comp_node.cpp 28.8 KB
Newer Older
1 2 3 4
/**
 * \file src/core/impl/comp_node/cuda/comp_node.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 */

#include "./comp_node.h"
#include "megbrain/comp_node_env.h"
#include "megbrain/utils/thread.h"

#include <string>

using namespace mgb;

#if MGB_CUDA

#include "megbrain/comp_node/alloc.h"

#include <cctype>
26
#include <cstdio>
27 28 29 30 31 32 33 34

#include <thread>

#include <cuda_runtime.h>

using CudaCompNodeImpl = CudaCompNode::CompNodeImpl;

namespace {
35 36 37 38 39 40 41
size_t get_min_system_memory(size_t available) {
    if (available < (1u << 31)) {
        // 225MiB
        return 225 * 1024 * 1024;
    } else {
        // max(300 MiB, 0.05 * available)
        return std::max<size_t>(300 * 1024 * 1024, available / 20);
42
    }
43 44 45 46 47 48 49 50 51
}
using CudaHostFunc = megdnn::thin_function<void()>;
void CUDART_CB cuda_host_func_caller(void* ud) {
    mgb_assert(ud);
    CudaHostFunc* func_ptr = reinterpret_cast<CudaHostFunc*>(ud);
    MGB_TRY { (*func_ptr)(); }
    MGB_FINALLY(delete func_ptr;);
}
}  // anonymous namespace
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

namespace mgb {
namespace mem_alloc {
class CudaRawAllocator final : public RawAllocator {
public:
    void* alloc(size_t size) override {
        void* addr;
        cudaError_t cuda_error = cudaMalloc(&addr, size);
        if (cuda_error == cudaSuccess) {
            mgb_assert(addr);
            return addr;
        }
        auto msg = mgb_ssprintf_log(
                "cudaMalloc failed while requesting %zd bytes (%.3fMiB)"
                " of memory; error: %s",
                size, size / (1024.0 * 1024), cudaGetErrorString(cuda_error));
        msg.append(CudaError::get_cuda_extra_info());
        if (cuda_error == cudaErrorMemoryAllocation) {
            mgb_log_error("%s", msg.c_str());
            // clear cuda error
            cudaGetLastError();
            mgb_assert(cudaGetLastError() == cudaSuccess);
            return nullptr;
        }
        mgb_throw_raw(MemAllocError{msg});
    }

    void free(void* ptr) override {
        cudaError_t cuda_error = cudaFree(ptr);
        if (cuda_error == cudaSuccess)
            return;
        auto msg = ssprintf("cudaFree failed for %p: %s", ptr,
                            cudaGetErrorString(cuda_error));
        msg.append(CudaError::get_cuda_extra_info());
        mgb_throw_raw(MemAllocError{msg});
    }

    void get_mem_info(size_t& free, size_t& tot) override {
        cudaError_t cuda_error = cudaMemGetInfo(&free, &tot);
        if (cuda_error == cudaSuccess)
            return;
        auto msg = ssprintf("cudaMemGetInfo failed %s",
                            cudaGetErrorString(cuda_error));
        msg.append(CudaError::get_cuda_extra_info());
        mgb_throw_raw(MegBrainError{msg});
    }
};

100 101 102 103
class CudaHostAllocator : public RawAllocator {
public:
    void* alloc(size_t size) override {
        void* addr;
104 105
        cudaError_t cuda_error =
                cudaHostAlloc(&addr, size, cudaHostAllocDefault);
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        if (cuda_error == cudaSuccess) {
            mgb_assert(addr);
            return addr;
        }
        auto msg = mgb_ssprintf_log(
                "cudaHostAlloc failed while requesting %zd bytes (%.3fMiB)"
                " of pinned host memory; error: %s",
                size, size / (1024.0 * 1024), cudaGetErrorString(cuda_error));
        msg.append(CudaError::get_cuda_extra_info());
        if (cuda_error == cudaErrorMemoryAllocation) {
            mgb_log_error("%s", msg.c_str());
            // clear cuda error
            cudaGetLastError();
            mgb_assert(cudaGetLastError() == cudaSuccess);
            return nullptr;
        }
        mgb_throw_raw(MemAllocError{msg});
    }

    void free(void* ptr) override {
        cudaError_t cuda_error = cudaFreeHost(ptr);
        if (cuda_error == cudaSuccess)
            return;
        auto msg = ssprintf("cudaFreeHost failed for %p: %s", ptr,
                            cudaGetErrorString(cuda_error));
        msg.append(CudaError::get_cuda_extra_info());
        mgb_throw_raw(MemAllocError{msg});
    }

    void get_mem_info(size_t& free, size_t& tot) override {
        free = 0;
        tot = 0;
    }
};

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
class CudaDeviceRuntimePolicy : public DeviceRuntimePolicy {
public:
    CompNode::DeviceType device_type() override {
        return CompNode::DeviceType::CUDA;
    }
    void set_device(int device) override {
        MGB_CUDA_CHECK(cudaSetDevice(device));
    }
    void device_synchronize(int device) override {
        MGB_CUDA_CHECK(cudaSetDevice(device));
        MGB_CUDA_CHECK(cudaDeviceSynchronize());
    }
};

/* ===================== DevMemAlloc  ===================== */
std::unique_ptr<DevMemAlloc> DevMemAlloc::make_cuda_alloc() {
    return std::make_unique<FwdDevMemAlloc>(
            std::make_shared<CudaRawAllocator>());
}
}  // namespace mem_alloc
}  // namespace mgb

/* ===================== CudaCompNodeImpl  ===================== */
164
class CudaCompNode::CompNodeImpl final : public CompNode::Impl {
165 166 167 168 169 170 171
    MGB_DYN_TYPE_OBJ_FINAL_DECL;

    friend class EventImpl;
    friend class CudaCompNode;

    struct DeviceInfo;
    struct StaticData;
172
    static StaticData* sd;
173
    static Spinlock sd_mtx;
174 175 176
#if !MGB_BUILD_SLIM_SERVING
    std::mutex m_update_mem;
#endif
177 178 179 180 181

    //! set to true when m_locator is assigned; set to false if async init
    //! failed
    bool m_initialized = false;
    Locator m_locator, m_locator_logical;
182 183
    mem_alloc::StreamMemAlloc* m_mem_alloc;
    DeviceInfo* m_device_info;
184 185 186 187

    std::unique_ptr<Event> m_sync_event;
    Spinlock m_sync_event_mtx;

188
    void activate() { m_env.cuda_env().activate(); }
189

190
    void init(const Locator& locator, const Locator& locator_logical);
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    void fini();

    //! return whether global finalized, and print warning in such case
    static inline bool check_global_finalized();

    //! enable peer copy from dev0 to dev1
    static void enable_peer_access(int dev0, int dev1);

    static void static_free_device(ImplBase* self, void* ptr) {
        static_cast<CompNodeImpl*>(self)->free_device(ptr);
    }

    static void static_free_host(ImplBase* self, void* ptr) {
        static_cast<CompNodeImpl*>(self)->free_host(ptr);
    }

207 208
public:
    CompNodeImpl() : Impl(static_free_device, static_free_host) {}
209

210 211
    void* alloc_device(size_t size) override {
        activate();
212
#if MGB_BUILD_SLIM_SERVING
213
        return m_mem_alloc->alloc(size);
214
#else
215 216 217 218 219
        void* ptr = m_mem_alloc->alloc(size);
        {
            MGB_LOCK_GUARD(m_update_mem);
            ptr2size[ptr] = size;
            m_used_mem += size;
220
        }
221 222 223
        return ptr;
#endif
    }
224

225
    void free_device(void* ptr);
226

227
    void* alloc_host(size_t size) override;
228

229
    void free_host(void* ptr);
230

231 232 233 234 235 236 237
    void copy_to_host(void* host_ptr, const void* device_ptr,
                      size_t size) override {
        activate();
        MGB_CUDA_CHECK(cudaMemcpyAsync(host_ptr, device_ptr, size,
                                       cudaMemcpyDeviceToHost,
                                       m_env.cuda_env().stream));
    }
238

239 240 241 242 243 244 245
    void copy_to_device(void* device_ptr, const void* host_ptr,
                        size_t size) override {
        activate();
        MGB_CUDA_CHECK(cudaMemcpyAsync(device_ptr, host_ptr, size,
                                       cudaMemcpyHostToDevice,
                                       m_env.cuda_env().stream));
    }
246

247 248
    void peer_copy_to(Impl* dest_impl, void* dest, const void* src,
                      size_t size) override;
249

250 251 252
    size_t get_mem_addr_alignment() override {
        return m_env.property().mem_alignment;
    }
253

254
    std::unique_ptr<Event> create_event(size_t flags) override;
255

256
    void sync() override;
257

258
    MemNode mem_node() override;
259

260 261 262 263 264 265 266 267
    std::pair<size_t, size_t> get_mem_status_bytes() override {
        // explicitly call cuda_env() to ensure async init is finished
        m_env.cuda_env().activate();
        size_t tot, free;
        MGB_CUDA_CHECK(cudaMemGetInfo(&free, &tot));
        free += m_mem_alloc->get_free_memory_dev().tot;
        return {tot, free};
    }
268

269
#if !MGB_BUILD_SLIM_SERVING
270 271 272 273
    std::pair<size_t, size_t> get_free_left_and_right(size_t begin_ptr,
                                                      size_t end_ptr) override {
        return m_mem_alloc->get_free_left_and_right(begin_ptr, end_ptr);
    }
274 275
#endif

276
    Locator locator() override { return m_locator; }
277

278
    Locator locator_logical() override { return m_locator_logical; }
279

280
    void add_callback(CudaHostFunc&& cb) override {
281
#if CUDART_VERSION >= 10000
282 283 284 285 286 287 288 289 290 291 292
        activate();
        CudaHostFunc* func_ptr = new CudaHostFunc(std::move(cb));
        MGB_TRY {
            MGB_CUDA_CHECK(cudaLaunchHostFunc(m_env.cuda_env().stream,
                                              cuda_host_func_caller,
                                              static_cast<void*>(func_ptr)));
        }
        MGB_CATCH(..., {
            delete func_ptr;
            throw;
        });
293
#else
294 295 296 297
        MGB_MARK_USED_VAR(cb);
        MGB_MARK_USED_VAR(cuda_host_func_caller);
        mgb_throw(MegBrainError,
                  "add_callback only support in cuda10.0 and later version");
298
#endif
299
    }
300

301
    uint64_t get_uid() override { return m_uid; }
302 303

#if !MGB_BUILD_SLIM_SERVING
304
    size_t get_used_memory() override { return m_used_mem; }
305 306
#endif

307 308
private:
    uint64_t m_uid;
309
#if !MGB_BUILD_SLIM_SERVING
310 311
    std::unordered_map<void*, size_t> ptr2size;
    size_t m_used_mem = 0;
312
#endif
313 314 315 316 317 318 319
};
MGB_DYN_TYPE_OBJ_FINAL_IMPL(CudaCompNode::CompNodeImpl);

struct CudaCompNodeImpl::DeviceInfo {
    int dev_num = -1;
    std::unique_ptr<mem_alloc::DevMemAlloc> mem_alloc;

320
    bool init_done() const { return mem_alloc.get(); }
321

322
    void init(const CompNodeEnv& env);
323

324
    void fini() { mem_alloc.reset(); }
325 326 327 328 329 330 331 332 333
};

struct CudaCompNodeImpl::StaticData {
    static constexpr int MAX_NR_COMP_NODE = 1024, MAX_NR_DEVICE = 64;

    std::recursive_mutex mtx;

    mem_alloc::DevMemAlloc::PreAllocConfig prealloc_config;

334
    std::unique_ptr<mem_alloc::SimpleCachingAlloc> host_alloc;
335 336
    CudaCompNode::CompNodeImpl node[MAX_NR_COMP_NODE];
    DeviceInfo dev_info[MAX_NR_DEVICE];
337 338
    int nr_node = 0,          //!< number of loaded node[]
            nr_dev_used = 0;  //!< number of used dev_info[]
339

340 341 342
    StaticData()
            : host_alloc(mem_alloc::SimpleCachingAlloc::make(
                      std::make_unique<mem_alloc::CudaHostAllocator>())) {
343 344
        prealloc_config.max_overhead = 0;
        prealloc_config.alignment = 1;
345
        host_alloc->alignment(1);
346 347 348
    }

    ~StaticData() {
349
        for (int i = 0; i < nr_node; ++i)
350
            node[i].fini();
351
        for (int i = 0; i < nr_dev_used; ++i)
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
            dev_info[i].fini();
    }

    static size_t get_mem_reserve_size() {
        if (auto setting = MGB_GETENV("MGB_CUDA_RESERVE_MEMORY")) {
            if (!strncmp(setting, "b:", 2)) {
                return std::stoull(setting + 2);
            }
            size_t tot, free;
            MGB_CUDA_CHECK(cudaFree(0));
            MGB_CUDA_CHECK(cudaMemGetInfo(&free, &tot));
            return free - get_min_system_memory(free);
        } else {
            return 0;
        }
    }
};
CudaCompNodeImpl::StaticData* CudaCompNodeImpl::sd = nullptr;
Spinlock CudaCompNodeImpl::sd_mtx;

372 373
void CudaCompNodeImpl::init(const Locator& locator,
                            const Locator& locator_logical) {
374 375 376 377
    m_locator = locator;
    m_locator_logical = locator_logical;
    m_initialized = true;

378
#if defined(__linux__) || defined(TARGET_OS_MAC)
379
    FILE* fp;
380 381 382 383 384
    fp = fopen("/dev/urandom", "r");
    mgb_assert(fread(&m_uid, sizeof(m_uid), 1, fp) == 1);
    fclose(fp);
#else
    m_uid = std::chrono::duration_cast<std::chrono::nanoseconds>(
385 386
                    std::chrono::system_clock::now().time_since_epoch())
                    .count();
387 388
#endif

389 390 391 392 393
    auto on_succ = [this](cudaStream_t stream) {
        auto locator = m_locator;
        log_comp_node_created(locator, m_locator_logical);

        MGB_LOCK_GUARD(sd->mtx);
394 395
        DeviceInfo* dev_info = nullptr;
        for (int i = 0; i < sd->nr_dev_used; ++i) {
396 397 398 399 400 401 402 403 404 405
            if (sd->dev_info[i].dev_num == locator.device) {
                dev_info = &sd->dev_info[i];
                break;
            }
        }

        if (!dev_info) {
            dev_info = &sd->dev_info[sd->nr_dev_used];
            dev_info->init(m_env);
            // note: add nr_dev_used only after init succeeds
406
            ++sd->nr_dev_used;
407 408 409 410 411 412 413 414 415 416 417
        }
        m_device_info = dev_info;
        m_mem_alloc =
                dev_info->mem_alloc->add_stream(static_cast<void*>(stream));
    };

    auto on_error = [this](std::exception&) {
        MGB_LOCK_GUARD(sd->mtx);
        m_initialized = false;
    };

418 419
    m_env.init_cuda_async(locator.device, make_comp_node_from_impl(this),
                          {on_succ, on_error});
420 421 422 423 424 425 426 427 428 429 430 431 432
}

void CudaCompNodeImpl::fini() {
    if (!m_initialized)
        return;

    m_sync_event.reset();
    m_env.fini();
    m_mem_alloc = nullptr;
    m_device_info = nullptr;
    m_initialized = false;
}

433
void CudaCompNodeImpl::free_device(void* ptr) {
434 435 436 437
    if (check_global_finalized())
        return;

    activate();
438 439 440
#if !MGB_BUILD_SLIM_SERVING
    {
        MGB_LOCK_GUARD(m_update_mem);
441 442
        mgb_assert(ptr2size.find(ptr) != ptr2size.end(), "ptr %p not found!",
                   ptr);
443 444 445 446
        m_used_mem -= ptr2size.at(ptr);
        ptr2size.erase(ptr);
    }
#endif
447 448 449
    m_mem_alloc->free(ptr);
}

450
void* CudaCompNodeImpl::alloc_host(size_t size) {
451 452
    // need activate because it create cuda cuda context in current device
    activate();
453 454 455 456
    return sd->host_alloc->alloc(size);
}

void CudaCompNodeImpl::free_host(void* ptr) {
457 458
    if (check_global_finalized())
        return;
459 460 461
    sd->host_alloc->free(ptr);
}

462 463
void CudaCompNodeImpl::peer_copy_to(Impl* dest_impl, void* dest,
                                    const void* src, size_t size) {
464
    if (dest_impl->same_type<CudaCompNodeImpl>()) {
465 466 467
        auto&& dst_env =
                static_cast<CudaCompNodeImpl*>(dest_impl)->m_env.cuda_env();
        auto&& src_env = m_env.cuda_env();
468 469
        activate();
        if (dst_env.device == src_env.device) {
470 471
            MGB_CUDA_CHECK(cudaMemcpyAsync(
                    dest, src, size, cudaMemcpyDeviceToDevice, dst_env.stream));
472 473 474
        } else {
            enable_peer_access(src_env.device, dst_env.device);
            enable_peer_access(dst_env.device, src_env.device);
475 476 477
            MGB_CUDA_CHECK(cudaMemcpyPeerAsync(dest, dst_env.device, src,
                                               src_env.device, size,
                                               dst_env.stream));
478 479 480 481
        }
        return;
    }
    mgb_assert(dest_impl->env().property().type == DeviceType::CPU,
482
               "cuda peer_copy_to only implemented for CPU");
483 484 485
    auto copy = [this, dest, src, size]() {
        auto stream = m_env.cuda_env().stream;
        m_env.cuda_env().activate();
486 487
        MGB_CUDA_CHECK(cudaMemcpyAsync(dest, src, size, cudaMemcpyDeviceToHost,
                                       stream));
488 489 490 491 492 493 494 495 496 497 498 499 500 501
        MGB_CUDA_CHECK(cudaStreamSynchronize(stream));
    };
    dest_impl->env().cpu_env().dispatch(copy);
}

MemNode CudaCompNodeImpl::mem_node() {
    // m_device_info would be null before async init finishes; so we just return
    // a prive pointer related to device number here
    return MemNode{sd->dev_info + m_locator.device};
}

void CudaCompNodeImpl::sync() {
    activate();

502 503 504
    // do not use MGB_CUDA_CHECK(cudaStreamSynchronize(m_env->stream)) since
    // other threads may be adding operations into the stream, and we only care
    // about previous operations in current thread. However docs of
505 506 507
    // cudaStreamSynchronize did not describe details of such condition, so we
    // use manual event implementation

508
    Event* event;
509 510 511 512 513 514 515 516 517 518 519
    {
        MGB_LOCK_GUARD(m_sync_event_mtx);
        if (!m_sync_event)
            m_sync_event = create_event(0);
        event = m_sync_event.get();
    }
    event->record();
    event->host_wait();
}

void CudaCompNodeImpl::enable_peer_access(int dev0, int dev1) {
520 521
    static bool already_enabled[StaticData::MAX_NR_DEVICE]
                               [StaticData::MAX_NR_DEVICE];
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
    if (already_enabled[dev0][dev1])
        return;

    static std::mutex global_lock;
    MGB_LOCK_GUARD(global_lock);
    if (already_enabled[dev0][dev1])
        return;

    int can;
    MGB_CUDA_CHECK(cudaDeviceCanAccessPeer(&can, dev0, dev1));
    if (can) {
        mgb_log("enable peer access from GPU %d to GPU %d", dev0, dev1);
        MGB_CUDA_CHECK(cudaSetDevice(dev0));
        auto err = cudaDeviceEnablePeerAccess(dev1, 0);
        if (err != cudaSuccess) {
            mgb_log_error("failed to enable peer access from %d to %d: %s(%d)",
538 539
                          dev0, dev1, cudaGetErrorString(err),
                          static_cast<int>(err));
540 541 542 543 544 545 546 547 548 549 550 551
            cudaGetLastError();
        }
    }

    // check for cudaMemcpyPeer usable
    int v0 = 1, v1 = 2;

    int *dp0, *dp1;
    MGB_CUDA_CHECK(cudaSetDevice(dev0));
    MGB_CUDA_CHECK(cudaMalloc(&dp0, sizeof(int)));
    MGB_CUDA_CHECK(cudaSetDevice(dev1));
    MGB_CUDA_CHECK(cudaMalloc(&dp1, sizeof(int)));
552 553
    MGB_CUDA_CHECK(cudaMemcpy(dp0, &v0, sizeof(int), cudaMemcpyHostToDevice));
    MGB_CUDA_CHECK(cudaMemcpy(dp1, &v1, sizeof(int), cudaMemcpyHostToDevice));
554 555
    MGB_CUDA_CHECK(cudaMemcpyPeer(dp1, dev1, dp0, dev0, sizeof(int)));
    int get = 0;
556
    MGB_CUDA_CHECK(cudaMemcpy(&get, dp1, sizeof(int), cudaMemcpyDeviceToHost));
557 558

    mgb_throw_if(get != 1, CudaError,
559 560 561
                 "P2P copy (%d => %d) check failed; consider disabling "
                 "Access Control Services(ACS) for the PCI device",
                 dev0, dev1);
562 563 564 565 566 567

    already_enabled[dev0][dev1] = true;
}

/* ===================== CudaCompNodeImpl::DeviceInfo  ===================== */

568
void CudaCompNodeImpl::DeviceInfo::init(const CompNodeEnv& env) {
569 570 571 572 573
    mgb_assert(!mem_alloc);
#if 0
    // forward cudaMalloc
    mem_alloc = mem_alloc::DevMemAlloc::make_cuda_alloc();
#else
574
    auto&& cuenv = env.cuda_env();
575 576 577 578 579 580 581 582 583 584
    cuenv.activate();
    dev_num = cuenv.device;
    auto reserve_size = StaticData::get_mem_reserve_size();
    mem_alloc = mem_alloc::DevMemAlloc::make(
            dev_num, reserve_size,
            std::make_shared<mem_alloc::CudaRawAllocator>(),
            std::make_shared<mem_alloc::CudaDeviceRuntimePolicy>());
    mem_alloc->prealloc_config(sd->prealloc_config);
    auto align = env.property().mem_alignment;
    mem_alloc->alignment(align);
585 586 587 588
    mgb_log_debug(
            "cuda: gpu%d: name=`%s' dyn_mem_reserve=%.2fMiB alignment=0x%zx",
            dev_num, cuenv.device_prop.name, reserve_size / 1024.0 / 1024,
            align);
589 590 591 592 593 594 595 596 597 598 599
#endif
}

bool CudaCompNodeImpl::check_global_finalized() {
    if (!sd) {
        static std::atomic_flag warn_printed = ATOMIC_FLAG_INIT;
        if (!warn_printed.test_and_set()) {
            mgb_log_debug("cuda comp node method called after global finalize");
        }
        return true;
    }
600 601 602 603 604 605 606 607 608 609 610 611
#if MGB_CUDA && defined(WIN32)
    //! FIXME: windows cuda driver shutdown before call atexit function even
    //! register atexit function after init cuda driver! as a workround
    //! recovery resource by OS temporarily, may need remove this after
    //! upgrade cuda runtime
    if (CudaCompNode::is_into_atexit) {
        mgb_log_debug(
                "windows cudaErrorCudartUnloading happened!!, resource "
                "recovery by OS!!");
        return true;
    }
#endif
612 613 614 615 616
    return false;
}

/* ===================== EventImpl  ===================== */

617
class CudaCompNode::EventImpl final : public EventImplHelper {
618
    bool m_init_finished = false;
619
    CudaCompNodeImpl* const m_comp_node_impl;
620 621 622 623
    cudaEvent_t m_cuda_event;

    void do_record() override {
        m_comp_node_impl->activate();
624
        auto&& env = m_comp_node_impl->m_env.cuda_env();
625 626 627 628 629 630 631 632 633 634
        MGB_CUDA_CHECK(cudaEventRecord(m_cuda_event, env.stream));
    }

    bool do_finished() override {
        m_comp_node_impl->activate();
        cudaError_t err = cudaEventQuery(m_cuda_event);
        if (err == cudaSuccess)
            return true;
        if (err == cudaErrorNotReady)
            return false;
635 636
        mgb_throw(CudaError, "failed to query event: %d: %s", int(err),
                  cudaGetErrorString(err));
637 638 639 640 641 642
    }

    void host_wait_cv() override {
        MGB_CUDA_CHECK(cudaEventSynchronize(m_cuda_event));
    }

643
    double do_elapsed_time_until(EventImplHelper& end) override {
644 645
        m_comp_node_impl->activate();
        float ret = 0.0;
646 647
        MGB_CUDA_CHECK(cudaEventElapsedTime(
                &ret, m_cuda_event, static_cast<EventImpl&>(end).m_cuda_event));
648 649 650
        return static_cast<double>(ret) * 1e-3;
    }

651
    void do_device_wait_by(Impl* cn_impl) override;
652

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
public:
    EventImpl(CudaCompNodeImpl* comp_node_impl, size_t create_flags)
            : EventImplHelper(comp_node_impl, create_flags),
              m_comp_node_impl{comp_node_impl} {
        m_comp_node_impl->activate();
        size_t cuda_flags = cudaEventDisableTiming;
        if (create_flags & NEED_TIMER)
            cuda_flags = 0;
        MGB_CUDA_CHECK(cudaEventCreateWithFlags(&m_cuda_event, cuda_flags));
        m_init_finished = true;
    }

    ~EventImpl() {
        if (m_init_finished) {
            MGB_TRY { MGB_CUDA_CHECK(cudaEventDestroy(m_cuda_event)); }
            MGB_CATCH(MegBrainError & exc, {
                mgb_log_error("failed to destroy cuda event: %s", exc.what());
            })
671
        }
672
    }
673 674
};

675
std::unique_ptr<CompNode::Event> CudaCompNodeImpl::create_event(size_t flags) {
676 677 678
    return std::make_unique<EventImpl>(this, flags);
}

679
void CudaCompNode::EventImpl::do_device_wait_by(Impl* cn_impl) {
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
    if (cn_impl->dyn_typeinfo() == CudaCompNodeImpl::typeinfo()) {
        auto imp = static_cast<CudaCompNodeImpl*>(cn_impl);
        auto stream = imp->m_env.cuda_env().stream;
        imp->activate();
        MGB_CUDA_CHECK(cudaStreamWaitEvent(stream, m_cuda_event, 0));
        return;
    }
    if (cn_impl->env().property().type == DeviceType::CPU) {
        auto waiter = [this]() {
            MGB_CUDA_CHECK(cudaEventSynchronize(m_cuda_event));
        };
        cn_impl->add_callback(std::move(waiter));
        return;
    }
    mgb_throw(MegBrainError, "unimplemented event device_wait_by config");
}

/* ===================== CudaCompNode static methods ===================== */

bool CudaCompNode::available() {
    static int result = -1;
    static Spinlock mtx;
    MGB_LOCK_GUARD(mtx);
    if (result == -1) {
        int ndev = -1;
        auto err = cudaGetDeviceCount(&ndev);
        result = err == cudaSuccess && ndev > 0;
        if (!result) {
            mgb_log_warn("cuda unavailable: %s(%d) ndev=%d",
709 710 711 712
                         cudaGetErrorString(err), static_cast<int>(err), ndev);
        }
        if (err == cudaErrorInitializationError) {
            mgb_throw(std::runtime_error, "cuda initialization error.");
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
        }
    }
    return result;
}

void CudaCompNode::finalize() {
    if (CudaCompNodeImpl::sd) {
        sync_all();

        auto ptr = CudaCompNodeImpl::sd;
        CudaCompNodeImpl::sd = nullptr;
        ptr->~StaticData();
    }
}

728 729 730 731 732 733 734 735 736
#if MGB_CUDA && defined(WIN32)
//! FIXME: windows cuda driver shutdown before call atexit function even
//! register atexit function after init cuda driver! as a workround
//! recovery resource by OS temporarily, may need remove this after
//! upgrade cuda runtime
bool CudaCompNode::is_into_atexit = false;
#endif
CompNode::Impl* CudaCompNode::load_cuda(const Locator& locator,
                                        const Locator& locator_logical) {
737
    int nr_gpu = get_device_count();
738 739 740 741 742 743 744 745 746 747
#if MGB_CUDA && defined(WIN32)
    //! FIXME: windows cuda driver shutdown before call atexit function even
    //! register atexit function after init cuda driver! as a workround
    //! recovery resource by OS temporarily, may need remove this after
    //! upgrade cuda runtime
    if (!is_into_atexit) {
        auto err = atexit([] { is_into_atexit = true; });
        mgb_assert(!err, "failed to register atexit function");
    }
#endif
748
    mgb_assert(locator.device >= 0 && locator.device < nr_gpu,
749 750
               "request gpu%d out of valid range [0, %d)", locator.device,
               nr_gpu);
751

752
    auto&& sdptr = CudaCompNodeImpl::sd;
753 754 755 756 757 758 759
    {
        MGB_LOCK_GUARD(CudaCompNodeImpl::sd_mtx);
        if (!sdptr) {
            // use static storage so object can be safely accessed even after
            // global finalize
            using T = CudaCompNodeImpl::StaticData;
            static std::aligned_storage_t<sizeof(T), alignof(T)> storage;
760
            sdptr = new (&storage) T;
761 762
        }
    }
763
    auto&& sd = *sdptr;
764 765
    MGB_LOCK_GUARD(sd.mtx);

766 767 768
    CompNodeImpl* available_node = nullptr;
    for (int i = 0; i < sd.nr_node; ++i) {
        auto&& cur = sd.node[i];
769
        if (cur.m_initialized) {
770 771
            if (cur.m_locator == locator &&
                cur.m_locator_logical == locator_logical) {
772 773 774 775 776 777 778 779 780
                return &cur;
            }
        } else {
            available_node = &cur;
        }
    }

    if (!available_node) {
        mgb_assert(sd.nr_node < sd.MAX_NR_COMP_NODE,
781 782
                   "too many CompNode allocated");
        available_node = &sd.node[sd.nr_node++];
783
    }
784
    mgb_assert(locator.device < sd.MAX_NR_DEVICE, "device number too large");
785 786 787 788 789 790 791 792 793 794 795 796 797 798

    mgb_assert(!available_node->m_initialized);
    available_node->init(locator, locator_logical);

    return available_node;
}

void CudaCompNode::try_coalesce_all_free_memory() {
    // TODO: optimized implementation
    auto sd = CudaCompNodeImpl::sd;
    if (!sd)
        return;

    size_t size = 0;
799 800 801
    for (int i = 0; i < sd->nr_dev_used; ++i) {
        size += sd->dev_info[i]
                        .mem_alloc->gather_stream_free_blk_and_release_full();
802 803 804
    }
    if (size) {
        mgb_log_debug("%zu bytes freed by try_coalesce_all_free_memory()",
805
                      size);
806 807 808 809 810 811 812 813
    }
}

void CudaCompNode::sync_all() {
    auto sd = CudaCompNodeImpl::sd;
    if (!sd)
        return;

814
    for (int i = 0;; ++i) {
815
        // ensure async init finished
816
        CompNodeEnv* env;
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
        {
            MGB_LOCK_GUARD(sd->mtx);
            if (i >= sd->nr_node) {
                break;
            }
            env = &sd->node[i].env();
        }
        env->cuda_env();
    }

    MGB_LOCK_GUARD(sd->mtx);
    for (int i = 0; i < sd->nr_dev_used; ++i) {
        MGB_CUDA_CHECK(cudaSetDevice(sd->dev_info[i].dev_num));
        MGB_CUDA_CHECK(cudaDeviceSynchronize());
    }
}

834
void CudaCompNode::foreach (thin_function<void(CompNode)> callback) {
835 836 837 838
    auto sd = CudaCompNodeImpl::sd;
    if (!sd)
        return;

839
    for (int i = 0;; ++i) {
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
        CompNode cur;
        {
            MGB_LOCK_GUARD(sd->mtx);
            if (i >= sd->nr_node)
                return;
            cur = make_comp_node_from_impl(&sd->node[i]);
        }
        callback(cur);
    }
}

size_t CudaCompNode::get_device_count(bool warn) {
    static int cnt = -1;
    static Spinlock mtx;
    MGB_LOCK_GUARD(mtx);
    if (cnt == -1) {
        auto err = cudaGetDeviceCount(&cnt);
        if (err != cudaSuccess) {
858 859 860
            if (warn)
                mgb_log_error("cudaGetDeviceCount failed: %s (err %d)",
                              cudaGetErrorString(err), int(err));
861 862 863 864 865 866 867
            cnt = 0;
        }
        mgb_assert(cnt >= 0);
    }
    return cnt;
}

868
void CudaCompNode::set_prealloc_config(size_t alignment, size_t min_req,
869 870
                                       size_t max_overhead,
                                       double growth_factor) {
871
    auto&& sdptr = CudaCompNodeImpl::sd;
872 873 874 875 876
    {
        MGB_LOCK_GUARD(CudaCompNodeImpl::sd_mtx);
        if (!sdptr) {
            using T = CudaCompNodeImpl::StaticData;
            static std::aligned_storage_t<sizeof(T), alignof(T)> storage;
877
            sdptr = new (&storage) T;
878 879 880 881 882 883
            sdptr->prealloc_config.alignment = alignment;
            sdptr->prealloc_config.min_req = min_req;
            sdptr->prealloc_config.growth_factor = growth_factor;
            sdptr->prealloc_config.max_overhead = max_overhead;
        } else {
            mgb_log_warn(
884 885 886 887
                    "invalid call to set_prealloc_config, will fallback to "
                    "default config; "
                    "prealloc_config should be specified before any CUDA "
                    "memory allocation");
888 889 890 891
        }
    }
}

892 893 894 895 896
#else

bool CudaCompNode::available() {
    return false;
}
897 898 899
void CudaCompNode::try_coalesce_all_free_memory() {}
void CudaCompNode::foreach (thin_function<void(CompNode)>) {}
void CudaCompNode::finalize() {}
900 901 902 903 904 905
size_t CudaCompNode::get_device_count(bool warn) {
    return 0;
}
CudaCompNode::Impl* CudaCompNode::load_cuda(const Locator&, const Locator&) {
    mgb_throw(MegBrainError, "cuda disabled at compile time");
}
906
void CudaCompNode::sync_all() {}
907

908
void CudaCompNode::set_prealloc_config(size_t alignment, size_t min_req,
909 910 911
                                       size_t max_overhead,
                                       double growth_factor) {}

912 913
#undef err

914
#endif  // MGB_CUDA
915 916

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}