tensor.cpp 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/**
 * \file imperative/python/src/tensor.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "./tensor.h"
#include "./grad.h"
#include "./common.h"
#include "./numpy_dtypes.h"

#include <pybind11/numpy.h>
#include <pybind11/operators.h>
19
#include "./helper.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
namespace py = pybind11;

namespace mgb::imperative::python {

std::unique_ptr<interpreter::Interpreter::Channel> interpreter_for_py;

apply_result_t apply(ApplyContext& ctx) {
    // emulating scalar should be put to specific op's apply, e.g.,
    // elementwise, reduce, typecvt. Currently it's still handled at python
    // side. It could be move to C++ side if it has an impact on performance
    if (ctx.flags & Tensor::Flags::SCALAR) {
        // TODO: emulate scalar
    }

    if (ctx.flags & Tensor::Flags::GRAD) {
        return apply_grad(ctx);
    }

    if (ctx.flags & Tensor::Flags::TRACE) {
        // TODO: trace
    } else {
        SmallVector<interpreter::Interpreter::Handle> handles(ctx.nargs);
        for (size_t i = 0; i < ctx.nargs; ++i) {
            handles[i] = ctx.args[i]->m_handle.get();
        }

        auto output_handles = interpreter_for_py->apply_op(ctx.op, handles);

        apply_result_t outputs;
        outputs.reserve(output_handles.size());
        for (auto h : output_handles) {
            outputs.emplace_back(std::make_shared<Tensor>(h));
        }
        return outputs;
    }

    mgb_assert(0);
}

PyObject* py_apply(PyObject* self, PyObject*const* args, size_t nargs/* , PyObject* kwnames */) {
    try {

        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
        if (!nargs) {
            PyErr_SetString(PyExc_TypeError, "expect Op");
            return nullptr;
        }
        auto* op = args[0];

        PyTypeObject* pytype = args[1]->ob_type;
        ++args;
        --nargs;

        ApplyContext ctx;
        ctx.flags = 0;
        ctx.op = py::handle(op).cast<std::shared_ptr<OpDef>>();
        SmallVector<Tensor*, 64> tensors(nargs);
        ctx.args = &tensors[0];
        ctx.nargs = nargs;

        for (size_t i = 0; i < nargs; ++i) {
            TensorWrapper* tw = TensorWrapper::cast_safe(args[i]);
            if (!tw) {
                PyErr_SetString(PyExc_TypeError, "expect Tensor");
                return nullptr;
            }
            auto* t = tensors[i] = tw->m_tensor.get();
            ctx.flags |= t->m_flags;
        }

        // TODO: set TRACE flag

        auto outputs = apply(ctx);
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
        for (size_t i = 0; i < nout; ++i) {
            ret[i] = TensorWrapper::make(pytype, std::move(outputs[i]));
        }
        return ret.release().ptr();

    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}


TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    if (kwargs && PyDict_Size(kwargs)) {
        throw py::type_error("keyword argument not allowed");
    }
    auto nargs = PyTuple_Size(args);
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (nargs == 0) {
        throw py::type_error("too few arguments");
    }
    if (auto* t = cast_safe(tup[0].ptr())) {
        if (nargs > 1) {
            throw py::type_error("expect 1 argument");
        }
        m_tensor = t->m_tensor;
    } else {
        if (nargs != 3) {
            throw py::type_error("expect 3 arguments");
        }
        py::detail::loader_life_support life_sup; // required to cast DType
        auto data = tup[0].cast<py::array>();
        DType dtype = tup[1].cast<DType>();
        CompNode cn = tup[2].cast<CompNode>();

        interpreter::Interpreter::Handle handle;
        constexpr auto size_threshhold = TensorShape::MAX_NDIM;
        if (data.size() > size_threshhold) {
            handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype));
        } else {
            HostTensorND ret(cn);
            handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype));
        }

        m_tensor = std::make_shared<Tensor>(handle);
        if (data.ndim() == 0) {
            m_tensor->m_flags |= Tensor::Flags::SCALAR;
        }
    }
}


PyObject* TensorWrapper::shape() {
    if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
        return PyTuple_New(0);
    }
    auto&& shape = m_tensor->shape();
    if (!shape.ndim) {
        Py_RETURN_NONE;
    }
    py::tuple ret(shape.ndim);
    for (size_t i = 0; i < shape.ndim; ++i) {
        ret[i] = shape[i];
    }
    return ret.release().ptr();
}


PyObject* TensorWrapper::dtype() {
    return py::cast(m_tensor->dtype()).release().ptr();
}


PyObject* TensorWrapper::device() {
    return py::cast(m_tensor->comp_node()).release().ptr();
}


PyObject* TensorWrapper::numpy() {
    auto&& hv = interpreter_for_py->get_value(m_tensor->m_handle.get());
    auto arr = py::reinterpret_steal<py::array>(npy::ndarray_from_tensor(hv, npy::ShareType::TRY_SHARE));
    if (!arr) return nullptr;
    if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

void TensorWrapper::reset(PyObject* tensor) {
    TensorWrapper* t = TensorWrapper::cast_safe(tensor);
    if (!t) {
        throw py::type_error("expect Tensor");
    }
    m_tensor = t->m_tensor;
}

195 196 197 198 199 200 201 202 203
PyObject* TensorWrapper::detach() {
    PyObject* self = wrap_t::pycast(this);
    PyTypeObject* pytype = self->ob_type;
    auto new_tensor = std::make_shared<Tensor>(m_tensor->m_handle);
    auto ret = TensorWrapper::make(pytype, std::move(new_tensor));
    return ret.release().ptr();

}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
PyObject* TensorWrapper::_dev_tensor(){
    auto dev_tensor = interpreter_for_py->get_dev_tensor(m_tensor->m_handle.get());
    return py::cast(dev_tensor).release().ptr();
}

void TensorWrapper::_swap_out() {
    interpreter_for_py->swap_out(m_tensor->m_handle.get());
}

void TensorWrapper::_swap_in() {
    interpreter_for_py->swap_in(m_tensor->m_handle.get());
}

void TensorWrapper::_drop() {
    interpreter_for_py->drop(m_tensor->m_handle.get());
}


222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
PyObject* TensorWrapper::isscalar() {
    if(m_tensor->m_flags & Tensor::Flags::SCALAR) {
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

void TensorWrapper::setscalar() {
    m_tensor->m_flags |= Tensor::Flags::SCALAR;
}


struct TensorWeakRef {
    std::weak_ptr<Tensor> wptr;

    TensorWeakRef(const TensorWrapper& tw) : wptr(tw.m_tensor) {}

    py::object operator()() {
        if (auto p = wptr.lock()) {
            return TensorWrapper::make(p);
        }
        return py::none();
    }
};


void init_tensor(py::module m) {
    interpreter_for_py = interpreter::Interpreter::inst().create_channel();

    auto* tensor_type = TensorWrapper::wrap_t::type()
        .def<&TensorWrapper::numpy>("numpy")
        .def_getset<&TensorWrapper::shape>("shape")
        .def_getset<&TensorWrapper::dtype>("dtype")
        .def_getset<&TensorWrapper::device>("device")
        .def<&TensorWrapper::reset>("_reset")
        .def<&TensorWrapper::isscalar>("isscalar")
        .def<&TensorWrapper::setscalar>("setscalar")
260
        .def<&TensorWrapper::detach>("detach")
261 262 263 264
        .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
        .def<&TensorWrapper::_swap_out>("_swap_out")
        .def<&TensorWrapper::_swap_in>("_swap_in")
        .def<&TensorWrapper::_drop>("_drop")
265 266 267 268 269 270 271 272 273 274 275 276 277
        .finalize();
    if (!tensor_type) throw py::error_already_set();
    py::setattr(m, "Tensor", tensor_type);

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
        .def(py::init<const TensorWrapper&>())
        .def("__call__", &TensorWeakRef::operator());

    static PyMethodDef apply_def{"apply", (PyCFunction)py_apply, METH_FASTCALL, nullptr};
    auto* apply_func = PyCFunction_NewEx(&apply_def, nullptr, nullptr);
    if (!apply_func) throw py::error_already_set();
    py::setattr(m, "apply", apply_func);

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    m.def("_set_swap_flag",
          [](bool flag) { interpreter_for_py->set_swap_flag(flag); });
    m.def("_set_drop_flag",
          [](bool flag) { interpreter_for_py->set_drop_flag(flag); });
    m.def("config_async_level",
          [](int level) { interpreter_for_py->config_async_level(level); });
    m.def("get_async_level",
          []() { return interpreter_for_py->get_async_level(); });
    m.def("sync",
          []() {
              interpreter_for_py->sync();
              py_task_q.wait_all_task_finish();
          },
          py::call_guard<py::gil_scoped_release>());

293 294 295 296 297 298 299 300 301
    py::handle grad_key_type = GradKeyWrapper::wrap_t::type()
        .def<&GradKeyWrapper::attach>("attach")
        .finalize();
    if (!grad_key_type) throw py::error_already_set();
    py::setattr(m, "GradKey", grad_key_type);
    py::setattr(m, "backward", py::cpp_function(&GradKeyWrapper::backward));
}

} // namespace mgb::imperative::python