xxHash32.go 4.6 KB
Newer Older
S
Siddharth Kothari 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
// Package xxHash32 implements the very fast xxHash hashing algorithm (32 bits version).
// (https://github.com/Cyan4973/xxHash/)
package xxHash32

import "hash"

const (
	prime32_1 = 2654435761
	prime32_2 = 2246822519
	prime32_3 = 3266489917
	prime32_4 = 668265263
	prime32_5 = 374761393
)

type xxHash struct {
	seed     uint32
	v1       uint32
	v2       uint32
	v3       uint32
	v4       uint32
	totalLen uint64
	buf      [16]byte
	bufused  int
}

// New returns a new Hash32 instance.
func New(seed uint32) hash.Hash32 {
	xxh := &xxHash{seed: seed}
	xxh.Reset()
	return xxh
}

// Sum appends the current hash to b and returns the resulting slice.
// It does not change the underlying hash state.
func (xxh xxHash) Sum(b []byte) []byte {
	h32 := xxh.Sum32()
	return append(b, byte(h32), byte(h32>>8), byte(h32>>16), byte(h32>>24))
}

// Reset resets the Hash to its initial state.
func (xxh *xxHash) Reset() {
	xxh.v1 = xxh.seed + prime32_1 + prime32_2
	xxh.v2 = xxh.seed + prime32_2
	xxh.v3 = xxh.seed
	xxh.v4 = xxh.seed - prime32_1
	xxh.totalLen = 0
	xxh.bufused = 0
}

// Size returns the number of bytes returned by Sum().
func (xxh *xxHash) Size() int {
	return 4
}

// BlockSize gives the minimum number of bytes accepted by Write().
func (xxh *xxHash) BlockSize() int {
	return 1
}

// Write adds input bytes to the Hash.
// It never returns an error.
func (xxh *xxHash) Write(input []byte) (int, error) {
	n := len(input)
	m := xxh.bufused

	xxh.totalLen += uint64(n)

	r := len(xxh.buf) - m
	if n < r {
		copy(xxh.buf[m:], input)
		xxh.bufused += len(input)
		return n, nil
	}

	p := 0
	if m > 0 {
		// some data left from previous update
		copy(xxh.buf[xxh.bufused:], input[:r])
		xxh.bufused += len(input) - r

		// fast rotl(13)
		xxh.v1 = rol13(xxh.v1+u32(xxh.buf[:])*prime32_2) * prime32_1
		xxh.v2 = rol13(xxh.v2+u32(xxh.buf[4:])*prime32_2) * prime32_1
		xxh.v3 = rol13(xxh.v3+u32(xxh.buf[8:])*prime32_2) * prime32_1
		xxh.v4 = rol13(xxh.v4+u32(xxh.buf[12:])*prime32_2) * prime32_1
		p = r
		xxh.bufused = 0
	}

	// Causes compiler to work directly from registers instead of stack:
	v1, v2, v3, v4 := xxh.v1, xxh.v2, xxh.v3, xxh.v4
	for n := n - 16; p <= n; p += 16 {
		sub := input[p:][:16] //BCE hint for compiler
		v1 = rol13(v1+u32(sub[:])*prime32_2) * prime32_1
		v2 = rol13(v2+u32(sub[4:])*prime32_2) * prime32_1
		v3 = rol13(v3+u32(sub[8:])*prime32_2) * prime32_1
		v4 = rol13(v4+u32(sub[12:])*prime32_2) * prime32_1
	}
	xxh.v1, xxh.v2, xxh.v3, xxh.v4 = v1, v2, v3, v4

	copy(xxh.buf[xxh.bufused:], input[p:])
	xxh.bufused += len(input) - p

	return n, nil
}

// Sum32 returns the 32 bits Hash value.
func (xxh *xxHash) Sum32() uint32 {
	h32 := uint32(xxh.totalLen)
	if xxh.totalLen >= 16 {
		h32 += rol1(xxh.v1) + rol7(xxh.v2) + rol12(xxh.v3) + rol18(xxh.v4)
	} else {
		h32 += xxh.seed + prime32_5
	}

	p := 0
	n := xxh.bufused
	for n := n - 4; p <= n; p += 4 {
		h32 += u32(xxh.buf[p:p+4]) * prime32_3
		h32 = rol17(h32) * prime32_4
	}
	for ; p < n; p++ {
		h32 += uint32(xxh.buf[p]) * prime32_5
		h32 = rol11(h32) * prime32_1
	}

	h32 ^= h32 >> 15
	h32 *= prime32_2
	h32 ^= h32 >> 13
	h32 *= prime32_3
	h32 ^= h32 >> 16

	return h32
}

// Checksum returns the 32bits Hash value.
func Checksum(input []byte, seed uint32) uint32 {
	n := len(input)
	h32 := uint32(n)

	if n < 16 {
		h32 += seed + prime32_5
	} else {
		v1 := seed + prime32_1 + prime32_2
		v2 := seed + prime32_2
		v3 := seed
		v4 := seed - prime32_1
		p := 0
		for n := n - 16; p <= n; p += 16 {
			sub := input[p:][:16] //BCE hint for compiler
			v1 = rol13(v1+u32(sub[:])*prime32_2) * prime32_1
			v2 = rol13(v2+u32(sub[4:])*prime32_2) * prime32_1
			v3 = rol13(v3+u32(sub[8:])*prime32_2) * prime32_1
			v4 = rol13(v4+u32(sub[12:])*prime32_2) * prime32_1
		}
		input = input[p:]
		n -= p
		h32 += rol1(v1) + rol7(v2) + rol12(v3) + rol18(v4)
	}

	p := 0
	for n := n - 4; p <= n; p += 4 {
		h32 += u32(input[p:p+4]) * prime32_3
		h32 = rol17(h32) * prime32_4
	}
	for p < n {
		h32 += uint32(input[p]) * prime32_5
		h32 = rol11(h32) * prime32_1
		p++
	}

	h32 ^= h32 >> 15
	h32 *= prime32_2
	h32 ^= h32 >> 13
	h32 *= prime32_3
	h32 ^= h32 >> 16

	return h32
}

func u32(buf []byte) uint32 {
	// go compiler recognizes this pattern and optimizes it on little endian platforms
	return uint32(buf[0]) | uint32(buf[1])<<8 | uint32(buf[2])<<16 | uint32(buf[3])<<24
}

func rol1(u uint32) uint32 {
	return u<<1 | u>>31
}

func rol7(u uint32) uint32 {
	return u<<7 | u>>25
}

func rol11(u uint32) uint32 {
	return u<<11 | u>>21
}

func rol12(u uint32) uint32 {
	return u<<12 | u>>20
}

func rol13(u uint32) uint32 {
	return u<<13 | u>>19
}

func rol17(u uint32) uint32 {
	return u<<17 | u>>15
}

func rol18(u uint32) uint32 {
	return u<<18 | u>>14
}