提交 e9812950 编写于 作者: S ShusenTang

add doc 9.6

上级 b4c13914
......@@ -111,6 +111,7 @@ docsify serve docs
* [9.3 目标检测和边界框](chapter09_computer-vision/9.3_bounding-box.md)
* [9.4 锚框](chapter09_computer-vision/9.4_anchor.md)
* [9.5 多尺度目标检测](chapter09_computer-vision/9.5_multiscale-object-detection.md)
* [9.6 目标检测数据集(皮卡丘)](chapter09_computer-vision/9.6_object-detection-dataset.md)
* 待更新...
* 10\. 自然语言处理
* [10.1 词嵌入(word2vec)](chapter10_natural-language-processing/10.1_word2vec.md)
......
......@@ -73,6 +73,7 @@
* [9.3 目标检测和边界框](chapter09_computer-vision/9.3_bounding-box.md)
* [9.4 锚框](chapter09_computer-vision/9.4_anchor.md)
* [9.5 多尺度目标检测](chapter09_computer-vision/9.5_multiscale-object-detection.md)
* [9.6 目标检测数据集(皮卡丘)](chapter09_computer-vision/9.6_object-detection-dataset.md)
* 待更新...
* 10\. 自然语言处理
* [10.1 词嵌入(word2vec)](chapter10_natural-language-processing/10.1_word2vec.md)
......
# 9.6 目标检测数据集(皮卡丘)
在目标检测领域并没有类似MNIST或Fashion-MNIST那样的小数据集。为了快速测试模型,我们合成了一个小的数据集。我们首先使用一个开源的皮卡丘3D模型生成了1000张不同角度和大小的皮卡丘图像。然后我们收集了一系列背景图像,并在每张图的随机位置放置一张随机的皮卡丘图像。该数据集使用MXNet提供的im2rec工具将图像转换成了二进制的RecordIO格式 [1]。该格式既可以降低数据集在磁盘上的存储开销,又能提高读取效率。如果想了解更多的图像读取方法,可以查阅GluonCV工具包的文档 [2]。
## 9.6.1 下载数据集
前面说了,皮卡丘数据集使用MXNet提供的im2rec工具将图像转换成了二进制的RecordIO格式,但是我们后续要使用PyTorch,所以我先用[脚本](https://github.com/ShusenTang/Dive-into-DL-PyTorch/blob/master/code/chapter09_computer-vision/9.6.0_prepare_pikachu.ipynb)将其转换成了PNG图片并用json文件存放对应的label信息。在继续阅读前,请务必确保运行了这个脚本,保证数据已准备好。`pikachu`文件夹下的结构应如下所示。
```
--pikachu
--train
--images
--1.png
...
--label.json
--val
--images
--1.png
...
--label.json
```
先导入相关库。
``` python
%matplotlib inline
import os
import json
import numpy as np
import torch
import torchvision
from PIL import Image
import sys
sys.path.append("..")
import d2lzh_pytorch as d2l
data_dir = '../../data/pikachu'
assert os.path.exists(os.path.join(data_dir, "train"))
```
## 9.6.2 读取数据集
我们先定义一个数据集类`PikachuDetDataset`,数据集每个样本包含`label``image`,其中label是一个 $m \times 5$ 的向量,即m个边界框,每个边界框由`[class, x_min, y_min, x_max, y_max]`表示,这里的皮卡丘数据集中每个图像只有一个边界框,因此m=1。`image`是一个所有元素都位于`[0.0, 1.0]`的浮点`tensor`,代表图片数据。
``` python
# 本类已保存在d2lzh_pytorch包中方便以后使用
class PikachuDetDataset(torch.utils.data.Dataset):
"""皮卡丘检测数据集类"""
def __init__(self, data_dir, part, image_size=(256, 256)):
assert part in ["train", "val"]
self.image_size = image_size
self.image_dir = os.path.join(data_dir, part, "images")
with open(os.path.join(data_dir, part, "label.json")) as f:
self.label = json.load(f)
self.transform = torchvision.transforms.Compose([
# 将 PIL 图片转换成位于[0.0, 1.0]的floatTensor, shape (C x H x W)
torchvision.transforms.ToTensor()])
def __len__(self):
return len(self.label)
def __getitem__(self, index):
image_path = str(index + 1) + ".png"
cls = self.label[image_path]["class"]
label = np.array([cls] + self.label[image_path]["loc"],
dtype="float32")[None, :]
PIL_img = Image.open(os.path.join(self.image_dir, image_path)
).convert('RGB').resize(self.image_size)
img = self.transform(PIL_img)
sample = {
"label": label, # shape: (1, 5) [class, xmin, ymin, xmax, ymax]
"image": img # shape: (3, *image_size)
}
return sample
```
然后我们通过创建`DataLoader`实例来读取目标检测数据集。我们将以随机顺序读取训练数据集,按序读取测试数据集。
> 原书还做了数据增强: *对于训练集中的每张图像,我们将采用随机裁剪,并要求裁剪出的图像至少覆盖每个目标95%的区域。由于裁剪是随机的,这个要求不一定总被满足。我们设定最多尝试200次随机裁剪:如果都不符合要求则不裁剪图像。为保证输出结果的确定性,我们不随机裁剪测试数据集中的图像。 我们也无须按随机顺序读取测试数据集。*
``` python
# 本函数已保存在d2lzh_pytorch包中方便以后使用
def load_data_pikachu(batch_size, edge_size=256, data_dir = '../../data/pikachu'):
"""edge_size:输出图像的宽和高"""
image_size = (edge_size, edge_size)
train_dataset = PikachuDetDataset(data_dir, 'train', image_size)
val_dataset = PikachuDetDataset(data_dir, 'val', image_size)
train_iter = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size,
shuffle=True, num_workers=4)
val_iter = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size,
shuffle=False, num_workers=4)
return train_iter, val_iter
```
下面我们读取一个小批量并打印图像和标签的形状。图像的形状和之前实验中的一样,依然是(批量大小, 通道数, 高, 宽)。而标签的形状则是(批量大小, $m$, 5),其中$m$等于数据集中单个图像最多含有的边界框个数。小批量计算虽然高效,但它要求每张图像含有相同数量的边界框,以便放在同一个批量中。由于每张图像含有的边界框个数可能不同,我们为边界框个数小于$m$的图像填充非法边界框,直到每张图像均含有$m$个边界框。这样,我们就可以每次读取小批量的图像了。图像中每个边界框的标签由长度为5的数组表示。数组中第一个元素是边界框所含目标的类别。当值为-1时,该边界框为填充用的非法边界框。数组的剩余4个元素分别表示边界框左上角的$x$和$y$轴坐标以及右下角的$x$和$y$轴坐标(值域在0到1之间)。这里的皮卡丘数据集中每个图像只有一个边界框,因此$m=1$。
``` python
batch_size, edge_size = 32, 256
train_iter, _ = load_data_pikachu(batch_size, edge_size, data_dir)
batch = iter(train_iter).next()
print(batch["image"].shape, batch["label"].shape)
```
输出:
```
torch.Size([32, 3, 256, 256]) torch.Size([32, 1, 5])
```
## 9.6.3 图示数据
我们画出10张图像和它们中的边界框。可以看到,皮卡丘的角度、大小和位置在每张图像中都不一样。当然,这是一个简单的人工数据集。实际中的数据通常会复杂得多。
``` python
imgs = batch["image"][0:10].permute(0,2,3,1)
bboxes = batch["label"][0:10, 0, 1:]
axes = d2l.show_images(imgs, 2, 5).flatten()
for ax, bb in zip(axes, bboxes):
d2l.show_bboxes(ax, [bb*edge_size], colors=['w'])
```
<div align=center>
<img width="600" src="../img/chapter09/9.6_output1.png"/>
</div>
## 小结
* 合成的皮卡丘数据集可用于测试目标检测模型。
* 目标检测的数据读取跟图像分类的类似。然而,在引入边界框后,标签形状和图像增广(如随机裁剪)发生了变化。
## 参考文献
[1] im2rec工具。https://github.com/apache/incubator-mxnet/blob/master/tools/im2rec.py
[2] GluonCV 工具包。https://gluon-cv.mxnet.io/
-----------
> 注:除代码外本节与原书基本相同,[原书传送门](http://zh.d2l.ai/chapter_computer-vision/object-detection-dataset.html)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册