提交 6e75dba5 编写于 作者: S shuang.kou

Update basis.md

上级 5a5cf0e9
> 更多操作系统相关的面试题问题,见:《》
## 一 操作系统基础
### 什么是操作系统?
### 1.1 什么是操作系统?
👨‍💻**面试官** : 先来个简单问题吧!**什么是操作系统?**
🙋 **我** :我通过以下四点向您介绍一下什么是操作系统吧!
1. **操作系统(英语:Operating System,简称OS)是管理计算机硬件与软件资源的程序,是计算机系统的内核与基石;**
2. **操作系统本质上是运行在计算机上的软件程序 ;**
3. **为用户提供一个与系统交互的操作界面 ;**
3. **操作系统为用户提供一个与系统交互的操作界面 ;**
4. **操作系统分内核与外壳(我们可以把外壳理解成围绕着内核的应用程序,而内核就是能操作硬件的程序)。**
![操作系统分内核与外壳](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-11/a72a930ca61bc2b424bb900c94c063cf.png)
## 进程和线程
### 1.2 系统调用
###进程和线程的区别
👨‍💻**面试官****什么是系统调用呢?**能不能详细介绍一下。
🙋 **我** :介绍系统调用之前,我们先来了解一下用户态和系统态。
<img src="http://ww4.sinaimg.cn/large/006r3PQBjw1fbimb5c3srj30b40b40t9.jpg" height="200" width="200"/>
根据进程访问资源的特点,我们可以把进程在系统上的运行分为两个级别:
1. 用户态(user mode) : 用户态运行的进程或程序可以直接读取用户程序的数据。
2. 系统态(kernel mode):系统态运行的进程或程序几乎可以访问计算机的任何资源,不受限制。
说了用户态和系统态之后,那么什么是系统调用呢?
我们运行的程序基本都是运行在用户态,如果我们调用操作系统提供的系统态级别的子功能咋办呢?那就需要系统调用了!
也就是说在我们运行的用户程序中,凡是与系统态级别的资源有关的操作(如文件管理、进程控制、内存管理等等),都必须通过系统调用方式向操作系统提出服务请求,并由操作系统代为完成。
这些系统调用按功能大致可分为如下几类:
- 设备管理。完成设备的请求或释放,以及设备启动等功能。
- 文件管理。完成文件的读、写、创建及删除等功能。
- 进程控制。完成进程的创建、撤销、阻塞及唤醒等功能。
- 进程通信。完成进程之间的消息传递或信号传递等功能。
- 内存管理。完成内存的分配、回收以及获取作业占用内存区大小及始址等功能。
## 二 进程和线程
### 2.1进程和线程的区别
👨‍💻**面试官**: 好的!我明白了!那你再说一下: **进程和线程的区别**
......@@ -28,7 +54,7 @@
**总结:** 线程是进程划分成的更小的运行单位,一个进程在其执行的过程中可以产生多个线程。线程和进程最大的不同在于基本上各进程是独立的,而各线程则不一定,因为同一进程中的线程极有可能会相互影响。线程执行开销小,但不利于资源的管理和保护;而进程正相反。
###进程有哪几种状态?
### 2.2 进程有哪几种状态?
👨‍💻**面试官** : 那你再说说**进程有哪几种状态?**
🙋 **我** :我们一般把进程大致分为 5 种状态,这一点和[线程](https://github.com/Snailclimb/JavaGuide/blob/master/docs/java/Multithread/JavaConcurrencyBasicsCommonInterviewQuestionsSummary.md#6-%E8%AF%B4%E8%AF%B4%E7%BA%BF%E7%A8%8B%E7%9A%84%E7%94%9F%E5%91%BD%E5%91%A8%E6%9C%9F%E5%92%8C%E7%8A%B6%E6%80%81)很像!
......@@ -41,7 +67,7 @@
![process-state](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-11/d38202593012b457debbcd74994c6292.png)
### 进程间的通信方式
### 2.3 进程间的通信方式
👨‍💻**面试官****进程间的通信常见的的有哪几种方式呢?**
🙋 **我** :大概有 7 种常见的进程间的通信方式。
......@@ -56,16 +82,16 @@
1. **共享内存(Shared memory)** :使得多个进程可以访问同一块内存空间,不同进程可以及时看到对方进程中对共享内存中数据得更新。这种方式需要依靠某种同步操作,如互斥锁和信号量等。可以说这是最有用的进程间通信方式。
1. **套接字(Sockets)** : 此方法主要用于在客户端和服务器之间通过网络进行通信。套接字是支持TCP/IP的网络通信的基本操作单元,可以看做是不同主机之间的进程进行双向通信的端点,简单的说就是通信的两方的一种约定,用套接字中的相关函数来完成通信过程。
### 线程间的同步的方式
### 2.4 线程间的同步的方式
👨‍💻**面试官**那线程间的同步的方式有哪些呢?
👨‍💻**面试官****那线程间的同步的方式有哪些呢?**
🙋 **我** :线程同步是两个或多个共享关键资源的线程的并发执行。应该同步线程以避免关键的资源使用冲突。操作系统一般有下面三种线程同步的方式:
1. **互斥量(Mutex)**:采用互斥对象机制,只有拥有互斥对象的线程才有访问公共资源的权限。因为互斥对象只有一个,所以可以保证公共资源不会被多个线程同时访问。比如 Java 中的 synchronized 关键词和各种 Lock 都是这种机制。
1. **信号量(Semphares)** :它允许同一时刻多个线程访问同一资源,但是需要控制同一时刻访问此资源的最大线程数量
1. **事件(Event)** :Wait/Notify:通过通知操作的方式来保持多线程同步,还可以方便的实现多线程优先级的比较操
### 进程的调度算法
### 2.5 进程的调度算法
👨‍💻**面试官****你知道操作系统中进程的调度算法有哪些吗?**
🙋 **我** :嗯嗯!这个我们大学的时候学过,是一个很重要的知识点!
......@@ -78,15 +104,15 @@
- **多级反馈队列调度算法** :前面介绍的几种进程调度的算法都有一定的局限性。如**短进程优先的调度算法,仅照顾了短进程而忽略了长进程** 。多级反馈队列调度算法既能使高优先级的作业得到响应又能使短作业(进程)迅速完成。,因而它是目前**被公认的一种较好的进程调度算法**,UNIX操作系统采取的便是这种调度算法。
- **优先级调度** : 为每个流程分配优先级,首先执行具有最高优先级的进程,依此类推。具有相同优先级的进程以FCFS方式执行。可以根据内存要求,时间要求或任何其他资源要求来确定优先级。
## 操作系统内存管理基础
## 操作系统内存管理基础
### 内存管理介绍
### 3.1 内存管理介绍
👨‍💻 **面试官**: **操作系统的内存管理主要是做什么?**
🙋 **我:** 操作系统的内存管理主要负责内存的分配与回收(malloc 函数:申请内存,free 函数:释放内存),另外地址转换也就是将逻辑地址转换成相应的物理地址等功能也是操作系统内存管理做的事情。
### 常见的几种内存管理机制
### 3.2 常见的几种内存管理机制
👨‍💻 **面试官**: **操作系统的内存管理机制了解吗?内存管理有哪几种方式?**
......@@ -98,13 +124,13 @@
2. **页式管理** :把主存分为大小相等且固定的一页一页的形式,页较小,相对相比于块式管理的划分力度更大,提高了内存利用率,减少了碎片。页式管理通过页表对应逻辑地址和物理地址。
3. **段式管理** : 页式管理虽然提高了内存利用率,但是页式管理其中的页实际并无任何实际意义。 段式管理把主存分为一段段的,每一段的空间又要比一页的空间小很多 。但是,最重要的是段是有实际意义的,每个段定义了一组逻辑信息,例如,有主程序段 MAIN、子程序段 X、数据段 D 及栈段 S 等。 段式管理通过段表对应逻辑地址和物理地址。
👨‍💻**面试官** : 回答的还不错!不过漏掉了一个很重要的 **段页式管理机制** 。段页式管理机制结合了段式管理和页式管理的优点。简单来说段页式管理机制就是把主存先分成若干段,每个段又分成若干页,也就是说 **段页式管理机制** 段页式管理中段与段之间以及段的内部都是离散的。在段页管理机制中,程序的地址空间首先被分成若干个逻辑段,每段都有自己的段号,然后再将每一段分成若干个大小固定的页。对内存空间的管理仍然和分页存储管理一样,将其分成若干个和页面大小相同的存储块,对内存的分配以存储块为单位
👨‍💻**面试官** : 回答的还不错!不过漏掉了一个很重要的 **段页式管理机制** 。段页式管理机制结合了段式管理和页式管理的优点。简单来说段页式管理机制就是把主存先分成若干段,每个段又分成若干页,也就是说 **段页式管理机制** 中段与段之间以及段的内部的内存都是离散的
🙋 **我** :谢谢面试官!刚刚把这个给忘记了~
<img src="http://ww4.sinaimg.cn/large/6af89bc8gw1f8txoxc2asj20k00k0mxv.jpg" alt="这就很尴尬了_尴尬表情" height="200px"/>
<img src="http://ww4.sinaimg.cn/large/6af89bc8gw1f8txoxc2asj20k00k0mxv.jpg" alt="这就很尴尬了_尴尬表情" height="200" width="200"/>
### 快表和多级页表
### 3.3 快表和多级页表
👨‍💻**面试官** : 页表管理机制中有两个很重要的概念:快表和多级页表,这两个东西分别解决了页表管理中很重要的两个问题。你给我简单介绍一下吧!
......@@ -136,11 +162,13 @@
为了提高内存的空间性能,提出了多级页表的概念;但是提到空间性能是以浪费时间性能为基础的,因此为了补充损失的时间性能,提出了快表(即TLB)的概念。 不论是快表还是多级页表实际上都利用到了程序的局部性原理,局部性原理在后面的虚拟内存这部分会介绍到。
### 分页机制和分段机制的共同点和区别
### 3.4 分页机制和分段机制的共同点和区别
👨‍💻**面试官****分页机制和分段机制有哪些共同点和区别呢?**
🙋 **我**
<img src="http://wx3.sinaimg.cn/large/de80a5ably1gcuslckpygg208c08cwfu.gif" height="200" width="200"></img>
1. **共同点**
- 分页机制和分段机制都是为了提高内存利用率,较少内存碎片。
- 页和段都是离散存储的,所以两者都是离散分配内存的方式。但是,每个页和段中的内存是连续的。
......@@ -148,13 +176,13 @@
- 页的大小是固定的,由操作系统决定;而段的大小不固定,取决于我们当前运行的程序。
- 分页仅仅是为了满足操作系统内存管理的需求,而段是逻辑信息的单位,在程序中可以体现为代码段,数据段,能够更好满足用户的需要。
### 逻辑(虚拟)地址和物理地址
### 3.5 逻辑(虚拟)地址和物理地址
👨‍💻**面试官** :你刚刚还提到了**逻辑地址和物理地址**这两个概念,我不太清楚,你能为我解释一下不?
🙋 **我:** em...好的嘛!我们编程一般只有可能和逻辑地址打交道,比如在 C 语言中,指针里面存储的数值就可以理解成为内存里的一个地址,这个地址也就是我们说的逻辑地址,逻辑地址由操作系统决定。物理地址指的是真实物理内存中地址,更具体一点来说就是内存地址寄存器中的地址。物理地址是内存单元真正的地址。
### CPU寻址了解吗?为什么需要虚拟地址空间?
### 3.6 CPU寻址了解吗?为什么需要虚拟地址空间?
👨‍💻**面试官****CPU寻址了解吗?为什么需要虚拟地址空间?**
🙋 **我** :这部分我真不清楚!
......@@ -184,9 +212,9 @@
- 程序可以使用一系列虚拟地址来访问大于可用物理内存的内存缓冲区。当物理内存的供应量变小时,内存管理器会将物理内存页(通常大小为 4 KB)保存到磁盘文件。数据或代码页会根据需要在物理内存与磁盘之间移动。
- 不同进程使用的虚拟地址彼此隔离。一个进程中的代码无法更改正在由另一进程或操作系统使用的物理内存。
## 虚拟内存
## 虚拟内存
###什么是虚拟内存(Virtual Memory)?
###4.1 什么是虚拟内存(Virtual Memory)?
👨‍💻**面试官** :再问你一个常识性的问题!**什么是虚拟内存(Virtual Memory)?**
🙋 **我** :这个在我们平时使用电脑特别是 Windows 系统的时候太常见了。很多时候我们使用点开了很多占内存的软件,这些软件占用的内存可能已经远远超出了我们电脑本身具有的物理内存。**为什么可以这样呢?** 正是因为 **虚拟内存** 的存在,通过 **虚拟内存** 可以让程序可以拥有超过系统物理内存大小的可用内存空间。另外,**虚拟内存为每个进程提供了一个一致的、私有的地址空间,它让每个进程产生了一种自己在独享主存的错觉(每个进程拥有一片连续完整的内存空间)**。这样会更加有效地管理内存并减少出错。
......@@ -197,9 +225,9 @@
> **虚拟内存** 使得应用程序认为它拥有连续的可用的内存(一个连续完整的地址空间),而实际上,它通常是被分隔成多个物理内存碎片,还有部分暂时存储在外部磁盘存储器上,在需要时进行数据交换。与没有使用虚拟内存技术的系统相比,使用这种技术的系统使得大型程序的编写变得更容易,对真正的物理内存(例如RAM)的使用也更有效率。目前,大多数操作系统都使用了虚拟内存,如Windows家族的“虚拟内存”;Linux的“交换空间”等。From:<https://zh.wikipedia.org/wiki/虚拟内存>
### 局部性原理
### 4.2 局部性原理
👨‍💻**面试官** :要想更好地理解虚拟内存技术,必须要知道计算机中著名的局部性原理。另外,局部性原理既适用于程序结构,也适用于数据结构,是非常重要的一个概念。
👨‍💻**面试官** :要想更好地理解虚拟内存技术,必须要知道计算机中著名的**局部性原理**。另外,局部性原理既适用于程序结构,也适用于数据结构,是非常重要的一个概念。
🙋 **我** :局部性原理是虚拟内存技术的基础,正是因为程序运行具有局部性原理,才可以只装入部分程序到内存就开始运行。
> 以下内容摘自《计算机操作系统教程》 第4章存储器管理。
......@@ -213,18 +241,18 @@
时间局部性是通过将近来使用的指令和数据保存到高速缓存存储器中,并使用高速缓存的层次结构实现。空间局部性通常是使用较大的高速缓存,并将预取机制集成到高速缓存控制逻辑中实现。虚拟内存技术实际上就是建立了 “内存一外存”的两级存储器的结构,利用局部性原理实现髙速缓存。
### 虚拟存储器
### 4.3 虚拟存储器
👨‍💻**面试官** :都说了虚拟内存了。你再讲讲虚拟存储器把!
🙋 **我**
> 这部分内容来自:[王道考研操作系统知识点整理]( https://wizardforcel.gitbooks.io/wangdaokaoyan-os/content/13.html)。
基于局部性原理,在程序装入时,可以将程序的一部分装入内存,而将其他部分留在外存,就可以启动程序执行。由于外存往往比内存大很多,所以我们运行的软件的内存大小实际上是可以比计算机系统实际的内存大小大的。在程序执行过程中,当所访问的信息不在内存时,由操作系统将所需要的部分调入内存,然后继续执行程序。另一方面,操作系统将内存中暂时不使用的内容换到外存上,从而腾出空间存放将要调入内存的信息。这样,计算机好像为用户提供了一个比实际内存大的多的存储器,成为 **虚拟存储器**
基于局部性原理,在程序装入时,可以将程序的一部分装入内存,而将其他部分留在外存,就可以启动程序执行。由于外存往往比内存大很多,所以我们运行的软件的内存大小实际上是可以比计算机系统实际的内存大小大的。在程序执行过程中,当所访问的信息不在内存时,由操作系统将所需要的部分调入内存,然后继续执行程序。另一方面,操作系统将内存中暂时不使用的内容换到外存上,从而腾出空间存放将要调入内存的信息。这样,计算机好像为用户提供了一个比实际内存大的多的存储器**虚拟存储器**
实际上,我觉得虚拟内存同样是一种时间换空间的策略,你用 CPU 的计算时间,页的调入调出花费的时间,换来了一个虚拟的更大的空间来支持程序的运行。不得不感叹,程序世界几乎不是时间换空间就是空间换时间。
### 虚拟内存的技术实现
### 4.4 虚拟内存的技术实现
👨‍💻**面试官** :虚拟内存技术的实现呢?
🙋 **我****虚拟内存的实现需要建立在离散分配的内存管理方式的基础上。** 虚拟内存的实现有以下三种方式:
......@@ -239,7 +267,7 @@
2. **缺页中断**:如果**需执行的指令或访问的数据尚未在内存**(称为缺页或缺段),则由处理器通知操作系统将相应的页面或段**调入到内存**,然后继续执行程序;
3. **虚拟地址空间** :逻辑地址到物理地址的变换。
### 页面置换算法
### 4.5 页面置换算法
👨‍💻**面试官** :虚拟内存管理很重要的一个概念就是页面置换算法。那你说一下 **页面置换算法的作用?常见的页面置换算法有哪些?**
🙋 **我**
......@@ -257,7 +285,7 @@
- **LRU页面置换算法(最近未使用页面置换算法)** :LRU(Least Currently Used)算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间T,当须淘汰一个页面时,选择现有页面中其T值最大的,即最近最久未使用的页面予以淘汰。
- **LFU页面置换算法(最少使用页面排序算法)** : LFU(Least Frequently Used)算法会让系统维护一个按最近一次访问时间排序的页面链表,链表首节点是最近刚刚使用过的页面,链表尾节点是最久未使用的页面。访问内存时,找到相应页面,并把它移到链表之首。缺页时,置换链表尾节点的页面。也就是说内存内使用越频繁的页面,被保留的时间也相对越长。
### Reference
## Reference
- 《计算机操作系统—汤小丹》第四版
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册