提交 61f917fb 编写于 作者: M Megvii Engine Team

feat(dnn/cuda): add impl for fusing warp perspective and dimshuffle

GitOrigin-RevId: 51e025973f58ba75ea96765bcb8507581c6c1c25
上级 15dd5e1a
......@@ -43,6 +43,12 @@ pdef('Axis').add_fields('int32', 'axis', 0)
Doc('NCHW4_NCHW32', 'NCHW4_NCHW32 means input tensors are nchw4 layout, output tensor is nchw32 layout'),
Doc('NCHW32_NCHW4', 'NCHW32_NCHW4 means input tensors are nchw32 layout, output tensor is nchw4 layout'),
Doc('NCHW4_NCHW', 'NCHW4_NCHW means input tensors are nchw4 layout, output tensor is nchw layout'),
Doc('NHWC_NCHW', 'NHWC_NCHW means input tensors are nhwc layout, '
'output tensor is nchw layout'),
Doc('NHWC_NCHW4_IC_SMALL', 'NHWC_NCHW4_IC_SMALL means input tensors are nhwc(c < 4) layout, '
'output tensor is nchw4 layout, padding c=4'),
Doc('NCHW_NCHW4_IC_SMALL', 'NCHW_NCHW4_IC_SMALL means input tensors are nchw(c < 4) layout, '
'output tensor is nchw4 layout, padding c=4'),
Doc('CHWN4', 'CHWN4 is currently only used on Nvidia platform for fast implementation '
'of convolution using CUDA/SASS. The channels are splitted to groups of 4 channels.'))
)
......
......@@ -6,7 +6,8 @@
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
*/
#include "megdnn/oprs.h"
......@@ -14,20 +15,17 @@
namespace megdnn {
void WarpPerspectiveBase::check_layout_fwd(const TensorLayout &src,
const TensorLayout &mat,
const TensorLayout &mat_idx,
const TensorLayout &dst)
{
void WarpPerspectiveBase::check_layout_fwd(const TensorLayout& src,
const TensorLayout& mat,
const TensorLayout& mat_idx,
const TensorLayout& dst) {
megdnn_assert_contiguous(mat);
megdnn_assert_contiguous(src);
megdnn_assert_contiguous(dst);
auto errmsg = [&]() {
return megdnn_layout_msg(src) + ", " +
megdnn_layout_msg(mat) + ", " +
megdnn_layout_msg(mat_idx) + ", " +
megdnn_layout_msg(dst) + ", " +
param_msg();
return megdnn_layout_msg(src) + ", " + megdnn_layout_msg(mat) + ", " +
megdnn_layout_msg(mat_idx) + ", " + megdnn_layout_msg(dst) +
", " + param_msg();
};
MEGDNN_MARK_USED_VAR(errmsg);
if (param().format == param::WarpPerspective::Format::NHWCD4 ||
......@@ -35,9 +33,17 @@ void WarpPerspectiveBase::check_layout_fwd(const TensorLayout &src,
megdnn_assert(src.ndim == 5_z, "%s", errmsg().c_str());
megdnn_assert(dst.ndim == 5_z, "%s", errmsg().c_str());
} else if (param().format ==
param::WarpPerspective::Format::NHWC_NCHW4_IC_SMALL ||
param().format ==
param::WarpPerspective::Format::NCHW_NCHW4_IC_SMALL) {
megdnn_assert(src.ndim == 4_z, "%s", errmsg().c_str());
megdnn_assert(dst.ndim == 5_z, "%s", errmsg().c_str());
} else {
megdnn_assert(param().format == param::WarpPerspective::Format::NHWC ||
param().format == param::WarpPerspective::Format::NCHW);
param().format == param::WarpPerspective::Format::NCHW ||
param().format ==
param::WarpPerspective::Format::NHWC_NCHW);
megdnn_assert(src.ndim == 4_z, "%s", errmsg().c_str());
megdnn_assert(dst.ndim == 4_z, "%s", errmsg().c_str());
}
......@@ -45,7 +51,7 @@ void WarpPerspectiveBase::check_layout_fwd(const TensorLayout &src,
megdnn_assert(dst.shape[0] == mat.shape[0], "%s", errmsg().c_str());
if (mat_idx.ndim) {
megdnn_assert(mat_idx.dtype == dtype::Int32() && mat_idx.ndim == 1,
"%s", errmsg().c_str());
"%s", errmsg().c_str());
megdnn_assert(mat.shape[0] == mat_idx.shape[0], "%s", errmsg().c_str());
megdnn_assert_contiguous(mat_idx);
} else {
......@@ -54,35 +60,103 @@ void WarpPerspectiveBase::check_layout_fwd(const TensorLayout &src,
megdnn_assert(mat.shape[1] == 3_z, "%s", errmsg().c_str());
megdnn_assert(mat.shape[2] == 3_z, "%s", errmsg().c_str());
if (param().format == param::WarpPerspective::Format::NCHW) {
megdnn_assert(
src.dtype.enumv() == DTypeEnum::Float32 ||
MEGDNN_FLOAT16_SELECT(
(src.dtype.enumv() == DTypeEnum::Float16 ||
src.dtype.enumv() == DTypeEnum::BFloat16),
false) ||
src.dtype.enumv() == DTypeEnum::Int8 ||
src.dtype.enumv() == DTypeEnum::Uint8 ||
(src.dtype.enumv() == DTypeEnum::QuantizedS8 ||
src.dtype.enumv() == DTypeEnum::Quantized8Asymm),
"WarpPerspective NCHW input dtype should be "
"Float32/Int8/Uint8/QInt8/QUint8" MEGDNN_FLOAT16_SELECT(
"/Float16/BFloat16", "") ".");
megdnn_assert(
(src.dtype.category() == DTypeCategory::FLOAT &&
(src.dtype == mat.dtype ||
mat.dtype.enumv() == DTypeEnum::Float32)) ||
((src.dtype.category() == DTypeCategory::INT ||
src.dtype.category() == DTypeCategory::QUANTIZED) &&
mat.dtype.enumv() == DTypeEnum::Float32),
"The input to WarpPerspective is in NCHW format, in this "
"case, if the input dtype is floating point, the "
"transformation matrix should have same dtype as the "
"input, otherwise, it should be in Float32, %s given.",
mat.dtype.name());
if (src.format == dst.format && dst.dtype == src.dtype) {
if (param().format == param::WarpPerspective::Format::NCHW) {
megdnn_assert(
src.dtype.enumv() == DTypeEnum::Float32 ||
MEGDNN_FLOAT16_SELECT(
(src.dtype.enumv() == DTypeEnum::Float16 ||
src.dtype.enumv() == DTypeEnum::BFloat16),
false) ||
src.dtype.enumv() == DTypeEnum::Int8 ||
src.dtype.enumv() == DTypeEnum::Uint8 ||
(src.dtype.enumv() == DTypeEnum::QuantizedS8 ||
src.dtype.enumv() == DTypeEnum::Quantized8Asymm),
"WarpPerspective NCHW input dtype should be "
"Float32/Int8/Uint8/QInt8/QUint8" MEGDNN_FLOAT16_SELECT(
"/Float16/BFloat16", "") ".");
megdnn_assert(
(src.dtype.category() == DTypeCategory::FLOAT &&
(src.dtype == mat.dtype ||
mat.dtype.enumv() == DTypeEnum::Float32)) ||
((src.dtype.category() == DTypeCategory::INT ||
src.dtype.category() ==
DTypeCategory::QUANTIZED) &&
mat.dtype.enumv() == DTypeEnum::Float32),
"The input to WarpPerspective is in NCHW format, in this "
"case, if the input dtype is floating point, the "
"transformation matrix should have same dtype as the "
"input, otherwise, it should be in Float32, %s given.",
mat.dtype.name());
megdnn_assert(src.shape[1] == dst.shape[1], "%s", errmsg().c_str());
megdnn_assert(dst.dtype == src.dtype);
megdnn_assert(src.shape[1] == dst.shape[1], "%s", errmsg().c_str());
megdnn_assert(param().imode ==
param::WarpPerspective::InterpolationMode::LINEAR);
megdnn_assert(param().bmode !=
param::WarpPerspective::BorderMode::TRANSPARENT);
megdnn_assert(param().bmode !=
param::WarpPerspective::BorderMode::ISOLATED);
} else if (param().format == param::WarpPerspective::Format::NHWC) {
megdnn_assert(src.shape[3] == dst.shape[3], "%s", errmsg().c_str());
} else if (param().format == param::WarpPerspective::Format::NCHW4) {
megdnn_assert(src.dtype.enumv() == DTypeEnum::QuantizedS8,
"src expected QuantizedS8, but got %s",
src.dtype.name());
megdnn_assert(mat.dtype == dtype::Float32(),
"matrix dtype expected float, got %s",
mat.dtype.name());
megdnn_assert(src.shape[4] == 4 && dst.shape[4] == 4);
megdnn_assert(src.shape[1] == dst.shape[1], "%s", errmsg().c_str());
megdnn_assert(param().imode ==
param::WarpPerspective::InterpolationMode::LINEAR);
megdnn_assert(param().bmode !=
param::WarpPerspective::BorderMode::TRANSPARENT);
megdnn_assert(param().bmode !=
param::WarpPerspective::BorderMode::ISOLATED);
} else {
megdnn_assert(param().format ==
param::WarpPerspective::Format::NHWCD4);
megdnn_assert(
src.dtype == dtype::Float32() ||
MEGDNN_FLOAT16_SELECT(
(src.dtype == dtype::Float16() ||
src.dtype == dtype::BFloat16()),
false) ||
src.dtype.enumv() == DTypeEnum::QuantizedS8 ||
src.dtype.enumv() == DTypeEnum::Quantized8Asymm,
"WarpPerspective NHWCD4 input dtype should be "
"Float32" MEGDNN_FLOAT16_SELECT(
"/Float16/BFloat16",
"") ",QunatizedS8, Quantized8Asymm.");
megdnn_assert(
(src.dtype == mat.dtype || mat.dtype == dtype::Float32()),
"The input to WarpPerspective is in NHWCD4 format, in this "
"case, if the input dtype is floating point, the "
"transformation matrix should have same dtype as the "
"input, %s given.",
mat.dtype.name());
//! number of channels is same
megdnn_assert(src.shape[2] == dst.shape[2], "%s", errmsg().c_str());
megdnn_assert(param().imode ==
param::WarpPerspective::InterpolationMode::LINEAR);
megdnn_assert(param().bmode !=
param::WarpPerspective::BorderMode::TRANSPARENT);
megdnn_assert(param().bmode !=
param::WarpPerspective::BorderMode::ISOLATED);
}
} else if (param().format ==
param::WarpPerspective::Format::NHWC_NCHW4_IC_SMALL ||
param().format ==
param::WarpPerspective::Format::NCHW_NCHW4_IC_SMALL) {
megdnn_assert((src.dtype.enumv() == DTypeEnum::Quantized8Asymm ||
src.dtype.enumv() == DTypeEnum::Uint8),
"src expected Quantized8Asymm or Uint8, but got %s",
src.dtype.name());
megdnn_assert(mat.dtype == dtype::Float32(),
"matrix dtype expected float, got %s", mat.dtype.name());
megdnn_assert(dst.shape[4] == 4);
megdnn_assert(param().imode ==
param::WarpPerspective::InterpolationMode::LINEAR);
......@@ -90,16 +164,14 @@ void WarpPerspectiveBase::check_layout_fwd(const TensorLayout &src,
param::WarpPerspective::BorderMode::TRANSPARENT);
megdnn_assert(param().bmode !=
param::WarpPerspective::BorderMode::ISOLATED);
} else if (param().format == param::WarpPerspective::Format::NHWC) {
megdnn_assert(src.shape[3] == dst.shape[3], "%s", errmsg().c_str());
} else if (param().format == param::WarpPerspective::Format::NCHW4) {
megdnn_assert(dst.dtype == src.dtype);
megdnn_assert(src.dtype.enumv() == DTypeEnum::QuantizedS8,
"src expected QuantizedS8, but got %s", src.dtype.name());
} else if (param().format == param::WarpPerspective::Format::NHWC_NCHW) {
megdnn_assert((src.dtype.enumv() == DTypeEnum::Quantized8Asymm ||
src.dtype.enumv() == DTypeEnum::Uint8),
"src expected Quantized8Asymm or Uint8, but got %s",
src.dtype.name());
megdnn_assert(mat.dtype == dtype::Float32(),
"matrix dtype expected float, got %s", mat.dtype.name());
megdnn_assert(src.shape[4] == 4 && dst.shape[4] == 4);
megdnn_assert(src.shape[1] == dst.shape[1], "%s", errmsg().c_str());
megdnn_assert(src.shape[3] == dst.shape[1], "%s", errmsg().c_str());
megdnn_assert(param().imode ==
param::WarpPerspective::InterpolationMode::LINEAR);
......@@ -108,40 +180,14 @@ void WarpPerspectiveBase::check_layout_fwd(const TensorLayout &src,
megdnn_assert(param().bmode !=
param::WarpPerspective::BorderMode::ISOLATED);
} else {
megdnn_assert(param().format == param::WarpPerspective::Format::NHWCD4);
megdnn_assert(
src.dtype == dtype::Float32() ||
MEGDNN_FLOAT16_SELECT((src.dtype == dtype::Float16() ||
src.dtype == dtype::BFloat16()),
false) ||
src.dtype.enumv() == DTypeEnum::QuantizedS8 ||
src.dtype.enumv() == DTypeEnum::Quantized8Asymm,
"WarpPerspective NHWCD4 input dtype should be "
"Float32" MEGDNN_FLOAT16_SELECT(
"/Float16/BFloat16",
"") ",QunatizedS8, Quantized8Asymm.");
megdnn_assert(
(src.dtype == mat.dtype || mat.dtype == dtype::Float32()),
"The input to WarpPerspective is in NHWCD4 format, in this "
"case, if the input dtype is floating point, the "
"transformation matrix should have same dtype as the "
"input, %s given.",
mat.dtype.name());
megdnn_assert(dst.dtype == src.dtype);
//! number of channels is same
megdnn_assert(src.shape[2] == dst.shape[2], "%s", errmsg().c_str());
megdnn_assert(param().imode ==
param::WarpPerspective::InterpolationMode::LINEAR);
megdnn_assert(param().bmode !=
param::WarpPerspective::BorderMode::TRANSPARENT);
megdnn_assert(param().bmode !=
param::WarpPerspective::BorderMode::ISOLATED);
megdnn_assert(param().format == param::WarpPerspective::Format::NCHW);
megdnn_assert((src.dtype.enumv() == DTypeEnum::Quantized8Asymm ||
src.dtype.enumv() == DTypeEnum::Uint8) &&
dst.dtype.enumv() == DTypeEnum::Float32);
}
megdnn_assert(src.format == dst.format);
}
std::string WarpPerspectiveBase::param_msg() const
{
std::string WarpPerspectiveBase::param_msg() const {
std::string res;
res.append(megdnn_mangle("imode="));
switch (param().imode) {
......@@ -191,31 +237,25 @@ std::string WarpPerspectiveBase::param_msg() const
return res;
}
int WarpPerspectiveBase::get_real_coord(int p, int len)
{
int WarpPerspectiveBase::get_real_coord(int p, int len) {
auto bmode = param().bmode;
if( (unsigned)p < (unsigned)len )
if ((unsigned)p < (unsigned)len)
;
else if( bmode == BorderMode::REPLICATE )
else if (bmode == BorderMode::REPLICATE)
p = p < 0 ? 0 : len - 1;
else if( bmode == BorderMode::REFLECT || bmode == BorderMode::REFLECT_101 )
{
else if (bmode == BorderMode::REFLECT || bmode == BorderMode::REFLECT_101) {
int delta = (bmode == BorderMode::REFLECT_101);
if( len == 1 )
if (len == 1)
return 0;
do
{
if( p < 0 )
do {
if (p < 0)
p = -p - 1 + delta;
else
p = len - 1 - (p - len) - delta;
}
while( (unsigned)p >= (unsigned)len );
}
else if( bmode == BorderMode::WRAP )
{
if( p < 0 )
p -= ((p-len+1)/len)*len;
} while ((unsigned)p >= (unsigned)len);
} else if (bmode == BorderMode::WRAP) {
if (p < 0)
p -= ((p - len + 1) / len) * len;
/*
if( p >= len )
p %= len;
......@@ -223,18 +263,16 @@ int WarpPerspectiveBase::get_real_coord(int p, int len)
while (p >= len) {
p -= len;
}
}
else if( bmode == BorderMode::CONSTANT )
} else if (bmode == BorderMode::CONSTANT)
p = -1;
return p;
}
void WarpPerspectiveForward::check_exec(const TensorLayout &src,
const TensorLayout &mat,
const TensorLayout &mat_idx,
const TensorLayout &dst,
size_t workspace_in_bytes)
{
void WarpPerspectiveForward::check_exec(const TensorLayout& src,
const TensorLayout& mat,
const TensorLayout& mat_idx,
const TensorLayout& dst,
size_t workspace_in_bytes) {
check_exec_allow_nhwc_mat_idx(src, mat, mat_idx, dst, workspace_in_bytes);
}
......@@ -248,7 +286,10 @@ void WarpPerspectiveForward::check_exec_allow_nhwc_mat_idx(
megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes);
if (param().format != Param::Format::NHWC &&
param().format != Param::Format::NCHW &&
param().format != Param::Format::NCHW4) {
param().format != Param::Format::NCHW4 &&
param().format != Param::Format::NHWC_NCHW &&
param().format != Param::Format::NHWC_NCHW4_IC_SMALL &&
param().format != Param::Format::NCHW_NCHW4_IC_SMALL) {
megdnn_assert(!mat_idx.ndim,
"mat_idx not supported for current format");
}
......@@ -263,7 +304,8 @@ void WarpPerspectiveBackwardData::check_exec(const TensorLayout& mat,
megdnn_assert(grad.dtype == dtype::Float32() MEGDNN_INC_FLOAT16(
|| grad.dtype == dtype::BFloat16()),
"Backward WarpPerspective only supports Float32/BFloat16.");
auto required_workspace_in_bytes = get_workspace_in_bytes(mat, mat_idx, diff, grad);
auto required_workspace_in_bytes =
get_workspace_in_bytes(mat, mat_idx, diff, grad);
megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes);
}
......@@ -283,6 +325,6 @@ void WarpPerspectiveBackwardMat::check_exec(const TensorLayout& src,
megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes);
}
} // namespace megdnn
} // namespace megdnn
// vim: syntax=cpp.doxygen
......@@ -12,6 +12,7 @@
#pragma once
#include <cuda_runtime_api.h>
#include "src/common/cv/enums.h"
#include "src/cuda/utils.cuh"
#include "megcore_cdefs.h"
namespace megdnn {
......@@ -34,6 +35,22 @@ void forward_proxy_nchw4(const ctype* src, const float* mat, const int* mat_idx,
megcore::AsyncErrorInfo* error_info,
void* error_tracker, cudaStream_t stream);
template <typename src_dtype, typename src_ctype, typename dst_ctype>
void forward_proxy_quint8_dimshuffle_typecvt_nchw4(
bool is_nhwc, const src_ctype* src, const float* mat,
const int* mat_idx, dst_ctype* dst, int N_SRC, int N_MAT, int C, int IH,
int IW, int OH, int OW, src_ctype bval, DTypeParamImpl<src_dtype> param,
BorderMode bmode, megcore::AsyncErrorInfo* error_info,
void* error_tracker, cudaStream_t stream);
template <typename src_dtype, typename src_ctype, typename dst_ctype>
void forward_proxy_quint8_dimshuffle_typecvt_nchw(
bool is_nhwc, const src_ctype* src, const float* mat,
const int* mat_idx, dst_ctype* dst, int N_SRC, int N_MAT, int C, int IH,
int IW, int OH, int OW, src_ctype bval, DTypeParamImpl<src_dtype> param,
BorderMode bmode, megcore::AsyncErrorInfo* error_info,
void* error_tracker, cudaStream_t stream);
void backward_data_proxy(const float* mat, const int* midx, const float* diff,
float* grad, float* workspace, int N, int N_SRC, int C,
int IH, int IW, int OH, int OW, float bval,
......
......@@ -6,7 +6,8 @@
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
*/
#include "src/cuda/warp_perspective/opr_impl.h"
#include "src/cuda/warp_perspective/warp_perspective_cv.cuh"
......@@ -166,6 +167,30 @@ void WarpPerspectiveForwardImpl::exec(_megdnn_tensor_in ssrc,
IW = src.layout.shape[3];
OH = dst.layout.shape[2];
OW = dst.layout.shape[3];
} else if (param().format == Param::Format::NHWC_NCHW) {
C = src.layout.shape[3];
IH = src.layout.shape[1];
IW = src.layout.shape[2];
OH = dst.layout.shape[2];
OW = dst.layout.shape[3];
} else if (param().format == Param::Format::NHWC_NCHW4_IC_SMALL) {
C = src.layout.shape[3];
IH = src.layout.shape[1];
IW = src.layout.shape[2];
OH = dst.layout.shape[2];
OW = dst.layout.shape[3];
megdnn_assert(
(C == 1) || (C == 3),
"NHWC_NCHW4_IC_SMALL only support C == 1 or C == 3");
} else if (param().format == Param::Format::NCHW_NCHW4_IC_SMALL) {
C = src.layout.shape[1];
IH = src.layout.shape[2];
IW = src.layout.shape[3];
OH = dst.layout.shape[2];
OW = dst.layout.shape[3];
megdnn_assert(
(C == 1) || (C == 3),
"NCHW_NCHW4_IC_SMALL only support C == 1 or C == 3");
} else {
megdnn_assert(
param().format == param::WarpPerspective::Format::NCHW,
......@@ -180,55 +205,123 @@ void WarpPerspectiveForwardImpl::exec(_megdnn_tensor_in ssrc,
"unsupported interpolation mode for NCHW format");
auto bval = param().border_val;
auto bmode = warp_perspective::get_bmode(param().bmode);
if (src.layout.dtype == dtype::Float32{}) {
warp_perspective::forward_proxy(
is_nhwc, src.ptr<dt_float32>(), mat.ptr<dt_float32>(),
mat_idx.raw_ptr ? mat_idx.ptr<int>() : nullptr,
dst.ptr<dt_float32>(), src.layout[0], mat.layout[0], C,
IH, IW, OH, OW, bval, bmode, async_error_info(handle()),
m_error_tracker, stream);
} else if (MEGDNN_FLOAT16_SELECT(
src.layout.dtype == dtype::Float16(), false)) {
if (src.layout.dtype == dst.layout.dtype) {
if (src.layout.dtype == dtype::Float32{}) {
warp_perspective::forward_proxy(
is_nhwc, src.ptr<dt_float32>(),
mat.ptr<dt_float32>(),
mat_idx.raw_ptr ? mat_idx.ptr<int>() : nullptr,
dst.ptr<dt_float32>(), src.layout[0], mat.layout[0],
C, IH, IW, OH, OW, bval, bmode,
async_error_info(handle()), m_error_tracker,
stream);
} else if (MEGDNN_FLOAT16_SELECT(
src.layout.dtype == dtype::Float16(),
false)) {
#ifndef MEGDNN_DISABLE_FLOAT16
warp_perspective::forward_proxy(
is_nhwc, src.ptr<dt_float16>(), mat.ptr<dt_float32>(),
mat_idx.raw_ptr ? mat_idx.ptr<int>() : nullptr,
dst.ptr<dt_float16>(), src.layout[0], mat.layout[0], C,
IH, IW, OH, OW, static_cast<dt_float16>(bval), bmode,
async_error_info(handle()), m_error_tracker, stream);
warp_perspective::forward_proxy(
is_nhwc, src.ptr<dt_float16>(),
mat.ptr<dt_float32>(),
mat_idx.raw_ptr ? mat_idx.ptr<int>() : nullptr,
dst.ptr<dt_float16>(), src.layout[0], mat.layout[0],
C, IH, IW, OH, OW, static_cast<dt_float16>(bval),
bmode, async_error_info(handle()), m_error_tracker,
stream);
#endif
} else if (src.layout.dtype == dtype::Uint8()) {
warp_perspective::forward_proxy<dt_uint8>(
is_nhwc, src.ptr<dt_uint8>(), mat.ptr<dt_float32>(),
mat_idx.raw_ptr ? mat_idx.ptr<int>() : nullptr,
dst.ptr<dt_uint8>(), src.layout[0], mat.layout[0], C,
IH, IW, OH, OW, bval, bmode, async_error_info(handle()),
m_error_tracker, stream);
} else if (src.layout.dtype == dtype::Int8()) {
megdnn_assert(
!is_nhwc,
"WarpPerspective on CUDA does not support NHWC + Int8");
warp_perspective::forward_proxy<dt_int8>(
false, src.ptr<dt_int8>(), mat.ptr<dt_float32>(),
mat_idx.raw_ptr ? mat_idx.ptr<int>() : nullptr,
dst.ptr<dt_int8>(), src.layout[0], mat.layout[0], C, IH,
IW, OH, OW,
bval /* implicit float -> int8 conversion, should be
safe */
,
bmode, async_error_info(handle()), m_error_tracker,
stream);
} else if (src.layout.dtype.enumv() == DTypeEnum::QuantizedS8) {
megdnn_assert(param().format == Param::Format::NCHW4,
"WarpPerspective on CUDA supports NCHW4 + "
"QuantizedS8 only");
warp_perspective::forward_proxy_nchw4<dt_int8>(
src.compatible_ptr<dt_int8>(), mat.ptr<dt_float32>(),
mat_idx.raw_ptr ? mat_idx.ptr<int>() : nullptr,
dst.compatible_ptr<dt_int8>(), src.layout[0],
mat.layout[0], C, IH, IW, OH, OW, bval, bmode,
async_error_info(handle()), m_error_tracker, stream);
} else if (src.layout.dtype == dtype::Uint8()) {
warp_perspective::forward_proxy<dt_uint8>(
is_nhwc, src.ptr<dt_uint8>(), mat.ptr<dt_float32>(),
mat_idx.raw_ptr ? mat_idx.ptr<int>() : nullptr,
dst.ptr<dt_uint8>(), src.layout[0], mat.layout[0],
C, IH, IW, OH, OW, bval, bmode,
async_error_info(handle()), m_error_tracker,
stream);
} else if (src.layout.dtype == dtype::Int8()) {
megdnn_assert(!is_nhwc,
"WarpPerspective on CUDA does not support "
"NHWC + Int8");
warp_perspective::forward_proxy<dt_int8>(
false, src.ptr<dt_int8>(), mat.ptr<dt_float32>(),
mat_idx.raw_ptr ? mat_idx.ptr<int>() : nullptr,
dst.ptr<dt_int8>(), src.layout[0], mat.layout[0], C,
IH, IW, OH, OW,
bval /* implicit float -> int8 conversion,
should be safe */
,
bmode, async_error_info(handle()), m_error_tracker,
stream);
} else if (src.layout.dtype.enumv() == DTypeEnum::QuantizedS8) {
megdnn_assert(param().format == Param::Format::NCHW4,
"WarpPerspective on CUDA supports NCHW4 + "
"QuantizedS8 only");
warp_perspective::forward_proxy_nchw4<dt_int8>(
src.compatible_ptr<dt_int8>(),
mat.ptr<dt_float32>(),
mat_idx.raw_ptr ? mat_idx.ptr<int>() : nullptr,
dst.compatible_ptr<dt_int8>(), src.layout[0],
mat.layout[0], C, IH, IW, OH, OW, bval, bmode,
async_error_info(handle()), m_error_tracker,
stream);
}
} else if ((src.layout.dtype.enumv() ==
DTypeEnum::Quantized8Asymm ||
src.layout.dtype.enumv() == DTypeEnum::Uint8)) {
uint8_t zero_point = 0;
float scale = 1.f;
if (src.layout.dtype.enumv() == DTypeEnum::Quantized8Asymm) {
zero_point =
src.layout.dtype.param<dtype::Quantized8Asymm>()
.zero_point;
scale = src.layout.dtype.param<dtype::Quantized8Asymm>()
.scale;
} else if (src.layout.dtype.enumv() == DTypeEnum::Uint8 &&
dst.layout.dtype.enumv() == DTypeEnum::QuantizedS8) {
zero_point = 128;
scale = 1.f;
}
DTypeParamImpl<dt_quint8> src_dtype_param(scale, zero_point);
if ((dst.layout.dtype.enumv() == DTypeEnum::QuantizedS8 &&
dst.layout.dtype.param<dtype::QuantizedS8>().scale ==
scale) &&
((param().format == Param::Format::NCHW_NCHW4_IC_SMALL) ||
(param().format == Param::Format::NHWC_NCHW4_IC_SMALL))) {
bool is_nhwc_ic_small =
(param().format ==
Param::Format::NHWC_NCHW4_IC_SMALL);
warp_perspective::
forward_proxy_quint8_dimshuffle_typecvt_nchw4<
dt_quint8, dt_uint8, dt_int8>(
is_nhwc_ic_small,
src.compatible_ptr<dt_uint8>(),
mat.ptr<dt_float32>(),
mat_idx.raw_ptr ? mat_idx.ptr<int>()
: nullptr,
dst.compatible_ptr<dt_int8>(),
src.layout[0], mat.layout[0], C, IH, IW, OH,
OW, bval, src_dtype_param, bmode,
async_error_info(handle()), m_error_tracker,
stream);
} else {
megdnn_assert(
((dst.layout.dtype.enumv() == DTypeEnum::Float32) &&
((param().format == Param::Format::NCHW) ||
(param().format == Param::Format::NHWC_NCHW))),
"invalid format for Quantized8Asymm input");
bool is_nhwc = (param().format == Param::Format::NHWC_NCHW);
warp_perspective::
forward_proxy_quint8_dimshuffle_typecvt_nchw<
dt_quint8, dt_uint8, dt_float32>(
is_nhwc, src.compatible_ptr<dt_uint8>(),
mat.ptr<dt_float32>(),
mat_idx.raw_ptr ? mat_idx.ptr<int>()
: nullptr,
dst.compatible_ptr<dt_float32>(),
src.layout[0], mat.layout[0], C, IH, IW, OH,
OW, bval, src_dtype_param, bmode,
async_error_info(handle()), m_error_tracker,
stream);
}
} else {
megdnn_throw(ssprintf("unsupported dtype: %s",
src.layout.dtype.name()));
......
......@@ -249,6 +249,162 @@ void WarpPerspectiveForwardImpl::kern_naive_nhwcd4(
MIDOUT_END();
}
template <typename ctype, typename dst_ctype, typename mtype>
void WarpPerspectiveForwardImpl::kern_naive_dimshuffle_typecvt(
const KernParam<ctype, mtype>& kern_param, size_t task_id) {
MEGDNN_MARK_USED_VAR(kern_param);
MIDOUT_BEGIN(megdnn_naive_warpperspective, ctype, mtype, midout_iv(2)) {
UNPACK_WARP_PERSPECTIVE_FWD_KERN_PARAM(kern_param);
MEGDNN_MARK_USED_VAR(N_MAT);
//! strides of C, H, W on src and dst
size_t sstrd[3], dstrd[3];
auto set_sstrd = [&](size_t s0, size_t s1, size_t s2) {
sstrd[0] = s0;
sstrd[1] = s1;
sstrd[2] = s2;
};
auto set_dstrd = [&](size_t s0, size_t s1, size_t s2) {
dstrd[0] = s0;
dstrd[1] = s1;
dstrd[2] = s2;
};
switch (kern_param.format) {
case Format::NCHW:
case Format::NCHW_NCHW4_IC_SMALL:
set_sstrd(IH * IW, IW, 1);
set_dstrd(OH * OW, OW, 1);
break;
case Format::NHWC_NCHW:
case Format::NHWC_NCHW4_IC_SMALL:
set_sstrd(1, IW * C, C);
set_dstrd(OH * OW, OW, 1);
break;
default:
megdnn_throw("bad format");
}
uint8_t zero_point = 0;
float scale = 1.f;
bool is_dst_float = kern_param.dst_dtype.enumv() == DTypeEnum::Float32;
if (kern_param.src_dtype.enumv() ==
DTypeTrait<dtype::Quantized8Asymm>::enumv) {
auto dtype_param =
kern_param.src_dtype
.template param<dtype::Quantized8Asymm>();
zero_point = dtype_param.zero_point;
scale = dtype_param.scale;
} else if (kern_param.src_dtype.enumv() == DTypeEnum::Uint8) {
zero_point =
(kern_param.dst_dtype.enumv() == DTypeEnum::QuantizedS8)
? 128
: 0;
scale = 1.f;
}
dst_ctype* dst_ptr = reinterpret_cast<dst_ctype*>(dptr);
bool is_dst_nchw4 =
(kern_param.format == Format::NCHW_NCHW4_IC_SMALL) ||
(kern_param.format == Format::NHWC_NCHW4_IC_SMALL);
auto visit_src = [&sptr, sstrd](size_t c, int h, int w) -> float {
return sptr[sstrd[0] * c + sstrd[1] * h + sstrd[2] * w];
};
auto visit_src_bd = [&sptr, sstrd, border_val](size_t c, int h,
int w) -> float {
if (h != -1 && w != -1) {
return sptr[sstrd[0] * c + sstrd[1] * h + sstrd[2] * w];
} else
return border_val;
};
auto visit_dst = [&dst_ptr, dstrd, is_dst_nchw4](size_t c, int h,
int w) -> dst_ctype& {
if (!is_dst_nchw4)
return dst_ptr[dstrd[0] * c + dstrd[1] * h + dstrd[2] * w];
else
return dst_ptr[((dstrd[0] * (c >> 2) + dstrd[1] * h +
dstrd[2] * w)
<< 2) +
(c & 0b11)];
};
rounding::RoundingConverter<dst_ctype> output_converter;
auto orig_sptr = sptr;
size_t n = task_id / OH;
size_t oh = task_id % OH;
mptr = mptr + n * 3 * 3;
dst_ptr = is_dst_nchw4 ? (dst_ptr + n * OH * OW * 4)
: (dst_ptr + n * C * OH * OW);
if (midx_ptr) {
size_t idx = midx_ptr[n];
megdnn_assert(
idx < N_SRC,
"mat_idx out of bound: mat_idx[%zu]=%zu src_batch=%zu", n,
idx, N_SRC);
sptr = orig_sptr + idx * (C * IH * IW);
} else if (n) {
sptr += n * C * IH * IW;
}
rep(ow, OW) {
float numeratorw = mptr[0] * ow + mptr[1] * oh + mptr[2];
float numeratorh = mptr[3] * ow + mptr[4] * oh + mptr[5];
float denominator = mptr[6] * ow + mptr[7] * oh + mptr[8];
float alphaw = numeratorw / denominator;
float alphah = numeratorh / denominator;
int iw0 = get_real_coord(std::floor(alphaw) + 0, IW);
int iw1 = get_real_coord(std::floor(alphaw) + 1, IW);
int ih0 = get_real_coord(std::floor(alphah) + 0, IH);
int ih1 = get_real_coord(std::floor(alphah) + 1, IH);
alphaw -= floor(alphaw);
alphah -= floor(alphah);
if (bmode != BorderMode::CONSTANT) {
rep(c, C) {
auto val =
visit_src(c, ih0, iw0) * (1.0f - alphaw) *
(1.0f - alphah) +
visit_src(c, ih0, iw1) * alphaw * (1.0f - alphah) +
visit_src(c, ih1, iw0) * (1.0f - alphaw) * alphah +
visit_src(c, ih1, iw1) * alphaw * alphah;
val = is_dst_float ? (val - zero_point) * scale
: val - zero_point;
visit_dst(c, oh, ow) = output_converter(val);
}
} else {
rep(c, C) {
auto val = visit_src_bd(c, ih0, iw0) * (1.0f - alphaw) *
(1.0f - alphah) +
visit_src_bd(c, ih0, iw1) * alphaw *
(1.0f - alphah) +
visit_src_bd(c, ih1, iw0) * (1.0f - alphaw) *
alphah +
visit_src_bd(c, ih1, iw1) * alphaw * alphah;
val = std::isfinite(val) ? val : border_val;
val = is_dst_float ? (val - zero_point) * scale
: val - zero_point;
visit_dst(c, oh, ow) = output_converter(val);
}
}
if (is_dst_nchw4) {
for (auto c = C; c < 4; ++c) {
visit_dst(c, oh, ow) = 0;
}
}
}
}
MIDOUT_END();
}
#define INST(ctype, drc_ctype, mtype) \
template void WarpPerspectiveForwardImpl::kern_naive_dimshuffle_typecvt< \
ctype, drc_ctype, mtype>(const KernParam<ctype, mtype>&, size_t);
INST(uint8_t, int8_t, float);
INST(uint8_t, float, float);
#undef INST
void WarpPerspectiveForwardImpl::exec(_megdnn_tensor_in src,
_megdnn_tensor_in mat,
_megdnn_tensor_in mat_idx,
......@@ -320,6 +476,65 @@ void WarpPerspectiveForwardImpl::exec(_megdnn_tensor_in src,
src.layout.dtype.name())
.c_str());
}
bool is_fusion_dtype = src.layout.dtype.enumv() != dst.layout.dtype.enumv();
bool is_u8_or_qu8_in =
src.layout.dtype.enumv() == DTypeTrait<dtype::Uint8>::enumv ||
src.layout.dtype.enumv() ==
DTypeTrait<dtype::Quantized8Asymm>::enumv;
if (is_fusion_dtype && is_u8_or_qu8_in &&
((param().format == Format::NCHW_NCHW4_IC_SMALL) ||
(param().format == Format::NHWC_NCHW4_IC_SMALL) ||
(param().format == Format::NHWC_NCHW) ||
(param().format == Format::NCHW))) {
if (src.layout.dtype.enumv() ==
DTypeTrait<dtype::Quantized8Asymm>::enumv ||
src.layout.dtype.enumv() == DTypeTrait<dtype::Uint8>::enumv) {
float scale = 1.f;
if (src.layout.dtype.enumv() ==
DTypeTrait<dtype::Quantized8Asymm>::enumv) {
scale = src.layout.dtype.param<dtype::Quantized8Asymm>().scale;
}
auto kparam = KernParam<uint8_t, float>::from_tensors(
param().format, param().bmode, param().border_val, src, mat,
mat_idx, dst, workspace);
if (dst.layout.dtype.enumv() == DTypeTrait<dtype::Float32>::enumv) {
auto run = [kparam, this](size_t index, size_t) {
kern_naive_dimshuffle_typecvt<uint8_t, float, float>(kparam,
index);
};
MEGDNN_DISPATCH_MULTI_THREAD_CPU_KERN_OPR(run,
kparam.oh * batch);
return;
} else if ((dst.layout.dtype.enumv() ==
DTypeTrait<dtype::QuantizedS8>::enumv) &&
(dst.layout.dtype.param<dtype::QuantizedS8>().scale ==
scale)) {
auto run = [kparam, this](size_t index, size_t) {
kern_naive_dimshuffle_typecvt<uint8_t, int8_t, float>(
kparam, index);
};
MEGDNN_DISPATCH_MULTI_THREAD_CPU_KERN_OPR(run,
kparam.oh * batch);
return;
} else {
megdnn_throw(ssprintf("Unsupported DType in "
"WarpPerspective Dimshuffle Typecvt: %s",
src.layout.dtype.name())
.c_str());
}
}
megdnn_throw(ssprintf("Unsupported input DType in "
"WarpPerspective: %s",
src.layout.dtype.name())
.c_str());
}
if (warp::is_cv_available(src.layout, mat.layout, dst.layout, param().imode,
param().format)) {
MIDOUT_BEGIN(megdnn_naive_warpperspective, void) {
......@@ -331,12 +546,12 @@ void WarpPerspectiveForwardImpl::exec(_megdnn_tensor_in src,
megdnn_assert(warp::is_dnn_available(src.layout, mat.layout, dst.layout,
param().imode, param().format));
/*!
* We currently use floating point for all WarpPerspective computation,
* so even if the input ctype is one of the integer type, mtype should
* always be float32.
* We currently use floating point for all WarpPerspective
* computation, so even if the input ctype is one of the integer
* type, mtype should always be float32.
*
* \warning It's different with \c WarpAffine, with mtype be float16 if
* input type is float16.
* \warning It's different with \c WarpAffine, with mtype be float16
* if input type is float16.
*/
DISPATCH_ST(dtype::Float32, float, float, KERN);
......
......@@ -26,6 +26,7 @@ protected:
float border_val;
size_t n_src, n_mat, c, ih, iw, oh, ow;
ctype *sptr, *dptr;
DType src_dtype, dst_dtype;
mtype* mptr;
int* midx_ptr; //!< can be null
Workspace workspace;
......@@ -41,6 +42,8 @@ protected:
ret.bmode = bmode;
ret.border_val = border_val;
ret.n_src = src.layout.shape[0];
ret.src_dtype = src.layout.dtype;
ret.dst_dtype = dst.layout.dtype;
if (mat_idx.raw_ptr) {
megdnn_assert(mat_idx.layout.ndim == 1);
ret.n_mat = mat_idx.layout.shape[0];
......@@ -50,7 +53,8 @@ protected:
ret.n_mat = ret.n_src;
ret.midx_ptr = nullptr;
}
if (format == Format::NCHW) {
if (format == Format::NCHW ||
format == Format::NCHW_NCHW4_IC_SMALL) {
ret.c = src.layout.shape[1];
ret.ih = src.layout.shape[2];
ret.iw = src.layout.shape[3];
......@@ -62,6 +66,13 @@ protected:
ret.iw = src.layout.shape[2];
ret.oh = dst.layout.shape[1];
ret.ow = dst.layout.shape[2];
} else if (format == Format::NHWC_NCHW ||
format == Format::NHWC_NCHW4_IC_SMALL) {
ret.c = src.layout.shape[3];
ret.ih = src.layout.shape[1];
ret.iw = src.layout.shape[2];
ret.oh = dst.layout.shape[2];
ret.ow = dst.layout.shape[3];
} else if (format == Format::NCHW4) {
ret.c = src.layout.shape[1] * 4;
ret.ih = src.layout.shape[2];
......@@ -76,15 +87,16 @@ protected:
ret.oh = dst.layout.shape[1];
ret.ow = dst.layout.shape[3];
}
if (src.layout.dtype.enumv() == DTypeEnum::Float32 ||
MEGDNN_FLOAT16_SELECT(
(src.layout.dtype.enumv() == DTypeEnum::Float16 ||
src.layout.dtype.enumv() == DTypeEnum::BFloat16),
false) ||
src.layout.dtype.enumv() == DTypeEnum::Int8 ||
src.layout.dtype.enumv() == DTypeEnum::Uint8 ||
src.layout.dtype.enumv() == DTypeEnum::QuantizedS8 ||
src.layout.dtype.enumv() == DTypeEnum::Quantized8Asymm) {
if ((src.layout.dtype.enumv() == DTypeEnum::Float32 ||
MEGDNN_FLOAT16_SELECT(
(src.layout.dtype.enumv() == DTypeEnum::Float16 ||
src.layout.dtype.enumv() == DTypeEnum::BFloat16),
false) ||
src.layout.dtype.enumv() == DTypeEnum::Int8 ||
src.layout.dtype.enumv() == DTypeEnum::Uint8 ||
src.layout.dtype.enumv() == DTypeEnum::QuantizedS8 ||
src.layout.dtype.enumv() == DTypeEnum::Quantized8Asymm) &&
(src.layout.dtype == dst.layout.dtype)) {
ret.sptr = src.compatible_ptr<ctype>();
ret.mptr = mat.ptr<mtype>();
ret.dptr = dst.compatible_ptr<ctype>();
......@@ -92,6 +104,13 @@ protected:
ret.sptr = src.compatible_ptr<ctype>();
ret.mptr = mat.ptr<mtype>();
ret.dptr = dst.compatible_ptr<ctype>();
} else if ((src.layout.dtype.enumv() == DTypeEnum::Uint8 ||
src.layout.dtype.enumv() ==
DTypeEnum::Quantized8Asymm) &&
src.layout.dtype.enumv() != dst.layout.dtype.enumv()) {
ret.sptr = src.compatible_ptr<ctype>();
ret.mptr = mat.ptr<mtype>();
ret.dptr = reinterpret_cast<ctype*>(dst.raw_ptr);
} else {
ret.sptr = nullptr;
ret.mptr = nullptr;
......@@ -122,6 +141,9 @@ private:
template <typename ctype, typename mtype>
void kern_naive_nhwcd4(const KernParam<ctype, mtype>& kern_param,
size_t task_id);
template <typename ctype, typename dst_ctype, typename mtype>
void kern_naive_dimshuffle_typecvt(
const KernParam<ctype, mtype>& kern_param, size_t task_id);
};
class WarpPerspectiveBackwardDataImpl : public WarpPerspectiveBackwardData {
......
......@@ -23,8 +23,7 @@ using namespace megdnn;
using namespace test;
class NanMatRNG : public RNG {
void gen(const TensorND& tensor_) override
{
void gen(const TensorND& tensor_) override {
auto& gen = RandomState::generator();
std::uniform_real_distribution<dt_float32> pdist3(1.9f, 2.1f);
std::uniform_real_distribution<dt_float32> pdist(0.9f, 1.1f);
......@@ -335,6 +334,144 @@ TEST_F(CUDA, WARP_PERSPECTIVE_NCHW4) {
}
}
TEST_F(CUDA, WARP_PERSPECTIVE_NCHW_NCHW4_IC_SMALL) {
using Param = WarpPerspective::Param;
WarpPerspective::Param param;
Checker<WarpPerspectiveForward> checker(handle_cuda());
WarpPerspectiveMatRNG rng;
param.format = Param::Format::NCHW_NCHW4_IC_SMALL;
checker.set_rng(1, &rng);
checker.set_dtype(0, dtype::Quantized8Asymm(0.1f, 128));
checker.set_dtype(2, dtype::QuantizedS8(0.1f));
for (auto bmode : {WarpPerspective::BorderMode::WRAP,
WarpPerspective::BorderMode::REFLECT,
WarpPerspective::BorderMode::REPLICATE,
WarpPerspective::BorderMode::CONSTANT}) {
param.border_val = 0.3f;
param.bmode = bmode;
param.imode = Param::InterpolationMode::LINEAR;
checker.set_param(param);
checker.set_epsilon(1 + 1e-3);
checker.execs({{2, 3, 10, 11}, {2, 3, 3}, {2, 1, 11, 12, 4}});
checker.execs({{1, 3, 25, 510}, {1, 3, 3}, {1, 1, 25, 25, 4}});
checker.execs({{1, 3, 25, 25}, {1, 3, 3}, {1, 1, 51, 51, 4}});
checker.execs({{1, 3, 51, 51}, {1, 3, 3}, {1, 1, 25, 25, 4}});
}
{
Checker<WarpPerspective, WarpPerspectiveMatIdxProxy> checker(
handle_cuda());
constexpr int N_SRC = 5;
UniformIntRNG mat_idx_rng{0, N_SRC - 1};
checker.set_dtype(0, dtype::Quantized8Asymm(0.1f, 128));
checker.set_rng(1, &rng);
checker.set_dtype(2, dtype::Int32());
checker.set_rng(2, &mat_idx_rng);
checker.set_dtype(3, dtype::QuantizedS8(0.1f));
param.bmode = WarpPerspective::Param::BorderMode::REFLECT;
param.imode = param::WarpPerspective::InterpolationMode::LINEAR;
checker.set_param(param);
checker.set_epsilon(1 + 1e-3);
checker.execs({{N_SRC, 3, 10, 11}, {2, 3, 3}, {2}, {2, 1, 11, 12, 4}});
checker.execs(
{{N_SRC, 3, 17, 13}, {123, 3, 3}, {123}, {123, 1, 16, 15, 4}});
}
}
TEST_F(CUDA, WARP_PERSPECTIVE_NHWC_NCHW4_IC_SMALL) {
using Param = WarpPerspective::Param;
WarpPerspective::Param param;
Checker<WarpPerspectiveForward> checker(handle_cuda());
WarpPerspectiveMatRNG rng;
param.format = Param::Format::NHWC_NCHW4_IC_SMALL;
checker.set_rng(1, &rng);
checker.set_dtype(0, dtype::Uint8());
checker.set_dtype(2, dtype::QuantizedS8(1.f));
for (auto bmode : {WarpPerspective::BorderMode::WRAP,
WarpPerspective::BorderMode::REFLECT,
WarpPerspective::BorderMode::REPLICATE,
WarpPerspective::BorderMode::CONSTANT}) {
param.border_val = 0.3f;
param.bmode = bmode;
param.imode = Param::InterpolationMode::LINEAR;
checker.set_param(param);
checker.set_epsilon(1 + 1e-3);
checker.execs({{2, 10, 11, 3}, {2, 3, 3}, {2, 1, 11, 12, 4}});
checker.execs({{1, 25, 510, 3}, {1, 3, 3}, {1, 1, 25, 25, 4}});
checker.execs({{1, 25, 25, 3}, {1, 3, 3}, {1, 1, 51, 51, 4}});
checker.execs({{1, 51, 51, 3}, {1, 3, 3}, {1, 1, 25, 25, 4}});
}
{
Checker<WarpPerspective, WarpPerspectiveMatIdxProxy> checker(
handle_cuda());
constexpr int N_SRC = 5;
UniformIntRNG mat_idx_rng{0, N_SRC - 1};
checker.set_dtype(0, dtype::Uint8());
checker.set_rng(1, &rng);
checker.set_dtype(2, dtype::Int32());
checker.set_rng(2, &mat_idx_rng);
checker.set_dtype(3, dtype::QuantizedS8(1.f));
param.bmode = WarpPerspective::Param::BorderMode::REFLECT;
param.imode = param::WarpPerspective::InterpolationMode::LINEAR;
checker.set_param(param);
checker.set_epsilon(1 + 1e-3);
checker.execs({{N_SRC, 10, 11, 3}, {2, 3, 3}, {2}, {2, 1, 11, 12, 4}});
checker.execs(
{{N_SRC, 17, 13, 3}, {123, 3, 3}, {123}, {123, 1, 16, 15, 4}});
}
}
TEST_F(CUDA, WARP_PERSPECTIVE_NHWC_NCHW) {
using Param = WarpPerspective::Param;
WarpPerspective::Param param;
Checker<WarpPerspectiveForward> checker(handle_cuda());
WarpPerspectiveMatRNG rng;
param.format = Param::Format::NHWC_NCHW;
checker.set_rng(1, &rng);
checker.set_dtype(0, dtype::Uint8());
checker.set_dtype(2, dtype::Float32());
for (auto bmode : {WarpPerspective::BorderMode::WRAP,
WarpPerspective::BorderMode::REFLECT,
WarpPerspective::BorderMode::REPLICATE,
WarpPerspective::BorderMode::CONSTANT}) {
param.border_val = 0.3f;
param.bmode = bmode;
param.imode = Param::InterpolationMode::LINEAR;
checker.set_param(param);
checker.set_epsilon(1 + 1e-3);
checker.execs({{2, 10, 11, 3}, {2, 3, 3}, {2, 3, 11, 12}});
checker.execs({{1, 25, 510, 3}, {1, 3, 3}, {1, 3, 25, 25}});
checker.execs({{1, 25, 25, 3}, {1, 3, 3}, {1, 3, 51, 51}});
checker.execs({{1, 51, 51, 3}, {1, 3, 3}, {1, 3, 25, 25}});
}
{
Checker<WarpPerspective, WarpPerspectiveMatIdxProxy> checker(
handle_cuda());
constexpr int N_SRC = 5;
UniformIntRNG mat_idx_rng{0, N_SRC - 1};
checker.set_dtype(0, dtype::Uint8());
checker.set_rng(1, &rng);
checker.set_dtype(2, dtype::Int32());
checker.set_rng(2, &mat_idx_rng);
checker.set_dtype(3, dtype::Float32());
param.bmode = WarpPerspective::Param::BorderMode::REFLECT;
param.imode = param::WarpPerspective::InterpolationMode::LINEAR;
checker.set_param(param);
checker.set_epsilon(1 + 1e-3);
checker.execs({{N_SRC, 10, 11, 3}, {2, 3, 3}, {2}, {2, 3, 11, 12}});
checker.execs(
{{N_SRC, 17, 13, 3}, {123, 3, 3}, {123}, {123, 3, 16, 15}});
}
}
TEST_F(CUDA, WARP_PERSPECTIVE_FORWARD_NCHW_INT8) {
warp_perspective::run_int8_test(handle_cuda());
}
......
此差异已折叠。
......@@ -19,6 +19,7 @@
#include "megbrain/opr/utility.h"
#include "megbrain/serialization/opr_shallow_copy.h"
#include "megbrain/serialization/serializer.h"
#include "megbrain/opr/imgproc.h"
using namespace mgb;
using namespace gopt;
......@@ -443,4 +444,244 @@ void FuseNCHW4Int8Preprocess::apply(OptState& state) const {
};
state.graph().iter(on_opr);
rewriter.apply_inplace();
}
/* ==================== FuseWarpPerspectiveDimshufflePass ================= */
const char* FuseWarpPerspectiveDimshufflePass::name() const {
return mgb_cstr_log("Fuse warp perspective dimshuffle pass");
}
void FuseWarpPerspectiveDimshufflePass::apply(OptState& opt) const {
auto rewriter = opt.graph().make_rewriter();
auto uniq_reader_check = UniqReaderCheck{opt.graph()};
auto make_new_warp = [&rewriter](opr::WarpPerspective* warp,
opr::WarpPerspective::Param new_param,
megdnn::DType dst_dtype,
SymbolVar& new_warp) {
OperatorNodeConfig new_config(dst_dtype);
if (warp->input().size() == 3) {
auto src = rewriter.get_var(warp->input(0)),
mat = rewriter.get_var(warp->input(1)),
out_shape = rewriter.get_var(warp->input(2));
new_warp = opr::WarpPerspective::make(src, mat, out_shape,
new_param, new_config);
} else {
mgb_assert(warp->input().size() == 4);
auto src = rewriter.get_var(warp->input(0)),
mat = rewriter.get_var(warp->input(1)),
mat_idx = rewriter.get_var(warp->input(2)),
out_shape = rewriter.get_var(warp->input(3));
new_warp = opr::WarpPerspective::make(src, mat, mat_idx, out_shape,
new_param, new_config);
}
};
auto is_warp_nchw = [&uniq_reader_check](OperatorNodeBase* bottom_opr,
OperatorNodeBase*& top_opr) {
// check warp
auto warp = try_cast_as_op<opr::WarpPerspective>(bottom_opr);
if (warp == nullptr)
return false;
auto inp_dtype = warp->input(0)->dtype();
bool is_u8_or_qu8 = inp_dtype.enumv() == DTypeEnum::Quantized8Asymm ||
inp_dtype.enumv() == DTypeEnum::Uint8;
bool is_nchw = warp->param().format ==
megdnn::param::WarpPerspective::Format::NCHW;
if (!(is_u8_or_qu8 && is_nchw))
return false;
if (!uniq_reader_check(warp->input(0)))
return false;
top_opr = warp;
return true;
};
auto is_warp_nhwc2nchw = [&uniq_reader_check](OperatorNodeBase* bottom_opr,
OperatorNodeBase*& top_opr) {
// check shuffle
auto shuffle = try_cast_as_op<opr::Dimshuffle>(bottom_opr);
if (shuffle == nullptr)
return false;
auto&& shuffle_param = shuffle->param();
if (shuffle_param.pattern_len != 4)
return false;
bool is_nhwc2nchw = shuffle_param.pattern[0] == 0 &&
shuffle_param.pattern[1] == 3 &&
shuffle_param.pattern[2] == 1 &&
shuffle_param.pattern[3] == 2;
if (!is_nhwc2nchw)
return false;
if (!uniq_reader_check(shuffle->input(0)))
return false;
// check warp
auto warp = try_cast_as_op<opr::WarpPerspective>(
shuffle->input(0)->owner_opr());
if (warp == nullptr)
return false;
auto inp_dtype = warp->input(0)->dtype();
bool is_u8_or_qu8 = inp_dtype.enumv() == DTypeEnum::Quantized8Asymm ||
inp_dtype.enumv() == DTypeEnum::Uint8;
bool is_nhwc = warp->param().format ==
megdnn::param::WarpPerspective::Format::NHWC;
if (!(is_u8_or_qu8 && is_nhwc))
return false;
top_opr = warp;
return true;
};
auto try_warp_nchw_typecvt = [&rewriter, &uniq_reader_check, &is_warp_nchw,
&make_new_warp](OperatorNodeBase* opr) {
// check typecvt
auto typecvt = try_cast_as_op<opr::TypeCvt>(opr);
if (typecvt == nullptr)
return false;
bool is_to_f32 =
typecvt->output(0)->dtype().enumv() == DTypeEnum::Float32;
if (!is_to_f32)
return false;
if (!uniq_reader_check(typecvt->input(0)))
return false;
OperatorNodeBase* top_opr = nullptr;
if (!is_warp_nchw(typecvt->input(0)->owner_opr(), top_opr))
return false;
auto warp = try_cast_as_op<opr::WarpPerspective>(top_opr);
SymbolVar new_warp;
make_new_warp(warp, warp->param(), opr->output()[0]->dtype(), new_warp);
rewriter.replace_var(opr->output(0), new_warp.node(),
mgb_cstr_log("replace warp + typecvt"
"fuse warp_dimshuffle(NCHW)"));
return true;
};
auto try_warp_nhwc2nchw_typecvt = [&rewriter, &uniq_reader_check,
&is_warp_nhwc2nchw,
&make_new_warp](OperatorNodeBase* opr) {
// check typecvt
auto typecvt = try_cast_as_op<opr::TypeCvt>(opr);
if (typecvt == nullptr)
return false;
bool is_to_f32 =
typecvt->output(0)->dtype().enumv() == DTypeEnum::Float32;
if (!is_to_f32)
return false;
if (!uniq_reader_check(typecvt->input(0)))
return false;
OperatorNodeBase* top_opr = nullptr;
if (!is_warp_nhwc2nchw(typecvt->input(0)->owner_opr(), top_opr))
return false;
auto warp = try_cast_as_op<opr::WarpPerspective>(top_opr);
opr::WarpPerspective::Param new_param = warp->param();
new_param.format = megdnn::param::WarpPerspective::Format::NHWC_NCHW;
SymbolVar new_warp;
make_new_warp(warp, new_param, opr->output()[0]->dtype(), new_warp);
rewriter.replace_var(
opr->output(0), new_warp.node(),
mgb_cstr_log("replace conv_bias + dimshuffle + "
"typecvt to warp_dimshuffle(NHWC_NCHW)"));
return true;
};
auto try_warp_nhwc2nchw4_typecvt = [&rewriter, &uniq_reader_check,
&is_warp_nhwc2nchw,
&make_new_warp](OperatorNodeBase* opr) {
// check relayout
auto relayout = try_cast_as_op<opr::RelayoutFormat>(opr);
if (relayout == nullptr)
return false;
bool is_to_q8 =
relayout->output(0)->dtype().enumv() == DTypeEnum::QuantizedS8;
bool is_to_nchw2nchw4 = relayout->param().mode ==
opr::RelayoutFormat::Param::Mode::NCHW_NCHW4;
if (!(is_to_q8 && is_to_nchw2nchw4))
return false;
if (!uniq_reader_check(relayout->input(0)))
return false;
OperatorNodeBase* top_opr = nullptr;
if (!is_warp_nhwc2nchw(relayout->input(0)->owner_opr(), top_opr))
return false;
auto warp = try_cast_as_op<opr::WarpPerspective>(top_opr);
bool is_small_chn = warp->input(0)->shape()[3] < 4;
if (!is_small_chn)
return false;
opr::WarpPerspective::Param new_param = warp->param();
new_param.format =
megdnn::param::WarpPerspective::Format::NHWC_NCHW4_IC_SMALL;
SymbolVar new_warp;
make_new_warp(warp, new_param, opr->output()[0]->dtype(), new_warp);
rewriter.replace_var(
opr->output(0), new_warp.node(),
mgb_cstr_log("replace warp + dimshuffle + relayout(NCHW_NCHW4)"
"to warp_dimshuffle(NHWC_NCHW4_IC_SMALL)"));
return true;
};
auto try_warp_nchw2nchw4_typecvt = [&rewriter, &uniq_reader_check,
&is_warp_nchw,
&make_new_warp](OperatorNodeBase* opr) {
// check relayout
auto relayout = try_cast_as_op<opr::RelayoutFormat>(opr);
if (relayout == nullptr)
return false;
bool is_to_q8 =
relayout->output(0)->dtype().enumv() == DTypeEnum::QuantizedS8;
bool is_to_nchw2nchw4 = relayout->param().mode ==
opr::RelayoutFormat::Param::Mode::NCHW_NCHW4;
if (!(is_to_q8 && is_to_nchw2nchw4))
return false;
if (!uniq_reader_check(relayout->input(0)))
return false;
OperatorNodeBase* top_opr = nullptr;
if (!is_warp_nchw(relayout->input(0)->owner_opr(), top_opr))
return false;
auto warp = try_cast_as_op<opr::WarpPerspective>(top_opr);
bool is_small_chn = warp->input(0)->shape()[1] < 4;
if (!is_small_chn)
return false;
opr::WarpPerspective::Param new_param = warp->param();
new_param.format =
megdnn::param::WarpPerspective::Format::NCHW_NCHW4_IC_SMALL;
SymbolVar new_warp;
make_new_warp(warp, new_param, opr->output()[0]->dtype(), new_warp);
rewriter.replace_var(
opr->output(0), new_warp.node(),
mgb_cstr_log("replace warp + relayout(NCHW_NCHW4)"
"to warp_dimshuffle(NCHW_NCHW4_IC_SMALL)"));
return true;
};
auto on_opr = [&try_warp_nchw_typecvt, &try_warp_nhwc2nchw_typecvt,
&try_warp_nhwc2nchw4_typecvt, &try_warp_nchw2nchw4_typecvt,
&rewriter](OperatorNodeBase* opr) {
if (!try_warp_nchw_typecvt(opr) && !try_warp_nhwc2nchw_typecvt(opr) &&
!try_warp_nhwc2nchw4_typecvt(opr) &&
!try_warp_nchw2nchw4_typecvt(opr)) {
rewriter.auto_replace_outputs(opr);
}
};
opt.graph().iter(on_opr);
rewriter.apply_inplace();
}
\ No newline at end of file
......@@ -172,6 +172,16 @@ namespace gopt {
m_opr_replace_func;
};
/*!
* \brief fuse warp perspective and dimshuffle, quint8/uint8 to qint8/float
*/
class FuseWarpPerspectiveDimshufflePass : public Pass {
public:
const char* name() const override;
void apply(OptState& opt) const override;
};
/*!
* \brief fuse deconv and typecvt to a deconv opr
*/
......
......@@ -1172,7 +1172,8 @@ TEST(TestGoptInference, ConvertFormatNHWCD4) {
param.pad_h = param.pad_w = 1;
auto w2 = mkcvar("w2", {4, 4, 3, 3}),
y = opr::Convolution::make(elem, w2, param),
z = opr::AxisAddRemove::make(y, {opr::AxisAddRemove::AxisDesc::make_add(0)});
z = opr::AxisAddRemove::make(
y, {opr::AxisAddRemove::AxisDesc::make_add(0)});
SymbolVar y_opt, z_opt;
auto options = gopt::OptimizeForInferenceOptions{};
......@@ -3722,5 +3723,65 @@ TEST(TestGoptInference, PreProcessCase1) {
ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::RelayoutFormat>());
}
TEST(TestGoptInference, WarpAndPreProcessCase) {
REQUIRE_GPU(1);
HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
auto cn = CompNode::load("gpu0");
auto graph = ComputingGraph::make();
graph->options().graph_opt_level = 0;
size_t n = 1;
size_t c = 3;
size_t h = 16;
size_t w = 16;
auto host_x1 = gen({n, h, w, c}, cn);
auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
auto mat_host = std::make_shared<HostTensorND>(cn, TensorShape{n, 3, 3},
dtype::Float32());
warp_perspective_mat_gen(*mat_host, n, h, w);
auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
opr::WarpPerspective::Param warp_param;
warp_param.format = opr::WarpPerspective::Param::Format::NHWC;
auto x_warp =
opr::WarpPerspective::make(x, mat, TensorShape{h, w}, warp_param);
auto x_nchw = opr::Dimshuffle::make(x_warp, {0, 3, 1, 2}, 4, cn);
auto x_u8 = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
auto x_s8 = x_u8 - 128;
auto zero = DTypeScalar(dtype::Float32());
auto zero_tensor = opr::ImmutableTensor::make(*graph, zero, cn);
auto pad_channel_tensor =
opr::Broadcast::make(zero_tensor, {n, 1, h, w}, cn);
auto paded_x = opr::Concat::make({x_s8, pad_channel_tensor}, 1, cn)
.reshape({n, 1, 4, h, w});
auto nchw4_out = opr::Dimshuffle::make(paded_x, {0, 1, 3, 4, 2}, 5, cn);
auto result = opr::TypeCvt::make(nchw4_out, dtype::QuantizedS8(1.f));
auto y = result;
SymbolVar y_opt;
auto options = gopt::OptimizeForInferenceOptions{};
options.enable_fuse_preprocess();
unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::WarpPerspective>());
ASSERT_EQ(opr::WarpPerspective::Param::Format::NHWC_NCHW4_IC_SMALL,
find_opr<opr::WarpPerspective>(y_opt).param().format);
graph->compile({{y_opt, {}}})
->to_json()
->writeto_fpath(output_file(
"TestGoptInference.WarpAndPreProcessCase.json"));
HostTensorND host_y_opt, host_y;
auto func = graph->compile({make_callback_copy(y, host_y),
make_callback_copy(y_opt, host_y_opt)});
func->execute();
MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
}
#endif
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
......@@ -47,7 +47,11 @@ SymbolVar WarpPerspectiveForward::make(SymbolVar i0, SymbolVar i1, SymbolVar i2,
}
void WarpPerspectiveForward::init_output_dtype() {
output(0)->dtype(input(0)->dtype());
if (config().output_dtype().valid()) {
output(0)->dtype(config().output_dtype());
} else {
output(0)->dtype(input(0)->dtype());
}
}
void WarpPerspectiveForward::add_input_layout_constraint() {
......@@ -78,23 +82,40 @@ void WarpPerspectiveForward::outshape_by_symvar_do_get_output_shape(
mat_idx_shp.to_string().c_str());
}
//! The index of height, e.g.,[b, h, w, c], the height_idx = 1
size_t height_idx = 0;
if (param().format == Param::Format::NCHW ||
param().format == Param::Format::NCHW4) {
height_idx = 2;
} else {
height_idx = 1;
}
dest = imgshp;
dest[0] = matshp[0];
if (param().format == Param::Format::NHWCD4) {
dest.shape[height_idx] = oshp2d.shape[0];
dest.shape[height_idx + 2] = oshp2d.shape[1];
} else {
for (int i = 0; i < 2; ++i)
dest.shape[height_idx + i] = oshp2d.shape[i];
switch (param().format) {
case Param::Format::NCHW_NCHW4_IC_SMALL:
case Param::Format::NHWC_NCHW4_IC_SMALL:
dest.ndim = 5;
dest[0] = matshp[0];
dest.shape[1] = 1;
dest.shape[2] = oshp2d.shape[0];
dest.shape[3] = oshp2d.shape[1];
dest.shape[4] = 4;
break;
case Param::Format::NHWC_NCHW:
dest[0] = matshp[0];
dest.shape[1] = imgshp.shape[3];
dest.shape[2] = oshp2d.shape[0];
dest.shape[3] = oshp2d.shape[1];
break;
default:
size_t height_idx = 0;
if (param().format == Param::Format::NCHW ||
param().format == Param::Format::NCHW4) {
height_idx = 2;
} else {
height_idx = 1;
}
dest = imgshp;
dest[0] = matshp[0];
if (param().format == Param::Format::NHWCD4) {
dest.shape[height_idx] = oshp2d.shape[0];
dest.shape[height_idx + 2] = oshp2d.shape[1];
} else {
for (int i = 0; i < 2; ++i)
dest.shape[height_idx + i] = oshp2d.shape[i];
}
break;
}
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册