score(ytest,pred_)
3947
            training_time= time_end - time_start
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
            score_acc = np.append(score_acc,sca)
            score_auc = np.append(score_auc,sc)
            score_recall = np.append(score_recall,recall)
            score_precision = np.append(score_precision,precision)
            score_f1 =np.append(score_f1,f1)
            score_kappa =np.append(score_kappa,kappa) 
            score_mcc=np.append(score_mcc,mcc)
            score_training_time=np.append(score_training_time,training_time)
                
            '''
            TIME CALCULATION SUB-SECTION STARTS HERE
            '''
            t1 = time.time()
        
            tt = (t1 - t0) * (fold-fold_num) / 60
            tt = np.around(tt, 2)
        
            if tt < 1:
                tt = str(np.around((tt * 60), 2))
                ETC = tt + ' Seconds Remaining'
                
            else:
                tt = str (tt)
                ETC = tt + ' Minutes Remaining'
            
            fold_num += 1
            
            '''
            MONITOR UPDATE STARTS
            '''

            monitor.iloc[3,1:] = ETC
M
Moez Ali 已提交
3980 3981 3982
            if verbose:
                if html_param:
                    update_display(monitor, display_id = 'monitor')
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994

            '''
            MONITOR UPDATE ENDS
            '''
        
        avg_acc = np.append(avg_acc,np.mean(score_acc))
        avg_auc = np.append(avg_auc,np.mean(score_auc))
        avg_recall = np.append(avg_recall,np.mean(score_recall))
        avg_precision = np.append(avg_precision,np.mean(score_precision))
        avg_f1 = np.append(avg_f1,np.mean(score_f1))
        avg_kappa = np.append(avg_kappa,np.mean(score_kappa))
        avg_mcc=np.append(avg_mcc,np.mean(score_mcc))
M
Moez Ali 已提交
3995
        avg_training_time=np.append(avg_training_time,np.sum(score_training_time))
3996 3997 3998
        
        compare_models_ = pd.DataFrame({'Model':model_names[name_counter], 'Accuracy':avg_acc, 'AUC':avg_auc, 
                           'Recall':avg_recall, 'Prec.':avg_precision, 
M
Moez Ali 已提交
3999
                           'F1':avg_f1, 'Kappa': avg_kappa, 'MCC':avg_mcc, 'TT (Sec)':avg_training_time})
4000 4001 4002 4003
        master_display = pd.concat([master_display, compare_models_],ignore_index=True)
        master_display = master_display.round(round)
        master_display = master_display.sort_values(by=sort,ascending=False)
        master_display.reset_index(drop=True, inplace=True)
4004
        #master_display.loc[:,'TT (Sec)'] = master_display.loc[:,'TT (Sec)'].round(2)
4005
        
M
Moez Ali 已提交
4006 4007 4008
        if verbose:
            if html_param:
                update_display(master_display, display_id = display_id)
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
        
        score_acc =np.empty((0,0))
        score_auc =np.empty((0,0))
        score_recall =np.empty((0,0))
        score_precision =np.empty((0,0))
        score_f1 =np.empty((0,0))
        score_kappa =np.empty((0,0))
        score_mcc =np.empty((0,0))
        score_training_time =np.empty((0,0))
        
        avg_acc = np.empty((0,0))
        avg_auc = np.empty((0,0))
        avg_recall = np.empty((0,0))
        avg_precision = np.empty((0,0))
        avg_f1 = np.empty((0,0))
        avg_kappa = np.empty((0,0))
        avg_mcc = np.empty((0,0))
        avg_training_time = np.empty((0,0))
        
        name_counter += 1
  
    progress.value += 1
    
    #storing into experiment
    model_name = 'Compare Models Score Grid'
    tup = (model_name,master_display)
    experiment__.append(tup)
    
    def highlight_max(s):
M
Moez Ali 已提交
4038
        to_highlight = s == s.max()
4039 4040
        return ['background-color: yellow' if v else '' for v in to_highlight]
    
M
Moez Ali 已提交
4041 4042 4043
    def highlight_cols(s):
        color = 'lightgrey'
        return 'background-color: %s' % color
4044 4045 4046 4047
    
    if y.value_counts().count() > 2:
        
        compare_models_ = master_display.style.apply(highlight_max,subset=['Accuracy','Recall',
M
Moez Ali 已提交
4048
                      'Prec.','F1','Kappa', 'MCC']).applymap(highlight_cols, subset = ['TT (Sec)'])
4049 4050 4051
    else:
        
        compare_models_ = master_display.style.apply(highlight_max,subset=['Accuracy','AUC','Recall',
M
Moez Ali 已提交
4052
                      'Prec.','F1','Kappa', 'MCC']).applymap(highlight_cols, subset = ['TT (Sec)'])
4053

M
Moez Ali 已提交
4054
    compare_models_ = compare_models_.set_precision(round)
4055 4056 4057 4058 4059
    compare_models_ = compare_models_.set_properties(**{'text-align': 'left'})
    compare_models_ = compare_models_.set_table_styles([dict(selector='th', props=[('text-align', 'left')])])
    
    progress.value += 1
    
M
Moez Ali 已提交
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
    monitor.iloc[1,1:] = 'Compiling Final Model'
    monitor.iloc[3,1:] = 'Almost Finished'

    if verbose:
        if html_param:
            update_display(monitor, display_id = 'monitor')

    sorted_model_names = list(compare_models_.data['Model'])
    if n_select < 0:
        sorted_model_names = sorted_model_names[n_select:]
    else:
        sorted_model_names = sorted_model_names[:n_select]
    
    model_store_final = []

    for i in sorted_model_names:
        monitor.iloc[2,1:] = i
        if verbose:
            if html_param:
                update_display(monitor, display_id = 'monitor')
        progress.value += 1
        k = model_dict.get(i)
        m = create_model(estimator=k, verbose = False)
        model_store_final.append(m)

    if len(model_store_final) == 1:
        model_store_final = model_store_final[0]

4088 4089
    clear_output()

M
Moez Ali 已提交
4090 4091 4092 4093 4094
    if html_param:
        display(compare_models_)
    else:
        print(compare_models_.data)

4095 4096 4097
    #store in display container
    display_container.append(compare_models_.data)

M
Moez Ali 已提交
4098
    return model_store_final
4099 4100 4101 4102

def tune_model(estimator = None, 
               fold = 10, 
               round = 4, 
4103 4104
               n_iter = 10,
               custom_grid = None, #added in pycaret==1.0.1 
4105
               optimize = 'Accuracy',
4106
               choose_better = True, #added in pycaret==1.0.1 
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
               verbose = True):
    
      
    """
        
    Description:
    ------------
    This function tunes the hyperparameters of a model and scores it using Stratified 
    Cross Validation. The output prints a score grid that shows Accuracy, AUC, Recall
    Precision, F1 and Kappa by fold (by default = 10 Folds).

    This function returns a trained model object.  

    tune_model() only accepts a string parameter for estimator.

        Example
        -------
        from pycaret.datasets import get_data
        juice = get_data('juice')
        experiment_name = setup(data = juice,  target = 'Purchase')
        
        tuned_xgboost = tune_model('xgboost') 

        This will tune the hyperparameters of Extreme Gradient Boosting Classifier.


    Parameters
    ----------
    estimator : string, default = None

    Enter abbreviated name of the estimator class. List of estimators supported:

    Estimator                   Abbreviated String     Original Implementation 
    ---------                   ------------------     -----------------------
    Logistic Regression         'lr'                   linear_model.LogisticRegression
    K Nearest Neighbour         'knn'                  neighbors.KNeighborsClassifier
    Naives Bayes                'nb'                   naive_bayes.GaussianNB
    Decision Tree               'dt'                   tree.DecisionTreeClassifier
    SVM (Linear)                'svm'                  linear_model.SGDClassifier
    SVM (RBF)                   'rbfsvm'               svm.SVC
    Gaussian Process            'gpc'                  gaussian_process.GPC
    Multi Level Perceptron      'mlp'                  neural_network.MLPClassifier
    Ridge Classifier            'ridge'                linear_model.RidgeClassifier
    Random Forest               'rf'                   ensemble.RandomForestClassifier
    Quadratic Disc. Analysis    'qda'                  discriminant_analysis.QDA 
    AdaBoost                    'ada'                  ensemble.AdaBoostClassifier
    Gradient Boosting           'gbc'                  ensemble.GradientBoostingClassifier
    Linear Disc. Analysis       'lda'                  discriminant_analysis.LDA 
    Extra Trees Classifier      'et'                   ensemble.ExtraTreesClassifier
    Extreme Gradient Boosting   'xgboost'              xgboost.readthedocs.io
    Light Gradient Boosting     'lightgbm'             github.com/microsoft/LightGBM
    CatBoost Classifier         'catboost'             https://catboost.ai

    fold: integer, default = 10
    Number of folds to be used in Kfold CV. Must be at least 2. 

    round: integer, default = 4
    Number of decimal places the metrics in the score grid will be rounded to. 

    n_iter: integer, default = 10
    Number of iterations within the Random Grid Search. For every iteration, 
    the model randomly selects one value from the pre-defined grid of hyperparameters.

4170 4171 4172 4173
    custom_grid: dictionary, default = None
    To use custom hyperparameters for tuning pass a dictionary with parameter name
    and values to be iterated. When set to None it uses pre-defined tuning grid.  

4174 4175 4176 4177 4178
    optimize: string, default = 'accuracy'
    Measure used to select the best model through hyperparameter tuning.
    The default scoring measure is 'Accuracy'. Other measures include 'AUC',
    'Recall', 'Precision', 'F1'. 

4179 4180 4181 4182
    choose_better: Boolean, default = True
    When set to set to True, base estimator is returned when the metric doesn't improve 
    by tune_model. This gurantees the returned object would perform atleast equivalent 
    to base estimator created using create_model or model returned by compare_models.
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222

    verbose: Boolean, default = True
    Score grid is not printed when verbose is set to False.

    Returns:
    --------

    score grid:   A table containing the scores of the model across the kfolds. 
    -----------   Scoring metrics used are Accuracy, AUC, Recall, Precision, F1 
                  and Kappa. Mean and standard deviation of the scores across the 
                  folds are also returned.

    model:        trained and tuned model object. 
    -----------

    Warnings:
    ---------
    - estimator parameter takes an abbreviated string. Passing a trained model object
      returns an error. The tune_model() function internally calls create_model() 
      before tuning the hyperparameters.
   
    - If target variable is multiclass (more than 2 classes), optimize param 'AUC' is 
      not acceptable.
      
    - If target variable is multiclass (more than 2 classes), AUC will be returned as
      zero (0.0)
        
          
    
  """

    '''
    
    ERROR HANDLING STARTS HERE
    
    '''
    
    #exception checking   
    import sys
    
4223 4224 4225
    #checking estimator if string
    if type(estimator) is str:
        sys.exit('(Type Error): The behavior of tune_model in version 1.0.1 is changed. Please pass trained model object.')
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
        
    #checking fold parameter
    if type(fold) is not int:
        sys.exit('(Type Error): Fold parameter only accepts integer value.')
    
    #checking round parameter
    if type(round) is not int:
        sys.exit('(Type Error): Round parameter only accepts integer value.')
 
    #checking n_iter parameter
    if type(n_iter) is not int:
        sys.exit('(Type Error): n_iter parameter only accepts integer value.')

    #checking optimize parameter
    allowed_optimize = ['Accuracy', 'Recall', 'Precision', 'F1', 'AUC']
    if optimize not in allowed_optimize:
        sys.exit('(Value Error): Optimization method not supported. See docstring for list of available parameters.')
    
    #checking optimize parameter for multiclass
    if y.value_counts().count() > 2:
        if optimize == 'AUC':
            sys.exit('(Type Error): AUC metric not supported for multiclass problems. See docstring for list of other optimization parameters.')
    
    if type(n_iter) is not int:
        sys.exit('(Type Error): n_iter parameter only accepts integer value.')
        
    #checking verbose parameter
    if type(verbose) is not bool:
4254 4255 4256
        sys.exit('(Type Error): Verbose parameter can only take argument as True or False.')     


4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
    '''
    
    ERROR HANDLING ENDS HERE
    
    '''
    
    
    #pre-load libraries
    import pandas as pd
    import time, datetime
    import ipywidgets as ipw
    from IPython.display import display, HTML, clear_output, update_display
    
    #progress bar
    progress = ipw.IntProgress(value=0, min=0, max=fold+6, step=1 , description='Processing: ')
4272 4273 4274 4275
    master_display = pd.DataFrame(columns=['Accuracy','AUC','Recall', 'Prec.', 'F1', 'Kappa', 'MCC'])
    if verbose:
        if html_param:
            display(progress)    
4276 4277 4278 4279 4280 4281 4282 4283 4284
    
    #display monitor
    timestampStr = datetime.datetime.now().strftime("%H:%M:%S")
    monitor = pd.DataFrame( [ ['Initiated' , '. . . . . . . . . . . . . . . . . .', timestampStr ], 
                             ['Status' , '. . . . . . . . . . . . . . . . . .' , 'Loading Dependencies' ],
                             ['ETC' , '. . . . . . . . . . . . . . . . . .',  'Calculating ETC'] ],
                              columns=['', ' ', '   ']).set_index('')
    
    if verbose:
4285 4286 4287 4288
        if html_param:
            display(monitor, display_id = 'monitor')
            display_ = display(master_display, display_id=True)
            display_id = display_.display_id
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
    
    #ignore warnings
    import warnings
    warnings.filterwarnings('ignore') 
    
    #ignore warnings
    import warnings
    warnings.filterwarnings('ignore')    

    #Storing X_train and y_train in data_X and data_y parameter
    data_X = X_train.copy()
    data_y = y_train.copy()
    
    #reset index
    data_X.reset_index(drop=True, inplace=True)
    data_y.reset_index(drop=True, inplace=True)
    
    progress.value += 1
            
    #general dependencies
    import random
    import numpy as np
    from sklearn import metrics
    from sklearn.model_selection import StratifiedKFold
    from sklearn.model_selection import RandomizedSearchCV
    
    #setting numpy seed
    np.random.seed(seed)
    
    #setting optimize parameter   
    if optimize == 'Accuracy':
        optimize = 'accuracy'
4321
        compare_dimension = 'Accuracy'
4322 4323 4324
        
    elif optimize == 'AUC':
        optimize = 'roc_auc'
4325
        compare_dimension = 'AUC'
4326 4327 4328 4329 4330 4331
        
    elif optimize == 'Recall':
        if y.value_counts().count() > 2:
            optimize = metrics.make_scorer(metrics.recall_score, average = 'macro')
        else:
            optimize = 'recall'
4332
        compare_dimension = 'Recall'
4333 4334 4335 4336 4337 4338

    elif optimize == 'Precision':
        if y.value_counts().count() > 2:
            optimize = metrics.make_scorer(metrics.precision_score, average = 'weighted')
        else:
            optimize = 'precision'
4339
        compare_dimension = 'Prec.'
4340 4341 4342 4343 4344 4345
   
    elif optimize == 'F1':
        if y.value_counts().count() > 2:
            optimize = metrics.make_scorer(metrics.f1_score, average = 'weighted')
        else:
            optimize = optimize = 'f1'
4346 4347 4348 4349 4350 4351
        compare_dimension = 'F1'

    elif optimize == 'MCC':
        optimize = 'roc_auc' # roc_auc instead because you cannot use MCC in gridsearchcv
        compare_dimension = 'MCC'
    
4352
        
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
    #convert trained estimator into string name for grids
    
    def get_model_name(e):
        return str(e).split("(")[0]

    mn = get_model_name(estimator)

    if 'catboost' in mn:
        mn = 'CatBoostClassifier'
    
    model_dict = {'ExtraTreesClassifier' : 'et',
                'GradientBoostingClassifier' : 'gbc', 
                'RandomForestClassifier' : 'rf',
                'LGBMClassifier' : 'lightgbm',
                'XGBClassifier' : 'xgboost',
                'AdaBoostClassifier' : 'ada', 
                'DecisionTreeClassifier' : 'dt', 
                'RidgeClassifier' : 'ridge',
                'LogisticRegression' : 'lr',
                'KNeighborsClassifier' : 'knn',
                'GaussianNB' : 'nb',
                'SGDClassifier' : 'svm',
                'SVC' : 'rbfsvm',
                'GaussianProcessClassifier' : 'gpc',
                'MLPClassifier' : 'mlp',
                'QuadraticDiscriminantAnalysis' : 'qda',
                'LinearDiscriminantAnalysis' : 'lda',
                'CatBoostClassifier' : 'catboost',
                'BaggingClassifier' : 'Bagging'}

P
PyCaret 已提交
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
    model_dict_logging = {'ExtraTreesClassifier' : 'Extra Trees Classifier',
                        'GradientBoostingClassifier' : 'Gradient Boosting Classifier', 
                        'RandomForestClassifier' : 'Random Forest Classifier',
                        'LGBMClassifier' : 'Light Gradient Boosting Machine',
                        'XGBClassifier' : 'Extreme Gradient Boosting',
                        'AdaBoostClassifier' : 'Ada Boost Classifier', 
                        'DecisionTreeClassifier' : 'Decision Tree Classifier', 
                        'RidgeClassifier' : 'Ridge Classifier',
                        'LogisticRegression' : 'Logistic Regression',
                        'KNeighborsClassifier' : 'K Neighbors Classifier',
                        'GaussianNB' : 'Naive Bayes',
                        'SGDClassifier' : 'SVM - Linear Kernel',
                        'SVC' : 'SVM - Radial Kernel',
                        'GaussianProcessClassifier' : 'Gaussian Process Classifier',
                        'MLPClassifier' : 'MLP Classifier',
                        'QuadraticDiscriminantAnalysis' : 'Quadratic Discriminant Analysis',
                        'LinearDiscriminantAnalysis' : 'Linear Discriminant Analysis',
                        'CatBoostClassifier' : 'CatBoost Classifier',
                        'BaggingClassifier' : 'Bagging Classifier'}

4403 4404 4405 4406
    _estimator_ = estimator

    estimator = model_dict.get(mn)

4407 4408
    progress.value += 1
    
4409
    kf = StratifiedKFold(fold, random_state=seed, shuffle=folds_shuffle_param)
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432

    score_auc =np.empty((0,0))
    score_acc =np.empty((0,0))
    score_recall =np.empty((0,0))
    score_precision =np.empty((0,0))
    score_f1 =np.empty((0,0))
    score_kappa =np.empty((0,0))
    score_mcc=np.empty((0,0))
    score_training_time=np.empty((0,0))
    avgs_auc =np.empty((0,0))
    avgs_acc =np.empty((0,0))
    avgs_recall =np.empty((0,0))
    avgs_precision =np.empty((0,0))
    avgs_f1 =np.empty((0,0))
    avgs_kappa =np.empty((0,0))
    avgs_mcc=np.empty((0,0))
    avgs_training_time=np.empty((0,0))
    
    
    '''
    MONITOR UPDATE STARTS
    '''
    
4433 4434 4435 4436
    monitor.iloc[1,1:] = 'Searching Hyperparameters Grid'
    if verbose:
        if html_param:
            update_display(monitor, display_id = 'monitor')
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
    
    '''
    MONITOR UPDATE ENDS
    '''
    
    #setting turbo parameters
    cv = 3

    if estimator == 'knn':
        
        from sklearn.neighbors import KNeighborsClassifier
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457

        if custom_grid is not None:
            param_grid = custom_grid
        else:
            param_grid = {'n_neighbors': range(1,51),
                    'weights' : ['uniform', 'distance'],
                    'metric':["euclidean", "manhattan"]
                        }

        model_grid = RandomizedSearchCV(estimator=KNeighborsClassifier(n_jobs=n_jobs_param), param_distributions=param_grid, 
4458
                                        scoring=optimize, n_iter=n_iter, cv=cv, random_state=seed,
M
Moez Ali 已提交
4459
                                       n_jobs=n_jobs_param, iid=False)
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469

        model_grid.fit(X_train,y_train)
        model = model_grid.best_estimator_
        best_model = model_grid.best_estimator_
        best_model_param = model_grid.best_params_
 
    elif estimator == 'lr':
        
        from sklearn.linear_model import LogisticRegression

4470 4471 4472 4473 4474 4475 4476 4477
        if custom_grid is not None:
            param_grid = custom_grid
        else:
            param_grid = {'C': np.arange(0, 10, 0.001),
                    "penalty": [ 'l1', 'l2'],
                    "class_weight": ["balanced", None]
                        }
        model_grid = RandomizedSearchCV(estimator=LogisticRegression(random_state=seed, n_jobs=n_jobs_param), 
4478
                                        param_distributions=param_grid, scoring=optimize, n_iter=n_iter, cv=cv, 
M
Moez Ali 已提交
4479
                                        random_state=seed, iid=False, n_jobs=n_jobs_param)
4480 4481 4482 4483 4484 4485 4486 4487
        model_grid.fit(X_train,y_train)
        model = model_grid.best_estimator_
        best_model = model_grid.best_estimator_
        best_model_param = model_grid.best_params_

    elif estimator == 'dt':
        
        from sklearn.tree import DecisionTreeClassifier
4488 4489 4490 4491 4492

        if custom_grid is not None:
            param_grid = custom_grid
        else:
            param_grid = {"max_depth": np.random.randint(1, (len(X_train.columns)*.85),20),
4493
                    "max_features": np.random.randint(1, len(X_train.columns),20),
4494 4495 4496
                    "min_samples_leaf": [2,3,4,5,6],
                    "criterion": ["gini", "entropy"],
                        }
4497 4498 4499

        model_grid = RandomizedSearchCV(estimator=DecisionTreeClassifier(random_state=seed), param_distributions=param_grid,
                                       scoring=optimize, n_iter=n_iter, cv=cv, random_state=seed,
M
Moez Ali 已提交
4500
                                       iid=False, n_jobs=n_jobs_param)
4501 4502 4503 4504 4505 4506 4507 4508 4509

        model_grid.fit(X_train,y_train)
        model = model_grid.best_estimator_
        best_model = model_grid.best_estimator_
        best_model_param = model_grid.best_params_
 
    elif estimator == 'mlp':
    
        from sklearn.neural_network import MLPClassifier
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519

        if custom_grid is not None:
            param_grid = custom_grid
        else:
            param_grid = {'learning_rate': ['constant', 'invscaling', 'adaptive'],
                    'solver' : ['lbfgs', 'sgd', 'adam'],
                    'alpha': np.arange(0, 1, 0.0001),
                    'hidden_layer_sizes': [(50,50,50), (50,100,50), (100,), (100,50,100), (100,100,100)],
                    'activation': ["tanh", "identity", "logistic","relu"]
                    }
4520 4521 4522

        model_grid = RandomizedSearchCV(estimator=MLPClassifier(max_iter=1000, random_state=seed), 
                                        param_distributions=param_grid, scoring=optimize, n_iter=n_iter, cv=cv, 
M
Moez Ali 已提交
4523
                                        random_state=seed, iid=False, n_jobs=n_jobs_param)
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533

        model_grid.fit(X_train,y_train)
        model = model_grid.best_estimator_
        best_model = model_grid.best_estimator_
        best_model_param = model_grid.best_params_
    
    elif estimator == 'gpc':
        
        from sklearn.gaussian_process import GaussianProcessClassifier

4534 4535 4536 4537 4538 4539
        if custom_grid is not None:
            param_grid = custom_grid
        else:
            param_grid = {"max_iter_predict":[100,200,300,400,500,600,700,800,900,1000]}

        model_grid = RandomizedSearchCV(estimator=GaussianProcessClassifier(random_state=seed, n_jobs=n_jobs_param), param_distributions=param_grid,
4540
                                       scoring=optimize, n_iter=n_iter, cv=cv, random_state=seed,
M
Moez Ali 已提交
4541
                                       n_jobs=n_jobs_param)
4542 4543 4544 4545 4546 4547 4548 4549 4550

        model_grid.fit(X_train,y_train)
        model = model_grid.best_estimator_
        best_model = model_grid.best_estimator_
        best_model_param = model_grid.best_params_    

    elif estimator == 'rbfsvm':
        
        from sklearn.svm import SVC
4551 4552 4553 4554 4555 4556

        if custom_grid is not None:
            param_grid = custom_grid
        else:
            param_grid = {'C': np.arange(0, 50, 0.01),
                    "class_weight": ["balanced", None]}
4557 4558 4559

        model_grid = RandomizedSearchCV(estimator=SVC(gamma='auto', C=1, probability=True, kernel='rbf', random_state=seed), 
                                        param_distributions=param_grid, scoring=optimize, n_iter=n_iter, 
M
Moez Ali 已提交
4560
                                        cv=cv, random_state=seed, n_jobs=n_jobs_param)
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570

        model_grid.fit(X_train,y_train)
        model = model_grid.best_estimator_
        best_model = model_grid.best_estimator_
        best_model_param = model_grid.best_params_    
  
    elif estimator == 'nb':
        
        from sklearn.naive_bayes import GaussianNB

4571 4572 4573 4574 4575 4576 4577 4578
        if custom_grid is not None:
            param_grid = custom_grid
        else:
            param_grid = {'var_smoothing': [0.000000001, 0.000000002, 0.000000005, 0.000000008, 0.000000009,
                                            0.0000001, 0.0000002, 0.0000003, 0.0000005, 0.0000007, 0.0000009, 
                                            0.00001, 0.001, 0.002, 0.003, 0.004, 0.005, 0.007, 0.009,
                                            0.004, 0.005, 0.006, 0.007,0.008, 0.009, 0.01, 0.1, 1]
                        }
4579 4580 4581

        model_grid = RandomizedSearchCV(estimator=GaussianNB(), 
                                        param_distributions=param_grid, scoring=optimize, n_iter=n_iter, 
M
Moez Ali 已提交
4582
                                        cv=cv, random_state=seed, n_jobs=n_jobs_param)
4583 4584 4585 4586 4587 4588 4589 4590 4591
 
        model_grid.fit(X_train,y_train)
        model = model_grid.best_estimator_
        best_model = model_grid.best_estimator_
        best_model_param = model_grid.best_params_        

    elif estimator == 'svm':
       
        from sklearn.linear_model import SGDClassifier
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602

        if custom_grid is not None:
            param_grid = custom_grid
        else:
            param_grid = {'penalty': ['l2', 'l1','elasticnet'],
                        'l1_ratio': np.arange(0,1,0.01),
                        'alpha': [0.0001, 0.001, 0.01, 0.0002, 0.002, 0.02, 0.0005, 0.005, 0.05],
                        'fit_intercept': [True, False],
                        'learning_rate': ['constant', 'optimal', 'invscaling', 'adaptive'],
                        'eta0': [0.001, 0.01,0.05,0.1,0.2,0.3,0.4,0.5]
                        }    
4603

M
Moez Ali 已提交
4604
        model_grid = RandomizedSearchCV(estimator=SGDClassifier(loss='hinge', random_state=seed, n_jobs=n_jobs_param), 
4605
                                        param_distributions=param_grid, scoring=optimize, n_iter=n_iter, 
M
Moez Ali 已提交
4606
                                        cv=cv, random_state=seed, n_jobs=n_jobs_param)
4607 4608 4609 4610 4611 4612 4613 4614 4615

        model_grid.fit(X_train,y_train)
        model = model_grid.best_estimator_
        best_model = model_grid.best_estimator_
        best_model_param = model_grid.best_params_     

    elif estimator == 'ridge':
        
        from sklearn.linear_model import RidgeClassifier
4616 4617 4618 4619 4620 4621 4622 4623

        if custom_grid is not None:
            param_grid = custom_grid
        else:
            param_grid = {'alpha': np.arange(0,1,0.001),
                        'fit_intercept': [True, False],
                        'normalize': [True, False]
                        }    
4624 4625 4626

        model_grid = RandomizedSearchCV(estimator=RidgeClassifier(random_state=seed), 
                                        param_distributions=param_grid, scoring=optimize, n_iter=n_iter, 
M
Moez Ali 已提交
4627
                                        cv=cv, random_state=seed, n_jobs=n_jobs_param)
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637

        model_grid.fit(X_train,y_train)
        model = model_grid.best_estimator_
        best_model = model_grid.best_estimator_
        best_model_param = model_grid.best_params_     
   
    elif estimator == 'rf':
        
        from sklearn.ensemble import RandomForestClassifier

4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
        if custom_grid is not None:
            param_grid = custom_grid
        else:
            param_grid = {'n_estimators': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
                        'criterion': ['gini', 'entropy'],
                        'max_depth': [int(x) for x in np.linspace(10, 110, num = 11)],
                        'min_samples_split': [2, 5, 7, 9, 10],
                        'min_samples_leaf' : [1, 2, 4],
                        'max_features' : ['auto', 'sqrt', 'log2'],
                        'bootstrap': [True, False]
                        }    

        model_grid = RandomizedSearchCV(estimator=RandomForestClassifier(random_state=seed, n_jobs=n_jobs_param), 
4651
                                        param_distributions=param_grid, scoring=optimize, n_iter=n_iter, 
M
Moez Ali 已提交
4652
                                        cv=cv, random_state=seed, n_jobs=n_jobs_param)
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662

        model_grid.fit(X_train,y_train)
        model = model_grid.best_estimator_
        best_model = model_grid.best_estimator_
        best_model_param = model_grid.best_params_     
   
    elif estimator == 'ada':
        
        from sklearn.ensemble import AdaBoostClassifier        

4663 4664 4665 4666 4667 4668 4669
        if custom_grid is not None:
            param_grid = custom_grid
        else:
            param_grid = {'n_estimators':  np.arange(10,200,5),
                        'learning_rate': np.arange(0,1,0.01),
                        'algorithm' : ["SAMME", "SAMME.R"]
                        }    
4670

4671
        model_grid = RandomizedSearchCV(estimator=AdaBoostClassifier(base_estimator = _estimator_.base_estimator, random_state=seed), 
4672
                                        param_distributions=param_grid, scoring=optimize, n_iter=n_iter, 
M
Moez Ali 已提交
4673
                                        cv=cv, random_state=seed, n_jobs=n_jobs_param)
4674 4675 4676 4677 4678 4679 4680 4681 4682 4683

        model_grid.fit(X_train,y_train)
        model = model_grid.best_estimator_
        best_model = model_grid.best_estimator_
        best_model_param = model_grid.best_params_   

    elif estimator == 'gbc':
        
        from sklearn.ensemble import GradientBoostingClassifier

4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
        if custom_grid is not None:
            param_grid = custom_grid
        else:
            param_grid = {'n_estimators': np.arange(10,200,5),
                        'learning_rate': np.arange(0,1,0.01),
                        'subsample' : np.arange(0.1,1,0.05),
                        'min_samples_split' : [2,4,5,7,9,10],
                        'min_samples_leaf' : [1,2,3,4,5],
                        'max_depth': [int(x) for x in np.linspace(10, 110, num = 11)],
                        'max_features' : ['auto', 'sqrt', 'log2']
                        }    
4695 4696 4697
            
        model_grid = RandomizedSearchCV(estimator=GradientBoostingClassifier(random_state=seed), 
                                        param_distributions=param_grid, scoring=optimize, n_iter=n_iter, 
M
Moez Ali 已提交
4698
                                        cv=cv, random_state=seed, n_jobs=n_jobs_param)
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708

        model_grid.fit(X_train,y_train)
        model = model_grid.best_estimator_
        best_model = model_grid.best_estimator_
        best_model_param = model_grid.best_params_   

    elif estimator == 'qda':
        
        from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

4709 4710 4711 4712
        if custom_grid is not None:
            param_grid = custom_grid
        else:
            param_grid = {'reg_param': np.arange(0,1,0.01)}    
4713 4714 4715

        model_grid = RandomizedSearchCV(estimator=QuadraticDiscriminantAnalysis(), 
                                        param_distributions=param_grid, scoring=optimize, n_iter=n_iter, 
M
Moez Ali 已提交
4716
                                        cv=cv, random_state=seed, n_jobs=n_jobs_param)
4717 4718 4719 4720 4721 4722 4723 4724 4725 4726

        model_grid.fit(X_train,y_train)
        model = model_grid.best_estimator_
        best_model = model_grid.best_estimator_
        best_model_param = model_grid.best_params_      

    elif estimator == 'lda':
        
        from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

4727 4728 4729 4730 4731 4732
        if custom_grid is not None:
            param_grid = custom_grid
        else:
            param_grid = {'solver' : ['lsqr', 'eigen'],
                        'shrinkage': [None, 0.0001, 0.001, 0.01, 0.0005, 0.005, 0.05, 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]
                        }    
4733 4734 4735

        model_grid = RandomizedSearchCV(estimator=LinearDiscriminantAnalysis(), 
                                        param_distributions=param_grid, scoring=optimize, n_iter=n_iter, 
M
Moez Ali 已提交
4736
                                        cv=cv, random_state=seed, n_jobs=n_jobs_param)
4737 4738 4739 4740 4741 4742 4743 4744 4745 4746

        model_grid.fit(X_train,y_train)
        model = model_grid.best_estimator_
        best_model = model_grid.best_estimator_
        best_model_param = model_grid.best_params_        

    elif estimator == 'et':
        
        from sklearn.ensemble import ExtraTreesClassifier

4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
        if custom_grid is not None:
            param_grid = custom_grid
        else:
            param_grid = {'n_estimators': np.arange(10,200,5),
                        'criterion': ['gini', 'entropy'],
                        'max_depth': [int(x) for x in np.linspace(10, 110, num = 11)],
                        'min_samples_split': [2, 5, 7, 9, 10],
                        'min_samples_leaf' : [1, 2, 4],
                        'max_features' : ['auto', 'sqrt', 'log2'],
                        'bootstrap': [True, False]
                        }    

        model_grid = RandomizedSearchCV(estimator=ExtraTreesClassifier(random_state=seed, n_jobs=n_jobs_param), 
4760
                                        param_distributions=param_grid, scoring=optimize, n_iter=n_iter, 
M
Moez Ali 已提交
4761
                                        cv=cv, random_state=seed, n_jobs=n_jobs_param)
4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774

        model_grid.fit(X_train,y_train)
        model = model_grid.best_estimator_
        best_model = model_grid.best_estimator_
        best_model_param = model_grid.best_params_ 
        
        
    elif estimator == 'xgboost':
        
        from xgboost import XGBClassifier
        
        num_class = y.value_counts().count()
        
4775 4776 4777 4778
        if custom_grid is not None:
            param_grid = custom_grid

        elif y.value_counts().count() > 2:
4779
            
4780 4781
            param_grid = {'learning_rate': np.arange(0,1,0.01),
                          'n_estimators': np.arange(10,500,20),
4782 4783 4784 4785 4786 4787 4788
                          'subsample': [0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1],
                          'max_depth': [int(x) for x in np.linspace(10, 110, num = 11)], 
                          'colsample_bytree': [0.5, 0.7, 0.9, 1],
                          'min_child_weight': [1, 2, 3, 4],
                          'num_class' : [num_class, num_class]
                         }
        else:
4789
            param_grid = {'learning_rate': np.arange(0,1,0.01),
4790 4791 4792 4793 4794 4795 4796
                          'n_estimators':[10, 30, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000], 
                          'subsample': [0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1],
                          'max_depth': [int(x) for x in np.linspace(10, 110, num = 11)], 
                          'colsample_bytree': [0.5, 0.7, 0.9, 1],
                          'min_child_weight': [1, 2, 3, 4],
                         }

M
Moez Ali 已提交
4797
        model_grid = RandomizedSearchCV(estimator=XGBClassifier(random_state=seed, n_jobs=n_jobs_param, verbosity=0), 
4798
                                        param_distributions=param_grid, scoring=optimize, n_iter=n_iter, 
M
Moez Ali 已提交
4799
                                        cv=cv, random_state=seed, n_jobs=n_jobs_param)
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
        
        model_grid.fit(X_train,y_train)
        model = model_grid.best_estimator_
        best_model = model_grid.best_estimator_
        best_model_param = model_grid.best_params_ 
        
        
    elif estimator == 'lightgbm':
        
        import lightgbm as lgb
        
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
        if custom_grid is not None:
            param_grid = custom_grid
        else:
            param_grid = {'num_leaves': [10,20,30,40,50,60,70,80,90,100,150,200],
                        'max_depth': [int(x) for x in np.linspace(10, 110, num = 11)],
                        'learning_rate': [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1],
                        'n_estimators': [10, 30, 50, 70, 90, 100, 120, 150, 170, 200], 
                        'min_split_gain' : [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9],
                        'reg_alpha': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9],
                        'reg_lambda': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
                        }
    
        model_grid = RandomizedSearchCV(estimator=lgb.LGBMClassifier(random_state=seed, n_jobs=n_jobs_param), 
4824
                                        param_distributions=param_grid, scoring=optimize, n_iter=n_iter, 
M
Moez Ali 已提交
4825
                                        cv=cv, random_state=seed, n_jobs=n_jobs_param)
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835

        model_grid.fit(X_train,y_train)
        model = model_grid.best_estimator_
        best_model = model_grid.best_estimator_
        best_model_param = model_grid.best_params_ 
        
        
    elif estimator == 'catboost':
        
        from catboost import CatBoostClassifier
4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847

        if custom_grid is not None:
            param_grid = custom_grid
        else:
            param_grid = {'depth':[3,1,2,6,4,5,7,8,9,10],
                        'iterations':[250,100,500,1000], 
                        'learning_rate':[0.03,0.001,0.01,0.1,0.2,0.3], 
                        'l2_leaf_reg':[3,1,5,10,100], 
                        'border_count':[32,5,10,20,50,100,200], 
                        }
        
        model_grid = RandomizedSearchCV(estimator=CatBoostClassifier(random_state=seed, silent=True, thread_count=n_jobs_param), 
4848
                                        param_distributions=param_grid, scoring=optimize, n_iter=n_iter, 
M
Moez Ali 已提交
4849
                                        cv=cv, random_state=seed, n_jobs=n_jobs_param)
4850 4851 4852 4853 4854 4855

        model_grid.fit(X_train,y_train)
        model = model_grid.best_estimator_
        best_model = model_grid.best_estimator_
        best_model_param = model_grid.best_params_ 
        
4856
    elif estimator == 'Bagging':
4857 4858 4859
        
        from sklearn.ensemble import BaggingClassifier

4860 4861
        if custom_grid is not None:
            param_grid = custom_grid
4862

4863 4864 4865 4866 4867 4868 4869
        else:
            param_grid = {'n_estimators': np.arange(10,300,10),
                        'bootstrap': [True, False],
                        'bootstrap_features': [True, False],
                        }
            
        model_grid = RandomizedSearchCV(estimator=BaggingClassifier(base_estimator=_estimator_.base_estimator, random_state=seed, n_jobs=n_jobs_param), 
4870
                                        param_distributions=param_grid, scoring=optimize, n_iter=n_iter, 
4871
                                        cv=cv, random_state=seed, n_jobs=n_jobs_param)
4872 4873 4874 4875

        model_grid.fit(X_train,y_train)
        model = model_grid.best_estimator_
        best_model = model_grid.best_estimator_
4876
        best_model_param = model_grid.best_params_ 
4877
        
4878
    progress.value += 1
4879
    
4880
    progress.value += 1
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895

    progress.value += 1

        
    #multiclass checking
    if y.value_counts().count() > 2:
        from sklearn.multiclass import OneVsRestClassifier
        model = OneVsRestClassifier(model)
        best_model = model
        
    '''
    MONITOR UPDATE STARTS
    '''
    
    monitor.iloc[1,1:] = 'Initializing CV'
4896 4897 4898
    if verbose:
        if html_param:
            update_display(monitor, display_id = 'monitor')
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
    
    '''
    MONITOR UPDATE ENDS
    '''
    
    fold_num = 1
    
    for train_i , test_i in kf.split(data_X,data_y):
        
        t0 = time.time()
        
        
        '''
        MONITOR UPDATE STARTS
        '''
    
        monitor.iloc[1,1:] = 'Fitting Fold ' + str(fold_num) + ' of ' + str(fold)
4916 4917 4918
        if verbose:
            if html_param:
                update_display(monitor, display_id = 'monitor')
4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993

        '''
        MONITOR UPDATE ENDS
        '''
        
        Xtrain,Xtest = data_X.iloc[train_i], data_X.iloc[test_i]
        ytrain,ytest = data_y.iloc[train_i], data_y.iloc[test_i]
        time_start=time.time()
        if hasattr(model, 'predict_proba'):
        
            model.fit(Xtrain,ytrain)
            pred_prob = model.predict_proba(Xtest)
            pred_prob = pred_prob[:,1]
            pred_ = model.predict(Xtest)
            sca = metrics.accuracy_score(ytest,pred_)
            
            if y.value_counts().count() > 2:
                sc = 0
                recall = metrics.recall_score(ytest,pred_, average='macro')                
                precision = metrics.precision_score(ytest,pred_, average = 'weighted')
                f1 = metrics.f1_score(ytest,pred_, average='weighted')
                
            else:
                try:
                    sc = metrics.roc_auc_score(ytest,pred_prob)
                except:
                    sc = 0
                recall = metrics.recall_score(ytest,pred_)                
                precision = metrics.precision_score(ytest,pred_)
                f1 = metrics.f1_score(ytest,pred_)
                
        else:
            
            model.fit(Xtrain,ytrain)
            pred_prob = 0.00
            pred_ = model.predict(Xtest)
            sca = metrics.accuracy_score(ytest,pred_)
            
            if y.value_counts().count() > 2:
                sc = 0
                recall = metrics.recall_score(ytest,pred_, average='macro')                
                precision = metrics.precision_score(ytest,pred_, average = 'weighted')
                f1 = metrics.f1_score(ytest,pred_, average='weighted')

            else:
                try:
                    sc = metrics.roc_auc_score(ytest,pred_prob)
                except:
                    sc = 0
                recall = metrics.recall_score(ytest,pred_)                
                precision = metrics.precision_score(ytest,pred_)
                f1 = metrics.f1_score(ytest,pred_)
        time_end=time.time()
        kappa = metrics.cohen_kappa_score(ytest,pred_)
        mcc = metrics.matthews_corrcoef(ytest,pred_)
        training_time=time_end-time_start
        score_acc = np.append(score_acc,sca)
        score_auc = np.append(score_auc,sc)
        score_recall = np.append(score_recall,recall)
        score_precision = np.append(score_precision,precision)
        score_f1 =np.append(score_f1,f1)
        score_kappa =np.append(score_kappa,kappa)
        score_mcc=np.append(score_mcc,mcc)
        score_training_time=np.append(score_training_time,training_time)
        
        progress.value += 1
            
            
        '''
        
        This section is created to update_display() as code loops through the fold defined.
        
        '''

        fold_results = pd.DataFrame({'Accuracy':[sca], 'AUC': [sc], 'Recall': [recall], 
4994
                                     'Prec.': [precision], 'F1': [f1], 'Kappa': [kappa], 'MCC':[mcc]}).round(round)
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
        master_display = pd.concat([master_display, fold_results],ignore_index=True)
        fold_results = []
        
        '''
        
        TIME CALCULATION SUB-SECTION STARTS HERE
        
        '''
        
        t1 = time.time()
        
        tt = (t1 - t0) * (fold-fold_num) / 60
        tt = np.around(tt, 2)
        
        if tt < 1:
            tt = str(np.around((tt * 60), 2))
            ETC = tt + ' Seconds Remaining'
                
        else:
            tt = str (tt)
            ETC = tt + ' Minutes Remaining'
            
5017 5018 5019 5020
        if verbose:
            if html_param:
                update_display(ETC, display_id = 'ETC')

5021 5022 5023 5024 5025 5026 5027
        fold_num += 1
        
        '''
        MONITOR UPDATE STARTS
        '''

        monitor.iloc[2,1:] = ETC
5028 5029 5030
        if verbose:
            if html_param:
                update_display(monitor, display_id = 'monitor')
5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042

        '''
        MONITOR UPDATE ENDS
        '''
       
        '''
        
        TIME CALCULATION ENDS HERE
        
        '''
        
        if verbose:
5043 5044
            if html_param:
                update_display(master_display, display_id = display_id)
5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
        
        '''
        
        Update_display() ends here
        
        '''
        
    progress.value += 1
    
    mean_acc=np.mean(score_acc)
    mean_auc=np.mean(score_auc)
    mean_recall=np.mean(score_recall)
    mean_precision=np.mean(score_precision)
    mean_f1=np.mean(score_f1)
    mean_kappa=np.mean(score_kappa)
    mean_mcc=np.mean(score_mcc)
    mean_training_time=np.mean(score_training_time)
    std_acc=np.std(score_acc)
    std_auc=np.std(score_auc)
    std_recall=np.std(score_recall)
    std_precision=np.std(score_precision)
    std_f1=np.std(score_f1)
    std_kappa=np.std(score_kappa)
    std_mcc=np.std(score_mcc)
    std_training_time=np.std(score_training_time)
    
    avgs_acc = np.append(avgs_acc, mean_acc)
    avgs_acc = np.append(avgs_acc, std_acc) 
    avgs_auc = np.append(avgs_auc, mean_auc)
    avgs_auc = np.append(avgs_auc, std_auc)
    avgs_recall = np.append(avgs_recall, mean_recall)
    avgs_recall = np.append(avgs_recall, std_recall)
    avgs_precision = np.append(avgs_precision, mean_precision)
    avgs_precision = np.append(avgs_precision, std_precision)
    avgs_f1 = np.append(avgs_f1, mean_f1)
    avgs_f1 = np.append(avgs_f1, std_f1)
    avgs_kappa = np.append(avgs_kappa, mean_kappa)
    avgs_kappa = np.append(avgs_kappa, std_kappa)
    
    avgs_mcc = np.append(avgs_mcc, mean_mcc)
    avgs_mcc = np.append(avgs_mcc, std_mcc)
    avgs_training_time = np.append(avgs_training_time, mean_training_time)
    avgs_training_time = np.append(avgs_training_time, std_training_time)
    
    progress.value += 1
    
    model_results = pd.DataFrame({'Accuracy': score_acc, 'AUC': score_auc, 'Recall' : score_recall, 'Prec.' : score_precision , 
5092
                     'F1' : score_f1, 'Kappa' : score_kappa, 'MCC':score_mcc})
5093
    model_avgs = pd.DataFrame({'Accuracy': avgs_acc, 'AUC': avgs_auc, 'Recall' : avgs_recall, 'Prec.' : avgs_precision , 
5094
                     'F1' : avgs_f1, 'Kappa' : avgs_kappa, 'MCC':avgs_mcc},index=['Mean', 'SD'])
5095 5096 5097 5098

    model_results = model_results.append(model_avgs)
    model_results = model_results.round(round)
    
5099 5100 5101 5102
    # yellow the mean
    model_results=model_results.style.apply(lambda x: ['background: yellow' if (x.name == 'Mean') else '' for i in x], axis=1)
    model_results = model_results.set_precision(round)

5103 5104 5105
    progress.value += 1
    
    #refitting the model on complete X_train, y_train
5106 5107 5108 5109
    monitor.iloc[1,1:] = 'Finalizing Model'
    if verbose:
        if html_param:
            update_display(monitor, display_id = 'monitor')
5110 5111 5112 5113 5114
    
    best_model.fit(data_X, data_y)
    
    progress.value += 1
    
5115 5116
    #storing results in create_model_container
    create_model_container.append(model_results.data)
5117
    display_container.append(model_results.data)
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137

    #storing results in master_model_container
    master_model_container.append(best_model)

    '''
    When choose_better sets to True. optimize metric in scoregrid is
    compared with base model created using create_model so that tune_model
    functions return the model with better score only. This will ensure 
    model performance is atleast equivalent to what is seen is compare_models 
    '''
    if choose_better:

        if verbose:
            if html_param:
                monitor.iloc[1,1:] = 'Compiling Final Results'
                monitor.iloc[2,1:] = 'Almost Finished'
                update_display(monitor, display_id = 'monitor')

        #creating base model for comparison
        if estimator in ['Bagging', 'ada']:
P
PyCaret 已提交
5138
            base_model = create_model(estimator=_estimator_, verbose = False, system=False)
5139
        else:
P
PyCaret 已提交
5140
            base_model = create_model(estimator=estimator, verbose = False, system=False)
5141 5142 5143 5144 5145 5146 5147
        base_model_results = create_model_container[-1][compare_dimension][-2:][0]
        tuned_model_results = create_model_container[-2][compare_dimension][-2:][0]

        if tuned_model_results > base_model_results:
            best_model = best_model
        else:
            best_model = base_model
5148

5149
    #storing into experiment
5150
    model_name = '[TUNED] ' + str(model).split("(")[0]
5151 5152 5153 5154 5155
    tup = (model_name,best_model)
    experiment__.append(tup)
    nam = str(model_name) + ' Score Grid'
    tup = (nam, model_results)
    experiment__.append(tup)
5156 5157 5158 5159

    #mlflow logging
    import mlflow
    mlflow.set_experiment(exp_name_log)
P
PyCaret 已提交
5160 5161 5162 5163
    full_name = model_dict_logging.get(mn)
    full_name = '[TUNED] ' + str(full_name)

    with mlflow.start_run(run_name=full_name) as run:        
5164 5165 5166
        params = model_grid.cv_results_.get('params')
        metrics = model_grid.cv_results_.get('mean_test_score')
        for i in metrics:
P
PyCaret 已提交
5167
            mlflow.log_metric('Mean Test Score', i)
5168

P
PyCaret 已提交
5169 5170 5171 5172 5173
        params = best_model.get_params()
        mlflow.log_params(params)
        mlflow.log_metrics({"Accuracy": avgs_acc[0], "AUC": avgs_auc[0], "Recall": avgs_recall[0], "Precision" : avgs_precision[0],
                            "F1": avgs_f1[0], "Kappa": avgs_kappa[0], "MCC": avgs_mcc[0]})
        
5174 5175
    if verbose:
        clear_output()
5176 5177 5178 5179 5180
        if html_param:
            display(model_results)
        else:
            print(model_results.data)
        
P
PyCaret 已提交
5181
    return best_model
5182 5183 5184

def blend_models(estimator_list = 'All', 
                 fold = 10, 
5185 5186 5187
                 round = 4,
                 choose_better = True, #added in pycaret==1.0.1 
                 optimize = 'Accuracy', #added in pycaret==1.0.1 
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
                 method = 'hard',
                 turbo = True,
                 verbose = True):
    
    """
        
    Description:
    ------------
    This function creates a Soft Voting / Majority Rule classifier for all the 
    estimators in the model library (excluding the few when turbo is True) or 
    for specific trained estimators passed as a list in estimator_list param.
    It scores it using Stratified Cross Validation. The output prints a score
    grid that shows Accuracy,  AUC, Recall, Precision, F1 and Kappa by fold 
    (default CV = 10 Folds). 

    This function returns a trained model object.  

        Example:
        --------
        from pycaret.datasets import get_data
        juice = get_data('juice')
        experiment_name = setup(data = juice,  target = 'Purchase')
        
        blend_all = blend_models() 

        This will create a VotingClassifier for all models in the model library 
        except for 'rbfsvm', 'gpc' and 'mlp'.

        For specific models, you can use:

        lr = create_model('lr')
        rf = create_model('rf')
        knn = create_model('knn')

        blend_three = blend_models(estimator_list = [lr,rf,knn])
    
        This will create a VotingClassifier of lr, rf and knn.

    Parameters
    ----------
    estimator_list : string ('All') or list of object, default = 'All'

    fold: integer, default = 10
    Number of folds to be used in Kfold CV. Must be at least 2. 

    round: integer, default = 4
    Number of decimal places the metrics in the score grid will be rounded to.

5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
    choose_better: Boolean, default = True
    When set to set to True, base estimator is returned when the metric doesn't 
    improve by ensemble_model. This gurantees the returned object would perform 
    atleast equivalent to base estimator created using create_model or model 
    returned by compare_models.

    optimize: string, default = 'Accuracy'
    Only used when choose_better is set to True. optimize parameter is used
    to compare emsembled model with base estimator. Values accepted in 
    optimize parameter are 'Accuracy', 'AUC', 'Recall', 'Precision', 'F1', 
    'Kappa', 'MCC'.

5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
    method: string, default = 'hard'
    'hard' uses predicted class labels for majority rule voting.'soft', predicts 
    the class label based on the argmax of the sums of the predicted probabilities, 
    which is recommended for an ensemble of well-calibrated classifiers. 

    turbo: Boolean, default = True
    When turbo is set to True, it blacklists estimator that uses Radial Kernel.

    verbose: Boolean, default = True
    Score grid is not printed when verbose is set to False.

    Returns:
    --------

    score grid:   A table containing the scores of the model across the kfolds. 
    -----------   Scoring metrics used are Accuracy, AUC, Recall, Precision, F1 
                  and Kappa. Mean and standard deviation of the scores across the 
                  folds are also returned.

    model:        trained Voting Classifier model object. 
    -----------

    Warnings:
    ---------
    - When passing estimator_list with method set to 'soft'. All the models in the
      estimator_list must support predict_proba function. 'svm' and 'ridge' doesnt
      support the predict_proba and hence an exception will be raised.
      
    - When estimator_list is set to 'All' and method is forced to 'soft', estimators
      that doesnt support the predict_proba function will be dropped from the estimator
      list.
      
    - CatBoost Classifier not supported in blend_models().
    
    - If target variable is multiclass (more than 2 classes), AUC will be returned as
      zero (0.0).
        
       
  
    """
    
    
    '''
    
    ERROR HANDLING STARTS HERE
    
    '''
    
    #exception checking   
    import sys
    
    #checking error for estimator_list (string)
    
    if estimator_list != 'All':
        for i in estimator_list:
            if 'sklearn' not in str(type(i)) and 'CatBoostClassifier' not in str(type(i)):
                sys.exit("(Value Error): estimator_list parameter only accepts 'All' as string or trained model object")
   
    #checking method param with estimator list
    if estimator_list != 'All':
        if method == 'soft':
            
            check = 0
            
            for i in estimator_list:
                if hasattr(i, 'predict_proba'):
                    pass
                else:
                    check += 1
            
            if check >= 1:
                sys.exit('(Type Error): Estimator list contains estimator that doesnt support probabilities and method is forced to soft. Either change the method or drop the estimator.')
    
    #checking catboost:
    if estimator_list != 'All':
        for i in estimator_list:
            if 'CatBoostClassifier' in str(i):
                sys.exit('(Type Error): CatBoost Classifier not supported in this function.')
    
    #checking fold parameter
    if type(fold) is not int:
        sys.exit('(Type Error): Fold parameter only accepts integer value.')
    
    #checking round parameter
    if type(round) is not int:
        sys.exit('(Type Error): Round parameter only accepts integer value.')
 
    #checking method parameter
    available_method = ['soft', 'hard']
    if method not in available_method:
        sys.exit("(Value Error): Method parameter only accepts 'soft' or 'hard' as a parameter. See Docstring for details.")
    
    #checking verbose parameter
    if type(turbo) is not bool:
        sys.exit('(Type Error): Turbo parameter can only take argument as True or False.') 
        
    #checking verbose parameter
    if type(verbose) is not bool:
        sys.exit('(Type Error): Verbose parameter can only take argument as True or False.') 
        
    '''
    
    ERROR HANDLING ENDS HERE
    
    '''
    
    #testing
    #no active testing
    
    #pre-load libraries
    import pandas as pd
    import time, datetime
    import ipywidgets as ipw
    from IPython.display import display, HTML, clear_output, update_display
    
    #progress bar
    progress = ipw.IntProgress(value=0, min=0, max=fold+4, step=1 , description='Processing: ')
5365 5366 5367 5368
    master_display = pd.DataFrame(columns=['Accuracy','AUC','Recall', 'Prec.', 'F1', 'Kappa', 'MCC'])
    if verbose:
        if html_param:
            display(progress)
5369 5370 5371 5372 5373 5374 5375 5376
    
    #display monitor
    timestampStr = datetime.datetime.now().strftime("%H:%M:%S")
    monitor = pd.DataFrame( [ ['Initiated' , '. . . . . . . . . . . . . . . . . .', timestampStr ], 
                             ['Status' , '. . . . . . . . . . . . . . . . . .' , 'Loading Dependencies' ],
                             ['ETC' , '. . . . . . . . . . . . . . . . . .',  'Calculating ETC'] ],
                              columns=['', ' ', '   ']).set_index('')
    
5377 5378 5379
    if verbose:
        if html_param:
            display(monitor, display_id = 'monitor')
5380 5381
    
    if verbose:
5382 5383 5384
        if html_param:
            display_ = display(master_display, display_id=True)
            display_id = display_.display_id
5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
        
    #ignore warnings
    import warnings
    warnings.filterwarnings('ignore') 
    
    #general dependencies
    import numpy as np
    from sklearn import metrics
    from sklearn.model_selection import StratifiedKFold  
    from sklearn.ensemble import VotingClassifier
    import re
    
    #Storing X_train and y_train in data_X and data_y parameter
    data_X = X_train.copy()
    data_y = y_train.copy()
    
    #reset index
    data_X.reset_index(drop=True, inplace=True)
    data_y.reset_index(drop=True, inplace=True)
    
5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
    if optimize == 'Accuracy':
        compare_dimension = 'Accuracy' 
    elif optimize == 'AUC':
        compare_dimension = 'AUC' 
    elif optimize == 'Recall':
        compare_dimension = 'Recall'
    elif optimize == 'Precision':
        compare_dimension = 'Prec.'
    elif optimize == 'F1':
        compare_dimension = 'F1' 
    elif optimize == 'Kappa':
        compare_dimension = 'Kappa'
    elif optimize == 'MCC':
        compare_dimension = 'MCC' 

    #estimator_list_flag
    if estimator_list == 'All':
        all_flag = True
    else:
        all_flag = False
        
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456
    progress.value += 1
    
    score_auc =np.empty((0,0))
    score_acc =np.empty((0,0))
    score_recall =np.empty((0,0))
    score_precision =np.empty((0,0))
    score_f1 =np.empty((0,0))
    score_kappa =np.empty((0,0))
    score_mcc =np.empty((0,0))
    score_training_time =np.empty((0,0))
    
    avgs_auc =np.empty((0,0))
    avgs_acc =np.empty((0,0))
    avgs_recall =np.empty((0,0))
    avgs_precision =np.empty((0,0))
    avgs_f1 =np.empty((0,0))
    avgs_kappa =np.empty((0,0))
    avgs_mcc =np.empty((0,0))
    avgs_training_time =np.empty((0,0))
    
    avg_acc = np.empty((0,0))
    avg_auc = np.empty((0,0))
    avg_recall = np.empty((0,0))
    avg_precision = np.empty((0,0))
    avg_f1 = np.empty((0,0))
    avg_kappa = np.empty((0,0))
    avg_mcc = np.empty((0,0))
    avg_training_time = np.empty((0,0))
    
    

5457
    kf = StratifiedKFold(fold, random_state=seed, shuffle=folds_shuffle_param)
5458 5459 5460 5461 5462 5463
    
    '''
    MONITOR UPDATE STARTS
    '''
    
    monitor.iloc[1,1:] = 'Compiling Estimators'
5464 5465 5466
    if verbose:
        if html_param:
            update_display(monitor, display_id = 'monitor')
5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
    
    '''
    MONITOR UPDATE ENDS
    '''
    
    if estimator_list == 'All':

        from sklearn.linear_model import LogisticRegression
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.naive_bayes import GaussianNB
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.linear_model import SGDClassifier
        from sklearn.svm import SVC
        from sklearn.gaussian_process import GaussianProcessClassifier
        from sklearn.neural_network import MLPClassifier
        from sklearn.linear_model import RidgeClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
        from sklearn.ensemble import AdaBoostClassifier
        from sklearn.ensemble import GradientBoostingClassifier    
        from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
        from sklearn.ensemble import ExtraTreesClassifier
        from sklearn.ensemble import BaggingClassifier 
        from xgboost import XGBClassifier
        import lightgbm as lgb
        
5493
        lr = LogisticRegression(random_state=seed) #don't add n_jobs parameter as it slows down the LR
M
Moez Ali 已提交
5494
        knn = KNeighborsClassifier(n_jobs=n_jobs_param)
5495 5496
        nb = GaussianNB()
        dt = DecisionTreeClassifier(random_state=seed)
M
Moez Ali 已提交
5497
        svm = SGDClassifier(max_iter=1000, tol=0.001, random_state=seed, n_jobs=n_jobs_param)
5498
        rbfsvm = SVC(gamma='auto', C=1, probability=True, kernel='rbf', random_state=seed)
M
Moez Ali 已提交
5499
        gpc = GaussianProcessClassifier(random_state=seed, n_jobs=n_jobs_param)
5500 5501
        mlp = MLPClassifier(max_iter=500, random_state=seed)
        ridge = RidgeClassifier(random_state=seed)
M
Moez Ali 已提交
5502
        rf = RandomForestClassifier(n_estimators=10, random_state=seed, n_jobs=n_jobs_param)
5503 5504 5505 5506
        qda = QuadraticDiscriminantAnalysis()
        ada = AdaBoostClassifier(random_state=seed)
        gbc = GradientBoostingClassifier(random_state=seed)
        lda = LinearDiscriminantAnalysis()
M
Moez Ali 已提交
5507 5508 5509
        et = ExtraTreesClassifier(random_state=seed, n_jobs=n_jobs_param)
        xgboost = XGBClassifier(random_state=seed, verbosity=0, n_jobs=n_jobs_param)
        lightgbm = lgb.LGBMClassifier(random_state=seed, n_jobs=n_jobs_param)
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
        #catboost = CatBoostClassifier(random_state=seed, silent = True)

        progress.value += 1
        
        if turbo:
            if method == 'hard':
                estimator_list = [lr,knn,nb,dt,svm,ridge,rf,qda,ada,gbc,lda,et,xgboost,lightgbm]
                voting = 'hard'
            elif method == 'soft':
                estimator_list = [lr,knn,nb,dt,rf,qda,ada,gbc,lda,et,xgboost,lightgbm]
                voting = 'soft'
        else:
            if method == 'hard':
                estimator_list = [lr,knn,nb,dt,svm,rbfsvm,gpc,mlp,ridge,rf,qda,ada,gbc,lda,et,xgboost,lightgbm]
                voting = 'hard'
            elif method == 'soft':
                estimator_list = [lr,knn,nb,dt,rbfsvm,gpc,mlp,rf,qda,ada,gbc,lda,et,xgboost,lightgbm]
                voting = 'soft'
                
    else:

        estimator_list = estimator_list
        voting = method  
        
    model_names = []

    for names in estimator_list:

        model_names = np.append(model_names, str(names).split("(")[0])

    def putSpace(input):
        words = re.findall('[A-Z][a-z]*', input)
        words = ' '.join(words)
        return words  

    model_names_modified = []
    
    for i in model_names:
        
        model_names_modified.append(putSpace(i))
        model_names = model_names_modified
    
    model_names_final = []
  
    for j in model_names_modified:

        if j == 'Gaussian N B':
            model_names_final.append('Naive Bayes')

        elif j == 'M L P Classifier':
            model_names_final.append('MLP Classifier')

        elif j == 'S G D Classifier':
            model_names_final.append('SVM - Linear Kernel')

        elif j == 'S V C':
            model_names_final.append('SVM - Radial Kernel')
        
        elif j == 'X G B Classifier':
            model_names_final.append('Extreme Gradient Boosting')
        
        elif j == 'L G B M Classifier':
            model_names_final.append('Light Gradient Boosting Machine')
            
        else: 
            model_names_final.append(j)
            
    model_names = model_names_final
    
    #adding n in model_names to avoid duplicate exception when custom list is passed for eg. BaggingClassifier
    
    model_names_n = []
    counter = 0
    
    for i in model_names:
        mn = str(i) + '_' + str(counter)
        model_names_n.append(mn)
        counter += 1
        
    model_names = model_names_n

    estimator_list = estimator_list

    estimator_list_ = zip(model_names, estimator_list)
    estimator_list_ = set(estimator_list_)
    estimator_list_ = list(estimator_list_)
    
    try:
M
Moez Ali 已提交
5598
        model = VotingClassifier(estimators=estimator_list_, voting=voting, n_jobs=n_jobs_param)
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
        model.fit(Xtrain,ytrain)
    except:
        model = VotingClassifier(estimators=estimator_list_, voting=voting)
    
    progress.value += 1
    
    '''
    MONITOR UPDATE STARTS
    '''
    
    monitor.iloc[1,1:] = 'Initializing CV'
5610 5611 5612
    if verbose:
        if html_param:
            update_display(monitor, display_id = 'monitor')
5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630
    
    '''
    MONITOR UPDATE ENDS
    '''
    
    fold_num = 1
    
    for train_i , test_i in kf.split(data_X,data_y):
        
        progress.value += 1
        
        t0 = time.time()
        
        '''
        MONITOR UPDATE STARTS
        '''
    
        monitor.iloc[1,1:] = 'Fitting Fold ' + str(fold_num) + ' of ' + str(fold)
5631 5632 5633
        if verbose:
            if html_param:
                update_display(monitor, display_id = 'monitor')
5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702

        '''
        MONITOR UPDATE ENDS
        '''
    
        Xtrain,Xtest = data_X.iloc[train_i], data_X.iloc[test_i]
        ytrain,ytest = data_y.iloc[train_i], data_y.iloc[test_i]    
        time_start=time.time()
        if voting == 'hard':
        
            model.fit(Xtrain,ytrain)
            pred_prob = 0.0
            pred_ = model.predict(Xtest)
            sca = metrics.accuracy_score(ytest,pred_)
            sc = 0.0
            if y.value_counts().count() > 2:
                recall = metrics.recall_score(ytest,pred_, average='macro')
                precision = metrics.precision_score(ytest,pred_, average='weighted')
                f1 = metrics.f1_score(ytest,pred_, average='weighted')    
            else:
                recall = metrics.recall_score(ytest,pred_)
                precision = metrics.precision_score(ytest,pred_)
                f1 = metrics.f1_score(ytest,pred_) 
                
        else:
        
            model.fit(Xtrain,ytrain)
            pred_ = model.predict(Xtest)
            sca = metrics.accuracy_score(ytest,pred_)
            
            if y.value_counts().count() > 2:
                pred_prob = 0
                sc = 0
                recall = metrics.recall_score(ytest,pred_, average='macro')
                precision = metrics.precision_score(ytest,pred_, average='weighted')
                f1 = metrics.f1_score(ytest,pred_, average='weighted')
            else:
                try:
                    pred_prob = model.predict_proba(Xtest)
                    pred_prob = pred_prob[:,1]
                    sc = metrics.roc_auc_score(ytest,pred_prob)
                except:
                    sc = 0
                recall = metrics.recall_score(ytest,pred_)
                precision = metrics.precision_score(ytest,pred_)
                f1 = metrics.f1_score(ytest,pred_)
                
        time_end=time.time()
        kappa = metrics.cohen_kappa_score(ytest,pred_)
        mcc = metrics.matthews_corrcoef(ytest,pred_)
        training_time=time_end-time_start
        score_acc = np.append(score_acc,sca)
        score_auc = np.append(score_auc,sc)
        score_recall = np.append(score_recall,recall)
        score_precision = np.append(score_precision,precision)
        score_f1 =np.append(score_f1,f1)
        score_kappa =np.append(score_kappa,kappa)
        score_mcc =np.append(score_mcc,mcc)
        score_training_time =np.append(score_training_time,training_time)
    
    
        '''
        
        This section handles time calculation and is created to update_display() as code loops through 
        the fold defined.
        
        '''
        
        fold_results = pd.DataFrame({'Accuracy':[sca], 'AUC': [sc], 'Recall': [recall], 
5703
                                     'Prec.': [precision], 'F1': [f1], 'Kappa': [kappa], 'MCC':[mcc]}).round(round)
5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
        master_display = pd.concat([master_display, fold_results],ignore_index=True)
        fold_results = []
        
        '''
        TIME CALCULATION SUB-SECTION STARTS HERE
        '''
        t1 = time.time()
        
        tt = (t1 - t0) * (fold-fold_num) / 60
        tt = np.around(tt, 2)
        
        if tt < 1:
            tt = str(np.around((tt * 60), 2))
            ETC = tt + ' Seconds Remaining'
                
        else:
            tt = str (tt)
            ETC = tt + ' Minutes Remaining'
            
        fold_num += 1
        
        '''
        MONITOR UPDATE STARTS
        '''

        monitor.iloc[2,1:] = ETC
5730 5731 5732
        if verbose:
            if html_param:
                update_display(monitor, display_id = 'monitor')
5733 5734 5735 5736 5737 5738 5739 5740 5741 5742

        '''
        MONITOR UPDATE ENDS
        '''
        
        '''
        TIME CALCULATION ENDS HERE
        '''
        
        if verbose:
5743 5744
            if html_param:
                update_display(master_display, display_id = display_id)
5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790
            
        
        '''
        
        Update_display() ends here
        
        '''
    
    mean_acc=np.mean(score_acc)
    mean_auc=np.mean(score_auc)
    mean_recall=np.mean(score_recall)
    mean_precision=np.mean(score_precision)
    mean_f1=np.mean(score_f1)
    mean_kappa=np.mean(score_kappa)
    mean_mcc=np.mean(score_mcc)
    mean_training_time=np.mean(score_training_time)
    std_acc=np.std(score_acc)
    std_auc=np.std(score_auc)
    std_recall=np.std(score_recall)
    std_precision=np.std(score_precision)
    std_f1=np.std(score_f1)
    std_kappa=np.std(score_kappa)
    std_mcc=np.std(score_mcc)
    std_training_time=np.std(score_training_time)
    
    avgs_acc = np.append(avgs_acc, mean_acc)
    avgs_acc = np.append(avgs_acc, std_acc) 
    avgs_auc = np.append(avgs_auc, mean_auc)
    avgs_auc = np.append(avgs_auc, std_auc)
    avgs_recall = np.append(avgs_recall, mean_recall)
    avgs_recall = np.append(avgs_recall, std_recall)
    avgs_precision = np.append(avgs_precision, mean_precision)
    avgs_precision = np.append(avgs_precision, std_precision)
    avgs_f1 = np.append(avgs_f1, mean_f1)
    avgs_f1 = np.append(avgs_f1, std_f1)
    avgs_kappa = np.append(avgs_kappa, mean_kappa)
    avgs_kappa = np.append(avgs_kappa, std_kappa)
    
    avgs_mcc = np.append(avgs_mcc, mean_mcc)
    avgs_mcc = np.append(avgs_mcc, std_mcc)
    avgs_training_time = np.append(avgs_training_time, mean_training_time)
    avgs_training_time = np.append(avgs_training_time, std_training_time)
    
    progress.value += 1
    
    model_results = pd.DataFrame({'Accuracy': score_acc, 'AUC': score_auc, 'Recall' : score_recall, 'Prec.' : score_precision , 
5791
                     'F1' : score_f1, 'Kappa' : score_kappa, 'MCC' : score_mcc})
5792
    model_avgs = pd.DataFrame({'Accuracy': avgs_acc, 'AUC': avgs_auc, 'Recall' : avgs_recall, 'Prec.' : avgs_precision , 
5793
                     'F1' : avgs_f1, 'Kappa' : avgs_kappa, 'MCC' : avgs_mcc},index=['Mean', 'SD'])
5794 5795
    model_results = model_results.append(model_avgs)
    model_results = model_results.round(round)
5796 5797 5798 5799 5800
    
    # yellow the mean
    model_results=model_results.style.apply(lambda x: ['background: yellow' if (x.name == 'Mean') else '' for i in x], axis=1)
    model_results = model_results.set_precision(round)

5801 5802 5803
    progress.value += 1
    
    #refitting the model on complete X_train, y_train
5804 5805 5806 5807 5808
    monitor.iloc[1,1:] = 'Finalizing Model'
    
    if verbose:
        if html_param:
            update_display(monitor, display_id = 'monitor')
5809 5810 5811 5812 5813
    
    model.fit(data_X, data_y)
    
    progress.value += 1
    
5814 5815
    #storing results in create_model_container
    create_model_container.append(model_results.data)
5816
    display_container.append(model_results.data)
5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855

    #storing results in master_model_container
    master_model_container.append(model)

    '''
    When choose_better sets to True. optimize metric in scoregrid is
    compared with base model created using create_model so that stack_models
    functions return the model with better score only. This will ensure 
    model performance is atleast equivalent to what is seen in compare_models 
    '''
    
    scorer = []

    blend_model_results = create_model_container[-1][compare_dimension][-2:][0]
    
    scorer.append(blend_model_results)

    if choose_better and all_flag is False:

        if verbose:
            if html_param:
                monitor.iloc[1,1:] = 'Compiling Final Results'
                monitor.iloc[2,1:] = 'Almost Finished'
                update_display(monitor, display_id = 'monitor')

        base_models_ = []
        for i in estimator_list:
            m = create_model(i,verbose=False)
            s = create_model_container[-1][compare_dimension][-2:][0]
            scorer.append(s)
            base_models_.append(m)

    index_scorer = scorer.index(max(scorer))

    if index_scorer == 0:
        model = model
    else:
        model = base_models_[index_scorer-1]
    
5856 5857 5858 5859 5860 5861 5862
    #storing into experiment
    model_name = 'Voting Classifier'
    tup = (model_name,model)
    experiment__.append(tup)
    nam = str(model_name) + ' Score Grid'
    tup = (nam, model_results)
    experiment__.append(tup)
5863

5864 5865
    if verbose:
        clear_output()
5866 5867 5868 5869
        if html_param:
            display(model_results)
        else:
            print(model_results.data)
5870
    
5871
    return model
5872 5873 5874 5875 5876 5877 5878 5879

def stack_models(estimator_list, 
                 meta_model = None, 
                 fold = 10,
                 round = 4, 
                 method = 'soft', 
                 restack = True, 
                 plot = False,
5880 5881
                 choose_better = True, #added in pycaret==1.0.1
                 optimize = 'Accuracy', #added in pycaret==1.0.1
5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
                 finalize = False,
                 verbose = True):
    
    """
            
    Description:
    ------------
    This function creates a meta model and scores it using Stratified Cross Validation.
    The predictions from the base level models as passed in the estimator_list param 
    are used as input features for the meta model. The restacking parameter controls
    the ability to expose raw features to the meta model when set to True
    (default = False).

    The output prints the score grid that shows Accuracy, AUC, Recall, Precision, 
    F1 and Kappa by fold (default = 10 Folds). 
    
    This function returns a container which is the list of all models in stacking. 

        Example:
        --------
        from pycaret.datasets import get_data
        juice = get_data('juice')
        experiment_name = setup(data = juice,  target = 'Purchase')
        dt = create_model('dt')
        rf = create_model('rf')
        ada = create_model('ada')
        ridge = create_model('ridge')
        knn = create_model('knn')

        stacked_models = stack_models(estimator_list=[dt,rf,ada,ridge,knn])

        This will create a meta model that will use the predictions of all the 
        models provided in estimator_list param. By default, the meta model is 
        Logistic Regression but can be changed with meta_model param.

    Parameters
    ----------
    estimator_list : list of objects

    meta_model : object, default = None
    if set to None, Logistic Regression is used as a meta model.

    fold: integer, default = 10
    Number of folds to be used in Kfold CV. Must be at least 2. 

    round: integer, default = 4
    Number of decimal places the metrics in the score grid will be rounded to.

    method: string, default = 'soft'
    'soft', uses predicted probabilities as an input to the meta model.
    'hard', uses predicted class labels as an input to the meta model. 

    restack: Boolean, default = True
    When restack is set to True, raw data will be exposed to meta model when
    making predictions, otherwise when False, only the predicted label or
    probabilities is passed to meta model when making final predictions.

    plot: Boolean, default = False
    When plot is set to True, it will return the correlation plot of prediction
    from all base models provided in estimator_list.
5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954

    choose_better: Boolean, default = True
    When set to set to True, base estimator is returned when the metric doesn't 
    improve by ensemble_model. This gurantees the returned object would perform 
    atleast equivalent to base estimator created using create_model or model 
    returned by compare_models.

    optimize: string, default = 'Accuracy'
    Only used when choose_better is set to True. optimize parameter is used
    to compare emsembled model with base estimator. Values accepted in 
    optimize parameter are 'Accuracy', 'AUC', 'Recall', 'Precision', 'F1', 
    'Kappa', 'MCC'.

5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074
    finalize: Boolean, default = False
    When finalize is set to True, it will fit the stacker on entire dataset
    including the hold-out sample created during the setup() stage. It is not 
    recommended to set this to True here, If you would like to fit the stacker 
    on the entire dataset including the hold-out, use finalize_model().
    
    verbose: Boolean, default = True
    Score grid is not printed when verbose is set to False.

    Returns:
    --------

    score grid:   A table containing the scores of the model across the kfolds. 
    -----------   Scoring metrics used are Accuracy, AUC, Recall, Precision, F1 
                  and Kappa. Mean and standard deviation of the scores across the 
                  folds are also returned.

    container:    list of all the models where last element is meta model.
    ----------

    Warnings:
    ---------
    -  When the method is forced to be 'soft' and estimator_list param includes 
       estimators that donot support the predict_proba method such as 'svm' or 
       'ridge',  predicted values for those specific estimators only are used 
       instead of probability  when building the meta_model. The same rule applies
       when the stacker is used under predict_model() function.
        
    -  If target variable is multiclass (more than 2 classes), AUC will be returned 
       as zero (0.0).
       
    -  method 'soft' not supported for when target is multiclass.
         
            
    """
    
    '''
    
    ERROR HANDLING STARTS HERE
    
    '''
    
    #testing
    #no active test
    
    #change method param to 'hard' for multiclass
    if y.value_counts().count() > 2:
        method = 'hard'

    #exception checking   
    import sys
    
    #checking error for estimator_list
    for i in estimator_list:
        if 'sklearn' not in str(type(i)) and 'CatBoostClassifier' not in str(type(i)):
            sys.exit("(Value Error): estimator_list parameter only trained model object")
            
    #checking meta model
    if meta_model is not None:
        if 'sklearn' not in str(type(meta_model)) and 'CatBoostClassifier' not in str(type(meta_model)):
            sys.exit("(Value Error): estimator_list parameter only accepts trained model object")
    
    #stacking with multiclass
    if y.value_counts().count() > 2:
        if method == 'soft':
            sys.exit("(Type Error): method 'soft' not supported for multiclass problems.")
            
    #checking fold parameter
    if type(fold) is not int:
        sys.exit('(Type Error): Fold parameter only accepts integer value.')
    
    #checking round parameter
    if type(round) is not int:
        sys.exit('(Type Error): Round parameter only accepts integer value.')
 
    #checking method parameter
    available_method = ['soft', 'hard']
    if method not in available_method:
        sys.exit("(Value Error): Method parameter only accepts 'soft' or 'hard' as a parameter. See Docstring for details.")
    
    #checking restack parameter
    if type(restack) is not bool:
        sys.exit('(Type Error): Restack parameter can only take argument as True or False.')    
    
    #checking plot parameter
    if type(restack) is not bool:
        sys.exit('(Type Error): Plot parameter can only take argument as True or False.')  
        
    #checking verbose parameter
    if type(verbose) is not bool:
        sys.exit('(Type Error): Verbose parameter can only take argument as True or False.') 
        
    '''
    
    ERROR HANDLING ENDS HERE
    
    '''
    
    #testing
    #no active test
    
    #pre-load libraries
    import pandas as pd
    import ipywidgets as ipw
    from IPython.display import display, HTML, clear_output, update_display
    import time, datetime
    from copy import deepcopy
    from sklearn.base import clone
    
    #copy estimator_list
    estimator_list = deepcopy(estimator_list)
    
    #Defining meta model.
    if meta_model == None:
        from sklearn.linear_model import LogisticRegression
        meta_model = LogisticRegression()
    else:
        meta_model = deepcopy(meta_model)
        
    clear_output()
6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090

    if optimize == 'Accuracy':
        compare_dimension = 'Accuracy' 
    elif optimize == 'AUC':
        compare_dimension = 'AUC' 
    elif optimize == 'Recall':
        compare_dimension = 'Recall'
    elif optimize == 'Precision':
        compare_dimension = 'Prec.'
    elif optimize == 'F1':
        compare_dimension = 'F1' 
    elif optimize == 'Kappa':
        compare_dimension = 'Kappa'
    elif optimize == 'MCC':
        compare_dimension = 'MCC' 

6091 6092 6093
    #progress bar
    max_progress = len(estimator_list) + fold + 4
    progress = ipw.IntProgress(value=0, min=0, max=max_progress, step=1 , description='Processing: ')
6094 6095 6096 6097
    master_display = pd.DataFrame(columns=['Accuracy','AUC','Recall', 'Prec.', 'F1', 'Kappa', 'MCC'])
    if verbose:
        if html_param:
            display(progress)
6098 6099 6100 6101 6102 6103 6104 6105
    
    #display monitor
    timestampStr = datetime.datetime.now().strftime("%H:%M:%S")
    monitor = pd.DataFrame( [ ['Initiated' , '. . . . . . . . . . . . . . . . . .', timestampStr ], 
                             ['Status' , '. . . . . . . . . . . . . . . . . .' , 'Loading Dependencies' ],
                             ['ETC' , '. . . . . . . . . . . . . . . . . .',  'Calculating ETC'] ],
                              columns=['', ' ', '   ']).set_index('')
    
6106 6107 6108
    if verbose:
        if html_param:
            display(monitor, display_id = 'monitor')
6109 6110
    
    if verbose:
6111 6112 6113
        if html_param:
            display_ = display(master_display, display_id=True)
            display_id = display_.display_id
6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186
        
    #ignore warnings
    import warnings
    warnings.filterwarnings('ignore') 
    
    #dependencies
    import numpy as np
    from sklearn import metrics
    from sklearn.model_selection import StratifiedKFold
    from sklearn.model_selection import cross_val_predict
    import seaborn as sns
    import matplotlib.pyplot as plt
    
    progress.value += 1
    
    #Capturing the method of stacking required by user. method='soft' means 'predict_proba' else 'predict'
    if method == 'soft':
        predict_method = 'predict_proba'
    elif method == 'hard':
        predict_method = 'predict'
    
    #defining data_X and data_y
    if finalize:
        data_X = X.copy()
        data_y = y.copy()
    else:       
        data_X = X_train.copy()
        data_y = y_train.copy()
        
    #reset index
    data_X.reset_index(drop=True,inplace=True)
    data_y.reset_index(drop=True,inplace=True)
    
    #models_ for appending
    models_ = []
    
    #defining model_library model names
    model_names = np.zeros(0)
    for item in estimator_list:
        model_names = np.append(model_names, str(item).split("(")[0])
     
    model_names_fixed = []
    
    for i in model_names:
        if 'CatBoostClassifier' in i:
            a = 'CatBoostClassifier'
            model_names_fixed.append(a)
        else:
            model_names_fixed.append(i)
            
    model_names = model_names_fixed
    
    model_names_fixed = []
    
    counter = 0
    for i in model_names:
        s = str(i) + '_' + str(counter)
        model_names_fixed.append(s)
        counter += 1
    
    base_array = np.zeros((0,0))
    base_prediction = pd.DataFrame(data_y) #changed to data_y
    base_prediction = base_prediction.reset_index(drop=True)
    
    counter = 0
    
    for model in estimator_list:
        
        '''
        MONITOR UPDATE STARTS
        '''

        monitor.iloc[1,1:] = 'Evaluating ' + model_names[counter]
6187 6188 6189
        if verbose:
            if html_param:
                update_display(monitor, display_id = 'monitor')
6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247

        '''
        MONITOR UPDATE ENDS
        '''
        
        #fitting and appending
        model.fit(data_X, data_y)
        models_.append(model)
        
        progress.value += 1
        
        try:
            base_array = cross_val_predict(model,data_X,data_y,cv=fold, method=predict_method)
        except:
            base_array = cross_val_predict(model,data_X,data_y,cv=fold, method='predict')
        if method == 'soft':
            try:
                base_array = base_array[:,1]
            except:
                base_array = base_array
        elif method == 'hard':
            base_array = base_array
        base_array_df = pd.DataFrame(base_array)
        base_prediction = pd.concat([base_prediction,base_array_df],axis=1)
        base_array = np.empty((0,0))
        
        counter += 1
        
    #fill nas for base_prediction
    base_prediction.fillna(value=0, inplace=True)
    
    #defining column names now
    target_col_name = np.array(base_prediction.columns[0])
    model_names = np.append(target_col_name, model_names_fixed) #added fixed here
    base_prediction.columns = model_names #defining colum names now
    
    #defining data_X and data_y dataframe to be used in next stage.
    
    #drop column from base_prediction
    base_prediction.drop(base_prediction.columns[0],axis=1,inplace=True)
    
    if restack:
        data_X = pd.concat([data_X, base_prediction], axis=1)
        
    else:
        data_X = base_prediction
    
    #Correlation matrix of base_prediction
    #base_prediction_cor = base_prediction.drop(base_prediction.columns[0],axis=1)
    base_prediction_cor = base_prediction.corr()
    
    #Meta Modeling Starts Here
    model = meta_model #this defines model to be used below as model = meta_model (as captured above)
    
    #appending in models
    model.fit(data_X, data_y)
    models_.append(model)
    
6248
    kf = StratifiedKFold(fold, random_state=seed, shuffle=folds_shuffle_param) #capturing fold requested by user
6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279

    score_auc =np.empty((0,0))
    score_acc =np.empty((0,0))
    score_recall =np.empty((0,0))
    score_precision =np.empty((0,0))
    score_f1 =np.empty((0,0))
    score_kappa =np.empty((0,0))
    score_mcc =np.empty((0,0))
    score_training_time =np.empty((0,0))
    avgs_auc =np.empty((0,0))
    avgs_acc =np.empty((0,0))
    avgs_recall =np.empty((0,0))
    avgs_precision =np.empty((0,0))
    avgs_f1 =np.empty((0,0))
    avgs_kappa =np.empty((0,0))
    avgs_mcc =np.empty((0,0))
    avgs_training_time =np.empty((0,0))
    
    progress.value += 1
    
    fold_num = 1
    
    for train_i , test_i in kf.split(data_X,data_y):
        
        t0 = time.time()
        
        '''
        MONITOR UPDATE STARTS
        '''
    
        monitor.iloc[1,1:] = 'Fitting Meta Model Fold ' + str(fold_num) + ' of ' + str(fold)
6280 6281 6282
        if verbose:
            if html_param:
                update_display(monitor, display_id = 'monitor')
6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338

        '''
        MONITOR UPDATE ENDS
        '''
        
        progress.value += 1
        
        Xtrain,Xtest = data_X.iloc[train_i], data_X.iloc[test_i]
        ytrain,ytest = data_y.iloc[train_i], data_y.iloc[test_i]
        
        time_start=time.time()
        model.fit(Xtrain,ytrain)
        
        try:
            pred_prob = model.predict_proba(Xtest)
            pred_prob = pred_prob[:,1]
        except:
            pass
        pred_ = model.predict(Xtest)
        sca = metrics.accuracy_score(ytest,pred_)
        try: 
            sc = metrics.roc_auc_score(ytest,pred_prob)
        except:
            sc = 0
            
        if y.value_counts().count() > 2:
            recall = metrics.recall_score(ytest,pred_,average='macro')
            precision = metrics.precision_score(ytest,pred_,average='weighted')
            f1 = metrics.f1_score(ytest,pred_,average='weighted')
            
        else:
            recall = metrics.recall_score(ytest,pred_)
            precision = metrics.precision_score(ytest,pred_)
            f1 = metrics.f1_score(ytest,pred_)
            
        time_end=time.time()
        kappa = metrics.cohen_kappa_score(ytest,pred_)
        mcc = metrics.matthews_corrcoef(ytest,pred_)
        training_time=time_end-time_start
        score_acc = np.append(score_acc,sca)
        score_auc = np.append(score_auc,sc)
        score_recall = np.append(score_recall,recall)
        score_precision = np.append(score_precision,precision)
        score_f1 =np.append(score_f1,f1)
        score_kappa =np.append(score_kappa,kappa)
        score_mcc =np.append(score_mcc,mcc)
        score_training_time =np.append(score_training_time,training_time)
        
        '''
        
        This section handles time calculation and is created to update_display() as code loops through 
        the fold defined.
        
        '''
        
        fold_results = pd.DataFrame({'Accuracy':[sca], 'AUC': [sc], 'Recall': [recall], 
6339
                                     'Prec.': [precision], 'F1': [f1], 'Kappa': [kappa], 'MCC':[mcc]}).round(round)
6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368
        master_display = pd.concat([master_display, fold_results],ignore_index=True)
        fold_results = []
        
        
        '''
        
        TIME CALCULATION SUB-SECTION STARTS HERE
        
        '''
        
        t1 = time.time()
        
        tt = (t1 - t0) * (fold-fold_num) / 60
        tt = np.around(tt, 2)
        
        if tt < 1:
            tt = str(np.around((tt * 60), 2))
            ETC = tt + ' Seconds Remaining'
                
        else:
            tt = str (tt)
            ETC = tt + ' Minutes Remaining'
        
        '''
        MONITOR UPDATE STARTS
        '''

        monitor.iloc[2,1:] = ETC
        
6369 6370 6371
        if verbose:
            if html_param:
                update_display(monitor, display_id = 'monitor')
6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388

        '''
        MONITOR UPDATE ENDS
        '''
        
        #update_display(ETC, display_id = 'ETC')
            
        fold_num += 1
        
        
        '''
        
        TIME CALCULATION ENDS HERE
        
        '''
        
        if verbose:
6389 6390
            if html_param:
                update_display(master_display, display_id = display_id)
6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433
            
        
        '''
        
        Update_display() ends here
        
        '''
     
    mean_acc=np.mean(score_acc)
    mean_auc=np.mean(score_auc)
    mean_recall=np.mean(score_recall)
    mean_precision=np.mean(score_precision)
    mean_f1=np.mean(score_f1)
    mean_kappa=np.mean(score_kappa)
    mean_mcc=np.mean(score_mcc)
    mean_training_time=np.mean(score_training_time)
    std_acc=np.std(score_acc)
    std_auc=np.std(score_auc)
    std_recall=np.std(score_recall)
    std_precision=np.std(score_precision)
    std_f1=np.std(score_f1)
    std_kappa=np.std(score_kappa)
    std_mcc=np.std(score_mcc)
    std_training_time=np.std(score_training_time)
    
    avgs_acc = np.append(avgs_acc, mean_acc)
    avgs_acc = np.append(avgs_acc, std_acc) 
    avgs_auc = np.append(avgs_auc, mean_auc)
    avgs_auc = np.append(avgs_auc, std_auc)
    avgs_recall = np.append(avgs_recall, mean_recall)
    avgs_recall = np.append(avgs_recall, std_recall)
    avgs_precision = np.append(avgs_precision, mean_precision)
    avgs_precision = np.append(avgs_precision, std_precision)
    avgs_f1 = np.append(avgs_f1, mean_f1)
    avgs_f1 = np.append(avgs_f1, std_f1)
    avgs_kappa = np.append(avgs_kappa, mean_kappa)
    avgs_kappa = np.append(avgs_kappa, std_kappa)
    avgs_mcc = np.append(avgs_mcc, mean_mcc)
    avgs_mcc = np.append(avgs_mcc, std_mcc)
    avgs_training_time = np.append(avgs_training_time, mean_training_time)
    avgs_training_time = np.append(avgs_training_time, std_training_time)
      
    model_results = pd.DataFrame({'Accuracy': score_acc, 'AUC': score_auc, 'Recall' : score_recall, 'Prec.' : score_precision , 
6434
                     'F1' : score_f1, 'Kappa' : score_kappa,'MCC':score_mcc})
6435
    model_avgs = pd.DataFrame({'Accuracy': avgs_acc, 'AUC': avgs_auc, 'Recall' : avgs_recall, 'Prec.' : avgs_precision , 
6436
                     'F1' : avgs_f1, 'Kappa' : avgs_kappa,'MCC':avgs_mcc},index=['Mean', 'SD'])
6437 6438
  
    model_results = model_results.append(model_avgs)
6439 6440 6441 6442 6443
    model_results = model_results.round(round)

    # yellow the mean
    model_results=model_results.style.apply(lambda x: ['background: yellow' if (x.name == 'Mean') else '' for i in x], axis=1)
    model_results = model_results.set_precision(round)
6444 6445
    progress.value += 1
    
6446
    #appending method and restack param into models_
6447 6448 6449
    models_.append(method)
    models_.append(restack)
    
6450 6451
    #storing results in create_model_container
    create_model_container.append(model_results.data)
6452
    display_container.append(model_results.data)
6453 6454 6455 6456 6457 6458 6459 6460 6461 6462

    #storing results in master_model_container
    master_model_container.append(models_)

    '''
    When choose_better sets to True. optimize metric in scoregrid is
    compared with base model created using create_model so that stack_models
    functions return the model with better score only. This will ensure 
    model performance is atleast equivalent to what is seen in compare_models 
    '''
6463

6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484
    scorer = []

    stack_model_results = create_model_container[-1][compare_dimension][-2:][0]
    
    scorer.append(stack_model_results)

    if choose_better:

        if verbose:
            if html_param:
                monitor.iloc[1,1:] = 'Compiling Final Results'
                monitor.iloc[2,1:] = 'Almost Finished'
                update_display(monitor, display_id = 'monitor')

        base_models_ = []
        for i in estimator_list:
            m = create_model(i,verbose=False)
            s = create_model_container[-1][compare_dimension][-2:][0]
            scorer.append(s)
            base_models_.append(m)

6485 6486
        meta_model_clone = clone(meta_model)
        mm = create_model(meta_model_clone, verbose=False)
6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498
        base_models_.append(mm)
        s = create_model_container[-1][compare_dimension][-2:][0]
        scorer.append(s)

    #returning better model
    index_scorer = scorer.index(max(scorer))
    
    if index_scorer == 0:
        models_ = models_
    else:
        models_ = base_models_[index_scorer-1]
    
6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515
    #storing into experiment
    model_name = 'Stacking Classifier (Single Layer)'
    tup = (model_name,models_)
    experiment__.append(tup)
    nam = str(model_name) + ' Score Grid'
    tup = (nam, model_results)
    experiment__.append(tup)
    
    if plot:
        clear_output()
        plt.subplots(figsize=(15,7))
        ax = sns.heatmap(base_prediction_cor, vmin=0.2, vmax=1, center=0,cmap='magma', square=True, annot=True, 
                         linewidths=1)
        ax.set_ylim(sorted(ax.get_xlim(), reverse=True))

    if verbose:
        clear_output()
6516 6517 6518 6519 6520 6521
        if html_param:
            display(model_results)
        else:
            print(model_results.data)

    return models_
6522 6523 6524 6525 6526 6527 6528

def create_stacknet(estimator_list,
                    meta_model = None,
                    fold = 10,
                    round = 4,
                    method = 'soft',
                    restack = True,
6529 6530
                    choose_better = True, #added in pycaret==1.0.1
                    optimize = 'Accuracy', #added in pycaret==1.0.1
6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586
                    finalize = False,
                    verbose = True):
    
    """
         
    Description:
    ------------
    This function creates a sequential stack net using cross validated predictions 
    at each layer. The final score grid contains predictions from the meta model 
    using Stratified Cross Validation. Base level models can be passed as 
    estimator_list param, the layers can be organized as a sub list within the 
    estimator_list object.  Restacking param controls the ability to expose raw 
    features to meta model.

        Example:
        --------
        from pycaret.datasets import get_data
        juice = get_data('juice')
        experiment_name = setup(data = juice,  target = 'Purchase')
        dt = create_model('dt')
        rf = create_model('rf')
        ada = create_model('ada')
        ridge = create_model('ridge')
        knn = create_model('knn')

        stacknet = create_stacknet(estimator_list =[[dt,rf],[ada,ridge,knn]])

        This will result in the stacking of models in multiple layers. The first layer 
        contains dt and rf, the predictions of which are used by models in the second 
        layer to generate predictions which are then used by the meta model to generate
        final predictions. By default, the meta model is Logistic Regression but can be 
        changed with meta_model param.

    Parameters
    ----------
    estimator_list : nested list of objects

    meta_model : object, default = None
    if set to None, Logistic Regression is used as a meta model.

    fold: integer, default = 10
    Number of folds to be used in Kfold CV. Must be at least 2. 

    round: integer, default = 4
    Number of decimal places the metrics in the score grid will be rounded to.
  
    method: string, default = 'soft'
    'soft', uses predicted probabilities as an input to the meta model.
    'hard', uses predicted class labels as an input to the meta model. 
    
    restack: Boolean, default = True
    When restack is set to True, raw data and prediction of all layers will be 
    exposed to the meta model when making predictions. When set to False, only 
    the predicted label or probabilities of last layer is passed to meta model 
    when making final predictions.
    
6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598
    choose_better: Boolean, default = True
    When set to set to True, base estimator is returned when the metric doesn't 
    improve by ensemble_model. This gurantees the returned object would perform 
    atleast equivalent to base estimator created using create_model or model 
    returned by compare_models.

    optimize: string, default = 'Accuracy'
    Only used when choose_better is set to True. optimize parameter is used
    to compare emsembled model with base estimator. Values accepted in 
    optimize parameter are 'Accuracy', 'AUC', 'Recall', 'Precision', 'F1', 
    'Kappa', 'MCC'.

6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723
    finalize: Boolean, default = False
    When finalize is set to True, it will fit the stacker on entire dataset
    including the hold-out sample created during the setup() stage. It is not 
    recommended to set this to True here, if you would like to fit the stacker 
    on the entire dataset including the hold-out, use finalize_model().
    
    verbose: Boolean, default = True
    Score grid is not printed when verbose is set to False.

    Returns:
    --------

    score grid:   A table containing the scores of the model across the kfolds. 
    -----------   Scoring metrics used are Accuracy, AUC, Recall, Precision, F1 
                  and Kappa. Mean and standard deviation of the scores across the 
                  folds are also returned.

    container:    list of all models where the last element is the meta model.
    ----------

    Warnings:
    ---------
    -  When the method is forced to be 'soft' and estimator_list param includes 
       estimators that donot support the predict_proba method such as 'svm' or 
       'ridge',  predicted values for those specific estimators only are used 
       instead of probability  when building the meta_model. The same rule applies
       when the stacker is used under predict_model() function.
    
    -  If target variable is multiclass (more than 2 classes), AUC will be returned 
       as zero (0.0)
       
    -  method 'soft' not supported for when target is multiclass.
    
      
    """

    
    
    '''
    
    ERROR HANDLING STARTS HERE
    
    '''
    
    #testing
    #global inter_level_names
    
    #change method param to 'hard' for multiclass
    if y.value_counts().count() > 2:
        method = 'hard'

    #exception checking   
    import sys
    
    #checking estimator_list
    if type(estimator_list[0]) is not list:
        sys.exit("(Type Error): estimator_list parameter must be list of list. ")
        
    #blocking stack_models usecase
    if len(estimator_list) == 1:
        sys.exit("(Type Error): Single Layer stacking must be performed using stack_models(). ")
        
    #checking error for estimator_list
    for i in estimator_list:
        for j in i:
            if 'sklearn' not in str(type(j)) and 'CatBoostClassifier' not in str(type(j)):
                sys.exit("(Value Error): estimator_list parameter only trained model object")
    
    #checking meta model
    if meta_model is not None:
        if 'sklearn' not in str(type(meta_model)) and 'CatBoostClassifier' not in str(type(meta_model)):
            sys.exit("(Value Error): estimator_list parameter only trained model object")
    
    #stacknet with multiclass
    if y.value_counts().count() > 2:
        if method == 'soft':
            sys.exit("(Type Error): method 'soft' not supported for multiclass problems.")
        
    #checking fold parameter
    if type(fold) is not int:
        sys.exit('(Type Error): Fold parameter only accepts integer value.')
    
    #checking round parameter
    if type(round) is not int:
        sys.exit('(Type Error): Round parameter only accepts integer value.')
 
    #checking method parameter
    available_method = ['soft', 'hard']
    if method not in available_method:
        sys.exit("(Value Error): Method parameter only accepts 'soft' or 'hard' as a parameter. See Docstring for details.")
    
    #checking restack parameter
    if type(restack) is not bool:
        sys.exit('(Type Error): Restack parameter can only take argument as True or False.')    
    
    #checking verbose parameter
    if type(verbose) is not bool:
        sys.exit('(Type Error): Verbose parameter can only take argument as True or False.') 
        
    '''
    
    ERROR HANDLING ENDS HERE
    
    '''
    
    #pre-load libraries
    import pandas as pd
    import ipywidgets as ipw
    from IPython.display import display, HTML, clear_output, update_display
    import time, datetime
    from copy import deepcopy
    from sklearn.base import clone
    
    #copy estimator_list
    estimator_list = deepcopy(estimator_list)
    
    #copy meta_model
    if meta_model is None:
        from sklearn.linear_model import LogisticRegression
        meta_model = LogisticRegression()
    else:
        meta_model = deepcopy(meta_model)
        
    clear_output()
    
6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738
    if optimize == 'Accuracy':
        compare_dimension = 'Accuracy' 
    elif optimize == 'AUC':
        compare_dimension = 'AUC' 
    elif optimize == 'Recall':
        compare_dimension = 'Recall'
    elif optimize == 'Precision':
        compare_dimension = 'Prec.'
    elif optimize == 'F1':
        compare_dimension = 'F1' 
    elif optimize == 'Kappa':
        compare_dimension = 'Kappa'
    elif optimize == 'MCC':
        compare_dimension = 'MCC' 

6739 6740 6741
    #progress bar
    max_progress = len(estimator_list) + fold + 4
    progress = ipw.IntProgress(value=0, min=0, max=max_progress, step=1 , description='Processing: ')
6742 6743 6744
    if verbose:
        if html_param:
            display(progress)
6745 6746 6747 6748 6749 6750 6751 6752
    
    #display monitor
    timestampStr = datetime.datetime.now().strftime("%H:%M:%S")
    monitor = pd.DataFrame( [ ['Initiated' , '. . . . . . . . . . . . . . . . . .', timestampStr ], 
                             ['Status' , '. . . . . . . . . . . . . . . . . .' , 'Loading Dependencies' ],
                             ['ETC' , '. . . . . . . . . . . . . . . . . .',  'Calculating ETC'] ],
                              columns=['', ' ', '   ']).set_index('')
    
6753 6754 6755
    if verbose:
        if html_param:
            display(monitor, display_id = 'monitor')
6756 6757
    
    if verbose:
6758 6759 6760 6761
        if html_param:
            master_display = pd.DataFrame(columns=['Accuracy','AUC','Recall', 'Prec.', 'F1', 'Kappa','MCC'])
            display_ = display(master_display, display_id=True)
            display_id = display_.display_id
6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
    
    #ignore warnings
    import warnings
    warnings.filterwarnings('ignore') 
    
    #models_ list
    models_ = []
    
    #general dependencies
    import numpy as np
    from sklearn import metrics
    from sklearn.model_selection import StratifiedKFold
    from sklearn.model_selection import cross_val_predict
    
    progress.value += 1
    
    base_level = estimator_list[0]
    base_level_names = []
    
    #defining base_level_names
    for item in base_level:
        base_level_names = np.append(base_level_names, str(item).split("(")[0])
        
    base_level_fixed = []
    
    for i in base_level_names:
        if 'CatBoostClassifier' in i:
            a = 'CatBoostClassifier'
            base_level_fixed.append(a)
    else:
        base_level_fixed.append(i)
        
    base_level_fixed_2 = []
    
    counter = 0
    for i in base_level_names:
        s = str(i) + '_' + 'BaseLevel_' + str(counter)
        base_level_fixed_2.append(s)
        counter += 1
    
    base_level_fixed = base_level_fixed_2
    
    inter_level = estimator_list[1:]
    inter_level_names = []
   
    #defining inter_level names
    for item in inter_level:
        level_list=[]
        for m in item:
            if 'CatBoostClassifier' in str(m).split("(")[0]:
                level_list.append('CatBoostClassifier')
            else:
                level_list.append(str(m).split("(")[0])
        inter_level_names.append(level_list)
    
    #defining data_X and data_y
    if finalize:
        data_X = X.copy()
        data_y = y.copy()
    else:       
        data_X = X_train.copy()
        data_y = y_train.copy()
    
    #reset index
    data_X.reset_index(drop=True, inplace=True)
    data_y.reset_index(drop=True, inplace=True)
    
    
    #Capturing the method of stacking required by user. method='soft' means 'predict_proba' else 'predict'
    if method == 'soft':
        predict_method = 'predict_proba'
    elif method == 'hard':
        predict_method = 'predict'
        
    base_array = np.zeros((0,0))
    base_array_df = pd.DataFrame()
    base_prediction = pd.DataFrame(data_y) #change to data_y
    base_prediction = base_prediction.reset_index(drop=True)
    
    base_counter = 0
    
    base_models_ = []
    
    for model in base_level:
        
        base_models_.append(model.fit(data_X,data_y)) #changed to data_X and data_y
        
        '''
        MONITOR UPDATE STARTS
        '''

        monitor.iloc[1,1:] = 'Evaluating ' + base_level_names[base_counter]
6854 6855 6856
        if verbose:
            if html_param:
                update_display(monitor, display_id = 'monitor')
6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902

        '''
        MONITOR UPDATE ENDS
        '''
        
        progress.value += 1
        
        if method == 'soft':
            try:
                base_array = cross_val_predict(model,data_X,data_y,cv=fold, method=predict_method)
                base_array = base_array[:,1]
            except:
                base_array = cross_val_predict(model,data_X,data_y,cv=fold, method='predict')
        else:
            base_array = cross_val_predict(model,data_X,data_y,cv=fold, method='predict')
            
        base_array = pd.DataFrame(base_array)
        base_array_df = pd.concat([base_array_df, base_array], axis=1)
        base_array = np.empty((0,0))  
        
        base_counter += 1
    
    base_array_df.fillna(value=0, inplace=True) #fill na's with zero
    base_array_df.columns = base_level_fixed
    
    if restack:
        base_array_df = pd.concat([data_X,base_array_df], axis=1)
        
    early_break = base_array_df.copy()
    
    models_.append(base_models_)
    
    inter_counter = 0
    
    for level in inter_level:
        inter_inner = []
        model_counter = 0
        inter_array_df = pd.DataFrame()
        
        for model in level:
            
            '''
            MONITOR UPDATE STARTS
            '''

            monitor.iloc[1,1:] = 'Evaluating ' + inter_level_names[inter_counter][model_counter]
6903 6904 6905
            if verbose:
                if html_param:
                    update_display(monitor, display_id = 'monitor')
6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964

            '''
            MONITOR UPDATE ENDS
            '''
            
            model = clone(model)
            inter_inner.append(model.fit(X = base_array_df, y = data_y)) #changed to data_y
            
            if method == 'soft':
                try:
                    base_array = cross_val_predict(model, X = base_array_df, y = data_y, cv=fold, method=predict_method)
                    base_array = base_array[:,1]
                except:
                    base_array = cross_val_predict(model, X = base_array_df, y = data_y, cv=fold, method='predict')
                    
            
            else:
                base_array = cross_val_predict(model, X = base_array_df, y = data_y, cv=fold, method='predict')
                
            base_array = pd.DataFrame(base_array)
            
            """
            defining columns
            """
            
            col = str(model).split("(")[0]
            if 'CatBoostClassifier' in col:
                col = 'CatBoostClassifier'
            col = col + '_InterLevel_' + str(inter_counter) + '_' + str(model_counter)
            base_array.columns = [col]
            
            """
            defining columns end here
            """
            
            inter_array_df = pd.concat([inter_array_df, base_array], axis=1)
            base_array = np.empty((0,0))
            
            model_counter += 1
            
        base_array_df = pd.concat([base_array_df,inter_array_df], axis=1)
        base_array_df.fillna(value=0, inplace=True) #fill na's with zero
        
        models_.append(inter_inner)
    
        if restack == False:
            i = base_array_df.shape[1] - len(level)
            base_array_df = base_array_df.iloc[:,i:]
        
        inter_counter += 1
        progress.value += 1
        
    model = meta_model
    
    #redefine data_X and data_y
    data_X = base_array_df.copy()
    
    meta_model_ = model.fit(data_X,data_y)
    
6965
    kf = StratifiedKFold(fold, random_state=seed, shuffle=folds_shuffle_param) #capturing fold requested by user
6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994

    score_auc =np.empty((0,0))
    score_acc =np.empty((0,0))
    score_recall =np.empty((0,0))
    score_precision =np.empty((0,0))
    score_f1 =np.empty((0,0))
    score_kappa =np.empty((0,0))
    score_mcc =np.empty((0,0))
    score_training_time =np.empty((0,0))
    avgs_auc =np.empty((0,0))
    avgs_acc =np.empty((0,0))
    avgs_recall =np.empty((0,0))
    avgs_precision =np.empty((0,0))
    avgs_f1 =np.empty((0,0))
    avgs_kappa =np.empty((0,0))
    avgs_mcc =np.empty((0,0))
    avgs_training_time =np.empty((0,0))
    
    fold_num = 1
    
    for train_i , test_i in kf.split(data_X,data_y):
        
        t0 = time.time()
        
        '''
        MONITOR UPDATE STARTS
        '''
    
        monitor.iloc[1,1:] = 'Fitting Meta Model Fold ' + str(fold_num) + ' of ' + str(fold)
6995 6996 6997
        if verbose:
            if html_param:
                update_display(monitor, display_id = 'monitor')
6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052

        '''
        MONITOR UPDATE ENDS
        '''
        
        Xtrain,Xtest = data_X.iloc[train_i], data_X.iloc[test_i]
        ytrain,ytest = data_y.iloc[train_i], data_y.iloc[test_i]
        
        time_start=time.time()
        model.fit(Xtrain,ytrain)
        try:
            pred_prob = model.predict_proba(Xtest)
            pred_prob = pred_prob[:,1]
        except:
            pass
        pred_ = model.predict(Xtest)
        sca = metrics.accuracy_score(ytest,pred_)
        try:
            sc = metrics.roc_auc_score(ytest,pred_prob)
        except:
            sc = 0
            
        if y.value_counts().count() > 2:
            recall = metrics.recall_score(ytest,pred_,average='macro')
            precision = metrics.precision_score(ytest,pred_,average='weighted')
            f1 = metrics.f1_score(ytest,pred_,average='weighted')
            
        else:
            recall = metrics.recall_score(ytest,pred_)
            precision = metrics.precision_score(ytest,pred_)
            f1 = metrics.f1_score(ytest,pred_) 
            
        time_end=time.time()
        kappa = metrics.cohen_kappa_score(ytest,pred_)
        mcc = metrics.matthews_corrcoef(ytest,pred_)
        training_time=time_end-time_start
        score_acc = np.append(score_acc,sca)
        score_auc = np.append(score_auc,sc)
        score_recall = np.append(score_recall,recall)
        score_precision = np.append(score_precision,precision)
        score_f1 =np.append(score_f1,f1)
        score_kappa =np.append(score_kappa,kappa)
        score_mcc =np.append(score_mcc,mcc)
        score_training_time =np.append(score_training_time,training_time)

        progress.value += 1
        
        '''
        
        This section handles time calculation and is created to update_display() as code loops through 
        the fold defined.
        
        '''
        
        fold_results = pd.DataFrame({'Accuracy':[sca], 'AUC': [sc], 'Recall': [recall], 
7053 7054
                                     'Prec.': [precision], 'F1': [f1], 'Kappa': [kappa],'MCC':[mcc]}).round(round)

7055
        if verbose:
7056 7057
            if html_param:
                master_display = pd.concat([master_display, fold_results],ignore_index=True)
7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083
        
        fold_results = []
        
        '''
        TIME CALCULATION SUB-SECTION STARTS HERE
        '''
        t1 = time.time()
        
        tt = (t1 - t0) * (fold-fold_num) / 60
        tt = np.around(tt, 2)
        
        if tt < 1:
            tt = str(np.around((tt * 60), 2))
            ETC = tt + ' Seconds Remaining'
                
        else:
            tt = str (tt)
            ETC = tt + ' Minutes Remaining'
            
        fold_num += 1
        
        '''
        MONITOR UPDATE STARTS
        '''

        monitor.iloc[2,1:] = ETC
7084 7085 7086
        if verbose:
            if html_param:
                update_display(monitor, display_id = 'monitor')
7087 7088 7089 7090 7091 7092 7093 7094 7095 7096

        '''
        MONITOR UPDATE ENDS
        '''
        
        '''
        TIME CALCULATION ENDS HERE
        '''
        
        if verbose:
7097 7098
            if html_param:
                update_display(master_display, display_id = display_id)
7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143
            
        
        '''
        
        Update_display() ends here
        
        '''
        
    mean_acc=np.mean(score_acc)
    mean_auc=np.mean(score_auc)
    mean_recall=np.mean(score_recall)
    mean_precision=np.mean(score_precision)
    mean_f1=np.mean(score_f1)
    mean_kappa=np.mean(score_kappa)
    mean_mcc=np.mean(score_mcc)
    mean_training_time=np.mean(score_training_time)
    std_acc=np.std(score_acc)
    std_auc=np.std(score_auc)
    std_recall=np.std(score_recall)
    std_precision=np.std(score_precision)
    std_f1=np.std(score_f1)
    std_kappa=np.std(score_kappa)
    std_mcc=np.std(score_mcc)
    std_training_time=np.std(score_training_time)
    
    avgs_acc = np.append(avgs_acc, mean_acc)
    avgs_acc = np.append(avgs_acc, std_acc) 
    avgs_auc = np.append(avgs_auc, mean_auc)
    avgs_auc = np.append(avgs_auc, std_auc)
    avgs_recall = np.append(avgs_recall, mean_recall)
    avgs_recall = np.append(avgs_recall, std_recall)
    avgs_precision = np.append(avgs_precision, mean_precision)
    avgs_precision = np.append(avgs_precision, std_precision)
    avgs_f1 = np.append(avgs_f1, mean_f1)
    avgs_f1 = np.append(avgs_f1, std_f1)
    avgs_kappa = np.append(avgs_kappa, mean_kappa)
    avgs_kappa = np.append(avgs_kappa, std_kappa)

    avgs_mcc = np.append(avgs_mcc, mean_mcc)
    avgs_mcc = np.append(avgs_mcc, std_mcc)
    avgs_training_time = np.append(avgs_training_time, mean_training_time)
    avgs_training_time = np.append(avgs_training_time, std_training_time)
    
    progress.value += 1
    
7144 7145
    model_results = pd.DataFrame({'Accuracy': score_acc, 'AUC': score_auc, 'Recall' : score_recall, 'Prec.' : score_precision, 
                     'F1' : score_f1, 'Kappa' : score_kappa,'MCC' : score_mcc})
7146
    model_avgs = pd.DataFrame({'Accuracy': avgs_acc, 'AUC': avgs_auc, 'Recall' : avgs_recall, 'Prec.' : avgs_precision , 
7147
                     'F1' : avgs_f1, 'Kappa' : avgs_kappa,'MCC' : avgs_mcc},index=['Mean', 'SD'])
7148 7149 7150
  
    model_results = model_results.append(model_avgs)
    model_results = model_results.round(round)      
7151 7152 7153 7154
    
    # yellow the mean
    model_results=model_results.style.apply(lambda x: ['background: yellow' if (x.name == 'Mean') else '' for i in x], axis=1)
    model_results = model_results.set_precision(round)
7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167
    
    progress.value += 1
        
    
    #appending meta_model into models_
    models_.append(meta_model_)
        
    #appending method into models_
    models_.append([str(method)])
    
    #appending restack param
    models_.append(restack)
    
7168 7169
    #storing results in create_model_container
    create_model_container.append(model_results.data)
7170
    display_container.append(model_results.data)
7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203

    #storing results in master_model_container
    master_model_container.append(models_)

    '''
    When choose_better sets to True. optimize metric in scoregrid is
    compared with base model created using create_model so that stack_models
    functions return the model with better score only. This will ensure 
    model performance is atleast equivalent to what is seen in compare_models 
    '''
    
    scorer = []

    stack_model_results = create_model_container[-1][compare_dimension][-2:][0]
    
    scorer.append(stack_model_results)

    if choose_better:

        if verbose:
            if html_param:
                monitor.iloc[1,1:] = 'Compiling Final Results'
                monitor.iloc[2,1:] = 'Almost Finished'
                update_display(monitor, display_id = 'monitor')

        base_models_ = []
        for i in estimator_list:
            for k in i:
                m = create_model(k,verbose=False)
                s = create_model_container[-1][compare_dimension][-2:][0]
                scorer.append(s)
                base_models_.append(m)

7204 7205
        meta_model_clone = clone(meta_model)
        mm = create_model(meta_model_clone, verbose=False)
7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217
        base_models_.append(mm)
        s = create_model_container[-1][compare_dimension][-2:][0]
        scorer.append(s)

    #returning better model
    index_scorer = scorer.index(max(scorer))

    if index_scorer == 0:
        models_ = models_
    else:
        models_ = base_models_[index_scorer-1]

7218 7219 7220 7221 7222 7223 7224 7225 7226 7227
    #storing into experiment
    model_name = 'Stacking Classifier (Multi Layer)'
    tup = (model_name,models_)
    experiment__.append(tup)
    nam = str(model_name) + ' Score Grid'
    tup = (nam, model_results)
    experiment__.append(tup)
    
    if verbose:
        clear_output()
7228 7229 7230 7231
        if html_param:
            display(model_results)
        else:
            print(model_results.data)
7232
    
7233
    return models_
7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556

def interpret_model(estimator,
                   plot = 'summary',
                   feature = None, 
                   observation = None):
    
    
    """
          
    Description:
    ------------
    This function takes a trained model object and returns an interpretation plot 
    based on the test / hold-out set. It only supports tree based algorithms. 

    This function is implemented based on the SHAP (SHapley Additive exPlanations),
    which is a unified approach to explain the output of any machine learning model. 
    SHAP connects game theory with local explanations.

    For more information : https://shap.readthedocs.io/en/latest/

        Example
        -------
        from pycaret.datasets import get_data
        juice = get_data('juice')
        experiment_name = setup(data = juice,  target = 'Purchase')
        dt = create_model('dt')
        
        interpret_model(dt)

        This will return a summary interpretation plot of Decision Tree model.

    Parameters
    ----------
    estimator : object, default = none
    A trained tree based model object should be passed as an estimator. 

    plot : string, default = 'summary'
    other available options are 'correlation' and 'reason'.

    feature: string, default = None
    This parameter is only needed when plot = 'correlation'. By default feature is 
    set to None which means the first column of the dataset will be used as a variable. 
    A feature parameter must be passed to change this.

    observation: integer, default = None
    This parameter only comes into effect when plot is set to 'reason'. If no observation
    number is provided, it will return an analysis of all observations with the option
    to select the feature on x and y axes through drop down interactivity. For analysis at
    the sample level, an observation parameter must be passed with the index value of the
    observation in test / hold-out set. 

    Returns:
    --------

    Visual Plot:  Returns the visual plot.
    -----------   Returns the interactive JS plot when plot = 'reason'.

    Warnings:
    --------- 
    - interpret_model doesn't support multiclass problems.
      
         
         
    """
    
    
    
    '''
    Error Checking starts here
    
    '''
    
    import sys
    
    #allowed models
    allowed_models = ['RandomForestClassifier',
                      'DecisionTreeClassifier',
                      'ExtraTreesClassifier',
                      'GradientBoostingClassifier',
                      'XGBClassifier',
                      'LGBMClassifier',
                      'CatBoostClassifier']
    
    model_name = str(estimator).split("(")[0]
    
    #Statement to find CatBoost and change name :
    if model_name.find("catboost.core.CatBoostClassifier") != -1:
        model_name = 'CatBoostClassifier'
    
    if model_name not in allowed_models:
        sys.exit('(Type Error): This function only supports tree based models for binary classification.')
        
    #plot type
    allowed_types = ['summary', 'correlation', 'reason']
    if plot not in allowed_types:
        sys.exit("(Value Error): type parameter only accepts 'summary', 'correlation' or 'reason'.")   
           
    
    '''
    Error Checking Ends here
    
    '''
        
    
    #general dependencies
    import numpy as np
    import pandas as pd
    import shap
    
    #storing estimator in model variable
    model = estimator

    
    #defining type of classifier
    type1 = ['RandomForestClassifier','DecisionTreeClassifier','ExtraTreesClassifier', 'LGBMClassifier']
    type2 = ['GradientBoostingClassifier', 'XGBClassifier', 'CatBoostClassifier']
    
    if plot == 'summary':
        
        if model_name in type1:
        
            explainer = shap.TreeExplainer(model)
            shap_values = explainer.shap_values(X_test)
            shap.summary_plot(shap_values, X_test)
            
        elif model_name in type2:
            
            explainer = shap.TreeExplainer(model)
            shap_values = explainer.shap_values(X_test)
            shap.summary_plot(shap_values, X_test)
                              
    elif plot == 'correlation':
        
        if feature == None:
            
            dependence = X_test.columns[0]
            
        else:
            
            dependence = feature
        
        if model_name in type1:
                
            explainer = shap.TreeExplainer(model)
            shap_values = explainer.shap_values(X_test)
            shap.dependence_plot(dependence, shap_values[1], X_test)
        
        elif model_name in type2:
            
            explainer = shap.TreeExplainer(model)
            shap_values = explainer.shap_values(X_test) 
            shap.dependence_plot(dependence, shap_values, X_test)
        
    elif plot == 'reason':
        
        if model_name in type1:
            
            if observation is None:
                
                explainer = shap.TreeExplainer(model)
                shap_values = explainer.shap_values(X_test)
                shap.initjs()
                return shap.force_plot(explainer.expected_value[1], shap_values[1], X_test)
            
            else: 
                
                if model_name == 'LGBMClassifier':
                    
                    row_to_show = observation
                    data_for_prediction = X_test.iloc[row_to_show]
                    explainer = shap.TreeExplainer(model)
                    shap_values = explainer.shap_values(X_test)
                    shap.initjs()
                    return shap.force_plot(explainer.expected_value[1], shap_values[0][row_to_show], data_for_prediction)    
                
                else:
                    
                    row_to_show = observation
                    data_for_prediction = X_test.iloc[row_to_show]
                    explainer = shap.TreeExplainer(model)
                    shap_values = explainer.shap_values(data_for_prediction)
                    shap.initjs()
                    return shap.force_plot(explainer.expected_value[1], shap_values[1], data_for_prediction)        

            
        elif model_name in type2:

            if observation is None:
                
                explainer = shap.TreeExplainer(model)
                shap_values = explainer.shap_values(X_test)
                shap.initjs()
                return shap.force_plot(explainer.expected_value, shap_values, X_test)  
                
            else:
                
                row_to_show = observation
                data_for_prediction = X_test.iloc[row_to_show]
                explainer = shap.TreeExplainer(model)
                shap_values = explainer.shap_values(X_test)
                shap.initjs()
                return shap.force_plot(explainer.expected_value, shap_values[row_to_show,:], X_test.iloc[row_to_show,:])

def calibrate_model(estimator,
                    method = 'sigmoid',
                    fold=10,
                    round=4,
                    verbose=True):
    
    """  
     
    Description:
    ------------
    This function takes the input of trained estimator and performs probability 
    calibration with sigmoid or isotonic regression. The output prints a score 
    grid that shows Accuracy, AUC, Recall, Precision, F1 and Kappa by fold 
    (default = 10 Fold). The ouput of the original estimator and the calibrated 
    estimator (created using this function) might not differ much. In order 
    to see the calibration differences, use 'calibration' plot in plot_model to 
    see the difference before and after.

    This function returns a trained model object. 

        Example
        -------
        from pycaret.datasets import get_data
        juice = get_data('juice')
        experiment_name = setup(data = juice,  target = 'Purchase')
        dt_boosted = create_model('dt', ensemble = True, method = 'Boosting')
        
        calibrated_dt = calibrate_model(dt_boosted)

        This will return Calibrated Boosted Decision Tree Model.

    Parameters
    ----------
    estimator : object
    
    method : string, default = 'sigmoid'
    The method to use for calibration. Can be 'sigmoid' which corresponds to Platt's 
    method or 'isotonic' which is a non-parametric approach. It is not advised to use
    isotonic calibration with too few calibration samples

    fold: integer, default = 10
    Number of folds to be used in Kfold CV. Must be at least 2. 

    round: integer, default = 4
    Number of decimal places the metrics in the score grid will be rounded to. 

    verbose: Boolean, default = True
    Score grid is not printed when verbose is set to False.

    Returns:
    --------

    score grid:   A table containing the scores of the model across the kfolds. 
    -----------   Scoring metrics used are Accuracy, AUC, Recall, Precision, F1 
                  and Kappa. Mean and standard deviation of the scores across the 
                  folds are also returned.

    model:        trained and calibrated model object.
    -----------

    Warnings:
    ---------
    - Avoid isotonic calibration with too few calibration samples (<1000) since it 
      tends to overfit.
      
    - calibration plot not available for multiclass problems.
      
    
  
    """


    '''
    
    ERROR HANDLING STARTS HERE
    
    '''
    
    #exception checking   
    import sys
    
    #Statement to find CatBoost and change name
    
    model_name = str(estimator).split("(")[0]
    if model_name.find("catboost.core.CatBoostClassifier") != -1:
        model_name = 'CatBoostClassifier'

    #catboost not allowed
    not_allowed = ['CatBoostClassifier']
    if model_name in not_allowed:
        sys.exit('(Type Error): calibrate_model doesnt support CatBoost Classifier. Try different estimator.')
    
    #checking fold parameter
    if type(fold) is not int:
        sys.exit('(Type Error): Fold parameter only accepts integer value.')
    
    #checking round parameter
    if type(round) is not int:
        sys.exit('(Type Error): Round parameter only accepts integer value.')
 
    #checking verbose parameter
    if type(verbose) is not bool:
        sys.exit('(Type Error): Verbose parameter can only take argument as True or False.') 
        
    
    '''
    
    ERROR HANDLING ENDS HERE
    
    '''
    
    
    #pre-load libraries
    import pandas as pd
    import ipywidgets as ipw
    from IPython.display import display, HTML, clear_output, update_display
    import datetime, time
        
    #progress bar
    progress = ipw.IntProgress(value=0, min=0, max=fold+4, step=1 , description='Processing: ')
7557 7558 7559 7560
    master_display = pd.DataFrame(columns=['Accuracy','AUC','Recall', 'Prec.', 'F1', 'Kappa','MCC'])
    if verbose:
        if html_param:
            display(progress)
7561 7562 7563 7564 7565 7566 7567 7568
    
    #display monitor
    timestampStr = datetime.datetime.now().strftime("%H:%M:%S")
    monitor = pd.DataFrame( [ ['Initiated' , '. . . . . . . . . . . . . . . . . .', timestampStr ], 
                             ['Status' , '. . . . . . . . . . . . . . . . . .' , 'Loading Dependencies' ],
                             ['ETC' , '. . . . . . . . . . . . . . . . . .',  'Calculating ETC'] ],
                              columns=['', ' ', '   ']).set_index('')
    
7569 7570 7571
    if verbose:
        if html_param:
            display(monitor, display_id = 'monitor')
7572 7573
    
    if verbose:
7574 7575 7576
        if html_param:
            display_ = display(master_display, display_id=True)
            display_id = display_.display_id
7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598
    
    #ignore warnings
    import warnings
    warnings.filterwarnings('ignore') 
    
    #Storing X_train and y_train in data_X and data_y parameter
    data_X = X_train.copy()
    data_y = y_train.copy()
    
    #reset index
    data_X.reset_index(drop=True, inplace=True)
    data_y.reset_index(drop=True, inplace=True)
  
    #general dependencies
    import numpy as np
    from sklearn import metrics
    from sklearn.model_selection import StratifiedKFold
    from sklearn.calibration import CalibratedClassifierCV
    
    progress.value += 1
    
    #cross validation setup starts here
7599
    kf = StratifiedKFold(fold, random_state=seed, shuffle=folds_shuffle_param)
7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622

    score_auc =np.empty((0,0))
    score_acc =np.empty((0,0))
    score_recall =np.empty((0,0))
    score_precision =np.empty((0,0))
    score_f1 =np.empty((0,0))
    score_kappa =np.empty((0,0))
    score_mcc =np.empty((0,0))
    score_training_time =np.empty((0,0))
    avgs_auc =np.empty((0,0))
    avgs_acc =np.empty((0,0))
    avgs_recall =np.empty((0,0))
    avgs_precision =np.empty((0,0))
    avgs_f1 =np.empty((0,0))
    avgs_kappa =np.empty((0,0))
    avgs_mcc =np.empty((0,0))
    avgs_training_time =np.empty((0,0))
  
    '''
    MONITOR UPDATE STARTS
    '''
    
    monitor.iloc[1,1:] = 'Selecting Estimator'
7623 7624 7625
    if verbose:
        if html_param:
            update_display(monitor, display_id = 'monitor')
7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643
    
    '''
    MONITOR UPDATE ENDS
    '''
    
    #calibrating estimator
            
    model = CalibratedClassifierCV(base_estimator=estimator, method=method, cv=fold)
    full_name = str(model).split("(")[0]
    
    progress.value += 1
    
    
    '''
    MONITOR UPDATE STARTS
    '''
    
    monitor.iloc[1,1:] = 'Initializing CV'
7644 7645 7646
    if verbose:
        if html_param:
            update_display(monitor, display_id = 'monitor')
7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663
    
    '''
    MONITOR UPDATE ENDS
    '''
    
    
    fold_num = 1
    
    for train_i , test_i in kf.split(data_X,data_y):
        
        t0 = time.time()
        
        '''
        MONITOR UPDATE STARTS
        '''
    
        monitor.iloc[1,1:] = 'Fitting Fold ' + str(fold_num) + ' of ' + str(fold)
7664 7665 7666
        if verbose:
            if html_param:
                update_display(monitor, display_id = 'monitor')
7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744

        '''
        MONITOR UPDATE ENDS
        '''
    
        
        Xtrain,Xtest = data_X.iloc[train_i], data_X.iloc[test_i]
        ytrain,ytest = data_y.iloc[train_i], data_y.iloc[test_i]
        time_start=time.time()
        if hasattr(model, 'predict_proba'):
        
            model.fit(Xtrain,ytrain)
            pred_prob = model.predict_proba(Xtest)
            pred_prob = pred_prob[:,1]
            pred_ = model.predict(Xtest)
            sca = metrics.accuracy_score(ytest,pred_)
            
            if y.value_counts().count() > 2:
                sc = 0
                recall = metrics.recall_score(ytest,pred_, average='macro')                
                precision = metrics.precision_score(ytest,pred_, average = 'weighted')
                f1 = metrics.f1_score(ytest,pred_, average='weighted')
                
            else:
                try:
                    sc = metrics.roc_auc_score(ytest,pred_prob)
                except:
                    sc = 0
                recall = metrics.recall_score(ytest,pred_)                
                precision = metrics.precision_score(ytest,pred_)
                f1 = metrics.f1_score(ytest,pred_)
                
        else:
            
            model.fit(Xtrain,ytrain)
            pred_prob = 0.00
            pred_ = model.predict(Xtest)
            sca = metrics.accuracy_score(ytest,pred_)
            
            if y.value_counts().count() > 2:
                sc = 0
                recall = metrics.recall_score(ytest,pred_, average='macro')                
                precision = metrics.precision_score(ytest,pred_, average = 'weighted')
                f1 = metrics.f1_score(ytest,pred_, average='weighted')

            else:
                try:
                    sc = metrics.roc_auc_score(ytest,pred_prob)
                except:
                    sc = 0
                recall = metrics.recall_score(ytest,pred_)                
                precision = metrics.precision_score(ytest,pred_)
                f1 = metrics.f1_score(ytest,pred_)

        time_end=time.time()
        kappa = metrics.cohen_kappa_score(ytest,pred_)
        mcc = metrics.matthews_corrcoef(ytest,pred_)
        training_time=time_end-time_start
        score_acc = np.append(score_acc,sca)
        score_auc = np.append(score_auc,sc)
        score_recall = np.append(score_recall,recall)
        score_precision = np.append(score_precision,precision)
        score_f1 =np.append(score_f1,f1)
        score_kappa =np.append(score_kappa,kappa) 
        score_mcc =np.append(score_mcc,mcc)
        score_training_time =np.append(score_training_time,training_time)
       
        progress.value += 1
        
        
        '''
        
        This section handles time calculation and is created to update_display() as code loops through 
        the fold defined.
        
        '''
        
        fold_results = pd.DataFrame({'Accuracy':[sca], 'AUC': [sc], 'Recall': [recall], 
7745
                                     'Prec.': [precision], 'F1': [f1], 'Kappa': [kappa],'MCC':[mcc]}).round(round)
7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769
        master_display = pd.concat([master_display, fold_results],ignore_index=True)
        fold_results = []
        
        '''
        TIME CALCULATION SUB-SECTION STARTS HERE
        '''
        t1 = time.time()
        
        tt = (t1 - t0) * (fold-fold_num) / 60
        tt = np.around(tt, 2)
        
        if tt < 1:
            tt = str(np.around((tt * 60), 2))
            ETC = tt + ' Seconds Remaining'
                
        else:
            tt = str (tt)
            ETC = tt + ' Minutes Remaining'
            
        '''
        MONITOR UPDATE STARTS
        '''

        monitor.iloc[2,1:] = ETC
7770 7771 7772
        if verbose:
            if html_param:
                update_display(monitor, display_id = 'monitor')
7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784

        '''
        MONITOR UPDATE ENDS
        '''
            
        fold_num += 1
        
        '''
        TIME CALCULATION ENDS HERE
        '''
        
        if verbose:
7785 7786
            if html_param:
                update_display(master_display, display_id = display_id)
7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831
            
        
        '''
        
        Update_display() ends here
        
        '''
            
    mean_acc=np.mean(score_acc)
    mean_auc=np.mean(score_auc)
    mean_recall=np.mean(score_recall)
    mean_precision=np.mean(score_precision)
    mean_f1=np.mean(score_f1)
    mean_kappa=np.mean(score_kappa)
    mean_mcc=np.mean(score_mcc)
    mean_training_time=np.mean(score_training_time)
    std_acc=np.std(score_acc)
    std_auc=np.std(score_auc)
    std_recall=np.std(score_recall)
    std_precision=np.std(score_precision)
    std_f1=np.std(score_f1)
    std_kappa=np.std(score_kappa)
    std_mcc=np.std(score_mcc)
    std_training_time=np.std(score_training_time)
    
    avgs_acc = np.append(avgs_acc, mean_acc)
    avgs_acc = np.append(avgs_acc, std_acc) 
    avgs_auc = np.append(avgs_auc, mean_auc)
    avgs_auc = np.append(avgs_auc, std_auc)
    avgs_recall = np.append(avgs_recall, mean_recall)
    avgs_recall = np.append(avgs_recall, std_recall)
    avgs_precision = np.append(avgs_precision, mean_precision)
    avgs_precision = np.append(avgs_precision, std_precision)
    avgs_f1 = np.append(avgs_f1, mean_f1)
    avgs_f1 = np.append(avgs_f1, std_f1)
    avgs_kappa = np.append(avgs_kappa, mean_kappa)
    avgs_kappa = np.append(avgs_kappa, std_kappa)
    avgs_mcc = np.append(avgs_mcc, mean_mcc)
    avgs_mcc = np.append(avgs_mcc, std_mcc)
    avgs_training_time = np.append(avgs_training_time, mean_training_time)
    avgs_training_time = np.append(avgs_training_time, std_training_time)
    
    progress.value += 1
    
    model_results = pd.DataFrame({'Accuracy': score_acc, 'AUC': score_auc, 'Recall' : score_recall, 'Prec.' : score_precision , 
7832
                     'F1' : score_f1, 'Kappa' : score_kappa,'MCC' : score_mcc})
7833
    model_avgs = pd.DataFrame({'Accuracy': avgs_acc, 'AUC': avgs_auc, 'Recall' : avgs_recall, 'Prec.' : avgs_precision , 
7834
                     'F1' : avgs_f1, 'Kappa' : avgs_kappa,'MCC' : avgs_mcc},index=['Mean', 'SD'])
7835 7836 7837

    model_results = model_results.append(model_avgs)
    model_results = model_results.round(round)
7838 7839 7840 7841
    
    # yellow the mean
    model_results=model_results.style.apply(lambda x: ['background: yellow' if (x.name == 'Mean') else '' for i in x], axis=1)
    model_results=model_results.set_precision(round)
7842 7843 7844
    
    #refitting the model on complete X_train, y_train
    monitor.iloc[1,1:] = 'Compiling Final Model'
7845 7846 7847
    if verbose:
        if html_param:
            update_display(monitor, display_id = 'monitor')
7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862
    
    model.fit(data_X, data_y)
    
    progress.value += 1
    
    #storing into experiment
    tup = (full_name,model)
    experiment__.append(tup)
    nam = str(full_name) + ' Score Grid'
    tup = (nam, model_results)
    experiment__.append(tup)
    
    
    if verbose:
        clear_output()
7863 7864 7865 7866 7867 7868
        if html_param:
            display(model_results)
        else:
            print(model_results.data)
    
    return model
7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302

def evaluate_model(estimator):
    
    """
          
    Description:
    ------------
    This function displays a user interface for all of the available plots for 
    a given estimator. It internally uses the plot_model() function. 
    
        Example:
        --------
        from pycaret.datasets import get_data
        juice = get_data('juice')
        experiment_name = setup(data = juice,  target = 'Purchase')
        lr = create_model('lr')
        
        evaluate_model(lr)
        
        This will display the User Interface for all of the plots for a given
        estimator.

    Parameters
    ----------
    estimator : object, default = none
    A trained model object should be passed as an estimator. 

    Returns:
    --------

    User Interface:  Displays the user interface for plotting.
    --------------

    Warnings:
    ---------
    None    
       
         
    """
        
        
    from ipywidgets import widgets
    from ipywidgets.widgets import interact, fixed, interact_manual

    a = widgets.ToggleButtons(
                            options=[('Hyperparameters', 'parameter'),
                                     ('AUC', 'auc'), 
                                     ('Confusion Matrix', 'confusion_matrix'), 
                                     ('Threshold', 'threshold'),
                                     ('Precision Recall', 'pr'),
                                     ('Error', 'error'),
                                     ('Class Report', 'class_report'),
                                     ('Feature Selection', 'rfe'),
                                     ('Learning Curve', 'learning'),
                                     ('Manifold Learning', 'manifold'),
                                     ('Calibration Curve', 'calibration'),
                                     ('Validation Curve', 'vc'),
                                     ('Dimensions', 'dimension'),
                                     ('Feature Importance', 'feature'),
                                     ('Decision Boundary', 'boundary')
                                    ],

                            description='Plot Type:',

                            disabled=False,

                            button_style='', # 'success', 'info', 'warning', 'danger' or ''

                            icons=['']
    )
    
  
    d = interact(plot_model, estimator = fixed(estimator), plot = a)

def finalize_model(estimator):
    
    """
          
    Description:
    ------------
    This function fits the estimator onto the complete dataset passed during the
    setup() stage. The purpose of this function is to prepare for final model
    deployment after experimentation. 
    
        Example:
        --------
        from pycaret.datasets import get_data
        juice = get_data('juice')
        experiment_name = setup(data = juice,  target = 'Purchase')
        lr = create_model('lr')
        
        final_lr = finalize_model(lr)
        
        This will return the final model object fitted to complete dataset. 

    Parameters
    ----------
    estimator : object, default = none
    A trained model object should be passed as an estimator. 

    Returns:
    --------

    Model:  Trained model object fitted on complete dataset.
    ------   

    Warnings:
    ---------
    - If the model returned by finalize_model(), is used on predict_model() without 
      passing a new unseen dataset, then the information grid printed is misleading 
      as the model is trained on the complete dataset including test / hold-out sample. 
      Once finalize_model() is used, the model is considered ready for deployment and
      should be used on new unseens dataset only.
       
         
    """
    
    #ignore warnings
    import warnings
    warnings.filterwarnings('ignore') 
    
    #import depedencies
    from IPython.display import clear_output, update_display
    from sklearn.base import clone
    from copy import deepcopy
    
    if type(estimator) is list:
        
        if type(estimator[0]) is not list:
            
            """
            Single Layer Stacker
            """
            
            stacker_final = deepcopy(estimator)
            stack_restack = stacker_final.pop()
            stack_method_final = stacker_final.pop()
            stack_meta_final = stacker_final.pop()
            
            model_final = stack_models(estimator_list = stacker_final, 
                                       meta_model = stack_meta_final, 
                                       method = stack_method_final,
                                       restack = stack_restack,
                                       finalize=True, 
                                       verbose=False)
            
        else:
            
            """
            multiple layer stacknet
            """
            
            stacker_final = deepcopy(estimator)
            stack_restack = stacker_final.pop()
            stack_method_final = stacker_final.pop()[0]
            stack_meta_final = stacker_final.pop()
            
            model_final = create_stacknet(estimator_list = stacker_final,
                                          meta_model = stack_meta_final,
                                          method = stack_method_final,
                                          restack = stack_restack,
                                          finalize = True,
                                          verbose = False)

    else:
        
        model_final = clone(estimator)
        clear_output()
        model_final.fit(X,y)
    
    #storing into experiment
    model_name = str(estimator).split("(")[0]
    model_name = 'Final ' + model_name
    tup = (model_name,model_final)
    experiment__.append(tup)
    
    return model_final

def save_model(model, model_name, verbose=True):
    
    """
          
    Description:
    ------------
    This function saves the transformation pipeline and trained model object 
    into the current active directory as a pickle file for later use. 
    
        Example:
        --------
        from pycaret.datasets import get_data
        juice = get_data('juice')
        experiment_name = setup(data = juice,  target = 'Purchase')
        lr = create_model('lr')
        
        save_model(lr, 'lr_model_23122019')
        
        This will save the transformation pipeline and model as a binary pickle
        file in the current directory. 

    Parameters
    ----------
    model : object, default = none
    A trained model object should be passed as an estimator. 
    
    model_name : string, default = none
    Name of pickle file to be passed as a string.
    
    verbose: Boolean, default = True
    Success message is not printed when verbose is set to False.

    Returns:
    --------    
    Success Message
    
    Warnings:
    ---------
    None    
       
         
    """
    
    #ignore warnings
    import warnings
    warnings.filterwarnings('ignore') 
    
    model_ = []
    model_.append(prep_pipe)
    model_.append(model)
    
    import joblib
    model_name = model_name + '.pkl'
    joblib.dump(model_, model_name)
    if verbose:
        print('Transformation Pipeline and Model Succesfully Saved')

def load_model(model_name, 
               platform = None, 
               authentication = None,
               verbose=True):
    
    """
          
    Description:
    ------------
    This function loads a previously saved transformation pipeline and model 
    from the current active directory into the current python environment. 
    Load object must be a pickle file.
    
        Example:
        --------
        saved_lr = load_model('lr_model_23122019')
        
        This will load the previously saved model in saved_lr variable. The file 
        must be in the current directory.

    Parameters
    ----------
    model_name : string, default = none
    Name of pickle file to be passed as a string.
      
    platform: string, default = None
    Name of platform, if loading model from cloud. Current available options are:
    'aws'.
    
    authentication : dict
    dictionary of applicable authentication tokens. 
    
     When platform = 'aws': 
     {'bucket' : 'Name of Bucket on S3'}
    
    verbose: Boolean, default = True
    Success message is not printed when verbose is set to False.

    Returns:
    --------    
    Success Message
    
    Warnings:
    ---------
    None    
       
         
    """
    
    #ignore warnings
    import warnings
    warnings.filterwarnings('ignore') 
    
    #exception checking
    import sys
    
    if platform is not None:
        if authentication is None:
            sys.exit("(Value Error): Authentication is missing.")
        
    #cloud provider
    if platform == 'aws':
        
        import boto3
        bucketname = authentication.get('bucket')
        filename = str(model_name) + '.pkl'
        s3 = boto3.resource('s3')
        s3.Bucket(bucketname).download_file(filename, filename)
        filename = str(model_name)
        model = load_model(filename, verbose=False)
        
        if verbose:
            print('Transformation Pipeline and Model Sucessfully Loaded')
            
        return model

    import joblib
    model_name = model_name + '.pkl'
    if verbose:
        print('Transformation Pipeline and Model Sucessfully Loaded')
    return joblib.load(model_name)

def save_experiment(experiment_name=None):
    
        
    """
          
    Description:
    ------------
    This function saves the entire experiment into the current active directory. 
    All outputs using pycaret are internally saved into a binary list which is
    pickilized when save_experiment() is used. 
    
        Example:
        --------
        save_experiment()
        
        This will save the entire experiment into the current active directory. By 
        default, the name of the experiment will use the session_id generated during 
        setup(). To use a custom name, a string must be passed to the experiment_name 
        param. For example:
        
        save_experiment('experiment_23122019')

    Parameters
    ----------
    experiment_name : string, default = none
    Name of pickle file to be passed as a string.

    Returns:
    --------    
    Success Message
    
    Warnings:
    ---------
    None    
       
         
    """
    
    #ignore warnings
    import warnings
    warnings.filterwarnings('ignore') 
    
    #general dependencies
    import joblib
    global experiment__
    
    #defining experiment name
    if experiment_name is None:
        experiment_name = 'experiment_' + str(seed)
        
    else:
        experiment_name = experiment_name  
        
    experiment_name = experiment_name + '.pkl'
    joblib.dump(experiment__, experiment_name)
    
    print('Experiment Succesfully Saved')

def load_experiment(experiment_name):
    
    """
          
    Description:
    ------------
    This function loads a previously saved experiment from the current active 
    directory into current python environment. Load object must be a pickle file.
    
        Example:
        --------
        saved_experiment = load_experiment('experiment_23122019')
        
        This will load the entire experiment pipeline into the object saved_experiment.
        The experiment file must be in current directory.
        
    Parameters
    ---------- 
    experiment_name : string, default = none
    Name of pickle file to be passed as a string.

    Returns:
    --------    
    Information Grid containing details of saved objects in experiment pipeline.
    
    Warnings:
    ---------
    None    
       
         
    """
    
    #ignore warnings
    import warnings
    warnings.filterwarnings('ignore') 
    
    #general dependencies
    import joblib
    import pandas as pd
    
    experiment_name = experiment_name + '.pkl'
    temp = joblib.load(experiment_name)
    
    name = []
    exp = []

    for i in temp:
        name.append(i[0])
        exp.append(i[-1])

    ind = pd.DataFrame(name, columns=['Object'])
    display(ind)

    return exp

def predict_model(estimator, 
                  data=None,
                  probability_threshold=None,
                  platform=None,
8303 8304
                  authentication=None,
                  verbose=True): #added in pycaret==1.0.1
8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414
    
    """
       
    Description:
    ------------
    This function is used to predict new data using a trained estimator. It accepts
    an estimator created using one of the function in pycaret that returns a trained 
    model object or a list of trained model objects created using stack_models() or 
    create_stacknet(). New unseen data can be passed to data param as pandas Dataframe. 
    If data is not passed, the test / hold-out set separated at the time of setup() is
    used to generate predictions. 
    
        Example:
        --------
        from pycaret.datasets import get_data
        juice = get_data('juice')
        experiment_name = setup(data = juice,  target = 'Purchase')
        lr = create_model('lr')
        
        lr_predictions_holdout = predict_model(lr)
        
    Parameters
    ----------
    estimator : object or list of objects / string,  default = None
    When estimator is passed as string, load_model() is called internally to load the
    pickle file from active directory or cloud platform when platform param is passed.
     
    data : {array-like, sparse matrix}, shape (n_samples, n_features) where n_samples 
    is the number of samples and n_features is the number of features. All features 
    used during training must be present in the new dataset.
    
    probability_threshold : float, default = None
    threshold used to convert probability values into binary outcome. By default the
    probability threshold for all binary classifiers is 0.5 (50%). This can be changed
    using probability_threshold param.
    
    platform: string, default = None
    Name of platform, if loading model from cloud. Current available options are:
    'aws'.
    
    authentication : dict
    dictionary of applicable authentication tokens. 
    
     When platform = 'aws': 
     {'bucket' : 'Name of Bucket on S3'}
    
    Returns:
    --------

    info grid:  Information grid is printed when data is None.
    ----------      

    Warnings:
    ---------
    - if the estimator passed is created using finalize_model() then the metrics 
      printed in the information grid maybe misleading as the model is trained on
      the complete dataset including the test / hold-out set. Once finalize_model() 
      is used, the model is considered ready for deployment and should be used on new 
      unseen datasets only.
         
           
    
    """
    
    #testing
    #no active test
    
    #ignore warnings
    import warnings
    warnings.filterwarnings('ignore') 
    
    #general dependencies
    import sys
    import numpy as np
    import pandas as pd
    import re
    from sklearn import metrics
    from copy import deepcopy
    from IPython.display import clear_output, update_display
    
    """
    exception checking starts here
    """
    
    model_name = str(estimator).split("(")[0]
    if probability_threshold is not None:
        if 'OneVsRestClassifier' in model_name:
            sys.exit("(Type Error) probability_threshold parameter cannot be used when target is multi-class. ")
            
    #probability_threshold allowed types    
    if probability_threshold is not None:
        allowed_types = [int,float]
        if type(probability_threshold) not in allowed_types:
            sys.exit("(Type Error) probability_threshold parameter only accepts value between 0 to 1. ")
    
    #probability_threshold allowed types
    if probability_threshold is not None:
        if probability_threshold > 1:
            sys.exit("(Type Error) probability_threshold parameter only accepts value between 0 to 1. ")
    
    #probability_threshold allowed types    
    if probability_threshold is not None:
        if probability_threshold < 0:
            sys.exit("(Type Error) probability_threshold parameter only accepts value between 0 to 1. ")

    """
    exception checking ends here
    """
    
    estimator = deepcopy(estimator)
8415 8416 8417
    
    if html_param:
        clear_output()
8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713
    
    if type(estimator) is str:
        if platform == 'aws':
            estimator_ = load_model(str(estimator), platform='aws', 
                                   authentication={'bucket': authentication.get('bucket')},
                                   verbose=False)
            
        else:
            estimator_ = load_model(str(estimator), verbose=False)
            
    else:
        
        estimator_ = estimator

    if type(estimator_) is list:

        if 'sklearn.pipeline.Pipeline' in str(type(estimator_[0])):

            prep_pipe_transformer = estimator_.pop(0)
            model = estimator_[0]
            estimator = estimator_[0]
                
        else:
            
            try:

                prep_pipe_transformer = prep_pipe
                model = estimator
                estimator = estimator
                
            except:
                
                sys.exit("(Type Error): Transformation Pipe Missing. ")
            
    else:
        
        try:

            prep_pipe_transformer = prep_pipe
            model = estimator
            estimator = estimator
            
        except:
            
            sys.exit("(Type Error): Transformation Pipe Missing. ")
        
    #dataset
    if data is None:
        
        Xtest = X_test.copy()
        ytest = y_test.copy()
        X_test_ = X_test.copy()
        y_test_ = y_test.copy()
        
        Xtest.reset_index(drop=True, inplace=True)
        ytest.reset_index(drop=True, inplace=True)
        X_test_.reset_index(drop=True, inplace=True)
        y_test_.reset_index(drop=True, inplace=True)
        
        model = estimator
        estimator_ = estimator
        
    else:
        
        Xtest = prep_pipe_transformer.transform(data)                     
        X_test_ = data.copy() #original concater

        Xtest.reset_index(drop=True, inplace=True)
        X_test_.reset_index(drop=True, inplace=True)
    
        estimator_ = estimator
        
    #try:
    #    model = finalize_model(estimator)
    #except:
    #    model = estimator

    if type(estimator) is list:
        
        if type(estimator[0]) is list:
        
            """
            Multiple Layer Stacking
            """
            
            #utility
            stacker = model
            restack = stacker.pop()
            stacker_method = stacker.pop()
            #stacker_method = stacker_method[0]
            stacker_meta = stacker.pop()
            stacker_base = stacker.pop(0)

            #base model names
            base_model_names = []

            #defining base_level_names
            for i in stacker_base:
                b = str(i).split("(")[0]
                base_model_names.append(b)

            base_level_fixed = []

            for i in base_model_names:
                if 'CatBoostClassifier' in i:
                    a = 'CatBoostClassifier'
                    base_level_fixed.append(a)
                else:
                    base_level_fixed.append(i)

            base_level_fixed_2 = []

            counter = 0
            for i in base_level_fixed:
                s = str(i) + '_' + 'BaseLevel_' + str(counter)
                base_level_fixed_2.append(s)
                counter += 1

            base_level_fixed = base_level_fixed_2

            """
            base level predictions
            """
            base_pred = []
            for i in stacker_base:
                if 'soft' in stacker_method:
                    try:
                        a = i.predict_proba(Xtest) #change
                        a = a[:,1]
                    except:
                        a = i.predict(Xtest) #change
                else:
                    a = i.predict(Xtest) #change
                base_pred.append(a)

            base_pred_df = pd.DataFrame()
            for i in base_pred:
                a = pd.DataFrame(i)
                base_pred_df = pd.concat([base_pred_df, a], axis=1)

            base_pred_df.columns = base_level_fixed
            
            base_pred_df_no_restack = base_pred_df.copy()
            base_pred_df = pd.concat([Xtest,base_pred_df], axis=1)


            """
            inter level predictions
            """

            inter_pred = []
            combined_df = pd.DataFrame(base_pred_df)

            inter_counter = 0

            for level in stacker:
                
                inter_pred_df = pd.DataFrame()

                model_counter = 0 

                for model in level:
                    
                    try:
                        if inter_counter == 0:
                            if 'soft' in stacker_method: #changed
                                try:
                                    p = model.predict_proba(base_pred_df)
                                    p = p[:,1]
                                except:
                                    try:
                                        p = model.predict_proba(base_pred_df_no_restack)
                                        p = p[:,1]                                    
                                    except:
                                        try:
                                            p = model.predict(base_pred_df)
                                        except:
                                            p = model.predict(base_pred_df_no_restack)
                            else:
                                try:
                                    p = model.predict(base_pred_df)
                                except:
                                    p = model.predict(base_pred_df_no_restack)
                        else:
                            if 'soft' in stacker_method:
                                try:
                                    p = model.predict_proba(last_level_df)
                                    p = p[:,1]
                                except:
                                    p = model.predict(last_level_df)
                            else:
                                p = model.predict(last_level_df)
                    except:
                        if 'soft' in stacker_method:
                            try:
                                p = model.predict_proba(combined_df)
                                p = p[:,1]
                            except:
                                p = model.predict(combined_df)        
                    
                    p = pd.DataFrame(p)
                    
                    col = str(model).split("(")[0]
                    if 'CatBoostClassifier' in col:
                        col = 'CatBoostClassifier'
                    col = col + '_InterLevel_' + str(inter_counter) + '_' + str(model_counter)
                    p.columns = [col]

                    inter_pred_df = pd.concat([inter_pred_df, p], axis=1)

                    model_counter += 1

                last_level_df = inter_pred_df.copy()

                inter_counter += 1

                combined_df = pd.concat([combined_df,inter_pred_df], axis=1)

            """
            meta final predictions
            """

            #final meta predictions
            
            try:
                pred_ = stacker_meta.predict(combined_df)
            except:
                pred_ = stacker_meta.predict(inter_pred_df)

            try:
                pred_prob = stacker_meta.predict_proba(combined_df)
                
                if len(pred_prob[0]) > 2:
                    p_counter = 0
                    d = []
                    for i in range(0,len(pred_prob)):
                        d.append(pred_prob[i][pred_[p_counter]])
                        p_counter += 1

                    pred_prob = d
                    
                else:
                    pred_prob = pred_prob[:,1]
                    
            except:
                try:
                    pred_prob = stacker_meta.predict_proba(inter_pred_df)
                    
                    if len(pred_prob[0]) > 2:
                        p_counter = 0
                        d = []
                        for i in range(0,len(pred_prob)):
                            d.append(pred_prob[i][pred_[p_counter]])
                            p_counter += 1

                        pred_prob = d

                    else:
                        pred_prob = pred_prob[:,1]
                    
                except:
                    pass

            #print('Success')
            
            if probability_threshold is not None:
                try:
                    pred_ = (pred_prob >= probability_threshold).astype(int)
                except:
                    pass

            if data is None:
                sca = metrics.accuracy_score(ytest,pred_)

                try:
                    sc = metrics.roc_auc_score(ytest,pred_prob,average='weighted')
                except:
                    sc = 0

                if y.value_counts().count() > 2:
                    recall = metrics.recall_score(ytest,pred_, average='macro')
                    precision = metrics.precision_score(ytest,pred_, average = 'weighted')
                    f1 = metrics.f1_score(ytest,pred_, average='weighted')

                else:
                    recall = metrics.recall_score(ytest,pred_)
                    precision = metrics.precision_score(ytest,pred_)
                    f1 = metrics.f1_score(ytest,pred_)  
                    
                    
                kappa = metrics.cohen_kappa_score(ytest,pred_)
                mcc = metrics.matthews_corrcoef(ytest,pred_)
                
                df_score = pd.DataFrame( {'Model' : 'Stacking Classifier', 'Accuracy' : [sca], 'AUC' : [sc], 'Recall' : [recall], 'Prec.' : [precision],
                                    'F1' : [f1], 'Kappa' : [kappa], 'MCC':[mcc]})
                df_score = df_score.round(4)
8714 8715
                if verbose:
                    display(df_score)
8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880
        
            label = pd.DataFrame(pred_)
            label.columns = ['Label']
            label['Label']=label['Label'].astype(int)

            if data is None:
                X_test_ = pd.concat([Xtest,ytest,label], axis=1)
            else:
                X_test_ = pd.concat([X_test_,label], axis=1) #change here

            if hasattr(stacker_meta,'predict_proba'):
                try:
                    score = pd.DataFrame(pred_prob)
                    score.columns = ['Score']
                    score = score.round(4)
                    X_test_ = pd.concat([X_test_,score], axis=1)
                except:
                    pass

        else:
            
            """
            Single Layer Stacking
            """
            
            #copy
            stacker = model
            
            #restack
            restack = stacker.pop()
            
            #method
            method = stacker.pop()

            #separate metamodel
            meta_model = stacker.pop()

            model_names = []
            for i in stacker:
                model_names = np.append(model_names, str(i).split("(")[0])

            model_names_fixed = []

            for i in model_names:
                if 'CatBoostClassifier' in i:
                    a = 'CatBoostClassifier'
                    model_names_fixed.append(a)
                else:
                    model_names_fixed.append(i)

            model_names = model_names_fixed

            model_names_fixed = []
            counter = 0

            for i in model_names:
                s = str(i) + '_' + str(counter)
                model_names_fixed.append(s)
                counter += 1

            model_names = model_names_fixed

            base_pred = []

            for i in stacker:
                if method == 'hard':
                    #print('done')
                    p = i.predict(Xtest) #change

                else:
                    
                    try:
                        p = i.predict_proba(Xtest) #change
                        p = p[:,1]
                    except:
                        p = i.predict(Xtest) #change

                base_pred.append(p)

            df = pd.DataFrame()
            for i in base_pred:
                i = pd.DataFrame(i)
                df = pd.concat([df,i], axis=1)

            df.columns = model_names
            
            df_restack = pd.concat([Xtest,df], axis=1) #change

            #ytest = ytest #change

            #meta predictions starts here
            
            df.fillna(value=0,inplace=True)
            df_restack.fillna(value=0,inplace=True)
            
            #restacking check
            try:
                pred_ = meta_model.predict(df)
            except:
                pred_ = meta_model.predict(df_restack) 
                
            try:
                pred_prob = meta_model.predict_proba(df)
                
                if len(pred_prob[0]) > 2:
                    p_counter = 0
                    d = []
                    for i in range(0,len(pred_prob)):
                        d.append(pred_prob[i][pred_[p_counter]])
                        p_counter += 1

                    pred_prob = d
                    
                else:
                    pred_prob = pred_prob[:,1]

            except:
                
                try:
                    pred_prob = meta_model.predict_proba(df_restack)
                    
                    if len(pred_prob[0]) > 2:
                        p_counter = 0
                        d = []
                        for i in range(0,len(pred_prob)):
                            d.append(pred_prob[i][pred_[p_counter]])
                            p_counter += 1

                        pred_prob = d
                        
                    else:
                        pred_prob = pred_prob[:,1]
                except:
                    pass
            
            if probability_threshold is not None:
                try:
                    pred_ = (pred_prob >= probability_threshold).astype(int)
                except:
                    pass
            
            if data is None:
                
                sca = metrics.accuracy_score(ytest,pred_)

                try:
                    sc = metrics.roc_auc_score(ytest,pred_prob)
                except:
                    sc = 0

                if y.value_counts().count() > 2:
                    recall = metrics.recall_score(ytest,pred_, average='macro')
                    precision = metrics.precision_score(ytest,pred_, average = 'weighted')
                    f1 = metrics.f1_score(ytest,pred_, average='weighted')
                else:
                    recall = metrics.recall_score(ytest,pred_)
                    precision = metrics.precision_score(ytest,pred_)
                    f1 = metrics.f1_score(ytest,pred_)
                    
                kappa = metrics.cohen_kappa_score(ytest,pred_)
                mcc = metrics.matthews_corrcoef(ytest,pred_)
                
                df_score = pd.DataFrame( {'Model' : 'Stacking Classifier', 'Accuracy' : [sca], 'AUC' : [sc], 'Recall' : [recall], 'Prec.' : [precision],
                                    'F1' : [f1], 'Kappa' : [kappa], 'MCC':[mcc]})
                df_score = df_score.round(4)
8881 8882
                if verbose:
                    display(df_score)
8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984

            label = pd.DataFrame(pred_)
            label.columns = ['Label']
            label['Label']=label['Label'].astype(int)

            if data is None:
                X_test_ = pd.concat([Xtest,ytest,label], axis=1) #changed
            else:
                X_test_ = pd.concat([X_test_,label], axis=1) #change here
      
            if hasattr(meta_model,'predict_proba'):
                try:
                    score = pd.DataFrame(pred_prob)
                    score.columns = ['Score']
                    score = score.round(4)
                    X_test_ = pd.concat([X_test_,score], axis=1)
                except:
                    pass

    else:
        
        #model name
        full_name = str(model).split("(")[0]
        def putSpace(input):
            words = re.findall('[A-Z][a-z]*', input)
            words = ' '.join(words)
            return words  
        full_name = putSpace(full_name)

        if full_name == 'Gaussian N B':
            full_name = 'Naive Bayes'

        elif full_name == 'M L P Classifier':
            full_name = 'MLP Classifier'

        elif full_name == 'S G D Classifier':
            full_name = 'SVM - Linear Kernel'

        elif full_name == 'S V C':
            full_name = 'SVM - Radial Kernel'

        elif full_name == 'X G B Classifier':
            full_name = 'Extreme Gradient Boosting'

        elif full_name == 'L G B M Classifier':
            full_name = 'Light Gradient Boosting Machine'

        elif 'Cat Boost Classifier' in full_name:
            full_name = 'CatBoost Classifier'

        
        #prediction starts here
        
        pred_ = model.predict(Xtest)
        
        try:
            pred_prob = model.predict_proba(Xtest)
            
            if len(pred_prob[0]) > 2:
                p_counter = 0
                d = []
                for i in range(0,len(pred_prob)):
                    d.append(pred_prob[i][pred_[p_counter]])
                    p_counter += 1
                    
                pred_prob = d
                
            else:
                pred_prob = pred_prob[:,1]
        except:
            pass
        
        if probability_threshold is not None:
            try:
                pred_ = (pred_prob >= probability_threshold).astype(int)
            except:
                pass
        
        if data is None:
  
            sca = metrics.accuracy_score(ytest,pred_)

            try:
                sc = metrics.roc_auc_score(ytest,pred_prob)
            except:
                sc = 0
            
            if y.value_counts().count() > 2:
                recall = metrics.recall_score(ytest,pred_, average='macro')
                precision = metrics.precision_score(ytest,pred_, average = 'weighted')
                f1 = metrics.f1_score(ytest,pred_, average='weighted')
            else:
                recall = metrics.recall_score(ytest,pred_)
                precision = metrics.precision_score(ytest,pred_)
                f1 = metrics.f1_score(ytest,pred_)                
                
            kappa = metrics.cohen_kappa_score(ytest,pred_)
            mcc = metrics.matthews_corrcoef(ytest,pred_)

            df_score = pd.DataFrame( {'Model' : [full_name], 'Accuracy' : [sca], 'AUC' : [sc], 'Recall' : [recall], 'Prec.' : [precision],
                                'F1' : [f1], 'Kappa' : [kappa], 'MCC':[mcc]})
            df_score = df_score.round(4)
8985
            
8986
            if verbose:
8987
                display(df_score)
8988
           
8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006
        label = pd.DataFrame(pred_)
        label.columns = ['Label']
        label['Label']=label['Label'].astype(int)
        
        if data is None:
            X_test_ = pd.concat([Xtest,ytest,label], axis=1)
        else:
            X_test_ = pd.concat([X_test_,label], axis=1)
        
        if hasattr(model,'predict_proba'):
            try:
                score = pd.DataFrame(pred_prob)
                score.columns = ['Score']
                score = score.round(4)
                X_test_ = pd.concat([X_test_,score], axis=1)
            except:
                pass
        
9007 9008 9009 9010 9011 9012
    #store predictions on hold-out in display_container
    try:
        display_container.append(df_score)
    except:
        pass

9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317
    return X_test_

def deploy_model(model, 
                 model_name, 
                 authentication,
                 platform = 'aws'):
    
    """
       
    Description:
    ------------
    (In Preview)

    This function deploys the transformation pipeline and trained model object for
    production use. The platform of deployment can be defined under the platform
    param along with the applicable authentication tokens which are passed as a
    dictionary to the authentication param.
    
        Example:
        --------
        from pycaret.datasets import get_data
        juice = get_data('juice')
        experiment_name = setup(data = juice,  target = 'Purchase')
        lr = create_model('lr')
        
        deploy_model(model = lr, model_name = 'deploy_lr', platform = 'aws', 
                     authentication = {'bucket' : 'pycaret-test'})
        
        This will deploy the model on an AWS S3 account under bucket 'pycaret-test'
        
        For AWS users:
        --------------
        Before deploying a model to an AWS S3 ('aws'), environment variables must be 
        configured using the command line interface. To configure AWS env. variables, 
        type aws configure in your python command line. The following information is
        required which can be generated using the Identity and Access Management (IAM) 
        portal of your amazon console account:
    
           - AWS Access Key ID
           - AWS Secret Key Access
           - Default Region Name (can be seen under Global settings on your AWS console)
           - Default output format (must be left blank)

    Parameters
    ----------
    model : object
    A trained model object should be passed as an estimator. 
    
    model_name : string
    Name of model to be passed as a string.
    
    authentication : dict
    dictionary of applicable authentication tokens. 
      
     When platform = 'aws': 
     {'bucket' : 'Name of Bucket on S3'}
    
    platform: string, default = 'aws'
    Name of platform for deployment. Current available options are: 'aws'.

    Returns:
    --------    
    Success Message
    
    Warnings:
    ---------
    - This function uses file storage services to deploy the model on cloud platform. 
      As such, this is efficient for batch-use. Where the production objective is to 
      obtain prediction at an instance level, this may not be the efficient choice as 
      it transmits the binary pickle file between your local python environment and
      the platform. 
    
    """
    
    #ignore warnings
    import warnings
    warnings.filterwarnings('ignore') 
    
    #general dependencies
    import ipywidgets as ipw
    import pandas as pd
    from IPython.display import clear_output, update_display
        
    try:
        model = finalize_model(model)
    except:
        pass
    
    if platform == 'aws':
        
        import boto3
        
        save_model(model, model_name = model_name, verbose=False)
        
        #initiaze s3
        s3 = boto3.client('s3')
        filename = str(model_name)+'.pkl'
        key = str(model_name)+'.pkl'
        bucket_name = authentication.get('bucket')
        s3.upload_file(filename,bucket_name,key)
        clear_output()
        print("Model Succesfully Deployed on AWS S3")

def optimize_threshold(estimator, 
                       true_positive = 0, 
                       true_negative = 0, 
                       false_positive = 0, 
                       false_negative = 0):
    
    """
       
    Description:
    ------------
    This function optimizes probability threshold for a trained model using custom cost
    function that can be defined using combination of True Positives, True Negatives,
    False Positives (also known as Type I error), and False Negatives (Type II error).
    
    This function returns a plot of optimized cost as a function of probability 
    threshold between 0 to 100. 

        Example
        -------
        from pycaret.datasets import get_data
        juice = get_data('juice')
        experiment_name = setup(data = juice,  target = 'Purchase')
        
        lr = create_model('lr')
        
        optimize_threshold(lr, true_negative = 10, false_negative = -100)

        This will return a plot of optimized cost as a function of probability threshold.

    Parameters
    ----------
    estimator : object
    A trained model object should be passed as an estimator. 
    
    true_positive : int, default = 0
    Cost function or returns when prediction is true positive.  
    
    true_negative : int, default = 0
    Cost function or returns when prediction is true negative.
    
    false_positive : int, default = 0
    Cost function or returns when prediction is false positive.    
    
    false_negative : int, default = 0
    Cost function or returns when prediction is false negative.       
    
    
    Returns:
    --------

    Visual Plot:  Prints the visual plot. 
    ------------

    Warnings:
    ---------
    - This function is not supported for multiclass problems.
      
       
    """
    
    
    #import libraries
    import sys
    import pandas as pd
    import numpy as np
    import plotly.express as px
    from IPython.display import clear_output
    
    #cufflinks
    import cufflinks as cf
    cf.go_offline()
    cf.set_config_file(offline=False, world_readable=True)
    
    
    '''
    ERROR HANDLING STARTS HERE
    '''
    
    #exception 1 for multi-class
    if y.value_counts().count() > 2:
        sys.exit("(Type Error) optimize_threshold() cannot be used when target is multi-class. ")
    
    model_name = str(estimator).split("(")[0]
    if 'OneVsRestClassifier' in model_name:
        sys.exit("(Type Error) optimize_threshold() cannot be used when target is multi-class. ")
    
    #check predict_proba value
    if type(estimator) is not list:
        if not hasattr(estimator, 'predict_proba'):
            sys.exit("(Type Error) Estimator doesn't support predict_proba function and cannot be used in optimize_threshold().  ")        
        
    #check cost function type
    allowed_types = [int, float]
    
    if type(true_positive) not in allowed_types:
        sys.exit("(Type Error) true_positive parameter only accepts float or integer value. ")
        
    if type(true_negative) not in allowed_types:
        sys.exit("(Type Error) true_negative parameter only accepts float or integer value. ")
        
    if type(false_positive) not in allowed_types:
        sys.exit("(Type Error) false_positive parameter only accepts float or integer value. ")
        
    if type(false_negative) not in allowed_types:
        sys.exit("(Type Error) false_negative parameter only accepts float or integer value. ")
    
    

    '''
    ERROR HANDLING ENDS HERE
    '''        

        
    #define model as estimator
    model = estimator
    
    model_name = str(model).split("(")[0]
    if 'CatBoostClassifier' in model_name:
        model_name = 'CatBoostClassifier'
        
    #generate predictions and store actual on y_test in numpy array
    actual = np.array(y_test)
    
    if type(model) is list:
        predicted = predict_model(model)
        model_name = 'Stacking'
        clear_output()
        try:
            predicted = np.array(predicted['Score'])
        except:
            sys.exit("(Type Error) Meta model doesn't support predict_proba function. Cannot be used in optimize_threshold(). ")        
        
    else:
        predicted = model.predict_proba(X_test)
        predicted = predicted[:,1]

    """
    internal function to calculate loss starts here
    """
    
    def calculate_loss(actual,predicted,
                       tp_cost=true_positive,tn_cost=true_negative,
                       fp_cost=false_positive,fn_cost=false_negative):
        
        #true positives
        tp = predicted + actual
        tp = np.where(tp==2, 1, 0)
        tp = tp.sum()
        
        #true negative
        tn = predicted + actual
        tn = np.where(tn==0, 1, 0)
        tn = tn.sum()
        
        #false positive
        fp = (predicted > actual).astype(int)
        fp = np.where(fp==1, 1, 0)
        fp = fp.sum()
        
        #false negative
        fn = (predicted < actual).astype(int)
        fn = np.where(fn==1, 1, 0)
        fn = fn.sum()
        
        total_cost = (tp_cost*tp) + (tn_cost*tn) + (fp_cost*fp) + (fn_cost*fn)
        
        return total_cost
    
    
    """
    internal function to calculate loss ends here
    """
    
    grid = np.arange(0,1,0.01)
    
    #loop starts here
    
    cost = []
    #global optimize_results
    
    for i in grid:
        
        pred_prob = (predicted >= i).astype(int)
        cost.append(calculate_loss(actual,pred_prob))
        
    optimize_results = pd.DataFrame({'Probability Threshold' : grid, 'Cost Function' : cost })
    fig = px.line(optimize_results, x='Probability Threshold', y='Cost Function', line_shape='linear')
    fig.update_layout(plot_bgcolor='rgb(245,245,245)')
    title= str(model_name) + ' Probability Threshold Optimization'
    
    #calculate vertical line
    y0 = optimize_results['Cost Function'].min()
    y1 = optimize_results['Cost Function'].max()
    x0 = optimize_results.sort_values(by='Cost Function', ascending=False).iloc[0][0]
    x1 = x0
    
    t = x0.round(2)
    
    fig.add_shape(dict(type="line", x0=x0, y0=y0, x1=x1, y1=y1,line=dict(color="red",width=2)))
    fig.update_layout(title={'text': title, 'y':0.95,'x':0.45,'xanchor': 'center','yanchor': 'top'})
    fig.show()
    print('Optimized Probability Threshold: ' + str(t) + ' | ' + 'Optimized Cost Function: ' + str(y1))
9318

9319 9320
def automl(optimize='Accuracy', use_holdout=False):
    
9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342
    """
    space reserved for docstring
    
    """

    if optimize == 'Accuracy':
        compare_dimension = 'Accuracy' 
    elif optimize == 'AUC':
        compare_dimension = 'AUC' 
    elif optimize == 'Recall':
        compare_dimension = 'Recall'
    elif optimize == 'Precision':
        compare_dimension = 'Prec.'
    elif optimize == 'F1':
        compare_dimension = 'F1' 
    elif optimize == 'Kappa':
        compare_dimension = 'Kappa'
    elif optimize == 'MCC':
        compare_dimension = 'MCC' 
        
    scorer = []

9343 9344 9345 9346 9347 9348
    if use_holdout:
        for i in master_model_container:
            pred_holdout = predict_model(i, verbose=False)
            p = pull()
            p = p[compare_dimension][0]
            scorer.append(p)
9349

9350 9351 9352 9353
    else:
        for i in create_model_container:
            r = i[compare_dimension][-2:][0]
            scorer.append(r)
9354 9355 9356 9357 9358 9359

    #returning better model
    index_scorer = scorer.index(max(scorer))
    
    automl_result = master_model_container[index_scorer]

9360 9361 9362
    automl_finalized = finalize_model(automl_result)

    return automl_finalized
9363 9364

def pull():
P
PyCaret 已提交
9365 9366
    return display_container[-1]