提交 eb8ccddd 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!9 新增实验指导

Merge pull request !9 from zhengnengjin2/update
# 在Windows上运行LeNet_MNIST
## 实验介绍
LeNet5 + MINST被誉为深度学习领域的“Hello world”。本实验主要介绍使用MindSpore在Windows环境下MNIST数据集上开发和训练一个LeNet5模型,并验证模型精度。
## 实验目的
- 了解如何使用MindSpore进行简单卷积神经网络的开发。
- 了解如何使用MindSpore进行简单图片分类任务的训练。
- 了解如何使用MindSpore进行简单图片分类任务的验证。
## 预备知识
- 熟练使用Python,了解Shell及Linux操作系统基本知识。
- 具备一定的深度学习理论知识,如卷积神经网络、损失函数、优化器,训练策略等。
- 了解并熟悉MindSpore AI计算框架,MindSpore官网:[https://www.mindspore.cn](https://www.mindspore.cn/)
## 实验环境
- Windows-x64版本MindSpore 0.3.0;安装命令可见官网:
[https://www.mindspore.cn/install](https://www.mindspore.cn/install)(MindSpore版本会定期更新,本指导也会定期刷新,与版本配套)。
## 实验准备
### 创建目录
创建一个experiment文件夹,用于存放实验所需的文件代码等。
### 数据集准备
MNIST是一个手写数字数据集,训练集包含60000张手写数字,测试集包含10000张手写数字,共10类。MNIST数据集的官网:[THE MNIST DATABASE](http://yann.lecun.com/exdb/mnist/)
从MNIST官网下载如下4个文件到本地并解压:
```
train-images-idx3-ubyte.gz: training set images (9912422 bytes)
train-labels-idx1-ubyte.gz: training set labels (28881 bytes)
t10k-images-idx3-ubyte.gz: test set images (1648877 bytes)
t10k-labels-idx1-ubyte.gz: test set labels (4542 bytes)
```
### 脚本准备
[课程gitee仓库](https://gitee.com/mindspore/course)上下载本实验相关脚本。
### 准备文件
将脚本和数据集放到到experiment文件夹中,组织为如下形式:
```
experiment
├── MNIST
│ ├── test
│ │ ├── t10k-images-idx3-ubyte
│ │ └── t10k-labels-idx1-ubyte
│ └── train
│ ├── train-images-idx3-ubyte
│ └── train-labels-idx1-ubyte
└── main.py
```
## 实验步骤
### 导入MindSpore模块和辅助模块
```python
import matplotlib.pyplot as plt
import mindspore as ms
import mindspore.context as context
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.transforms.vision.c_transforms as CV
from mindspore import nn
from mindspore.model_zoo.lenet import LeNet5
from mindspore.train import Model
from mindspore.train.callback import LossMonitor
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
```
### 数据处理
在使用数据集训练网络前,首先需要对数据进行预处理,如下:
```python
DATA_DIR_TRAIN = "MNIST/train" # 训练集信息
DATA_DIR_TEST = "MNIST/test" # 测试集信息
def create_dataset(training=True, num_epoch=1, batch_size=32, resize=(32, 32), rescale=1 / (255 * 0.3081), shift=-0.1307 / 0.3081, buffer_size=64):
ds = ms.dataset.MnistDataset(DATA_DIR_TRAIN if training else DATA_DIR_TEST)
ds = ds.map(input_columns="image", operations=[CV.Resize(resize), CV.Rescale(rescale, shift), CV.HWC2CHW()])
ds = ds.map(input_columns="label", operations=C.TypeCast(ms.int32))
ds = ds.shuffle(buffer_size=buffer_size).batch(batch_size, drop_remainder=True).repeat(num_epoch)
return ds
```
对其中几张图片进行可视化,可以看到图片中的手写数字,图片的大小为32x32。
```python
def show_dataset():
ds = create_dataset(training=False)
data = ds.create_dict_iterator().get_next()
images = data['image']
labels = data['label']
for i in range(1, 5):
plt.subplot(2, 2, i)
plt.imshow(images[i][0])
plt.title('Number: %s' % labels[i])
plt.xticks([])
plt.show()
```
![img]()
### 定义模型
MindSpore model_zoo中提供了多种常见的模型,可以直接使用。这里使用其中的LeNet5模型,模型结构如下图所示:
![img](https://www.mindspore.cn/tutorial/zh-CN/master/_images/LeNet_5.jpg)
图片来源于http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
### 训练
使用MNIST数据集对上述定义的LeNet5模型进行训练。训练策略如下表所示,可以调整训练策略并查看训练效果,要求验证精度大于95%。
| batch size | number of epochs | learning rate | optimizer |
| ---------: | ---------------: | ------------: | -----------: |
| 32 | 3 | 0.01 | Momentum 0.9 |
```python
def test_train(lr=0.01, momentum=0.9, num_epoch=3, ckpt_name="a_lenet"):
ds_train = create_dataset(num_epoch=num_epoch)
ds_eval = create_dataset(training=False)
net = LeNet5()
loss = nn.loss.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
opt = nn.Momentum(net.trainable_params(), lr, momentum)
loss_cb = LossMonitor(per_print_times=1)
model = Model(net, loss, opt, metrics={'acc', 'loss'})
model.train(num_epoch, ds_train, callbacks=[loss_cb], dataset_sink_mode=False)
metrics = model.eval(ds_eval, dataset_sink_mode=False)
print('Metrics:', metrics)
```
### 实验结果
1. 在训练日志中可以看到`epoch: 1 step: 1875, loss is 0.29772663`等字段,即训练过程的loss值;
2. 在训练日志中可以看到`Metrics: {'loss': 0.06830393138807267, 'acc': 0.9785657051282052}`字段,即训练完成后的验证精度。
```python
...
>>> epoch: 1 step: 1875, loss is 0.29772663
...
>>> epoch: 2 step: 1875, loss is 0.049111396
...
>>> epoch: 3 step: 1875, loss is 0.08183163
>>> Metrics: {'loss': 0.06830393138807267, 'acc': 0.9785657051282052}
```
## 实验小结
本实验展示了如何使用MindSpore进行手写数字识别,以及开发和训练LeNet5模型。通过对LeNet5模型做几代的训练,然后使用训练后的LeNet5模型对手写数字进行识别,识别准确率大于95%。即LeNet5学习到了如何进行手写数字识别。
\ No newline at end of file
# LeNet5 mnist
import matplotlib.pyplot as plt
import mindspore as ms
import mindspore.context as context
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.transforms.vision.c_transforms as CV
from mindspore import nn
from mindspore.model_zoo.lenet import LeNet5
from mindspore.train import Model
from mindspore.train.callback import LossMonitor
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
DATA_DIR_TRAIN = "MNIST/train" # 训练集信息
DATA_DIR_TEST = "MNIST/test" # 测试集信息
def create_dataset(training=True, num_epoch=1, batch_size=32, resize=(32, 32),
rescale=1 / (255 * 0.3081), shift=-0.1307 / 0.3081, buffer_size=64):
ds = ms.dataset.MnistDataset(DATA_DIR_TRAIN if training else DATA_DIR_TEST)
ds = ds.map(input_columns="image", operations=[CV.Resize(resize), CV.Rescale(rescale, shift), CV.HWC2CHW()])
ds = ds.map(input_columns="label", operations=C.TypeCast(ms.int32))
ds = ds.shuffle(buffer_size=buffer_size).batch(batch_size, drop_remainder=True).repeat(num_epoch)
return ds
def test_train(lr=0.01, momentum=0.9, num_epoch=3, ckpt_name="a_lenet"):
ds_train = create_dataset(num_epoch=num_epoch)
ds_eval = create_dataset(training=False)
net = LeNet5()
loss = nn.loss.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
opt = nn.Momentum(net.trainable_params(), lr, momentum)
loss_cb = LossMonitor(per_print_times=1)
model = Model(net, loss, opt, metrics={'acc', 'loss'})
model.train(num_epoch, ds_train, callbacks=[loss_cb], dataset_sink_mode=False)
metrics = model.eval(ds_eval, dataset_sink_mode=False)
print('Metrics:', metrics)
def show_dataset():
ds = create_dataset(training=False)
data = ds.create_dict_iterator().get_next()
images = data['image']
labels = data['label']
for i in range(1, 5):
plt.subplot(2, 2, i)
plt.imshow(images[i][0])
plt.title('Number: %s' % labels[i])
plt.xticks([])
plt.show()
if __name__ == "__main__":
show_dataset()
test_train()
\ No newline at end of file
此差异已折叠。
# Save and load model
import matplotlib.pyplot as plt
import numpy as np
import mindspore as ms
import mindspore.context as context
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.transforms.vision.c_transforms as CV
from mindspore import nn, Tensor
from mindspore.train import Model
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
DATA_DIR_TRAIN = "MNIST/train" # 训练集信息
DATA_DIR_TEST = "MNIST/test" # 测试集信息
def create_dataset(training=True, num_epoch=1, batch_size=32, resize=(32, 32),
rescale=1 / (255 * 0.3081), shift=-0.1307 / 0.3081, buffer_size=64):
ds = ms.dataset.MnistDataset(DATA_DIR_TRAIN if training else DATA_DIR_TEST)
# define map operations
resize_op = CV.Resize(resize)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
# apply map operations on images
ds = ds.map(input_columns="image", operations=[resize_op, rescale_op, hwc2chw_op])
ds = ds.map(input_columns="label", operations=C.TypeCast(ms.int32))
ds = ds.shuffle(buffer_size=buffer_size)
ds = ds.batch(batch_size, drop_remainder=True)
ds = ds.repeat(num_epoch)
return ds
class LeNet5(nn.Cell):
def __init__(self):
super(LeNet5, self).__init__()
self.relu = nn.ReLU()
self.conv1 = nn.Conv2d(1, 6, 5, stride=1, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, stride=1, pad_mode='valid')
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten()
self.fc1 = nn.Dense(400, 120)
self.fc2 = nn.Dense(120, 84)
self.fc3 = nn.Dense(84, 10)
def construct(self, input_x):
output = self.conv1(input_x)
output = self.relu(output)
output = self.pool(output)
output = self.conv2(output)
output = self.relu(output)
output = self.pool(output)
output = self.flatten(output)
output = self.fc1(output)
output = self.fc2(output)
output = self.fc3(output)
return output
def test_train(lr=0.01, momentum=0.9, num_epoch=2, check_point_name="b_lenet"):
ds_train = create_dataset(num_epoch=num_epoch)
ds_eval = create_dataset(training=False)
steps_per_epoch = ds_train.get_dataset_size()
net = LeNet5()
loss = nn.loss.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
opt = nn.Momentum(net.trainable_params(), lr, momentum)
ckpt_cfg = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=5)
ckpt_cb = ModelCheckpoint(prefix=check_point_name, config=ckpt_cfg)
loss_cb = LossMonitor(steps_per_epoch)
model = Model(net, loss, opt, metrics={'acc', 'loss'})
model.train(num_epoch, ds_train, callbacks=[ckpt_cb, loss_cb], dataset_sink_mode=False)
metrics = model.eval(ds_eval, dataset_sink_mode=False)
print('Metrics:', metrics)
CKPT = 'b_lenet-2_1875.ckpt'
def resume_train(lr=0.001, momentum=0.9, num_epoch=2, ckpt_name="b_lenet"):
ds_train = create_dataset(num_epoch=num_epoch)
ds_eval = create_dataset(training=False)
steps_per_epoch = ds_train.get_dataset_size()
net = LeNet5()
loss = nn.loss.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
opt = nn.Momentum(net.trainable_params(), lr, momentum)
param_dict = load_checkpoint(CKPT)
load_param_into_net(net, param_dict)
load_param_into_net(opt, param_dict)
ckpt_cfg = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=5)
ckpt_cb = ModelCheckpoint(prefix=ckpt_name, config=ckpt_cfg)
loss_cb = LossMonitor(steps_per_epoch)
model = Model(net, loss, opt, metrics={'acc', 'loss'})
model.train(num_epoch, ds_train, callbacks=[ckpt_cb, loss_cb], dataset_sink_mode=False)
metrics = model.eval(ds_eval, dataset_sink_mode=False)
print('Metrics:', metrics)
def plot_images(pred_fn, ds, net):
for i in range(1, 5):
pred, image, label = pred_fn(ds, net)
plt.subplot(2, 2, i)
plt.imshow(np.squeeze(image))
color = 'blue' if pred == label else 'red'
plt.title("prediction: {}, truth: {}".format(pred, label), color=color)
plt.xticks([])
plt.show()
CKPT = 'b_lenet_1-2_1875.ckpt'
def infer(ds, model):
data = ds.get_next()
images = data['image']
labels = data['label']
output = model.predict(Tensor(data['image']))
pred = np.argmax(output.asnumpy(), axis=1)
return pred[0], images[0], labels[0]
def test_infer():
ds = create_dataset(training=False, batch_size=1).create_dict_iterator()
net = LeNet5()
param_dict = load_checkpoint(CKPT, net)
model = Model(net)
plot_images(infer, ds, model)
if __name__ == "__main__":
test_train()
resume_train()
test_infer()
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册