提交 0b5777d9 编写于 作者: C chris

v1.0

上级 695fa5a0
./CMakeFiles
./CMakeCache.txt
./Makefile
./cmake_install.cmake
Valid-License-Identifier: BSD-3-Clause
SPDX-URL: https://spdx.org/licenses/BSD-3-Clause.html
Usage-Guide:
To use the BSD 3-clause "New" or "Revised" License put the following SPDX
tag/value pair into a comment according to the placement guidelines in
the licensing rules documentation:
SPDX-License-Identifier: BSD-3-Clause
License-Text:
Copyright (c) <year> <owner> . All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
cmake_minimum_required(VERSION 3.1)
project(NS)
set(CMAKE_C_FLAGS "-std=c99")
set(LIBRARY_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin)
set(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin)
#add_definitions(-g -ggdb -Wall)
#add_definitions(-Ddebug)
aux_source_directory(${PROJECT_SOURCE_DIR}/src/kiss_fft KISSFFT_SRC_FILES)
add_executable(NS_demo2 src/context.c src/blms.c src/blms_fdaf_main.c ${KISSFFT_SRC_FILES})
target_link_libraries(NS_demo2 sndfile m)
#add_executable(test_kissfft src/test_kissfft.c ${KISSFFT_SRC_FILES})
# blms
# BLMS
block lms filter实现
\ No newline at end of file
block lms filter implementation
## v1.0 version
implementation for the BLMS Frequence-domian Adapt filtering
# Build
The inner build system supported by BLMS:
+ CMAKE >=3.1
## Dependency
+ Kissfft (BSD-3)
To generate the Makefile
```
cmake .
```
and then run the make
```
make .
```
#License
BSD-3-Clause
/*
* Copyright (c) 2021-2022, Chris Zhang Jin. All rights reserved.
* This file is part of blms - https://codechina.csdn.net/mimiduck/blms
*
* SPDX-License-Identifier: BSD-3 License
* See COPYING file for more information.
*
*/
#include "blms.h"
/***
* fft_buffer construct [old] [new]
* adapt [w] [0....0]
* total size N = 2*w_len | <- N -> |
* @param fft_buffer
* @param input
* @param dx
* @param w
* @param w_len
* @param out
* @return
*/
int BLMS_FDAF(context_t *context, float *input, float *dx, float *w, int w_len, float *out) {
// move the old to the left part
memmove(context->fft_buffer, context->fft_buffer+w_len, w_len* sizeof(float));
// copy the new data
memcpy(context->fft_buffer+w_len, input, w_len* sizeof(float));
// copy the w data to left part
memcpy(context->w_buffer, w, w_len* sizeof(float));
const int kLen = w_len*2;
// FFT for x
kiss_fft_cpx x[kLen];
memset(x, 0, sizeof(kiss_fft_cpx)*kLen);
for (int i=0; i<kLen; i++) {
x[i].r = context->fft_buffer[i];
}
kiss_fft_cpx X[kLen];
kiss_fft(context->fft_cfg, x, X);
// FFT for w
kiss_fft_cpx w_h[kLen];
for (int i=0; i<kLen; i++) {
w_h[i].r = context->w_buffer[i];
w_h[i].i = 0;
}
kiss_fft_cpx W[kLen];
kiss_fft(context->fft_cfg, w_h, W);
// complex multiply
kiss_fft_cpx Y[kLen];
for (int i=0; i<kLen; i++) {
Y[i].r = (X[i].r * W[i].r - X[i].i * W[i].i) / (kLen * kLen);
Y[i].i = (X[i].r * W[i].i + X[i].i * W[i].r) / (kLen * kLen);
}
kiss_fft_cpx o[kLen];
kiss_fft(context->ifft_cfg, Y, o);
// get the last N of ifft result
for (int i=w_len; i<kLen; i++) {
out[i-w_len] = o[i].r;
out[i-w_len] *= kLen;
#ifdef debug
fprintf(context->file_o, "%4.4f, ", out[i-w_len]);
#endif
}
#ifdef debug
fprintf(context->file_o, "\n");
#endif
// conjugate X for corelation
for (int i=0; i<kLen; i++) {
X[i].i = -X[i].i;
}
// padding with 0 for length 2N
kiss_fft_cpx e[kLen];
for (int i=0; i<w_len; i++) {
e[i].r = 0;
e[i].i = 0;
}
for (int i=w_len; i<kLen; i++) {
e[i].r = dx[i-w_len] - o[i].r;
#ifdef debug
fprintf(context->file_e, "%4.4f, ", e[i].r);
#endif
e[i].i = 0;
}
#ifdef debug
fprintf(context->file_e, "\n");
#endif
kiss_fft_cpx E[kLen];
kiss_fft(context->fft_cfg, e, E);
// complex multiply2
kiss_fft_cpx M2[kLen];
for (int i=0; i<kLen; i++) {
M2[i].r = (X[i].r*E[i].r - X[i].i*E[i].i)/(kLen*kLen);
M2[i].i = (X[i].r*E[i].i + X[i].i*E[i].r)/(kLen*kLen);
}
// ifft for the w's gradient
kiss_fft_cpx o2[kLen];
kiss_fft(context->ifft_cfg, M2, o2);
// keep the first N of output
for (int i=0; i<w_len; i++) {
o2[i].i = 0;
}
for (int i=w_len; i<kLen; i++) {
o2[i].i = 0;
o2[i].r = 0;
}
// move the first N backwards
for (int i=0; i<w_len; i++) {
o2[i+w_len].r = o2[i].r;
o2[i].r = 0;
}
// fft for the output of gradient
kiss_fft_cpx G[kLen];
kiss_fft(context->fft_cfg, o2, G);
// update for the w in freq domain
for (int i=0; i<kLen; i++) {
W[i].r = (W[i].r + 2*context->mu*G[i].r)/kLen;
W[i].i = (W[i].i + 2*context->mu*G[i].i)/kLen;
}
// ifft the updated w
kiss_fft_cpx wo[kLen];
kiss_fft(context->ifft_cfg, W, wo);
// last N
for (int i=w_len; i<kLen; i++) {
w[i-w_len] = wo[i].r;
#ifdef debug
fprintf(context->file_w, "%4.4f, ", wo[i].r);
#endif
}
#ifdef debug
fprintf(context->file_w, "\n");
#endif
// first N
// for (int i=0; i<w_len; i++) {
// w[i] = wo[i].r;
// fprintf(context->file_w, "%4.4f, ", wo[i].r);
// }
// fprintf(context->file_w, "\n");
return 0;
}
/*
* Copyright (c) 2021-2022, Chris Zhang Jin. All rights reserved.
* This file is part of blms - https://codechina.csdn.net/mimiduck/blms
*
* SPDX-License-Identifier: BSD-3 License
* See COPYING file for more information.
*
*/
#ifndef NS_BLMS_H
#define NS_BLMS_H
#include "context.h"
int BLMS_FDAF(context_t *context, float *input, float *dx, float* w, int w_len, float *out);
#endif //NS_BLMS_H
/*
* Copyright (c) 2021-2022, Chris Zhang Jin. All rights reserved.
* This file is part of blms - https://codechina.csdn.net/mimiduck/blms
*
* SPDX-License-Identifier: BSD-3 License
* See COPYING file for more information.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <sndfile.h>
#include "blms.h"
#define FRAME_SIZE W_LEN
void process_file(context_t *context) {
SF_INFO info;
SNDFILE *in = sf_open(context->input_file_name, SFM_READ, &info);
if (!in) {
fprintf(stderr, "cannot open file %s\n", context->input_file_name);
return;
}
SF_INFO info2;
SNDFILE *dst = sf_open(context->destination_file_name, SFM_READ, &info2);
if (!dst) {
fprintf(stderr, "cannot open file %s\n", context->destination_file_name);
return;
}
int len = 1000;
int len_step = 1000;
float *dest_samples = (float *) calloc(len, sizeof(float));
sf_count_t cnt = 0;
do {
cnt = sf_read_float(dst, dest_samples+(len-len_step), len_step);
len += cnt;
if (cnt == 0) break;
dest_samples = realloc(dest_samples, len* sizeof(float));
} while (1);
sf_close(dst);
SF_INFO onfo;
onfo.channels = 1;
onfo.samplerate = 8000;
onfo.format = SF_FORMAT_PCM_16 | SF_FORMAT_WAV;
onfo.sections = 1;
onfo.seekable = 1;
SNDFILE *out = sf_open(context->output_file_name, SFM_WRITE, &onfo);
if (!out) {
fprintf(stderr, "cannot open file %s\n", context->output_file_name);
return;
}
// initialize adaptive filter coefficients, by zeros
float w[W_LEN];
for (int i = 0; i < W_LEN; i++) {
w[i] = 0.0f;
}
float frame[FRAME_SIZE] = {0};
sf_count_t read = 0;
int dni = 0;
int fi = 0;
do {
read = sf_read_float(in, frame, FRAME_SIZE);
if (read == 0) break;
printf("processing frame %d\n", fi++);
BLMS_FDAF(context, frame, dest_samples+dni, w, W_LEN, frame);
dni = (dni+read)%len;
sf_write_float(out, frame, read);
} while (read != 0);
sf_close(in);
sf_close(out);
free(dest_samples);
}
int main(int argc, char* const argv[]) {
if (argc != 4) {
fprintf(stderr, "please input the file,output file,destination file \n");
exit(1);
}
printf("the input file name: %s\nthe output file name: %s\nthe destination file name: %s", argv[1], argv[2], argv[3]);
context_t *context = init_context(argv[1], argv[2], argv[3]);
process_file(context);
uninit_context(context);
printf("===end===\n");
return 0;
}
/*
* Copyright (c) 2021-2022, Chris Zhang Jin. All rights reserved.
* This file is part of blms - https://codechina.csdn.net/mimiduck/blms
*
* SPDX-License-Identifier: BSD-3 License
* See COPYING file for more information.
*
*/
#include "context.h"
context_t *init_context(const char *input_file_name, const char *output_file_name, const char *destination_file_name) {
context_t *context = calloc(1, sizeof(context_t));
context->input_file_name = input_file_name;
context->output_file_name = output_file_name;
context->destination_file_name = destination_file_name;
context->fft_cfg = kiss_fft_alloc(W_LEN*2, 0, 0, 0);
context->ifft_cfg = kiss_fft_alloc(W_LEN*2, 1, 0, 0);
context->fft_buffer = calloc(W_LEN*2, sizeof(float));
context->w_buffer = calloc(W_LEN*2, sizeof(float));
context->mu = 0.2;
#ifdef debug
context->file_w = fopen("file_w.txt", "w");
context->file_o = fopen("file_o.txt", "w");
context->file_e = fopen("file_e.txt", "w");
#endif
return context;
}
void uninit_context(context_t *context) {
kiss_fft_free(context->fft_cfg);
kiss_fft_free(context->ifft_cfg);
free(context->fft_buffer);
free(context->w_buffer);
#ifdef debug
fclose(context->file_w);
fclose(context->file_o);
fclose(context->file_e);
#endif
free(context);
}
/*
* Copyright (c) 2021-2022, Chris Zhang Jin. All rights reserved.
* This file is part of blms - https://codechina.csdn.net/mimiduck/blms
*
* SPDX-License-Identifier: BSD-3 License
* See COPYING file for more information.
*
*/
#ifndef NS_CONTEXT_H
#define NS_CONTEXT_H
#include "kiss_fft/kiss_fft.h"
#define W_LEN 120
typedef struct {
const char *input_file_name;
const char *output_file_name;
const char *destination_file_name;
float *fft_buffer;
float *w_buffer;
kiss_fft_cfg fft_cfg;
kiss_fft_cfg ifft_cfg;
float mu;
#ifdef debug
FILE *file_w;
FILE *file_o;
FILE *file_e;
#endif
} context_t;
context_t *init_context(const char *input_file_name, const char *output_file_name, const char *destination_file_name);
void uninit_context(context_t *context);
#endif //NS_CONTEXT_H
/*
* Copyright (c) 2003-2010, Mark Borgerding. All rights reserved.
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
*
* SPDX-License-Identifier: BSD-3-Clause
* See COPYING file for more information.
*/
/* kiss_fft.h
defines kiss_fft_scalar as either short or a float type
and defines
typedef struct { kiss_fft_scalar r; kiss_fft_scalar i; }kiss_fft_cpx; */
#ifndef _kiss_fft_guts_h
#define _kiss_fft_guts_h
#include "kiss_fft.h"
#include <limits.h>
#define MAXFACTORS 32
/* e.g. an fft of length 128 has 4 factors
as far as kissfft is concerned
4*4*4*2
*/
struct kiss_fft_state{
int nfft;
int inverse;
int factors[2*MAXFACTORS];
kiss_fft_cpx twiddles[1];
};
/*
Explanation of macros dealing with complex math:
C_MUL(m,a,b) : m = a*b
C_FIXDIV( c , div ) : if a fixed point impl., c /= div. noop otherwise
C_SUB( res, a,b) : res = a - b
C_SUBFROM( res , a) : res -= a
C_ADDTO( res , a) : res += a
* */
#ifdef FIXED_POINT
#include <stdint.h>
#if (FIXED_POINT==32)
# define FRACBITS 31
# define SAMPPROD int64_t
#define SAMP_MAX INT32_MAX
#define SAMP_MIN INT32_MIN
#else
# define FRACBITS 15
# define SAMPPROD int32_t
#define SAMP_MAX INT16_MAX
#define SAMP_MIN INT16_MIN
#endif
#if defined(CHECK_OVERFLOW)
# define CHECK_OVERFLOW_OP(a,op,b) \
if ( (SAMPPROD)(a) op (SAMPPROD)(b) > SAMP_MAX || (SAMPPROD)(a) op (SAMPPROD)(b) < SAMP_MIN ) { \
fprintf(stderr,"WARNING:overflow @ " __FILE__ "(%d): (%d " #op" %d) = %ld\n",__LINE__,(a),(b),(SAMPPROD)(a) op (SAMPPROD)(b) ); }
#endif
# define smul(a,b) ( (SAMPPROD)(a)*(b) )
# define sround( x ) (kiss_fft_scalar)( ( (x) + (1<<(FRACBITS-1)) ) >> FRACBITS )
# define S_MUL(a,b) sround( smul(a,b) )
# define C_MUL(m,a,b) \
do{ (m).r = sround( smul((a).r,(b).r) - smul((a).i,(b).i) ); \
(m).i = sround( smul((a).r,(b).i) + smul((a).i,(b).r) ); }while(0)
# define DIVSCALAR(x,k) \
(x) = sround( smul( x, SAMP_MAX/k ) )
# define C_FIXDIV(c,div) \
do { DIVSCALAR( (c).r , div); \
DIVSCALAR( (c).i , div); }while (0)
# define C_MULBYSCALAR( c, s ) \
do{ (c).r = sround( smul( (c).r , s ) ) ;\
(c).i = sround( smul( (c).i , s ) ) ; }while(0)
#else /* not FIXED_POINT*/
# define S_MUL(a,b) ( (a)*(b) )
#define C_MUL(m,a,b) \
do{ (m).r = (a).r*(b).r - (a).i*(b).i;\
(m).i = (a).r*(b).i + (a).i*(b).r; }while(0)
# define C_FIXDIV(c,div) /* NOOP */
# define C_MULBYSCALAR( c, s ) \
do{ (c).r *= (s);\
(c).i *= (s); }while(0)
#endif
#ifndef CHECK_OVERFLOW_OP
# define CHECK_OVERFLOW_OP(a,op,b) /* noop */
#endif
#define C_ADD( res, a,b)\
do { \
CHECK_OVERFLOW_OP((a).r,+,(b).r)\
CHECK_OVERFLOW_OP((a).i,+,(b).i)\
(res).r=(a).r+(b).r; (res).i=(a).i+(b).i; \
}while(0)
#define C_SUB( res, a,b)\
do { \
CHECK_OVERFLOW_OP((a).r,-,(b).r)\
CHECK_OVERFLOW_OP((a).i,-,(b).i)\
(res).r=(a).r-(b).r; (res).i=(a).i-(b).i; \
}while(0)
#define C_ADDTO( res , a)\
do { \
CHECK_OVERFLOW_OP((res).r,+,(a).r)\
CHECK_OVERFLOW_OP((res).i,+,(a).i)\
(res).r += (a).r; (res).i += (a).i;\
}while(0)
#define C_SUBFROM( res , a)\
do {\
CHECK_OVERFLOW_OP((res).r,-,(a).r)\
CHECK_OVERFLOW_OP((res).i,-,(a).i)\
(res).r -= (a).r; (res).i -= (a).i; \
}while(0)
#ifdef FIXED_POINT
# define KISS_FFT_COS(phase) floor(.5+SAMP_MAX * cos (phase))
# define KISS_FFT_SIN(phase) floor(.5+SAMP_MAX * sin (phase))
# define HALF_OF(x) ((x)>>1)
#elif defined(USE_SIMD)
# define KISS_FFT_COS(phase) _mm_set1_ps( cos(phase) )
# define KISS_FFT_SIN(phase) _mm_set1_ps( sin(phase) )
# define HALF_OF(x) ((x)*_mm_set1_ps(.5))
#else
# define KISS_FFT_COS(phase) (kiss_fft_scalar) cos(phase)
# define KISS_FFT_SIN(phase) (kiss_fft_scalar) sin(phase)
# define HALF_OF(x) ((x)*.5)
#endif
#define kf_cexp(x,phase) \
do{ \
(x)->r = KISS_FFT_COS(phase);\
(x)->i = KISS_FFT_SIN(phase);\
}while(0)
/* a debugging function */
#define pcpx(c)\
fprintf(stderr,"%g + %gi\n",(double)((c)->r),(double)((c)->i) )
#ifdef KISS_FFT_USE_ALLOCA
// define this to allow use of alloca instead of malloc for temporary buffers
// Temporary buffers are used in two case:
// 1. FFT sizes that have "bad" factors. i.e. not 2,3 and 5
// 2. "in-place" FFTs. Notice the quotes, since kissfft does not really do an in-place transform.
#include <alloca.h>
#define KISS_FFT_TMP_ALLOC(nbytes) alloca(nbytes)
#define KISS_FFT_TMP_FREE(ptr)
#else
#define KISS_FFT_TMP_ALLOC(nbytes) KISS_FFT_MALLOC(nbytes)
#define KISS_FFT_TMP_FREE(ptr) KISS_FFT_FREE(ptr)
#endif
#endif /* _kiss_fft_guts_h */
/*
* Copyright (c) 2003-2010, Mark Borgerding. All rights reserved.
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
*
* SPDX-License-Identifier: BSD-3-Clause
* See COPYING file for more information.
*/
#include "_kiss_fft_guts.h"
/* The guts header contains all the multiplication and addition macros that are defined for
fixed or floating point complex numbers. It also delares the kf_ internal functions.
*/
static void kf_bfly2(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
int m
)
{
kiss_fft_cpx * Fout2;
kiss_fft_cpx * tw1 = st->twiddles;
kiss_fft_cpx t;
Fout2 = Fout + m;
do{
C_FIXDIV(*Fout,2); C_FIXDIV(*Fout2,2);
C_MUL (t, *Fout2 , *tw1);
tw1 += fstride;
C_SUB( *Fout2 , *Fout , t );
C_ADDTO( *Fout , t );
++Fout2;
++Fout;
}while (--m);
}
static void kf_bfly4(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
const size_t m
)
{
kiss_fft_cpx *tw1,*tw2,*tw3;
kiss_fft_cpx scratch[6];
size_t k=m;
const size_t m2=2*m;
const size_t m3=3*m;
tw3 = tw2 = tw1 = st->twiddles;
do {
C_FIXDIV(*Fout,4); C_FIXDIV(Fout[m],4); C_FIXDIV(Fout[m2],4); C_FIXDIV(Fout[m3],4);
C_MUL(scratch[0],Fout[m] , *tw1 );
C_MUL(scratch[1],Fout[m2] , *tw2 );
C_MUL(scratch[2],Fout[m3] , *tw3 );
C_SUB( scratch[5] , *Fout, scratch[1] );
C_ADDTO(*Fout, scratch[1]);
C_ADD( scratch[3] , scratch[0] , scratch[2] );
C_SUB( scratch[4] , scratch[0] , scratch[2] );
C_SUB( Fout[m2], *Fout, scratch[3] );
tw1 += fstride;
tw2 += fstride*2;
tw3 += fstride*3;
C_ADDTO( *Fout , scratch[3] );
if(st->inverse) {
Fout[m].r = scratch[5].r - scratch[4].i;
Fout[m].i = scratch[5].i + scratch[4].r;
Fout[m3].r = scratch[5].r + scratch[4].i;
Fout[m3].i = scratch[5].i - scratch[4].r;
}else{
Fout[m].r = scratch[5].r + scratch[4].i;
Fout[m].i = scratch[5].i - scratch[4].r;
Fout[m3].r = scratch[5].r - scratch[4].i;
Fout[m3].i = scratch[5].i + scratch[4].r;
}
++Fout;
}while(--k);
}
static void kf_bfly3(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
size_t m
)
{
size_t k=m;
const size_t m2 = 2*m;
kiss_fft_cpx *tw1,*tw2;
kiss_fft_cpx scratch[5];
kiss_fft_cpx epi3;
epi3 = st->twiddles[fstride*m];
tw1=tw2=st->twiddles;
do{
C_FIXDIV(*Fout,3); C_FIXDIV(Fout[m],3); C_FIXDIV(Fout[m2],3);
C_MUL(scratch[1],Fout[m] , *tw1);
C_MUL(scratch[2],Fout[m2] , *tw2);
C_ADD(scratch[3],scratch[1],scratch[2]);
C_SUB(scratch[0],scratch[1],scratch[2]);
tw1 += fstride;
tw2 += fstride*2;
Fout[m].r = Fout->r - HALF_OF(scratch[3].r);
Fout[m].i = Fout->i - HALF_OF(scratch[3].i);
C_MULBYSCALAR( scratch[0] , epi3.i );
C_ADDTO(*Fout,scratch[3]);
Fout[m2].r = Fout[m].r + scratch[0].i;
Fout[m2].i = Fout[m].i - scratch[0].r;
Fout[m].r -= scratch[0].i;
Fout[m].i += scratch[0].r;
++Fout;
}while(--k);
}
static void kf_bfly5(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
int m
)
{
kiss_fft_cpx *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
int u;
kiss_fft_cpx scratch[13];
kiss_fft_cpx * twiddles = st->twiddles;
kiss_fft_cpx *tw;
kiss_fft_cpx ya,yb;
ya = twiddles[fstride*m];
yb = twiddles[fstride*2*m];
Fout0=Fout;
Fout1=Fout0+m;
Fout2=Fout0+2*m;
Fout3=Fout0+3*m;
Fout4=Fout0+4*m;
tw=st->twiddles;
for ( u=0; u<m; ++u ) {
C_FIXDIV( *Fout0,5); C_FIXDIV( *Fout1,5); C_FIXDIV( *Fout2,5); C_FIXDIV( *Fout3,5); C_FIXDIV( *Fout4,5);
scratch[0] = *Fout0;
C_MUL(scratch[1] ,*Fout1, tw[u*fstride]);
C_MUL(scratch[2] ,*Fout2, tw[2*u*fstride]);
C_MUL(scratch[3] ,*Fout3, tw[3*u*fstride]);
C_MUL(scratch[4] ,*Fout4, tw[4*u*fstride]);
C_ADD( scratch[7],scratch[1],scratch[4]);
C_SUB( scratch[10],scratch[1],scratch[4]);
C_ADD( scratch[8],scratch[2],scratch[3]);
C_SUB( scratch[9],scratch[2],scratch[3]);
Fout0->r += scratch[7].r + scratch[8].r;
Fout0->i += scratch[7].i + scratch[8].i;
scratch[5].r = scratch[0].r + S_MUL(scratch[7].r,ya.r) + S_MUL(scratch[8].r,yb.r);
scratch[5].i = scratch[0].i + S_MUL(scratch[7].i,ya.r) + S_MUL(scratch[8].i,yb.r);
scratch[6].r = S_MUL(scratch[10].i,ya.i) + S_MUL(scratch[9].i,yb.i);
scratch[6].i = -S_MUL(scratch[10].r,ya.i) - S_MUL(scratch[9].r,yb.i);
C_SUB(*Fout1,scratch[5],scratch[6]);
C_ADD(*Fout4,scratch[5],scratch[6]);
scratch[11].r = scratch[0].r + S_MUL(scratch[7].r,yb.r) + S_MUL(scratch[8].r,ya.r);
scratch[11].i = scratch[0].i + S_MUL(scratch[7].i,yb.r) + S_MUL(scratch[8].i,ya.r);
scratch[12].r = - S_MUL(scratch[10].i,yb.i) + S_MUL(scratch[9].i,ya.i);
scratch[12].i = S_MUL(scratch[10].r,yb.i) - S_MUL(scratch[9].r,ya.i);
C_ADD(*Fout2,scratch[11],scratch[12]);
C_SUB(*Fout3,scratch[11],scratch[12]);
++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
}
}
/* perform the butterfly for one stage of a mixed radix FFT */
static void kf_bfly_generic(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
int m,
int p
)
{
int u,k,q1,q;
kiss_fft_cpx * twiddles = st->twiddles;
kiss_fft_cpx t;
int Norig = st->nfft;
kiss_fft_cpx * scratch = (kiss_fft_cpx*)KISS_FFT_TMP_ALLOC(sizeof(kiss_fft_cpx)*p);
for ( u=0; u<m; ++u ) {
k=u;
for ( q1=0 ; q1<p ; ++q1 ) {
scratch[q1] = Fout[ k ];
C_FIXDIV(scratch[q1],p);
k += m;
}
k=u;
for ( q1=0 ; q1<p ; ++q1 ) {
int twidx=0;
Fout[ k ] = scratch[0];
for (q=1;q<p;++q ) {
twidx += fstride * k;
if (twidx>=Norig) twidx-=Norig;
C_MUL(t,scratch[q] , twiddles[twidx] );
C_ADDTO( Fout[ k ] ,t);
}
k += m;
}
}
KISS_FFT_TMP_FREE(scratch);
}
static
void kf_work(
kiss_fft_cpx * Fout,
const kiss_fft_cpx * f,
const size_t fstride,
int in_stride,
int * factors,
const kiss_fft_cfg st
)
{
kiss_fft_cpx * Fout_beg=Fout;
const int p=*factors++; /* the radix */
const int m=*factors++; /* stage's fft length/p */
const kiss_fft_cpx * Fout_end = Fout + p*m;
#ifdef _OPENMP
// use openmp extensions at the
// top-level (not recursive)
if (fstride==1 && p<=5 && m!=1)
{
int k;
// execute the p different work units in different threads
# pragma omp parallel for
for (k=0;k<p;++k)
kf_work( Fout +k*m, f+ fstride*in_stride*k,fstride*p,in_stride,factors,st);
// all threads have joined by this point
switch (p) {
case 2: kf_bfly2(Fout,fstride,st,m); break;
case 3: kf_bfly3(Fout,fstride,st,m); break;
case 4: kf_bfly4(Fout,fstride,st,m); break;
case 5: kf_bfly5(Fout,fstride,st,m); break;
default: kf_bfly_generic(Fout,fstride,st,m,p); break;
}
return;
}
#endif
if (m==1) {
do{
*Fout = *f;
f += fstride*in_stride;
}while(++Fout != Fout_end );
}else{
do{
// recursive call:
// DFT of size m*p performed by doing
// p instances of smaller DFTs of size m,
// each one takes a decimated version of the input
kf_work( Fout , f, fstride*p, in_stride, factors,st);
f += fstride*in_stride;
}while( (Fout += m) != Fout_end );
}
Fout=Fout_beg;
// recombine the p smaller DFTs
switch (p) {
case 2: kf_bfly2(Fout,fstride,st,m); break;
case 3: kf_bfly3(Fout,fstride,st,m); break;
case 4: kf_bfly4(Fout,fstride,st,m); break;
case 5: kf_bfly5(Fout,fstride,st,m); break;
default: kf_bfly_generic(Fout,fstride,st,m,p); break;
}
}
/* facbuf is populated by p1,m1,p2,m2, ...
where
p[i] * m[i] = m[i-1]
m0 = n */
static
void kf_factor(int n,int * facbuf)
{
int p=4;
double floor_sqrt;
floor_sqrt = floor( sqrt((double)n) );
/*factor out powers of 4, powers of 2, then any remaining primes */
do {
while (n % p) {
switch (p) {
case 4: p = 2; break;
case 2: p = 3; break;
default: p += 2; break;
}
if (p > floor_sqrt)
p = n; /* no more factors, skip to end */
}
n /= p;
*facbuf++ = p;
*facbuf++ = n;
} while (n > 1);
}
/*
*
* User-callable function to allocate all necessary storage space for the fft.
*
* The return value is a contiguous block of memory, allocated with malloc. As such,
* It can be freed with free(), rather than a kiss_fft-specific function.
* */
kiss_fft_cfg kiss_fft_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem )
{
KISS_FFT_ALIGN_CHECK(mem)
kiss_fft_cfg st=NULL;
size_t memneeded = KISS_FFT_ALIGN_SIZE_UP(sizeof(struct kiss_fft_state)
+ sizeof(kiss_fft_cpx)*(nfft-1)); /* twiddle factors*/
if ( lenmem==NULL ) {
st = ( kiss_fft_cfg)KISS_FFT_MALLOC( memneeded );
}else{
if (mem != NULL && *lenmem >= memneeded)
st = (kiss_fft_cfg)mem;
*lenmem = memneeded;
}
if (st) {
int i;
st->nfft=nfft;
st->inverse = inverse_fft;
for (i=0;i<nfft;++i) {
const double pi=3.141592653589793238462643383279502884197169399375105820974944;
double phase = -2*pi*i / nfft;
if (st->inverse)
phase *= -1;
kf_cexp(st->twiddles+i, phase );
}
kf_factor(nfft,st->factors);
}
return st;
}
void kiss_fft_stride(kiss_fft_cfg st,const kiss_fft_cpx *fin,kiss_fft_cpx *fout,int in_stride)
{
if (fin == fout) {
//NOTE: this is not really an in-place FFT algorithm.
//It just performs an out-of-place FFT into a temp buffer
kiss_fft_cpx * tmpbuf = (kiss_fft_cpx*)KISS_FFT_TMP_ALLOC( sizeof(kiss_fft_cpx)*st->nfft);
kf_work(tmpbuf,fin,1,in_stride, st->factors,st);
memcpy(fout,tmpbuf,sizeof(kiss_fft_cpx)*st->nfft);
KISS_FFT_TMP_FREE(tmpbuf);
}else{
kf_work( fout, fin, 1,in_stride, st->factors,st );
}
}
void kiss_fft(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout)
{
kiss_fft_stride(cfg,fin,fout,1);
}
void kiss_fft_cleanup(void)
{
// nothing needed any more
}
int kiss_fft_next_fast_size(int n)
{
while(1) {
int m=n;
while ( (m%2) == 0 ) m/=2;
while ( (m%3) == 0 ) m/=3;
while ( (m%5) == 0 ) m/=5;
if (m<=1)
break; /* n is completely factorable by twos, threes, and fives */
n++;
}
return n;
}
/*
* Copyright (c) 2003-2010, Mark Borgerding. All rights reserved.
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
*
* SPDX-License-Identifier: BSD-3-Clause
* See COPYING file for more information.
*/
#ifndef KISS_FFT_H
#define KISS_FFT_H
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
ATTENTION!
If you would like a :
-- a utility that will handle the caching of fft objects
-- real-only (no imaginary time component ) FFT
-- a multi-dimensional FFT
-- a command-line utility to perform ffts
-- a command-line utility to perform fast-convolution filtering
Then see kfc.h kiss_fftr.h kiss_fftnd.h fftutil.c kiss_fastfir.c
in the tools/ directory.
*/
/* User may override KISS_FFT_MALLOC and/or KISS_FFT_FREE. */
#ifdef USE_SIMD
# include <xmmintrin.h>
# define kiss_fft_scalar __m128
# ifndef KISS_FFT_MALLOC
# define KISS_FFT_MALLOC(nbytes) _mm_malloc(nbytes,16)
# define KISS_FFT_ALIGN_CHECK(ptr)
# define KISS_FFT_ALIGN_SIZE_UP(size) ((size + 15UL) & ~0xFUL)
# endif
# ifndef KISS_FFT_FREE
# define KISS_FFT_FREE _mm_free
# endif
#else
# define KISS_FFT_ALIGN_CHECK(ptr)
# define KISS_FFT_ALIGN_SIZE_UP(size) (size)
# ifndef KISS_FFT_MALLOC
# define KISS_FFT_MALLOC malloc
# endif
# ifndef KISS_FFT_FREE
# define KISS_FFT_FREE free
# endif
#endif
#ifdef FIXED_POINT
#include <stdint.h>
# if (FIXED_POINT == 32)
# define kiss_fft_scalar int32_t
# else
# define kiss_fft_scalar int16_t
# endif
#else
# ifndef kiss_fft_scalar
/* default is float */
# define kiss_fft_scalar float
# endif
#endif
typedef struct {
kiss_fft_scalar r;
kiss_fft_scalar i;
}kiss_fft_cpx;
typedef struct kiss_fft_state* kiss_fft_cfg;
/*
* kiss_fft_alloc
*
* Initialize a FFT (or IFFT) algorithm's cfg/state buffer.
*
* typical usage: kiss_fft_cfg mycfg=kiss_fft_alloc(1024,0,NULL,NULL);
*
* The return value from fft_alloc is a cfg buffer used internally
* by the fft routine or NULL.
*
* If lenmem is NULL, then kiss_fft_alloc will allocate a cfg buffer using malloc.
* The returned value should be free()d when done to avoid memory leaks.
*
* The state can be placed in a user supplied buffer 'mem':
* If lenmem is not NULL and mem is not NULL and *lenmem is large enough,
* then the function places the cfg in mem and the size used in *lenmem
* and returns mem.
*
* If lenmem is not NULL and ( mem is NULL or *lenmem is not large enough),
* then the function returns NULL and places the minimum cfg
* buffer size in *lenmem.
* */
kiss_fft_cfg kiss_fft_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem);
/*
* kiss_fft(cfg,in_out_buf)
*
* Perform an FFT on a complex input buffer.
* for a forward FFT,
* fin should be f[0] , f[1] , ... ,f[nfft-1]
* fout will be F[0] , F[1] , ... ,F[nfft-1]
* Note that each element is complex and can be accessed like
f[k].r and f[k].i
* */
void kiss_fft(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout);
/*
A more generic version of the above function. It reads its input from every Nth sample.
* */
void kiss_fft_stride(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout,int fin_stride);
/* If kiss_fft_alloc allocated a buffer, it is one contiguous
buffer and can be simply free()d when no longer needed*/
#define kiss_fft_free KISS_FFT_FREE
/*
Cleans up some memory that gets managed internally. Not necessary to call, but it might clean up
your compiler output to call this before you exit.
*/
void kiss_fft_cleanup(void);
/*
* Returns the smallest integer k, such that k>=n and k has only "fast" factors (2,3,5)
*/
int kiss_fft_next_fast_size(int n);
/* for real ffts, we need an even size */
#define kiss_fftr_next_fast_size_real(n) \
(kiss_fft_next_fast_size( ((n)+1)>>1)<<1)
#ifdef __cplusplus
}
#endif
#endif
/*
* Copyright (c) 2003-2004, Mark Borgerding. All rights reserved.
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
*
* SPDX-License-Identifier: BSD-3-Clause
* See COPYING file for more information.
*/
#include "kiss_fftr.h"
#include "_kiss_fft_guts.h"
struct kiss_fftr_state{
kiss_fft_cfg substate;
kiss_fft_cpx * tmpbuf;
kiss_fft_cpx * super_twiddles;
#ifdef USE_SIMD
void * pad;
#endif
};
kiss_fftr_cfg kiss_fftr_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem)
{
KISS_FFT_ALIGN_CHECK(mem)
int i;
kiss_fftr_cfg st = NULL;
size_t subsize = 0, memneeded;
if (nfft & 1) {
fprintf(stderr,"Real FFT optimization must be even.\n");
return NULL;
}
nfft >>= 1;
kiss_fft_alloc (nfft, inverse_fft, NULL, &subsize);
memneeded = sizeof(struct kiss_fftr_state) + subsize + sizeof(kiss_fft_cpx) * ( nfft * 3 / 2);
if (lenmem == NULL) {
st = (kiss_fftr_cfg) KISS_FFT_MALLOC (memneeded);
} else {
if (*lenmem >= memneeded)
st = (kiss_fftr_cfg) mem;
*lenmem = memneeded;
}
if (!st)
return NULL;
st->substate = (kiss_fft_cfg) (st + 1); /*just beyond kiss_fftr_state struct */
st->tmpbuf = (kiss_fft_cpx *) (((char *) st->substate) + subsize);
st->super_twiddles = st->tmpbuf + nfft;
kiss_fft_alloc(nfft, inverse_fft, st->substate, &subsize);
for (i = 0; i < nfft/2; ++i) {
double phase =
-3.14159265358979323846264338327 * ((double) (i+1) / nfft + .5);
if (inverse_fft)
phase *= -1;
kf_cexp (st->super_twiddles+i,phase);
}
return st;
}
void kiss_fftr(kiss_fftr_cfg st,const kiss_fft_scalar *timedata,kiss_fft_cpx *freqdata)
{
/* input buffer timedata is stored row-wise */
int k,ncfft;
kiss_fft_cpx fpnk,fpk,f1k,f2k,tw,tdc;
if ( st->substate->inverse) {
fprintf(stderr,"kiss fft usage error: improper alloc\n");
exit(1);
}
ncfft = st->substate->nfft;
/*perform the parallel fft of two real signals packed in real,imag*/
kiss_fft( st->substate , (const kiss_fft_cpx*)timedata, st->tmpbuf );
/* The real part of the DC element of the frequency spectrum in st->tmpbuf
* contains the sum of the even-numbered elements of the input time sequence
* The imag part is the sum of the odd-numbered elements
*
* The sum of tdc.r and tdc.i is the sum of the input time sequence.
* yielding DC of input time sequence
* The difference of tdc.r - tdc.i is the sum of the input (dot product) [1,-1,1,-1...
* yielding Nyquist bin of input time sequence
*/
tdc.r = st->tmpbuf[0].r;
tdc.i = st->tmpbuf[0].i;
C_FIXDIV(tdc,2);
CHECK_OVERFLOW_OP(tdc.r ,+, tdc.i);
CHECK_OVERFLOW_OP(tdc.r ,-, tdc.i);
freqdata[0].r = tdc.r + tdc.i;
freqdata[ncfft].r = tdc.r - tdc.i;
#ifdef USE_SIMD
freqdata[ncfft].i = freqdata[0].i = _mm_set1_ps(0);
#else
freqdata[ncfft].i = freqdata[0].i = 0;
#endif
for ( k=1;k <= ncfft/2 ; ++k ) {
fpk = st->tmpbuf[k];
fpnk.r = st->tmpbuf[ncfft-k].r;
fpnk.i = - st->tmpbuf[ncfft-k].i;
C_FIXDIV(fpk,2);
C_FIXDIV(fpnk,2);
C_ADD( f1k, fpk , fpnk );
C_SUB( f2k, fpk , fpnk );
C_MUL( tw , f2k , st->super_twiddles[k-1]);
freqdata[k].r = HALF_OF(f1k.r + tw.r);
freqdata[k].i = HALF_OF(f1k.i + tw.i);
freqdata[ncfft-k].r = HALF_OF(f1k.r - tw.r);
freqdata[ncfft-k].i = HALF_OF(tw.i - f1k.i);
}
}
void kiss_fftri(kiss_fftr_cfg st,const kiss_fft_cpx *freqdata,kiss_fft_scalar *timedata)
{
/* input buffer timedata is stored row-wise */
int k, ncfft;
if (st->substate->inverse == 0) {
fprintf (stderr, "kiss fft usage error: improper alloc\n");
exit (1);
}
ncfft = st->substate->nfft;
st->tmpbuf[0].r = freqdata[0].r + freqdata[ncfft].r;
st->tmpbuf[0].i = freqdata[0].r - freqdata[ncfft].r;
C_FIXDIV(st->tmpbuf[0],2);
for (k = 1; k <= ncfft / 2; ++k) {
kiss_fft_cpx fk, fnkc, fek, fok, tmp;
fk = freqdata[k];
fnkc.r = freqdata[ncfft - k].r;
fnkc.i = -freqdata[ncfft - k].i;
C_FIXDIV( fk , 2 );
C_FIXDIV( fnkc , 2 );
C_ADD (fek, fk, fnkc);
C_SUB (tmp, fk, fnkc);
C_MUL (fok, tmp, st->super_twiddles[k-1]);
C_ADD (st->tmpbuf[k], fek, fok);
C_SUB (st->tmpbuf[ncfft - k], fek, fok);
#ifdef USE_SIMD
st->tmpbuf[ncfft - k].i *= _mm_set1_ps(-1.0);
#else
st->tmpbuf[ncfft - k].i *= -1;
#endif
}
kiss_fft (st->substate, st->tmpbuf, (kiss_fft_cpx *) timedata);
}
/*
* Copyright (c) 2003-2004, Mark Borgerding. All rights reserved.
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
*
* SPDX-License-Identifier: BSD-3-Clause
* See COPYING file for more information.
*/
#ifndef KISS_FTR_H
#define KISS_FTR_H
#include "kiss_fft.h"
#ifdef __cplusplus
extern "C" {
#endif
/*
Real optimized version can save about 45% cpu time vs. complex fft of a real seq.
*/
typedef struct kiss_fftr_state *kiss_fftr_cfg;
kiss_fftr_cfg kiss_fftr_alloc(int nfft,int inverse_fft,void * mem, size_t * lenmem);
/*
nfft must be even
If you don't care to allocate space, use mem = lenmem = NULL
*/
void kiss_fftr(kiss_fftr_cfg cfg,const kiss_fft_scalar *timedata,kiss_fft_cpx *freqdata);
/*
input timedata has nfft scalar points
output freqdata has nfft/2+1 complex points
*/
void kiss_fftri(kiss_fftr_cfg cfg,const kiss_fft_cpx *freqdata,kiss_fft_scalar *timedata);
/*
input freqdata has nfft/2+1 complex points
output timedata has nfft scalar points
*/
#define kiss_fftr_free KISS_FFT_FREE
#ifdef __cplusplus
}
#endif
#endif
/*
* Copyright (c) 2021-2022, Chris Zhang Jin. All rights reserved.
* This file is part of blms - https://codechina.csdn.net/mimiduck/blms
*
* SPDX-License-Identifier: BSD-3 License
* See COPYING file for more information.
*
*/
#include "kiss_fft/kiss_fft.h"
#include "kiss_fft/kiss_fftr.h"
static kiss_fft_scalar rand_scalar(void) {
kiss_fft_scalar s = (kiss_fft_scalar) ((rand() + 10) % 256);
return s / 256.;
}
static void print_fft_result(kiss_fft_cpx *x, int n) {
int l = 0;
for (int i = 0; i < n; i++) {
printf("(%4.4f+%4.4fi), ", x[i].r, x[i].i);
if (l++ == 7) {
l = 0;
printf("\n");
}
}
printf("\n");
}
void test_fft() {
int i = 0;
int nfft = 20;
kiss_fft_cpx cin[nfft];
kiss_fft_cpx cout[nfft];
kiss_fft_cpx sout[nfft];
kiss_fft_cfg kiss_fft_state;
kiss_fft_scalar zero;
memset(&zero, 0, sizeof(zero));
for (i = 0; i < nfft; ++i) {
cin[i].r = rand_scalar();
cin[i].i = zero;
}
printf("\n");
printf(" init data for kiss_fft (cin): \n");
print_fft_result(cin, nfft);
memset(cout, 0, sizeof(short) * nfft);
memset(sout, 0, sizeof(short) * nfft);
kiss_fft_state = kiss_fft_alloc(nfft, 0, 0, 0);
kiss_fft(kiss_fft_state, cin, cout);
kiss_fft_free(kiss_fft_state);
printf(" results from kiss_fft (cout): \n");
print_fft_result(cout, nfft);
kiss_fft_state = kiss_fft_alloc(nfft, 1, 0, 0);
for (i = 0; i < nfft; i++) {
cout[i].r /= nfft;
cout[i].i /= nfft;
}
// case A.
kiss_fft(kiss_fft_state, cout, sout);
// end case
kiss_fft_free(kiss_fft_state);
printf(" results from kiss_ifft (sout): \n");
print_fft_result(sout, nfft);
printf("\n");
}
void test_fftr() {
int i = 0;
int nfft = 20;
kiss_fftr_cfg kiss_fftr_state;
kiss_fft_scalar rin[nfft];
kiss_fft_scalar rout[nfft];
kiss_fft_cpx out[nfft];
memset(rin, 0, sizeof(short) * nfft);
memset(rout, 0, sizeof(short) * nfft);
memset(out, 0, sizeof(kiss_fft_cpx) * nfft);
kiss_fft_scalar zero;
memset(&zero, 0, sizeof(zero));
for (i = 0; i < nfft; ++i) {
rin[i] = rand_scalar();
}
// for (; i < nfft * 2; ++i) {
// rin[i] = 0;
// }
printf(" init data for kiss_fft (rin): \n");
for (i = 0; i < nfft; i++) {
printf("%4.4f,", rin[i]);
}
printf("\n");
kiss_fftr_state = kiss_fftr_alloc(nfft, 0, 0, 0);
kiss_fftr(kiss_fftr_state, rin, out);
kiss_fftr_free(kiss_fftr_state);
printf(" results from kiss_fft (out): \n");
print_fft_result(out, nfft);
kiss_fftr_state = kiss_fftr_alloc(nfft, 1, 0, 0);
for (i = 0; i < nfft; i++) {
out[i].r /= nfft;
out[i].i /= nfft;
}
// case A.
kiss_fftri(kiss_fftr_state, out, rout);
// end case
kiss_fftr_free(kiss_fftr_state);
printf(" results from kiss_ifft (rout): \n");
for (i = 0; i < nfft; i++) {
printf("%4.4f,", rout[i]);
}
printf("\n");
}
int main(int argc, char *const argv[]) {
test_fftr();
return 0;
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册