sfud.c 31.5 KB
Newer Older
1 2 3
/*
 * This file is part of the Serial Flash Universal Driver Library.
 *
armink_ztl's avatar
armink_ztl 已提交
4
 * Copyright (c) 2016-2018, Armink, <armink.ztl@gmail.com>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * 'Software'), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * Function: serial flash operate functions by SFUD lib.
 * Created on: 2016-04-23
 */

#include "../inc/sfud.h"
#include <string.h>

/* send dummy data for read data */
#define DUMMY_DATA                               0xFF

#ifndef SFUD_FLASH_DEVICE_TABLE
#error "Please configure the flash device information table in (in sfud_cfg.h)."
#endif

/* user configured flash device information table */
static sfud_flash flash_table[] = SFUD_FLASH_DEVICE_TABLE;
/* supported manufacturer information table */
static const sfud_mf mf_table[] = SFUD_MF_TABLE;

#ifdef SFUD_USING_FLASH_INFO_TABLE
/* supported flash chip information table */
static const sfud_flash_chip flash_chip_table[] = SFUD_FLASH_CHIP_TABLE;
#endif

armink_ztl's avatar
armink_ztl 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
#ifdef SFUD_USING_QSPI
/**
 * flash read data mode
 */
enum sfud_qspi_read_mode {
    NORMAL_SPI_READ = 1 << 0,               /**< mormal spi read mode */
    DUAL_OUTPUT = 1 << 1,                   /**< qspi fast read dual output */
    DUAL_IO = 1 << 2,                       /**< qspi fast read dual input/output */
    QUAD_OUTPUT = 1 << 3,                   /**< qspi fast read quad output */
    QUAD_IO = 1 << 4,                       /**< qspi fast read quad input/output */
};

/* QSPI flash chip's extended information table */
static const sfud_qspi_flash_ext_info qspi_flash_ext_info_table[] = SFUD_FLASH_EXT_INFO_TABLE;
#endif /* SFUD_USING_QSPI */

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
static sfud_err software_init(const sfud_flash *flash);
static sfud_err hardware_init(sfud_flash *flash);
static sfud_err page256_or_1_byte_write(const sfud_flash *flash, uint32_t addr, size_t size, uint16_t write_gran,
        const uint8_t *data);
static sfud_err aai_write(const sfud_flash *flash, uint32_t addr, size_t size, const uint8_t *data);
static sfud_err wait_busy(const sfud_flash *flash);
static sfud_err reset(const sfud_flash *flash);
static sfud_err read_jedec_id(sfud_flash *flash);
static sfud_err set_write_enabled(const sfud_flash *flash, bool enabled);
static sfud_err set_4_byte_address_mode(sfud_flash *flash, bool enabled);
static void make_adress_byte_array(const sfud_flash *flash, uint32_t addr, uint8_t *array);

/* ../port/sfup_port.c */
extern void sfud_log_debug(const char *file, const long line, const char *format, ...);
extern void sfud_log_info(const char *format, ...);

/**
 * SFUD initialize by flash device
 *
 * @param flash flash device
 *
 * @return result
 */
sfud_err sfud_device_init(sfud_flash *flash) {
    sfud_err result = SFUD_SUCCESS;

    /* hardware initialize */
    result = hardware_init(flash);
    if (result == SFUD_SUCCESS) {
        result = software_init(flash);
    }
    if (result == SFUD_SUCCESS) {
        flash->init_ok = true;
        SFUD_INFO("%s flash device is initialize success.", flash->name);
    } else {
        flash->init_ok = false;
        SFUD_INFO("Error: %s flash device is initialize fail.", flash->name);
    }

    return result;
}

/**
 * SFUD library initialize.
 *
 * @return result
 */
sfud_err sfud_init(void) {
    sfud_err cur_flash_result = SFUD_SUCCESS, all_flash_result = SFUD_SUCCESS;
    size_t i;

    SFUD_DEBUG("Start initialize Serial Flash Universal Driver(SFUD) V%s.", SFUD_SW_VERSION);
    SFUD_DEBUG("You can get the latest version on https://github.com/armink/SFUD .");
    /* initialize all flash device in flash device table */
    for (i = 0; i < sizeof(flash_table) / sizeof(sfud_flash); i++) {
        /* initialize flash device index of flash device information table */
        flash_table[i].index = i;
        cur_flash_result = sfud_device_init(&flash_table[i]);

        if (cur_flash_result != SFUD_SUCCESS) {
125
            all_flash_result = cur_flash_result;
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        }
    }

    return all_flash_result;
}

/**
 * get flash device by its index which in the flash information table
 *
 * @param index the index which in the flash information table  @see flash_table
 *
 * @return flash device
 */
sfud_flash *sfud_get_device(size_t index) {
    if (index < sfud_get_device_num()) {
        return &flash_table[index];
    } else {
        return NULL;
    }
}

/**
 * get flash device total number on flash device information table  @see flash_table
 *
 * @return flash device total number
 */
size_t sfud_get_device_num(void) {
    return sizeof(flash_table) / sizeof(sfud_flash);
}

/**
 * get flash device information table  @see flash_table
 *
 * @return flash device table pointer
 */
const sfud_flash *sfud_get_device_table(void) {
    return flash_table;
}

armink_ztl's avatar
armink_ztl 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
#ifdef SFUD_USING_QSPI
static void qspi_set_read_cmd_format(sfud_flash *flash, uint8_t ins, uint8_t ins_lines, uint8_t addr_lines,
        uint8_t dummy_cycles, uint8_t data_lines) {
    /* if medium size greater than 16Mb, use 4-Byte address, instruction should be added one */
    if (flash->chip.capacity <= 0x1000000) {
        flash->read_cmd_format.instruction = ins;
        flash->read_cmd_format.address_size = 24;
    } else {
        flash->read_cmd_format.instruction = ins + 1;
        flash->read_cmd_format.address_size = 32;
    }

    flash->read_cmd_format.instruction_lines = ins_lines;
    flash->read_cmd_format.address_lines = addr_lines;
    flash->read_cmd_format.alternate_bytes_lines = 0;
    flash->read_cmd_format.dummy_cycles = dummy_cycles;
    flash->read_cmd_format.data_lines = data_lines;
}

/**
 * Enbale the fast read mode in QSPI flash mode. Default read mode is normal SPI mode.
 *
 * it will find the appropriate fast-read instruction to replace the read instruction(0x03)
 * fast-read instruction @see SFUD_FLASH_EXT_INFO_TABLE
 *
 * @note When Flash is in QSPI mode, the method must be called after sfud_device_init().
 *
 * @param flash flash device
 * @param data_line_width the data lines max width which QSPI bus supported, such as 1, 2, 4
 *
 * @return result
 */
sfud_err sfud_qspi_fast_read_enable(sfud_flash *flash, uint8_t data_line_width) {
    size_t i = 0;
    uint8_t read_mode = NORMAL_SPI_READ;
    sfud_err result = SFUD_SUCCESS;

    SFUD_ASSERT(flash);
    SFUD_ASSERT(data_line_width == 1 || data_line_width == 2 || data_line_width == 4);

    /* get read_mode, If don't found, the default is SFUD_QSPI_NORMAL_SPI_READ */
    for (i = 0; i < sizeof(qspi_flash_ext_info_table) / sizeof(sfud_qspi_flash_ext_info); i++) {
        if ((qspi_flash_ext_info_table[i].mf_id == flash->chip.mf_id)
                && (qspi_flash_ext_info_table[i].type_id == flash->chip.type_id)
                && (qspi_flash_ext_info_table[i].capacity_id == flash->chip.capacity_id)) {
            read_mode = qspi_flash_ext_info_table[i].read_mode;
        }
    }

    /* determine qspi supports which read mode and set read_cmd_format struct */
    switch (data_line_width) {
    case 1:
        qspi_set_read_cmd_format(flash, SFUD_CMD_READ_DATA, 1, 1, 0, 1);
        break;
    case 2:
        if (read_mode & DUAL_IO) {
            qspi_set_read_cmd_format(flash, SFUD_CMD_DUAL_IO_READ_DATA, 1, 2, 8, 2);
        } else if (read_mode & DUAL_OUTPUT) {
            qspi_set_read_cmd_format(flash, SFUD_CMD_DUAL_OUTPUT_READ_DATA, 1, 1, 8, 2);
        } else {
            qspi_set_read_cmd_format(flash, SFUD_CMD_READ_DATA, 1, 1, 0, 1);
        }
        break;
    case 4:
        if (read_mode & QUAD_IO) {
            qspi_set_read_cmd_format(flash, SFUD_CMD_QUAD_IO_READ_DATA, 1, 4, 6, 4);
        } else if (read_mode & QUAD_OUTPUT) {
            qspi_set_read_cmd_format(flash, SFUD_CMD_QUAD_OUTPUT_READ_DATA, 1, 1, 8, 4);
        } else {
            qspi_set_read_cmd_format(flash, SFUD_CMD_READ_DATA, 1, 1, 0, 1);
        }
        break;
    }

    return result;
}
#endif /* SFUD_USING_QSPI */

243 244 245 246
/**
 * hardware initialize
 */
static sfud_err hardware_init(sfud_flash *flash) {
armink_ztl's avatar
armink_ztl 已提交
247
    extern sfud_err sfud_spi_port_init(sfud_flash * flash);
248 249 250 251 252 253 254 255 256 257 258

    sfud_err result = SFUD_SUCCESS;
    size_t i;

    SFUD_ASSERT(flash);

    result = sfud_spi_port_init(flash);
    if (result != SFUD_SUCCESS) {
        return result;
    }

armink_ztl's avatar
armink_ztl 已提交
259 260 261 262 263
#ifdef SFUD_USING_QSPI
    /* set default read instruction */
    flash->read_cmd_format.instruction = SFUD_CMD_READ_DATA;
#endif /* SFUD_USING_QSPI */

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
    /* SPI write read function must be initialize */
    SFUD_ASSERT(flash->spi.wr);
    /* if the user don't configure flash chip information then using SFDP parameter or static flash parameter table */
    if (flash->chip.capacity == 0 || flash->chip.write_mode == 0 || flash->chip.erase_gran == 0
            || flash->chip.erase_gran_cmd == 0) {
        /* read JEDEC ID include manufacturer ID, memory type ID and flash capacity ID */
        result = read_jedec_id(flash);
        if (result != SFUD_SUCCESS) {
            return result;
        }

#ifdef SFUD_USING_SFDP
        extern bool sfud_read_sfdp(sfud_flash *flash);
        /* read SFDP parameters */
        if (sfud_read_sfdp(flash)) {
            flash->chip.name = NULL;
            flash->chip.capacity = flash->sfdp.capacity;
            /* only 1 byte or 256 bytes write mode for SFDP */
            if (flash->sfdp.write_gran == 1) {
                flash->chip.write_mode = SFUD_WM_BYTE;
            } else {
                flash->chip.write_mode = SFUD_WM_PAGE_256B;
            }
            /* find the the smallest erase sector size for eraser. then will use this size for erase granularity */
            flash->chip.erase_gran = flash->sfdp.eraser[0].size;
            flash->chip.erase_gran_cmd = flash->sfdp.eraser[0].cmd;
            for (i = 1; i < SFUD_SFDP_ERASE_TYPE_MAX_NUM; i++) {
                if (flash->sfdp.eraser[i].size != 0 && flash->chip.erase_gran > flash->sfdp.eraser[i].size) {
                    flash->chip.erase_gran = flash->sfdp.eraser[i].size;
                    flash->chip.erase_gran_cmd = flash->sfdp.eraser[i].cmd;
                }
            }
        } else {
#endif

#ifdef SFUD_USING_FLASH_INFO_TABLE
            /* read SFDP parameters failed then using SFUD library provided static parameter */
            for (i = 0; i < sizeof(flash_chip_table) / sizeof(sfud_flash_chip); i++) {
                if ((flash_chip_table[i].mf_id == flash->chip.mf_id)
                        && (flash_chip_table[i].type_id == flash->chip.type_id)
                        && (flash_chip_table[i].capacity_id == flash->chip.capacity_id)) {
                    flash->chip.name = flash_chip_table[i].name;
                    flash->chip.capacity = flash_chip_table[i].capacity;
                    flash->chip.write_mode = flash_chip_table[i].write_mode;
                    flash->chip.erase_gran = flash_chip_table[i].erase_gran;
                    flash->chip.erase_gran_cmd = flash_chip_table[i].erase_gran_cmd;
                    break;
                }
            }
#endif

#ifdef SFUD_USING_SFDP
        }
#endif

    }

    if (flash->chip.capacity == 0 || flash->chip.write_mode == 0 || flash->chip.erase_gran == 0
            || flash->chip.erase_gran_cmd == 0) {
        SFUD_INFO("Warning: This flash device is not found or not support.");
        return SFUD_ERR_NOT_FOUND;
    } else {
        const char *flash_mf_name = NULL;
        /* find the manufacturer information */
        for (i = 0; i < sizeof(mf_table) / sizeof(sfud_mf); i++) {
            if (mf_table[i].id == flash->chip.mf_id) {
                flash_mf_name = mf_table[i].name;
                break;
            }
        }
        /* print manufacturer and flash chip name */
        if (flash_mf_name && flash->chip.name) {
            SFUD_INFO("Find a %s %s flash chip. Size is %ld bytes.", flash_mf_name, flash->chip.name,
                    flash->chip.capacity);
        } else if (flash_mf_name) {
            SFUD_INFO("Find a %s flash chip. Size is %ld bytes.", flash_mf_name, flash->chip.capacity);
340 341
        } else {
            SFUD_INFO("Find a flash chip. Size is %ld bytes.", flash->chip.capacity);
342 343 344 345 346 347 348 349 350
        }
    }

    /* reset flash device */
    result = reset(flash);
    if (result != SFUD_SUCCESS) {
        return result;
    }

351
    /* I found when the flash write mode is supported AAI mode. The flash all blocks is protected,
352 353 354 355 356 357 358 359 360
     * so need change the flash status to unprotected before write and erase operate. */
    if (flash->chip.write_mode & SFUD_WM_AAI) {
        result = sfud_write_status(flash, true, 0x00);
        if (result != SFUD_SUCCESS) {
            return result;
        }
    }

    /* if the flash is large than 16MB (256Mb) then enter in 4-Byte addressing mode */
361
    if (flash->chip.capacity > (1L << 24)) {
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
        result = set_4_byte_address_mode(flash, true);
    } else {
        flash->addr_in_4_byte = false;
    }

    return result;
}

/**
 * software initialize
 *
 * @param flash flash device
 *
 * @return result
 */
static sfud_err software_init(const sfud_flash *flash) {
    sfud_err result = SFUD_SUCCESS;

    SFUD_ASSERT(flash);

    return result;
}

/**
 * read flash data
 *
 * @param flash flash device
 * @param addr start address
 * @param size read size
 * @param data read data pointer
 *
 * @return result
 */
sfud_err sfud_read(const sfud_flash *flash, uint32_t addr, size_t size, uint8_t *data) {
    sfud_err result = SFUD_SUCCESS;
    const sfud_spi *spi = &flash->spi;
    uint8_t cmd_data[5], cmd_size;

    SFUD_ASSERT(flash);
    SFUD_ASSERT(data);
    /* must be call this function after initialize OK */
    SFUD_ASSERT(flash->init_ok);
    /* check the flash address bound */
    if (addr + size > flash->chip.capacity) {
        SFUD_INFO("Error: Flash address is out of bound.");
        return SFUD_ERR_ADDR_OUT_OF_BOUND;
    }
    /* lock SPI */
    if (spi->lock) {
        spi->lock(spi);
    }

    result = wait_busy(flash);

    if (result == SFUD_SUCCESS) {
armink_ztl's avatar
armink_ztl 已提交
417 418 419 420 421 422 423 424 425 426 427
#ifdef SFUD_USING_QSPI
        if (flash->read_cmd_format.instruction != SFUD_CMD_READ_DATA) {
            result = spi->qspi_read(spi, addr, (sfud_qspi_read_cmd_format *)&flash->read_cmd_format, data, size);
        } else
#endif
        {
            cmd_data[0] = SFUD_CMD_READ_DATA;
            make_adress_byte_array(flash, addr, &cmd_data[1]);
            cmd_size = flash->addr_in_4_byte ? 5 : 4;
            result = spi->wr(spi, cmd_data, cmd_size, data, size);
        }
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    }
    /* unlock SPI */
    if (spi->unlock) {
        spi->unlock(spi);
    }

    return result;
}

/**
 * erase all flash data
 *
 * @param flash flash device
 *
 * @return result
 */
sfud_err sfud_chip_erase(const sfud_flash *flash) {
    sfud_err result = SFUD_SUCCESS;
    const sfud_spi *spi = &flash->spi;
    uint8_t cmd_data[4];

    SFUD_ASSERT(flash);
    /* must be call this function after initialize OK */
    SFUD_ASSERT(flash->init_ok);
    /* lock SPI */
    if (spi->lock) {
        spi->lock(spi);
    }

    /* set the flash write enable */
    result = set_write_enabled(flash, true);
    if (result != SFUD_SUCCESS) {
460
        goto __exit;
461 462 463 464 465 466 467 468 469 470 471 472 473 474
    }

    cmd_data[0] = SFUD_CMD_ERASE_CHIP;
    /* dual-buffer write, like AT45DB series flash chip erase operate is different for other flash */
    if (flash->chip.write_mode & SFUD_WM_DUAL_BUFFER) {
        cmd_data[1] = 0x94;
        cmd_data[2] = 0x80;
        cmd_data[3] = 0x9A;
        result = spi->wr(spi, cmd_data, 4, NULL, 0);
    } else {
        result = spi->wr(spi, cmd_data, 1, NULL, 0);
    }
    if (result != SFUD_SUCCESS) {
        SFUD_INFO("Error: Flash chip erase SPI communicate error.");
475
        goto __exit;
476 477 478
    }
    result = wait_busy(flash);

479 480 481
__exit:
    /* set the flash write disable */
    set_write_enabled(flash, false);
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
    /* unlock SPI */
    if (spi->unlock) {
        spi->unlock(spi);
    }

    return result;
}

/**
 * erase flash data
 *
 * @note It will erase align by erase granularity.
 *
 * @param flash flash device
 * @param addr start address
 * @param size erase size
 *
 * @return result
 */
sfud_err sfud_erase(const sfud_flash *flash, uint32_t addr, size_t size) {
    extern size_t sfud_sfdp_get_suitable_eraser(const sfud_flash *flash, uint32_t addr, size_t erase_size);

    sfud_err result = SFUD_SUCCESS;
    const sfud_spi *spi = &flash->spi;
    uint8_t cmd_data[5], cmd_size, cur_erase_cmd;
507
    size_t cur_erase_size;
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530

    SFUD_ASSERT(flash);
    /* must be call this function after initialize OK */
    SFUD_ASSERT(flash->init_ok);
    /* check the flash address bound */
    if (addr + size > flash->chip.capacity) {
        SFUD_INFO("Error: Flash address is out of bound.");
        return SFUD_ERR_ADDR_OUT_OF_BOUND;
    }

    if (addr == 0 && size == flash->chip.capacity) {
        return sfud_chip_erase(flash);
    }

    /* lock SPI */
    if (spi->lock) {
        spi->lock(spi);
    }

    /* loop erase operate. erase unit is erase granularity */
    while (size) {
        /* if this flash is support SFDP parameter, then used SFDP parameter supplies eraser */
#ifdef SFUD_USING_SFDP
531
        size_t eraser_index;
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
        if (flash->sfdp.available) {
            /* get the suitable eraser for erase process from SFDP parameter */
            eraser_index = sfud_sfdp_get_suitable_eraser(flash, addr, size);
            cur_erase_cmd = flash->sfdp.eraser[eraser_index].cmd;
            cur_erase_size = flash->sfdp.eraser[eraser_index].size;
        } else {
#else
        {
#endif
            cur_erase_cmd = flash->chip.erase_gran_cmd;
            cur_erase_size = flash->chip.erase_gran;
        }
        /* set the flash write enable */
        result = set_write_enabled(flash, true);
        if (result != SFUD_SUCCESS) {
547
            goto __exit;
548 549 550 551 552 553 554 555
        }

        cmd_data[0] = cur_erase_cmd;
        make_adress_byte_array(flash, addr, &cmd_data[1]);
        cmd_size = flash->addr_in_4_byte ? 5 : 4;
        result = spi->wr(spi, cmd_data, cmd_size, NULL, 0);
        if (result != SFUD_SUCCESS) {
            SFUD_INFO("Error: Flash erase SPI communicate error.");
556
            goto __exit;
557 558 559
        }
        result = wait_busy(flash);
        if (result != SFUD_SUCCESS) {
560
            goto __exit;
561 562 563 564 565 566 567
        }
        /* make erase align and calculate next erase address */
        if (addr % cur_erase_size != 0) {
            if (size > cur_erase_size - (addr % cur_erase_size)) {
                size -= cur_erase_size - (addr % cur_erase_size);
                addr += cur_erase_size - (addr % cur_erase_size);
            } else {
568
                goto __exit;
569 570 571 572 573 574
            }
        } else {
            if (size > cur_erase_size) {
                size -= cur_erase_size;
                addr += cur_erase_size;
            } else {
575
                goto __exit;
576 577 578 579
            }
        }
    }

580 581 582
__exit:
    /* set the flash write disable */
    set_write_enabled(flash, false);
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
    /* unlock SPI */
    if (spi->unlock) {
        spi->unlock(spi);
    }

    return result;
}

/**
 * write flash data (no erase operate) for write 1 to 256 bytes per page mode or byte write mode
 *
 * @param flash flash device
 * @param addr start address
 * @param size write size
 * @param write_gran write granularity bytes, only support 1 or 256
 * @param data write data
 *
 * @return result
 */
static sfud_err page256_or_1_byte_write(const sfud_flash *flash, uint32_t addr, size_t size, uint16_t write_gran,
        const uint8_t *data) {
    sfud_err result = SFUD_SUCCESS;
    const sfud_spi *spi = &flash->spi;
armink_ztl's avatar
armink_ztl 已提交
606 607
    static uint8_t cmd_data[5 + SFUD_WRITE_MAX_PAGE_SIZE];
    uint8_t cmd_size;
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
    size_t data_size;

    SFUD_ASSERT(flash);
    /* only support 1 or 256 */
    SFUD_ASSERT(write_gran == 1 || write_gran == 256);
    /* must be call this function after initialize OK */
    SFUD_ASSERT(flash->init_ok);
    /* check the flash address bound */
    if (addr + size > flash->chip.capacity) {
        SFUD_INFO("Error: Flash address is out of bound.");
        return SFUD_ERR_ADDR_OUT_OF_BOUND;
    }
    /* lock SPI */
    if (spi->lock) {
        spi->lock(spi);
    }

    /* loop write operate. write unit is write granularity */
    while (size) {
        /* set the flash write enable */
        result = set_write_enabled(flash, true);
        if (result != SFUD_SUCCESS) {
630
            goto __exit;
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
        }
        cmd_data[0] = SFUD_CMD_PAGE_PROGRAM;
        make_adress_byte_array(flash, addr, &cmd_data[1]);
        cmd_size = flash->addr_in_4_byte ? 5 : 4;

        /* make write align and calculate next write address */
        if (addr % write_gran != 0) {
            if (size > write_gran - (addr % write_gran)) {
                data_size = write_gran - (addr % write_gran);
            } else {
                data_size = size;
            }
        } else {
            if (size > write_gran) {
                data_size = write_gran;
            } else {
                data_size = size;
            }
        }
        size -= data_size;
        addr += data_size;

        memcpy(&cmd_data[cmd_size], data, data_size);

        result = spi->wr(spi, cmd_data, cmd_size + data_size, NULL, 0);
        if (result != SFUD_SUCCESS) {
            SFUD_INFO("Error: Flash write SPI communicate error.");
658
            goto __exit;
659 660 661
        }
        result = wait_busy(flash);
        if (result != SFUD_SUCCESS) {
662
            goto __exit;
663 664 665 666
        }
        data += data_size;
    }

667 668 669
__exit:
    /* set the flash write disable */
    set_write_enabled(flash, false);
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
    /* unlock SPI */
    if (spi->unlock) {
        spi->unlock(spi);
    }

    return result;
}

/**
 * write flash data (no erase operate) for auto address increment mode
 *
 * If the address is odd number, it will place one 0xFF before the start of data for protect the old data.
 * If the latest remain size is 1, it will append one 0xFF at the end of data for protect the old data.
 *
 * @param flash flash device
 * @param addr start address
 * @param size write size
 * @param data write data
 *
 * @return result
 */
static sfud_err aai_write(const sfud_flash *flash, uint32_t addr, size_t size, const uint8_t *data) {
    sfud_err result = SFUD_SUCCESS;
    const sfud_spi *spi = &flash->spi;
    uint8_t cmd_data[6], cmd_size;
    bool first_write = true;

    SFUD_ASSERT(flash);
    SFUD_ASSERT(flash->init_ok);
    /* check the flash address bound */
    if (addr + size > flash->chip.capacity) {
        SFUD_INFO("Error: Flash address is out of bound.");
        return SFUD_ERR_ADDR_OUT_OF_BOUND;
    }
    /* lock SPI */
    if (spi->lock) {
        spi->lock(spi);
    }
708 709 710 711 712 713 714 715
    /* The address must be even for AAI write mode. So it must write one byte first when address is odd. */
    if (addr % 2 != 0) {
        result = page256_or_1_byte_write(flash, addr++, 1, 1, data++);
        if (result != SFUD_SUCCESS) {
            goto __exit;
        }
        size--;
    }
716 717 718
    /* set the flash write enable */
    result = set_write_enabled(flash, true);
    if (result != SFUD_SUCCESS) {
719
        goto __exit;
720
    }
721
    /* loop write operate. */
722
    cmd_data[0] = SFUD_CMD_AAI_WORD_PROGRAM;
723
    while (size >= 2) {
724 725 726
        if (first_write) {
            make_adress_byte_array(flash, addr, &cmd_data[1]);
            cmd_size = flash->addr_in_4_byte ? 5 : 4;
727 728
            cmd_data[cmd_size] = *data;
            cmd_data[cmd_size + 1] = *(data + 1);
729 730 731
            first_write = false;
        } else {
            cmd_size = 1;
732 733
            cmd_data[1] = *data;
            cmd_data[2] = *(data + 1);
734 735
        }

736
        result = spi->wr(spi, cmd_data, cmd_size + 2, NULL, 0);
737 738
        if (result != SFUD_SUCCESS) {
            SFUD_INFO("Error: Flash write SPI communicate error.");
739
            goto __exit;
740 741 742 743
        }

        result = wait_busy(flash);
        if (result != SFUD_SUCCESS) {
744
            goto __exit;
745 746 747
        }

        size -= 2;
748 749 750 751 752 753 754 755
        addr += 2;
        data += 2;
    }
    /* set the flash write disable for exit AAI mode */
    result = set_write_enabled(flash, false);
    /* write last one byte data when origin write size is odd */
    if (result == SFUD_SUCCESS && size == 1) {
        result = page256_or_1_byte_write(flash, addr, 1, 1, data);
756 757
    }

758
__exit:
759 760 761
    if (result != SFUD_SUCCESS) {
        set_write_enabled(flash, false);
    }
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
    /* unlock SPI */
    if (spi->unlock) {
        spi->unlock(spi);
    }

    return result;
}

/**
 * write flash data (no erase operate)
 *
 * @param flash flash device
 * @param addr start address
 * @param size write size
 * @param data write data
 *
 * @return result
 */
sfud_err sfud_write(const sfud_flash *flash, uint32_t addr, size_t size, const uint8_t *data) {
    sfud_err result = SFUD_SUCCESS;

    if (flash->chip.write_mode & SFUD_WM_PAGE_256B) {
        result = page256_or_1_byte_write(flash, addr, size, 256, data);
    } else if (flash->chip.write_mode & SFUD_WM_AAI) {
        result = aai_write(flash, addr, size, data);
    } else if (flash->chip.write_mode & SFUD_WM_DUAL_BUFFER) {
        //TODO dual-buffer write mode
    }

    return result;
}

/**
 * erase and write flash data
 *
 * @param flash flash device
 * @param addr start address
 * @param size write size
 * @param data write data
 *
 * @return result
 */
sfud_err sfud_erase_write(const sfud_flash *flash, uint32_t addr, size_t size, const uint8_t *data) {
    sfud_err result = SFUD_SUCCESS;

    result = sfud_erase(flash, addr, size);

    if (result == SFUD_SUCCESS) {
        result = sfud_write(flash, addr, size, data);
    }

    return result;
}

static sfud_err reset(const sfud_flash *flash) {
    sfud_err result = SFUD_SUCCESS;
    const sfud_spi *spi = &flash->spi;
    uint8_t cmd_data[2];

    SFUD_ASSERT(flash);

    cmd_data[0] = SFUD_CMD_ENABLE_RESET;
armink_ztl's avatar
armink_ztl 已提交
824 825 826 827 828 829 830 831
    result = spi->wr(spi, cmd_data, 1, NULL, 0);
    if (result == SFUD_SUCCESS) {
        result = wait_busy(flash);
    } else {
        SFUD_INFO("Error: Flash device reset failed.");
        return result;
    }

832
    cmd_data[1] = SFUD_CMD_RESET;
armink_ztl's avatar
armink_ztl 已提交
833
    result = spi->wr(spi, &cmd_data[1], 1, NULL, 0);
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036

    if (result == SFUD_SUCCESS) {
        result = wait_busy(flash);
    }

    if (result == SFUD_SUCCESS) {
        SFUD_DEBUG("Flash device reset success.");
    } else {
        SFUD_INFO("Error: Flash device reset failed.");
    }

    return result;
}

static sfud_err read_jedec_id(sfud_flash *flash) {
    sfud_err result = SFUD_SUCCESS;
    const sfud_spi *spi = &flash->spi;
    uint8_t cmd_data[1], recv_data[3];

    SFUD_ASSERT(flash);

    cmd_data[0] = SFUD_CMD_JEDEC_ID;
    result = spi->wr(spi, cmd_data, sizeof(cmd_data), recv_data, sizeof(recv_data));
    if (result == SFUD_SUCCESS) {
        flash->chip.mf_id = recv_data[0];
        flash->chip.type_id = recv_data[1];
        flash->chip.capacity_id = recv_data[2];
        SFUD_DEBUG("The flash device manufacturer ID is 0x%02X, memory type ID is 0x%02X, capacity ID is 0x%02X.",
                flash->chip.mf_id, flash->chip.type_id, flash->chip.capacity_id);
    } else {
        SFUD_INFO("Error: Read flash device JEDEC ID error.");
    }

    return result;
}

/**
 * set the flash write enable or write disable
 *
 * @param flash flash device
 * @param enabled true: enable  false: disable
 *
 * @return result
 */
static sfud_err set_write_enabled(const sfud_flash *flash, bool enabled) {
    sfud_err result = SFUD_SUCCESS;
    uint8_t cmd, register_status;

    SFUD_ASSERT(flash);

    if (enabled) {
        cmd = SFUD_CMD_WRITE_ENABLE;
    } else {
        cmd = SFUD_CMD_WRITE_DISABLE;
    }

    result = flash->spi.wr(&flash->spi, &cmd, 1, NULL, 0);

    if (result == SFUD_SUCCESS) {
        result = sfud_read_status(flash, &register_status);
    }

    if (result == SFUD_SUCCESS) {
        if (enabled && (register_status & SFUD_STATUS_REGISTER_WEL) == 0) {
            SFUD_INFO("Error: Can't enable write status.");
            return SFUD_ERR_WRITE;
        } else if (!enabled && (register_status & SFUD_STATUS_REGISTER_WEL) == 1) {
            SFUD_INFO("Error: Can't disable write status.");
            return SFUD_ERR_WRITE;
        }
    }

    return result;
}

/**
 * enable or disable 4-Byte addressing for flash
 *
 * @note The 4-Byte addressing just supported for the flash capacity which is large then 16MB (256Mb).
 *
 * @param flash flash device
 * @param enabled true: enable   false: disable
 *
 * @return result
 */
static sfud_err set_4_byte_address_mode(sfud_flash *flash, bool enabled) {
    sfud_err result = SFUD_SUCCESS;
    uint8_t cmd;

    SFUD_ASSERT(flash);

    /* set the flash write enable */
    result = set_write_enabled(flash, true);
    if (result != SFUD_SUCCESS) {
        return result;
    }

    if (enabled) {
        cmd = SFUD_CMD_ENTER_4B_ADDRESS_MODE;
    } else {
        cmd = SFUD_CMD_EXIT_4B_ADDRESS_MODE;
    }

    result = flash->spi.wr(&flash->spi, &cmd, 1, NULL, 0);

    if (result == SFUD_SUCCESS) {
        flash->addr_in_4_byte = enabled ? true : false;
        SFUD_DEBUG("%s 4-Byte addressing mode success.", enabled ? "Enter" : "Exit");
    } else {
        SFUD_INFO("Error: %s 4-Byte addressing mode failed.", enabled ? "Enter" : "Exit");
    }

    return result;
}

/**
 * read flash register status
 *
 * @param flash flash device
 * @param status register status
 *
 * @return result
 */
sfud_err sfud_read_status(const sfud_flash *flash, uint8_t *status) {
    uint8_t cmd = SFUD_CMD_READ_STATUS_REGISTER;

    SFUD_ASSERT(flash);
    SFUD_ASSERT(status);

    return flash->spi.wr(&flash->spi, &cmd, 1, status, 1);
}

static sfud_err wait_busy(const sfud_flash *flash) {
    sfud_err result = SFUD_SUCCESS;
    uint8_t status;
    size_t retry_times = flash->retry.times;

    SFUD_ASSERT(flash);

    while (true) {
        result = sfud_read_status(flash, &status);
        if (result == SFUD_SUCCESS && ((status & SFUD_STATUS_REGISTER_BUSY)) == 0) {
            break;
        }
        /* retry counts */
        SFUD_RETRY_PROCESS(flash->retry.delay, retry_times, result);
    }

    if (result != SFUD_SUCCESS || ((status & SFUD_STATUS_REGISTER_BUSY)) != 0) {
        SFUD_INFO("Error: Flash wait busy has an error.");
    }

    return result;
}

static void make_adress_byte_array(const sfud_flash *flash, uint32_t addr, uint8_t *array) {
    uint8_t len, i;

    SFUD_ASSERT(flash);
    SFUD_ASSERT(array);

    len = flash->addr_in_4_byte ? 4 : 3;

    for (i = 0; i < len; i++) {
        array[i] = (addr >> ((len - (i + 1)) * 8)) & 0xFF;
    }
}

/**
 * write status register
 *
 * @param flash flash device
 * @param is_volatile true: volatile mode, false: non-volatile mode
 * @param status register status
 *
 * @return result
 */
sfud_err sfud_write_status(const sfud_flash *flash, bool is_volatile, uint8_t status) {
    sfud_err result = SFUD_SUCCESS;
    const sfud_spi *spi = &flash->spi;
    uint8_t cmd_data[2];

    SFUD_ASSERT(flash);

    if (is_volatile) {
        cmd_data[0] = SFUD_VOLATILE_SR_WRITE_ENABLE;
        result = spi->wr(spi, cmd_data, 1, NULL, 0);
    } else {
        result = set_write_enabled(flash, true);
    }

    if (result == SFUD_SUCCESS) {
        cmd_data[0] = SFUD_CMD_WRITE_STATUS_REGISTER;
        cmd_data[1] = status;
        result = spi->wr(spi, cmd_data, 2, NULL, 0);
    }

    if (result != SFUD_SUCCESS) {
        SFUD_INFO("Error: Write_status register failed.");
    }

    return result;
}