1. 02 9月, 2020 1 次提交
  2. 21 11月, 2019 1 次提交
    • A
      y2038: make do_gettimeofday() and get_seconds() inline · 32d3fe68
      Arnd Bergmann 提交于
      [ Upstream commit 33e26418193f58d1895f2f968e1953b1caf8deb7 ]
      
      get_seconds() and do_gettimeofday() are only used by a few modules now any
      more (waiting for the respective patches to get accepted), and they are
      among the last holdouts of code that is not y2038 safe in the core kernel.
      
      Move the implementation into the timekeeping32.h header to clean up
      the core kernel and isolate the old interfaces further.
      Signed-off-by: NArnd Bergmann <arnd@arndb.de>
      Signed-off-by: NSasha Levin <sashal@kernel.org>
      32d3fe68
  3. 16 9月, 2019 1 次提交
  4. 19 6月, 2019 1 次提交
  5. 31 5月, 2019 1 次提交
    • T
      timekeeping: Force upper bound for setting CLOCK_REALTIME · dc0f37b7
      Thomas Gleixner 提交于
      [ Upstream commit 7a8e61f8478639072d402a26789055a4a4de8f77 ]
      
      Several people reported testing failures after setting CLOCK_REALTIME close
      to the limits of the kernel internal representation in nanoseconds,
      i.e. year 2262.
      
      The failures are exposed in subsequent operations, i.e. when arming timers
      or when the advancing CLOCK_MONOTONIC makes the calculation of
      CLOCK_REALTIME overflow into negative space.
      
      Now people start to paper over the underlying problem by clamping
      calculations to the valid range, but that's just wrong because such
      workarounds will prevent detection of real issues as well.
      
      It is reasonable to force an upper bound for the various methods of setting
      CLOCK_REALTIME. Year 2262 is the absolute upper bound. Assume a maximum
      uptime of 30 years which is plenty enough even for esoteric embedded
      systems. That results in an upper bound of year 2232 for setting the time.
      
      Once that limit is reached in reality this limit is only a small part of
      the problem space. But until then this stops people from trying to paper
      over the problem at the wrong places.
      Reported-by: NXiongfeng Wang <wangxiongfeng2@huawei.com>
      Reported-by: NHongbo Yao <yaohongbo@huawei.com>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: John Stultz <john.stultz@linaro.org>
      Cc: Stephen Boyd <sboyd@kernel.org>
      Cc: Miroslav Lichvar <mlichvar@redhat.com>
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: Richard Cochran <richardcochran@gmail.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1903231125480.2157@nanos.tec.linutronix.deSigned-off-by: NSasha Levin <sashal@kernel.org>
      dc0f37b7
  6. 13 2月, 2019 1 次提交
  7. 31 7月, 2018 1 次提交
  8. 20 7月, 2018 5 次提交
    • B
      time: Introduce one suspend clocksource to compensate the suspend time · 39232ed5
      Baolin Wang 提交于
      On some hardware with multiple clocksources, we have coarse grained
      clocksources that support the CLOCK_SOURCE_SUSPEND_NONSTOP flag, but
      which are less than ideal for timekeeping whereas other clocksources
      can be better candidates but halt on suspend.
      
      Currently, the timekeeping core only supports timing suspend using
      CLOCK_SOURCE_SUSPEND_NONSTOP clocksources if that clocksource is the
      current clocksource for timekeeping.
      
      As a result, some architectures try to implement read_persistent_clock64()
      using those non-stop clocksources, but isn't really ideal, which will
      introduce more duplicate code. To fix this, provide logic to allow a
      registered SUSPEND_NONSTOP clocksource, which isn't the current
      clocksource, to be used to calculate the suspend time.
      
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Miroslav Lichvar <mlichvar@redhat.com>
      Cc: Richard Cochran <richardcochran@gmail.com>
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Stephen Boyd <sboyd@kernel.org>
      Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Reviewed-by: NDaniel Lezcano <daniel.lezcano@linaro.org>
      Suggested-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NBaolin Wang <baolin.wang@linaro.org>
      [jstultz: minor tweaks to merge with previous resume changes]
      Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
      39232ed5
    • M
      time: Fix extra sleeptime injection when suspend fails · f473e5f4
      Mukesh Ojha 提交于
      Currently, there exists a corner case assuming when there is
      only one clocksource e.g RTC, and system failed to go to
      suspend mode. While resume rtc_resume() injects the sleeptime
      as timekeeping_rtc_skipresume() returned 'false' (default value
      of sleeptime_injected) due to which we can see mismatch in
      timestamps.
      
      This issue can also come in a system where more than one
      clocksource are present and very first suspend fails.
      
      Success case:
      ------------
                                              {sleeptime_injected=false}
      rtc_suspend() => timekeeping_suspend() => timekeeping_resume() =>
      
      (sleeptime injected)
       rtc_resume()
      
      Failure case:
      ------------
               {failure in sleep path} {sleeptime_injected=false}
      rtc_suspend()     =>          rtc_resume()
      
      {sleeptime injected again which was not required as the suspend failed}
      
      Fix this by handling the boolean logic properly.
      
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Miroslav Lichvar <mlichvar@redhat.com>
      Cc: Richard Cochran <richardcochran@gmail.com>
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Stephen Boyd <sboyd@kernel.org>
      Originally-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NMukesh Ojha <mojha@codeaurora.org>
      Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
      f473e5f4
    • O
      timekeeping/ntp: Constify some function arguments · 985e6950
      Ondrej Mosnacek 提交于
      Add 'const' to some function arguments and variables to make it easier
      to read the code.
      
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Miroslav Lichvar <mlichvar@redhat.com>
      Cc: Richard Cochran <richardcochran@gmail.com>
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Stephen Boyd <sboyd@kernel.org>
      Signed-off-by: NOndrej Mosnacek <omosnace@redhat.com>
      [jstultz: Also fixup pre-existing checkpatch warnings for
       prototype arguments with no variable name]
      Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
      985e6950
    • P
      timekeeping: Default boot time offset to local_clock() · 4b1b7f80
      Pavel Tatashin 提交于
      read_persistent_wall_and_boot_offset() is called during boot to read
      both the persistent clock and also return the offset between the boot time
      and the value of persistent clock.
      
      Change the default boot_offset from zero to local_clock() so architectures,
      that do not have a dedicated boot_clock but have early sched_clock(), such
      as SPARCv9, x86, and possibly more will benefit from this change by getting
      a better and more consistent estimate of the boot time without need for an
      arch specific implementation.
      Signed-off-by: NPavel Tatashin <pasha.tatashin@oracle.com>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: steven.sistare@oracle.com
      Cc: daniel.m.jordan@oracle.com
      Cc: linux@armlinux.org.uk
      Cc: schwidefsky@de.ibm.com
      Cc: heiko.carstens@de.ibm.com
      Cc: john.stultz@linaro.org
      Cc: sboyd@codeaurora.org
      Cc: hpa@zytor.com
      Cc: douly.fnst@cn.fujitsu.com
      Cc: peterz@infradead.org
      Cc: prarit@redhat.com
      Cc: feng.tang@intel.com
      Cc: pmladek@suse.com
      Cc: gnomes@lxorguk.ukuu.org.uk
      Cc: linux-s390@vger.kernel.org
      Cc: boris.ostrovsky@oracle.com
      Cc: jgross@suse.com
      Cc: pbonzini@redhat.com
      Link: https://lkml.kernel.org/r/20180719205545.16512-17-pasha.tatashin@oracle.com
      4b1b7f80
    • P
      timekeeping: Replace read_boot_clock64() with read_persistent_wall_and_boot_offset() · 3eca9937
      Pavel Tatashin 提交于
      If architecture does not support exact boot time, it is challenging to
      estimate boot time without having a reference to the current persistent
      clock value. Yet, it cannot read the persistent clock time again, because
      this may lead to math discrepancies with the caller of read_boot_clock64()
      who have read the persistent clock at a different time.
      
      This is why it is better to provide two values simultaneously: the
      persistent clock value, and the boot time.
      
      Replace read_boot_clock64() with:
      read_persistent_wall_and_boot_offset(wall_time, boot_offset)
      
      Where wall_time is returned by read_persistent_clock() And boot_offset is
      wall_time - boot time, which defaults to 0.
      Signed-off-by: NPavel Tatashin <pasha.tatashin@oracle.com>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: steven.sistare@oracle.com
      Cc: daniel.m.jordan@oracle.com
      Cc: linux@armlinux.org.uk
      Cc: schwidefsky@de.ibm.com
      Cc: heiko.carstens@de.ibm.com
      Cc: john.stultz@linaro.org
      Cc: sboyd@codeaurora.org
      Cc: hpa@zytor.com
      Cc: douly.fnst@cn.fujitsu.com
      Cc: peterz@infradead.org
      Cc: prarit@redhat.com
      Cc: feng.tang@intel.com
      Cc: pmladek@suse.com
      Cc: gnomes@lxorguk.ukuu.org.uk
      Cc: linux-s390@vger.kernel.org
      Cc: boris.ostrovsky@oracle.com
      Cc: jgross@suse.com
      Cc: pbonzini@redhat.com
      Link: https://lkml.kernel.org/r/20180719205545.16512-16-pasha.tatashin@oracle.com
      3eca9937
  9. 11 7月, 2018 1 次提交
    • M
      timekeeping: Update multiplier when NTP frequency is set directly · b061c7a5
      Miroslav Lichvar 提交于
      When the NTP frequency is set directly from userspace using the
      ADJ_FREQUENCY or ADJ_TICK timex mode, immediately update the
      timekeeper's multiplier instead of waiting for the next tick.
      
      This removes a hidden non-deterministic delay in setting of the
      frequency and allows an extremely tight control of the system clock
      with update rates close to or even exceeding the kernel HZ.
      
      The update is limited to archs using modern timekeeping
      (!ARCH_USES_GETTIMEOFFSET).
      
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Miroslav Lichvar <mlichvar@redhat.com>
      Cc: Richard Cochran <richardcochran@gmail.com>
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Stephen Boyd <sboyd@kernel.org>
      Signed-off-by: NMiroslav Lichvar <mlichvar@redhat.com>
      Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
      b061c7a5
  10. 19 6月, 2018 1 次提交
  11. 19 5月, 2018 3 次提交
  12. 26 4月, 2018 1 次提交
    • T
      Revert: Unify CLOCK_MONOTONIC and CLOCK_BOOTTIME · a3ed0e43
      Thomas Gleixner 提交于
      Revert commits
      
      92af4dcb ("tracing: Unify the "boot" and "mono" tracing clocks")
      127bfa5f ("hrtimer: Unify MONOTONIC and BOOTTIME clock behavior")
      7250a404 ("posix-timers: Unify MONOTONIC and BOOTTIME clock behavior")
      d6c7270e ("timekeeping: Remove boot time specific code")
      f2d6fdbf ("Input: Evdev - unify MONOTONIC and BOOTTIME clock behavior")
      d6ed449a ("timekeeping: Make the MONOTONIC clock behave like the BOOTTIME clock")
      72199320 ("timekeeping: Add the new CLOCK_MONOTONIC_ACTIVE clock")
      
      As stated in the pull request for the unification of CLOCK_MONOTONIC and
      CLOCK_BOOTTIME, it was clear that we might have to revert the change.
      
      As reported by several folks systemd and other applications rely on the
      documented behaviour of CLOCK_MONOTONIC on Linux and break with the above
      changes. After resume daemons time out and other timeout related issues are
      observed. Rafael compiled this list:
      
      * systemd kills daemons on resume, after >WatchdogSec seconds
        of suspending (Genki Sky).  [Verified that that's because systemd uses
        CLOCK_MONOTONIC and expects it to not include the suspend time.]
      
      * systemd-journald misbehaves after resume:
        systemd-journald[7266]: File /var/log/journal/016627c3c4784cd4812d4b7e96a34226/system.journal
      corrupted or uncleanly shut down, renaming and replacing.
        (Mike Galbraith).
      
      * NetworkManager reports "networking disabled" and networking is broken
        after resume 50% of the time (Pavel).  [May be because of systemd.]
      
      * MATE desktop dims the display and starts the screensaver right after
        system resume (Pavel).
      
      * Full system hang during resume (me).  [May be due to systemd or NM or both.]
      
      That happens on debian and open suse systems.
      
      It's sad, that these problems were neither catched in -next nor by those
      folks who expressed interest in this change.
      Reported-by: NRafael J. Wysocki <rjw@rjwysocki.net>
      Reported-by: Genki Sky <sky@genki.is>,
      Reported-by: NPavel Machek <pavel@ucw.cz>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
      Cc: John Stultz <john.stultz@linaro.org>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Kevin Easton <kevin@guarana.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Mark Salyzyn <salyzyn@android.com>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Petr Mladek <pmladek@suse.com>
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
      Cc: Steven Rostedt <rostedt@goodmis.org>
      a3ed0e43
  13. 17 4月, 2018 1 次提交
  14. 13 3月, 2018 4 次提交
    • T
      hrtimer: Unify MONOTONIC and BOOTTIME clock behavior · 127bfa5f
      Thomas Gleixner 提交于
      Now that th MONOTONIC and BOOTTIME clocks are indentical remove all the special
      casing.
      
      The user space visible interfaces still support both clocks, but their behavior
      is identical.
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
      Cc: John Stultz <john.stultz@linaro.org>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Kevin Easton <kevin@guarana.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Mark Salyzyn <salyzyn@android.com>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Petr Mladek <pmladek@suse.com>
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
      Cc: Steven Rostedt <rostedt@goodmis.org>
      Link: http://lkml.kernel.org/r/20180301165150.410218515@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
      127bfa5f
    • T
      timekeeping: Remove boot time specific code · d6c7270e
      Thomas Gleixner 提交于
      Now that the MONOTONIC and BOOTTIME clocks are the same, remove all the
      special handling from timekeeping. Keep wrappers for the existing users of
      the *boot* timekeeper interfaces.
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
      Cc: John Stultz <john.stultz@linaro.org>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Kevin Easton <kevin@guarana.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Mark Salyzyn <salyzyn@android.com>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Petr Mladek <pmladek@suse.com>
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
      Cc: Steven Rostedt <rostedt@goodmis.org>
      Link: http://lkml.kernel.org/r/20180301165150.236279497@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
      d6c7270e
    • T
      timekeeping: Make the MONOTONIC clock behave like the BOOTTIME clock · d6ed449a
      Thomas Gleixner 提交于
      The MONOTONIC clock is not fast forwarded by the time spent in suspend on
      resume. This is only done for the BOOTTIME clock. The reason why the
      MONOTONIC clock is not forwarded is historical: the original Linux
      implementation was using jiffies as a base for the MONOTONIC clock and
      jiffies have never been advanced after resume.
      
      At some point when timekeeping was unified in the core code, the
      MONONOTIC clock was advanced after resume which also advanced jiffies causing
      interesting side effects. As a consequence the the MONOTONIC clock forwarding
      was disabled again and the BOOTTIME clock was introduced, which allows to read
      time since boot.
      
      Back then it was not possible to completely distangle the MONOTONIC clock and
      jiffies because there were still interfaces which exposed the MONOTONIC clock
      behaviour based on the timer wheel and therefore jiffies.
      
      As of today none of the MONOTONIC clock facilities depends on jiffies
      anymore so the forwarding can be done seperately. This is achieved by
      forwarding the variables which are used for the jiffies update after resume
      before the tick is restarted,
      
      In timekeeping resume, the change is rather simple. Instead of updating the
      offset between the MONOTONIC clock and the REALTIME/BOOTTIME clocks, advance the
      time keeper base for the MONOTONIC and the MONOTONIC_RAW clocks by the time
      spent in suspend.
      
      The MONOTONIC clock is now the same as the BOOTTIME clock and the offset between
      the REALTIME and the MONOTONIC clocks is the same as before suspend.
      
      There might be side effects in applications, which rely on the
      (unfortunately) well documented behaviour of the MONOTONIC clock, but the
      downsides of the existing behaviour are probably worse.
      
      There is one obvious issue. Up to now it was possible to retrieve the time
      spent in suspend by observing the delta between the MONOTONIC clock and the
      BOOTTIME clock. This is not longer available, but the previously introduced
      mechanism to read the active non-suspended monotonic time can mitigate that
      in a detectable fashion.
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
      Cc: John Stultz <john.stultz@linaro.org>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Kevin Easton <kevin@guarana.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Mark Salyzyn <salyzyn@android.com>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Petr Mladek <pmladek@suse.com>
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
      Cc: Steven Rostedt <rostedt@goodmis.org>
      Link: http://lkml.kernel.org/r/20180301165150.062975504@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
      d6ed449a
    • T
      timekeeping: Add the new CLOCK_MONOTONIC_ACTIVE clock · 72199320
      Thomas Gleixner 提交于
      The planned change to unify the behaviour of the MONOTONIC and BOOTTIME
      clocks vs. suspend removes the ability to retrieve the active
      non-suspended time of a system.
      
      Provide a new CLOCK_MONOTONIC_ACTIVE clock which returns the active
      non-suspended time of the system via clock_gettime().
      
      This preserves the old behaviour of CLOCK_MONOTONIC before the
      BOOTTIME/MONOTONIC unification.
      
      This new clock also allows applications to detect programmatically that
      the MONOTONIC and BOOTTIME clocks are identical.
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
      Cc: John Stultz <john.stultz@linaro.org>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Kevin Easton <kevin@guarana.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Mark Salyzyn <salyzyn@android.com>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Petr Mladek <pmladek@suse.com>
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
      Cc: Steven Rostedt <rostedt@goodmis.org>
      Link: http://lkml.kernel.org/r/20180301165149.965235774@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
      72199320
  15. 10 3月, 2018 2 次提交
  16. 14 11月, 2017 1 次提交
  17. 12 11月, 2017 1 次提交
    • A
      pstore: Use ktime_get_real_fast_ns() instead of __getnstimeofday() · df27067e
      Arnd Bergmann 提交于
      __getnstimeofday() is a rather odd interface, with a number of quirks:
      
      - The caller may come from NMI context, but the implementation is not NMI safe,
        one way to get there from NMI is
      
            NMI handler:
              something bad
                panic()
                  kmsg_dump()
                    pstore_dump()
                       pstore_record_init()
                         __getnstimeofday()
      
      - The calling conventions are different from any other timekeeping functions,
        to deal with returning an error code during suspended timekeeping.
      
      Address the above issues by using a completely different method to get the
      time: ktime_get_real_fast_ns() is NMI safe and has a reasonable behavior
      when timekeeping is suspended: it returns the time at which it got
      suspended. As Thomas Gleixner explained, this is safe, as
      ktime_get_real_fast_ns() does not call into the clocksource driver that
      might be suspended.
      
      The result can easily be transformed into a timespec structure. Since
      ktime_get_real_fast_ns() was not exported to modules, add the export.
      
      The pstore behavior for the suspended case changes slightly, as it now
      stores the timestamp at which timekeeping was suspended instead of storing
      a zero timestamp.
      
      This change is not addressing y2038-safety, that's subject to a more
      complex follow up patch.
      Signed-off-by: NArnd Bergmann <arnd@arndb.de>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Acked-by: NKees Cook <keescook@chromium.org>
      Cc: Tony Luck <tony.luck@intel.com>
      Cc: Anton Vorontsov <anton@enomsg.org>
      Cc: Stephen Boyd <sboyd@codeaurora.org>
      Cc: John Stultz <john.stultz@linaro.org>
      Cc: Colin Cross <ccross@android.com>
      Link: https://lkml.kernel.org/r/20171110152530.1926955-1-arnd@arndb.de
      df27067e
  18. 31 10月, 2017 2 次提交
    • A
      timekeeping: Use timespec64 in timekeeping_inject_offset · 1572fa03
      Arnd Bergmann 提交于
      As part of changing all the timekeeping code to use 64-bit
      time_t consistently, this removes the uses of timeval
      and timespec as much as possible from do_adjtimex() and
      timekeeping_inject_offset(). The timeval_inject_offset_valid()
      and timespec_inject_offset_valid() just complicate this,
      so I'm folding them into the respective callers.
      
      This leaves the actual 'struct timex' definition, which
      is part of the user-space ABI and should be dealt with
      separately when we have agreed on the ABI change.
      
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Miroslav Lichvar <mlichvar@redhat.com>
      Cc: Richard Cochran <richardcochran@gmail.com>
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Stephen Boyd <stephen.boyd@linaro.org>
      Signed-off-by: NArnd Bergmann <arnd@arndb.de>
      Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
      1572fa03
    • A
      timekeeping: Consolidate timekeeping_inject_offset code · e0956dcc
      Arnd Bergmann 提交于
      The code to check the adjtimex() or clock_adjtime() arguments is spread
      out across multiple files for presumably only historic reasons. As a
      preparatation for a rework to get rid of the use of 'struct timeval'
      and 'struct timespec' in there, this moves all the portions into
      kernel/time/timekeeping.c and marks them as 'static'.
      
      The warp_clock() function here is not as closely related as the others,
      but I feel it still makes sense to move it here in order to consolidate
      all callers of timekeeping_inject_offset().
      
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Miroslav Lichvar <mlichvar@redhat.com>
      Cc: Richard Cochran <richardcochran@gmail.com>
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Stephen Boyd <stephen.boyd@linaro.org>
      Signed-off-by: NArnd Bergmann <arnd@arndb.de>
      [jstultz: Whitespace fixup]
      Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
      e0956dcc
  19. 26 9月, 2017 2 次提交
  20. 09 9月, 2017 1 次提交
  21. 26 8月, 2017 1 次提交
    • J
      time: Fix ktime_get_raw() incorrect base accumulation · 0bcdc098
      John Stultz 提交于
      In comqit fc6eead7 ("time: Clean up CLOCK_MONOTONIC_RAW time
      handling"), the following code got mistakenly added to the update of the
      raw timekeeper:
      
       /* Update the monotonic raw base */
       seconds = tk->raw_sec;
       nsec = (u32)(tk->tkr_raw.xtime_nsec >> tk->tkr_raw.shift);
       tk->tkr_raw.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
      
      Which adds the raw_sec value and the shifted down raw xtime_nsec to the
      base value.
      
      But the read function adds the shifted down tk->tkr_raw.xtime_nsec value
      another time, The result of this is that ktime_get_raw() users (which are
      all internal users) see the raw time move faster then it should (the rate
      at which can vary with the current size of tkr_raw.xtime_nsec), which has
      resulted in at least problems with graphics rendering performance.
      
      The change tried to match the monotonic base update logic:
      
       seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
       nsec = (u32) tk->wall_to_monotonic.tv_nsec;
       tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
      
      Which adds the wall_to_monotonic.tv_nsec value, but not the
      tk->tkr_mono.xtime_nsec value to the base.
      
      To fix this, simplify the tkr_raw.base accumulation to only accumulate the
      raw_sec portion, and do not include the tkr_raw.xtime_nsec portion, which
      will be added at read time.
      
      Fixes: fc6eead7 ("time: Clean up CLOCK_MONOTONIC_RAW time handling")
      Reported-and-tested-by: NChris Wilson <chris@chris-wilson.co.uk>
      Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Kevin Brodsky <kevin.brodsky@arm.com>
      Cc: Richard Cochran <richardcochran@gmail.com>
      Cc: Stephen Boyd <stephen.boyd@linaro.org>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: Miroslav Lichvar <mlichvar@redhat.com>
      Cc: Daniel Mentz <danielmentz@google.com>
      Link: http://lkml.kernel.org/r/1503701824-1645-1-git-send-email-john.stultz@linaro.org
      0bcdc098
  22. 18 8月, 2017 1 次提交
    • S
      timekeeping: Use proper timekeeper for debug code · a529bea8
      Stafford Horne 提交于
      When CONFIG_DEBUG_TIMEKEEPING is enabled the timekeeping_check_update()
      function will update status like last_warning and underflow_seen on the
      timekeeper.
      
      If there are issues found this state is used to rate limit the warnings
      that get printed.
      
      This rate limiting doesn't really really work if stored in real_tk as
      the shadow timekeeper is overwritten onto real_tk at the end of every
      update_wall_time() call, resetting last_warning and other statuses.
      
      Fix rate limiting by using the shadow_timekeeper for
      timekeeping_check_update().
      
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Miroslav Lichvar <mlichvar@redhat.com>
      Cc: Richard Cochran <richardcochran@gmail.com>
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Stephen Boyd <stephen.boyd@linaro.org>
      Fixes: commit 57d05a93 ("time: Rework debugging variables so they aren't global")
      Signed-off-by: NStafford Horne <shorne@gmail.com>
      Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
      a529bea8
  23. 21 6月, 2017 2 次提交
    • J
      time: Add warning about imminent deprecation of CONFIG_GENERIC_TIME_VSYSCALL_OLD · 369adf04
      John Stultz 提交于
      CONFIG_GENERIC_TIME_VSYSCALL_OLD was introduced five years ago
      to allow a transition from the old vsyscall implementations to
      the new method (which simplified internal accounting and made
      timekeeping more precise).
      
      However, PPC and IA64 have yet to make the transition, despite
      in some cases me sending test patches to try to help it along.
      
      http://patches.linaro.org/patch/30501/
      http://patches.linaro.org/patch/35412/
      
      If its helpful, my last pass at the patches can be found here:
      https://git.linaro.org/people/john.stultz/linux.git dev/oldvsyscall-cleanup
      
      So I think its time to set a deadline and make it clear this
      is going away. So this patch adds warnings about this
      functionality being dropped. Likely to be in v4.15.
      
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Miroslav Lichvar <mlichvar@redhat.com>
      Cc: Richard Cochran <richardcochran@gmail.com>
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Marcelo Tosatti <mtosatti@redhat.com>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Anton Blanchard <anton@samba.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Tony Luck <tony.luck@intel.com>
      Cc: Michael Ellerman <mpe@ellerman.id.au>
      Cc: Fenghua Yu <fenghua.yu@intel.com>
      Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
      369adf04
    • J
      time: Clean up CLOCK_MONOTONIC_RAW time handling · fc6eead7
      John Stultz 提交于
      Now that we fixed the sub-ns handling for CLOCK_MONOTONIC_RAW,
      remove the duplicitive tk->raw_time.tv_nsec, which can be
      stored in tk->tkr_raw.xtime_nsec (similarly to how its handled
      for monotonic time).
      
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Miroslav Lichvar <mlichvar@redhat.com>
      Cc: Richard Cochran <richardcochran@gmail.com>
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Stephen Boyd <stephen.boyd@linaro.org>
      Cc: Kevin Brodsky <kevin.brodsky@arm.com>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: Daniel Mentz <danielmentz@google.com>
      Tested-by: NDaniel Mentz <danielmentz@google.com>
      Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
      fc6eead7
  24. 20 6月, 2017 2 次提交
    • J
      time: Fix CLOCK_MONOTONIC_RAW sub-nanosecond accounting · 3d88d56c
      John Stultz 提交于
      Due to how the MONOTONIC_RAW accumulation logic was handled,
      there is the potential for a 1ns discontinuity when we do
      accumulations. This small discontinuity has for the most part
      gone un-noticed, but since ARM64 enabled CLOCK_MONOTONIC_RAW
      in their vDSO clock_gettime implementation, we've seen failures
      with the inconsistency-check test in kselftest.
      
      This patch addresses the issue by using the same sub-ns
      accumulation handling that CLOCK_MONOTONIC uses, which avoids
      the issue for in-kernel users.
      
      Since the ARM64 vDSO implementation has its own clock_gettime
      calculation logic, this patch reduces the frequency of errors,
      but failures are still seen. The ARM64 vDSO will need to be
      updated to include the sub-nanosecond xtime_nsec values in its
      calculation for this issue to be completely fixed.
      Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
      Tested-by: NDaniel Mentz <danielmentz@google.com>
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Kevin Brodsky <kevin.brodsky@arm.com>
      Cc: Richard Cochran <richardcochran@gmail.com>
      Cc: Stephen Boyd <stephen.boyd@linaro.org>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: "stable #4 . 8+" <stable@vger.kernel.org>
      Cc: Miroslav Lichvar <mlichvar@redhat.com>
      Link: http://lkml.kernel.org/r/1496965462-20003-3-git-send-email-john.stultz@linaro.orgSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      3d88d56c
    • J
      time: Fix clock->read(clock) race around clocksource changes · ceea5e37
      John Stultz 提交于
      In tests, which excercise switching of clocksources, a NULL
      pointer dereference can be observed on AMR64 platforms in the
      clocksource read() function:
      
      u64 clocksource_mmio_readl_down(struct clocksource *c)
      {
      	return ~(u64)readl_relaxed(to_mmio_clksrc(c)->reg) & c->mask;
      }
      
      This is called from the core timekeeping code via:
      
      	cycle_now = tkr->read(tkr->clock);
      
      tkr->read is the cached tkr->clock->read() function pointer.
      When the clocksource is changed then tkr->clock and tkr->read
      are updated sequentially. The code above results in a sequential
      load operation of tkr->read and tkr->clock as well.
      
      If the store to tkr->clock hits between the loads of tkr->read
      and tkr->clock, then the old read() function is called with the
      new clock pointer. As a consequence the read() function
      dereferences a different data structure and the resulting 'reg'
      pointer can point anywhere including NULL.
      
      This problem was introduced when the timekeeping code was
      switched over to use struct tk_read_base. Before that, it was
      theoretically possible as well when the compiler decided to
      reload clock in the code sequence:
      
           now = tk->clock->read(tk->clock);
      
      Add a helper function which avoids the issue by reading
      tk_read_base->clock once into a local variable clk and then issue
      the read function via clk->read(clk). This guarantees that the
      read() function always gets the proper clocksource pointer handed
      in.
      
      Since there is now no use for the tkr.read pointer, this patch
      also removes it, and to address stopping the fast timekeeper
      during suspend/resume, it introduces a dummy clocksource to use
      rather then just a dummy read function.
      Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
      Acked-by: NIngo Molnar <mingo@kernel.org>
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Richard Cochran <richardcochran@gmail.com>
      Cc: Stephen Boyd <stephen.boyd@linaro.org>
      Cc: stable <stable@vger.kernel.org>
      Cc: Miroslav Lichvar <mlichvar@redhat.com>
      Cc: Daniel Mentz <danielmentz@google.com>
      Link: http://lkml.kernel.org/r/1496965462-20003-2-git-send-email-john.stultz@linaro.orgSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      ceea5e37
  25. 31 3月, 2017 1 次提交
  26. 02 3月, 2017 1 次提交