dnn.cpp 158.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include "op_halide.hpp"
44
#include "op_inf_engine.hpp"
45 46
#include "ie_ngraph.hpp"

47 48 49 50 51
#include "halide_scheduler.hpp"
#include <set>
#include <algorithm>
#include <iostream>
#include <sstream>
52
#include <fstream>
53
#include <iterator>
54
#include <numeric>
55 56 57
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/imgproc.hpp>

58
#include <opencv2/core/utils/configuration.private.hpp>
59
#include <opencv2/core/utils/logger.hpp>
60

61 62 63
namespace cv {
namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
64

L
luz.paz 已提交
65
// this option is useful to run valgrind memory errors detection
66 67
static bool DNN_DISABLE_MEMORY_OPTIMIZATIONS = utils::getConfigurationParameterBool("OPENCV_DNN_DISABLE_MEMORY_OPTIMIZATIONS", false);

A
Alexander Alekhin 已提交
68
#ifdef HAVE_OPENCL
69
static bool DNN_OPENCL_ALLOW_ALL_DEVICES = utils::getConfigurationParameterBool("OPENCV_DNN_OPENCL_ALLOW_ALL_DEVICES", false);
A
Alexander Alekhin 已提交
70
#endif
71

72 73 74 75 76 77 78 79
static int PARAM_DNN_BACKEND_DEFAULT = (int)utils::getConfigurationParameterSizeT("OPENCV_DNN_BACKEND_DEFAULT",
#ifdef HAVE_INF_ENGINE
    (size_t)DNN_BACKEND_INFERENCE_ENGINE
#else
    (size_t)DNN_BACKEND_OPENCV
#endif
);

80 81 82 83 84 85 86 87 88 89
// Additional checks (slowdowns execution!)
static bool DNN_CHECK_NAN_INF = utils::getConfigurationParameterBool("OPENCV_DNN_CHECK_NAN_INF", false);
static bool DNN_CHECK_NAN_INF_DUMP = utils::getConfigurationParameterBool("OPENCV_DNN_CHECK_NAN_INF_DUMP", false);
static bool DNN_CHECK_NAN_INF_RAISE_ERROR = utils::getConfigurationParameterBool("OPENCV_DNN_CHECK_NAN_INF_RAISE_ERROR", false);

using std::vector;
using std::map;
using std::make_pair;
using std::set;

90 91 92 93 94 95 96 97 98 99 100 101
//==================================================================================================

class BackendRegistry
{
public:
    typedef std::vector< std::pair<Backend, Target> > BackendsList;
    const BackendsList & getBackends() const { return backends; }
    static BackendRegistry & getRegistry()
    {
        static BackendRegistry impl;
        return impl;
    }
102

103 104
#ifdef HAVE_INF_ENGINE
    static inline bool checkIETarget(Target target)
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    {
        cv::dnn::Net net;
        cv::dnn::LayerParams lp;
        lp.set("kernel_size", 1);
        lp.set("num_output", 1);
        lp.set("bias_term", false);
        lp.type = "Convolution";
        lp.name = "testLayer";
        lp.blobs.push_back(Mat({1, 2, 1, 1}, CV_32F, Scalar(1)));
        net.addLayerToPrev(lp.name, lp.type, lp);
        net.setPreferableBackend(cv::dnn::DNN_BACKEND_INFERENCE_ENGINE);
        net.setPreferableTarget(target);
        static int inpDims[] = {1, 2, 3, 4};
        net.setInput(cv::Mat(4, &inpDims[0], CV_32FC1, cv::Scalar(0)));
        try
        {
            net.forward();
        }
123
        catch(const std::exception& e)
124
        {
125
            CV_LOG_INFO(NULL, "checkIETarget(" << (int)target << ") has failed with message: " << e.what());
126 127 128 129
            return false;
        }
        return true;
    }
130
#endif
131

132 133 134 135 136 137 138 139 140 141 142 143
private:
    BackendRegistry()
    {
#ifdef HAVE_HALIDE
        backends.push_back(std::make_pair(DNN_BACKEND_HALIDE, DNN_TARGET_CPU));
#  ifdef HAVE_OPENCL
        if (cv::ocl::useOpenCL())
            backends.push_back(std::make_pair(DNN_BACKEND_HALIDE, DNN_TARGET_OPENCL));
#  endif
#endif // HAVE_HALIDE

#ifdef HAVE_INF_ENGINE
144 145 146 147 148 149 150 151 152 153 154 155
        if (checkIETarget(DNN_TARGET_CPU)) {
            backends.push_back(std::make_pair(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, DNN_TARGET_CPU));
#ifdef HAVE_DNN_NGRAPH
            backends.push_back(std::make_pair(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, DNN_TARGET_CPU));
#endif
        }
        if (checkIETarget(DNN_TARGET_MYRIAD)) {
            backends.push_back(std::make_pair(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, DNN_TARGET_MYRIAD));
#ifdef HAVE_DNN_NGRAPH
            backends.push_back(std::make_pair(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, DNN_TARGET_MYRIAD));
#endif
        }
156
        if (checkIETarget(DNN_TARGET_FPGA))
157 158
            backends.push_back(std::make_pair(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, DNN_TARGET_FPGA));
#ifdef HAVE_OPENCL
159 160
        if (cv::ocl::useOpenCL() && ocl::Device::getDefault().isIntel())
        {
161 162 163 164 165 166 167 168 169 170 171 172
            if (checkIETarget(DNN_TARGET_OPENCL)) {
                backends.push_back(std::make_pair(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, DNN_TARGET_OPENCL));
#ifdef HAVE_DNN_NGRAPH
                backends.push_back(std::make_pair(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, DNN_TARGET_OPENCL));
#endif
            }
            if (checkIETarget(DNN_TARGET_OPENCL_FP16)) {
                backends.push_back(std::make_pair(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, DNN_TARGET_OPENCL_FP16));
#ifdef HAVE_DNN_NGRAPH
                backends.push_back(std::make_pair(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, DNN_TARGET_OPENCL_FP16));
#endif
            }
173
        }
174
#endif
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
#endif // HAVE_INF_ENGINE

#ifdef HAVE_OPENCL
        if (cv::ocl::useOpenCL())
        {
            backends.push_back(std::make_pair(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL));
            backends.push_back(std::make_pair(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL_FP16));
        }
#endif

        backends.push_back(std::make_pair(DNN_BACKEND_OPENCV, DNN_TARGET_CPU));
    }

    BackendsList backends;
};


std::vector< std::pair<Backend, Target> > getAvailableBackends()
{
    return BackendRegistry::getRegistry().getBackends();
}

std::vector<Target> getAvailableTargets(Backend be)
{
199 200
    if (be == DNN_BACKEND_DEFAULT)
        be = (Backend)PARAM_DNN_BACKEND_DEFAULT;
201 202 203 204
#ifdef HAVE_INF_ENGINE
    if (be == DNN_BACKEND_INFERENCE_ENGINE)
        be = getInferenceEngineBackendTypeParam();
#endif
205

206 207 208 209 210 211 212 213 214 215 216 217
    std::vector<Target> result;
    const BackendRegistry::BackendsList all_backends = getAvailableBackends();
    for(BackendRegistry::BackendsList::const_iterator i = all_backends.begin(); i != all_backends.end(); ++i )
    {
        if (i->first == be)
            result.push_back(i->second);
    }
    return result;
}

//==================================================================================================

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
namespace
{
    typedef std::vector<MatShape> ShapesVec;

    struct LayerShapes
    {
        ShapesVec in, out, internal;
        // No guarantees that layer which support in-place computations
        // will be computed in-place (input.data_ptr == output.data_ptr).
        // If layer said that it could work in-place and layers after it
        // no longer use input blob, we'll set output = input.
        bool supportInPlace;
        LayerShapes() {supportInPlace = false;}
    };
}

234
Mat blobFromImage(InputArray image, double scalefactor, const Size& size,
235
                  const Scalar& mean, bool swapRB, bool crop, int ddepth)
236
{
237 238
    CV_TRACE_FUNCTION();
    Mat blob;
239
    blobFromImage(image, blob, scalefactor, size, mean, swapRB, crop, ddepth);
240
    return blob;
241 242
}

243
void blobFromImage(InputArray image, OutputArray blob, double scalefactor,
244
                   const Size& size, const Scalar& mean, bool swapRB, bool crop, int ddepth)
245
{
A
Alexander Alekhin 已提交
246
    CV_TRACE_FUNCTION();
247
    std::vector<Mat> images(1, image.getMat());
248
    blobFromImages(images, blob, scalefactor, size, mean, swapRB, crop, ddepth);
249 250
}

251
Mat blobFromImages(InputArrayOfArrays images, double scalefactor, Size size,
252
                   const Scalar& mean, bool swapRB, bool crop, int ddepth)
253
{
A
Alexander Alekhin 已提交
254
    CV_TRACE_FUNCTION();
255
    Mat blob;
256
    blobFromImages(images, blob, scalefactor, size, mean, swapRB, crop, ddepth);
257 258 259 260
    return blob;
}

void blobFromImages(InputArrayOfArrays images_, OutputArray blob_, double scalefactor,
261
                    Size size, const Scalar& mean_, bool swapRB, bool crop, int ddepth)
262 263
{
    CV_TRACE_FUNCTION();
264 265 266 267
    CV_CheckType(ddepth, ddepth == CV_32F || ddepth == CV_8U, "Blob depth should be CV_32F or CV_8U");
    if (ddepth == CV_8U)
    {
        CV_CheckEQ(scalefactor, 1.0, "Scaling is not supported for CV_8U blob depth");
268
        CV_Assert(mean_ == Scalar() && "Mean subtraction is not supported for CV_8U blob depth");
269 270
    }

271 272 273
    std::vector<Mat> images;
    images_.getMatVector(images);
    CV_Assert(!images.empty());
274
    for (size_t i = 0; i < images.size(); i++)
275 276 277 278 279 280
    {
        Size imgSize = images[i].size();
        if (size == Size())
            size = imgSize;
        if (size != imgSize)
        {
281 282 283 284
            if(crop)
            {
              float resizeFactor = std::max(size.width / (float)imgSize.width,
                                            size.height / (float)imgSize.height);
285
              resize(images[i], images[i], Size(), resizeFactor, resizeFactor, INTER_LINEAR);
286 287 288 289 290 291
              Rect crop(Point(0.5 * (images[i].cols - size.width),
                              0.5 * (images[i].rows - size.height)),
                        size);
              images[i] = images[i](crop);
            }
            else
292
              resize(images[i], images[i], size, 0, 0, INTER_LINEAR);
293
        }
294
        if(images[i].depth() == CV_8U && ddepth == CV_32F)
295 296 297 298 299 300 301 302 303
            images[i].convertTo(images[i], CV_32F);
        Scalar mean = mean_;
        if (swapRB)
            std::swap(mean[0], mean[2]);

        images[i] -= mean;
        images[i] *= scalefactor;
    }

304
    size_t nimages = images.size();
305 306 307 308 309
    Mat image0 = images[0];
    int nch = image0.channels();
    CV_Assert(image0.dims == 2);
    if (nch == 3 || nch == 4)
    {
310
        int sz[] = { (int)nimages, nch, image0.rows, image0.cols };
311
        blob_.create(4, sz, ddepth);
312
        Mat blob = blob_.getMat();
313 314
        Mat ch[4];

315
        for(size_t i = 0; i < nimages; i++ )
316
        {
317
            const Mat& image = images[i];
318
            CV_Assert(image.depth() == blob_.depth());
319 320 321 322
            nch = image.channels();
            CV_Assert(image.dims == 2 && (nch == 3 || nch == 4));
            CV_Assert(image.size() == image0.size());

323
            for( int j = 0; j < nch; j++ )
324
                ch[j] = Mat(image.rows, image.cols, ddepth, blob.ptr((int)i, j));
325 326 327 328 329 330 331 332 333
            if(swapRB)
                std::swap(ch[0], ch[2]);
            split(image, ch);
        }
    }
    else
    {
       CV_Assert(nch == 1);
       int sz[] = { (int)nimages, 1, image0.rows, image0.cols };
334
       blob_.create(4, sz, ddepth);
335
       Mat blob = blob_.getMat();
336

337
       for(size_t i = 0; i < nimages; i++ )
338
       {
339
           const Mat& image = images[i];
340
           CV_Assert(image.depth() == blob_.depth());
341 342 343 344
           nch = image.channels();
           CV_Assert(image.dims == 2 && (nch == 1));
           CV_Assert(image.size() == image0.size());

345
           image.copyTo(Mat(image.rows, image.cols, ddepth, blob.ptr((int)i, 0)));
346 347 348 349
       }
    }
}

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
void imagesFromBlob(const cv::Mat& blob_, OutputArrayOfArrays images_)
{
    CV_TRACE_FUNCTION();

    //A blob is a 4 dimensional matrix in floating point precision
    //blob_[0] = batchSize = nbOfImages
    //blob_[1] = nbOfChannels
    //blob_[2] = height
    //blob_[3] = width
    CV_Assert(blob_.depth() == CV_32F);
    CV_Assert(blob_.dims == 4);

    images_.create(cv::Size(1, blob_.size[0]), blob_.depth());

    std::vector<Mat> vectorOfChannels(blob_.size[1]);
    for (int n = 0; n <  blob_.size[0]; ++n)
    {
        for (int c = 0; c < blob_.size[1]; ++c)
        {
            vectorOfChannels[c] = getPlane(blob_, n, c);
        }
        cv::merge(vectorOfChannels, images_.getMatRef(n));
    }
}

375
#ifdef HAVE_OPENCL
376 377 378
class OpenCLBackendWrapper : public BackendWrapper
{
public:
379
    OpenCLBackendWrapper(Mat& m) : BackendWrapper(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL)
380 381 382 383 384 385 386
    {
        m.copyTo(umat);
        host = &m;
        hostDirty = false;
    }

    OpenCLBackendWrapper(const Ptr<BackendWrapper>& baseBuffer, Mat& m)
387
        : BackendWrapper(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL)
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
    {
        Ptr<OpenCLBackendWrapper> base = baseBuffer.dynamicCast<OpenCLBackendWrapper>();
        CV_Assert(!base.empty());

        host = &m;

        int shape[] = {1, (int)base->umat.total()};
        umat = base->umat.reshape(1, 2, &shape[0])
                         .colRange(0, host->total())
                         .reshape(1, host->dims, &host->size[0]);
        hostDirty = false;
    }

    static Ptr<BackendWrapper> create(Mat& m)
    {
        return Ptr<BackendWrapper>(new OpenCLBackendWrapper(m));
    }

    static Ptr<BackendWrapper> create(const Ptr<BackendWrapper>& baseBuffer, Mat& m)
    {
        return Ptr<BackendWrapper>(new OpenCLBackendWrapper(baseBuffer, m));
    }

    static std::vector<UMat> getUMatVector(const std::vector<Ptr<BackendWrapper> >& wrappers)
    {
        const int numWrappers = wrappers.size();
        std::vector<UMat> mats(wrappers.size());
        for (int i = 0; i < numWrappers; ++i)
        {
            Ptr<OpenCLBackendWrapper> umatWrapper = wrappers[i].dynamicCast<OpenCLBackendWrapper>();
            CV_Assert(!umatWrapper.empty());
            umatWrapper->copyToDevice();
            mats[i] = umatWrapper->umat;
        }
        return mats;
    }

    // Replaces all umats in wrappers to specific ones.
    static void update(const std::vector<Ptr<BackendWrapper> >& wrappers,
                       const std::vector<UMat>& umats)
    {
        CV_Assert(wrappers.size() == umats.size());
        for (int i = 0, n = umats.size(); i < n; ++i)
        {
            Ptr<OpenCLBackendWrapper> umatWrapper = wrappers[i].dynamicCast<OpenCLBackendWrapper>();
            CV_Assert(!umatWrapper.empty());
            umatWrapper->umat = umats[i];
        }
    }

    ~OpenCLBackendWrapper() {}

    // Copies data from device to a host memory.
441
    virtual void copyToHost() CV_OVERRIDE
442 443 444 445
    {
        umat.copyTo(*host);
    }

446
    virtual void setHostDirty() CV_OVERRIDE
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
    {
        hostDirty = true;
    };

    void copyToDevice()
    {
        if (hostDirty)
        {
            host->copyTo(umat);
            hostDirty = false;
        }
    }

private:
    UMat umat;
    Mat* host;
    bool hostDirty;
};
465
#endif
466

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
struct LayerPin
{
    int lid;
    int oid;

    LayerPin(int layerId = -1, int outputId = -1)
        : lid(layerId), oid(outputId) {}

    bool valid() const
    {
        return (lid >= 0 && oid >= 0);
    }

    bool equal(const LayerPin &r) const
    {
        return (lid == r.lid && oid == r.oid);
    }

    bool operator<(const LayerPin &r) const
    {
487
        return lid < r.lid || (lid == r.lid && oid < r.oid);
488 489 490 491 492 493 494 495 496 497
    }

    bool operator ==(const LayerPin &r) const
    {
        return lid == r.lid && oid == r.oid;
    }
};

struct LayerData
{
498
    LayerData() : id(-1), skip(false), flag(0) {}
499
    LayerData(int _id, const String &_name, const String &_type, LayerParams &_params)
500
        : id(_id), name(_name), type(_type), params(_params), skip(false), flag(0)
501
    {
A
Alexander Alekhin 已提交
502 503
        CV_TRACE_FUNCTION();

504 505 506 507 508 509 510 511 512 513 514 515 516 517
        //add logging info
        params.name = name;
        params.type = type;
    }

    int id;
    String name;
    String type;
    LayerParams params;

    std::vector<LayerPin> inputBlobsId;
    std::set<int> inputLayersId;
    std::set<int> requiredOutputs;
    std::vector<LayerPin> consumers;
518 519
    std::vector<Ptr<BackendWrapper> > outputBlobsWrappers;
    std::vector<Ptr<BackendWrapper> > inputBlobsWrappers;
520
    std::vector<Ptr<BackendWrapper> > internalBlobsWrappers;
521 522 523 524 525 526 527 528

    Ptr<Layer> layerInstance;
    std::vector<Mat> outputBlobs;
    std::vector<Mat*> inputBlobs;
    std::vector<Mat> internals;
    // Computation nodes of implemented backends (except DEFAULT).
    std::map<int, Ptr<BackendNode> > backendNodes;
    // Flag for skip layer computation for specific backend.
529
    bool skip;
530 531 532 533 534

    int flag;

    Ptr<Layer> getLayerInstance()
    {
A
Alexander Alekhin 已提交
535 536 537
        CV_TRACE_FUNCTION();
        CV_TRACE_ARG_VALUE(type, "type", type.c_str());

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
        if (layerInstance)
            return layerInstance;

        layerInstance = LayerFactory::createLayerInstance(type, params);
        if (!layerInstance)
        {
            CV_Error(Error::StsError, "Can't create layer \"" + name + "\" of type \"" + type + "\"");
        }

        return layerInstance;
    }
};

//fake layer containing network input blobs
struct DataLayer : public Layer
{
554 555 556 557 558 559 560 561
    DataLayer() : Layer()
    {
        skip = false;
    }

    virtual bool supportBackend(int backendId) CV_OVERRIDE
    {
        return backendId == DNN_BACKEND_OPENCV ||
562
               (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && inputsData.size() == 1);
563
    }
564

565
    void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
566 567 568 569 570
    {
        CV_TRACE_FUNCTION();
        CV_TRACE_ARG_VALUE(name, "name", name.c_str());

        CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
571
                   forward_ocl(inputs_arr, outputs_arr, internals_arr))
572

573 574 575 576 577 578 579 580 581
        if (outputs_arr.depth() == CV_16S)
        {
            forward_fallback(inputs_arr, outputs_arr, internals_arr);
            return;
        }

        std::vector<Mat> outputs, internals;
        outputs_arr.getMatVector(outputs);
        internals_arr.getMatVector(internals);
582

583 584 585 586
        // Supported modes:
        // | Input type | Output type |
        // |       fp32 |        fp32 |
        // |      uint8 |        fp32 |
587 588
        for (int i = 0; i < inputsData.size(); ++i)
        {
589 590
            double scale = scaleFactors[i];
            Scalar& mean = means[i];
591 592
            CV_Assert(mean == Scalar() || inputsData[i].size[1] <= 4);
            CV_CheckTypeEQ(outputs[i].type(), CV_32FC1, "");
593 594 595 596 597 598 599 600 601 602 603 604

            bool singleMean = true;
            for (int j = 1; j < std::min(4, inputsData[i].size[1]) && singleMean; ++j)
            {
                singleMean = mean[j] == mean[j - 1];
            }

            if (singleMean)
            {
                inputsData[i].convertTo(outputs[i], CV_32F, scale, -mean[0] * scale);
            }
            else
605
            {
606 607 608 609 610 611 612
                for (int n = 0; n < inputsData[i].size[0]; ++n)
                    for (int c = 0; c < inputsData[i].size[1]; ++c)
                    {
                        Mat inp = getPlane(inputsData[i], n, c);
                        Mat out = getPlane(outputs[i], n, c);
                        inp.convertTo(out, CV_32F, scale, -mean[c] * scale);
                    }
613 614 615 616 617
            }
        }
    }

#ifdef HAVE_OPENCL
618
    std::vector<Mat> tmp_expressions;
619 620
    bool forward_ocl(InputArrayOfArrays, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
    {
621 622 623 624 625 626 627 628
        // Supported modes:
        // | Input type | Output type |
        // |       fp32 |        fp32 |
        // |       fp32 |        fp16 |
        // |      uint8 |        fp32 |
        std::vector<UMat> outputs;
        outputs_.getUMatVector(outputs);

629
        tmp_expressions.clear();
630
        for (int i = 0; i < inputsData.size(); ++i)
631
        {
632 633
            Mat inputData = inputsData[i];

634 635 636 637 638 639
            double scale = scaleFactors[i];
            Scalar& mean = means[i];

            CV_Assert(mean == Scalar() || inputsData[i].size[1] <= 4);
            bool singleMean = true;
            for (int j = 1; j < std::min(4, inputsData[i].size[1]) && singleMean; ++j)
640
            {
641 642 643 644 645 646
                singleMean = mean[j] == mean[j - 1];
            }

            if (outputs_.depth() == CV_16S)
            {
                if (singleMean)
647 648 649 650
                {
                    tmp_expressions.push_back(Mat(scale * (inputsData[i] - mean[0])));
                    convertFp16(tmp_expressions.back(), outputs[i]);
                }
651 652 653 654 655 656 657 658 659 660 661 662
                else
                {
                    for (int n = 0; n < inputsData[i].size[0]; ++n)
                        for (int c = 0; c < inputsData[i].size[1]; ++c)
                        {
                            Mat inp = getPlane(inputsData[i], n, c);

                            std::vector<cv::Range> plane(4, Range::all());
                            plane[0] = Range(n, n + 1);
                            plane[1] = Range(c, c + 1);
                            UMat out = outputs[i](plane).reshape(1, inp.dims, inp.size);

663 664
                            tmp_expressions.push_back(scale * (inp - mean[c]));
                            convertFp16(tmp_expressions.back(), out);
665 666 667 668 669 670 671
                        }
                }
            }
            else
            {
                CV_Assert(outputs_.depth() == CV_32F);
                if (singleMean)
672
                {
673
                    inputsData[i].convertTo(outputs[i], CV_32F, scale, -mean[0] * scale);
674
                }
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
                else
                {
                    for (int n = 0; n < inputsData[i].size[0]; ++n)
                        for (int c = 0; c < inputsData[i].size[1]; ++c)
                        {
                            Mat inp = getPlane(inputsData[i], n, c);

                            std::vector<cv::Range> plane(4, Range::all());
                            plane[0] = Range(n, n + 1);
                            plane[1] = Range(c, c + 1);
                            UMat out = outputs[i](plane).reshape(1, inp.dims, inp.size);

                            inp.convertTo(out, CV_32F, scale, -mean[c] * scale);
                        }
                }
690 691 692 693 694
            }
        }
        return true;
    }
#endif
695

696
    int outputNameToIndex(const String& tgtName) CV_OVERRIDE
697 698 699 700 701 702 703 704 705 706
    {
        int idx = (int)(std::find(outNames.begin(), outNames.end(), tgtName) - outNames.begin());
        return (idx < (int)outNames.size()) ? idx : -1;
    }

    void setNames(const std::vector<String> &names)
    {
        outNames.assign(names.begin(), names.end());
    }

707 708 709
    bool getMemoryShapes(const std::vector<MatShape> &inputs,
                         const int requiredOutputs,
                         std::vector<MatShape> &outputs,
710
                         std::vector<MatShape> &internals) const CV_OVERRIDE
711 712 713 714 715 716
    {
        CV_Assert(inputs.size() == requiredOutputs);
        outputs.assign(inputs.begin(), inputs.end());
        return false;
    }

717
    virtual void finalize(InputArrayOfArrays, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
718
    {
719 720 721
        std::vector<Mat> outputs;
        outputs_arr.getMatVector(outputs);

722
        CV_Assert_N(outputs.size() == scaleFactors.size(), outputs.size() == means.size(),
723 724 725 726 727 728 729 730 731
                  inputsData.size() == outputs.size());
        skip = true;
        for (int i = 0; skip && i < inputsData.size(); ++i)
        {
            if (inputsData[i].data != outputs[i].data || scaleFactors[i] != 1.0 || means[i] != Scalar())
                skip = false;
        }
    }

732
#ifdef HAVE_INF_ENGINE
733 734
    virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
    {
735 736
        CV_CheckEQ(inputsData.size(), (size_t)1, "");
        CV_CheckEQ(inputsData[0].dims, 4, "");
737 738 739 740
        const size_t numChannels = inputsData[0].size[1];
        CV_Assert(numChannels <= 4);

        // Scale
741 742 743
        InferenceEngine::TensorDesc td(InferenceEngine::Precision::FP32, {numChannels},
                                       InferenceEngine::Layout::C);
        auto weights = InferenceEngine::make_shared_blob<float>(td);
744
        weights->allocate();
745 746 747

        float* weight_buf = weights->buffer().as<float*>();
        std::fill(weight_buf, weight_buf + numChannels, scaleFactors[0]);
748 749

        // Mean subtraction
750
        auto biases = InferenceEngine::make_shared_blob<float>(td);
751
        biases->allocate();
752 753
        float* bias_buf = biases->buffer().as<float*>();

754 755
        for (int i = 0; i < numChannels; ++i)
        {
756
            bias_buf[i] = -means[0][i] * scaleFactors[0];
757 758
        }

759 760 761
        InferenceEngine::Builder::Layer ieLayer = InferenceEngine::Builder::ScaleShiftLayer(name);
        addConstantData("weights", weights, ieLayer);
        addConstantData("biases", biases, ieLayer);
762 763
        return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
    }
764
#endif  // HAVE_INF_ENGINE
765

766
    std::vector<String> outNames;
767 768 769
    // Preprocessing parameters for each network's input.
    std::vector<double> scaleFactors;
    std::vector<Scalar> means;
770
    std::vector<Mat> inputsData;
771
    bool skip;
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
};

struct BlobManager
{
public:
    // Increase references counter to layer output.
    void addReference(const LayerPin& lp)
    {
        std::map<LayerPin, int>::iterator it = refCounter.find(lp);
        if (it == refCounter.end())
            refCounter[lp] = 1;
        else
            it->second += 1;
    }

    void addReferences(const std::vector<LayerPin>& pins)
    {
        for (int i = 0; i < pins.size(); i++)
        {
            addReference(pins[i]);
        }
    }

    // Returns number of references to allocated memory that used in specific
    // layer blob.
    int numReferences(const LayerPin& lp)
    {
        std::map<LayerPin, LayerPin>::iterator mapIt = reuseMap.find(lp);
        CV_Assert(mapIt != reuseMap.end());
        LayerPin memHost = mapIt->second;

        std::map<LayerPin, int>::iterator refIt = refCounter.find(memHost);
        CV_Assert(refIt != refCounter.end());
        return refIt->second;
    }

    // Reuse data allocated in <host> inside the <user> blob.
    void reuse(const LayerPin& host, const LayerPin& user)
    {
        CV_Assert(reuseMap.find(user) == reuseMap.end());
        CV_Assert(reuseMap.find(host) != reuseMap.end());
        LayerPin memHost = reuseMap[host];
        reuseMap[user] = memHost;
        if (refCounter.find(memHost) != refCounter.end())
        {
            std::map<LayerPin, int>::iterator userRefIt = refCounter.find(user);
            if (userRefIt != refCounter.end())
            {
                refCounter[memHost] += userRefIt->second;
                refCounter.erase(userRefIt);
            }
            else
                refCounter[memHost] += 1;
        }
    }

    // Decrease references counter to allocated memory inside specific blob.
    void releaseReference(const LayerPin& lp)
    {
        std::map<LayerPin, LayerPin>::iterator mapIt = reuseMap.find(lp);
        CV_Assert(mapIt != reuseMap.end());

        std::map<LayerPin, int>::iterator refIt = refCounter.find(mapIt->second);
        CV_Assert(refIt != refCounter.end());
        CV_Assert(refIt->second > 0);
        refIt->second -= 1;
    }

    void releaseReferences(const std::vector<LayerPin>& pins)
    {
        for (int i = 0; i < pins.size(); i++)
        {
            releaseReference(pins[i]);
        }
    }

848
    void reuseOrCreate(const MatShape& shape, const LayerPin& lp, Mat& dst, bool use_half)
849
    {
850
        if (!DNN_DISABLE_MEMORY_OPTIMIZATIONS)
851 852 853
        {
            Mat bestBlob;
            LayerPin bestBlobPin;
854

855 856
            std::map<LayerPin, Mat>::iterator hostIt;
            std::map<LayerPin, int>::iterator refIt;
857

858 859
            const int targetTotal = total(shape);
            int bestBlobTotal = INT_MAX;
860

861
            for (hostIt = memHosts.begin(); hostIt != memHosts.end(); ++hostIt)
862
            {
863 864 865 866
                refIt = refCounter.find(hostIt->first);
                // Use only blobs that had references before because if not,
                // it might be used as output.
                if (refIt != refCounter.end() && refIt->second == 0)
867
                {
868 869 870 871 872 873 874 875
                    Mat& unusedBlob = hostIt->second;
                    if (unusedBlob.total() >= targetTotal &&
                        unusedBlob.total() < bestBlobTotal)
                    {
                        bestBlobPin = hostIt->first;
                        bestBlob = unusedBlob;
                        bestBlobTotal = unusedBlob.total();
                    }
876 877
                }
            }
878 879 880 881 882 883
            if (!bestBlob.empty())
            {
                reuse(bestBlobPin, lp);
                dst = bestBlob.reshape(1, 1).colRange(0, targetTotal).reshape(1, shape);
                return;
            }
884
        }
885

886 887
        {
            // if dst already has been allocated with total(shape) elements,
K
Kuang Fangjun 已提交
888
            // it won't be recreated and pointer of dst.data remains the same.
L
Li Peng 已提交
889
            dst.create(shape, use_half ? CV_16S : CV_32F);
890 891 892 893 894
            addHost(lp, dst);
        }
    }

    void allocateBlobsForLayer(LayerData &ld, const LayerShapes& layerShapes,
895
                               std::vector<LayerPin>& pinsForInternalBlobs,
896
                               bool use_half = false)
897
    {
A
Alexander Alekhin 已提交
898 899
        CV_TRACE_FUNCTION();

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
        pinsForInternalBlobs.clear();

        std::vector<Mat>& outputBlobs = ld.outputBlobs,
                &internalBlobs = ld.internals;

        const ShapesVec& outShapes = layerShapes.out,
                internalShapes = layerShapes.internal;

        outputBlobs.resize(std::max((size_t)1, outShapes.size())); //layer produce at least one output blob
        internalBlobs.resize(internalShapes.size());

        CV_Assert(ld.requiredOutputs.size() <= outShapes.size());

        // Check that layer could work in-place.
        bool inPlace = false;
        if (layerShapes.supportInPlace)
        {
            if (ld.inputBlobs.size() == 1)
            {
                // Get number of references to the input memory.
                int numRef = numReferences(ld.inputBlobsId[0]);
                // If current layer is one and only customer of this blob.
                inPlace = numRef == 1;
            }
        }

        ShapesVec shapes(outShapes);
        shapes.insert(shapes.end(), internalShapes.begin(), internalShapes.end());
        std::vector<Mat*> blobs;
        for(int i = 0; i < outputBlobs.size(); i++)
        {
            blobs.push_back(&outputBlobs[i]);
        }

        for(int i = 0; i < internalBlobs.size(); i++)
        {
            blobs.push_back(&internalBlobs[i]);
            if (total(internalShapes[i]))
            {
                pinsForInternalBlobs.push_back(LayerPin(ld.id, ld.outputBlobs.size() + i));
            }
        }

        addReferences(pinsForInternalBlobs);

        std::map<int, std::vector<int> > idxSizes;
        for(int i = 0; i < shapes.size(); i++)
        {
            idxSizes[total(shapes[i])].push_back(i);
        }

        std::map<int, std::vector<int> >::reverse_iterator it;
        for(it = idxSizes.rbegin(); it != idxSizes.rend(); it++)
        {
            for(int j = 0; j < it->second.size(); j++)
            {
                int index = it->second[j];
                if (total(shapes[index]))
                {
                    LayerPin blobPin(ld.id, index);
960
                    if (index < outShapes.size() && inPlace)
961
                    {
962 963
                        CV_Assert(ld.inputBlobs[0]->total() == total(shapes[index]));
                        ld.outputBlobs[index] = ld.inputBlobs[0]->reshape(1, shapes[index]);
964 965 966
                        reuse(ld.inputBlobsId[0], blobPin);
                    }
                    else
967
                        reuseOrCreate(shapes[index], blobPin, *blobs[index], use_half);
968 969 970 971 972 973 974 975
                }
            }
        }
    }

    // Clear internal state. Calls before an every reallocation.
    void reset()
    {
A
Alexander Alekhin 已提交
976 977
        CV_TRACE_FUNCTION();

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
        refCounter.clear();
        reuseMap.clear();
        memHosts.clear();
    }

private:
    // Register allocated memory.
    void addHost(const LayerPin& lp, const Mat& mat)
    {
        CV_Assert(memHosts.find(lp) == memHosts.end());
        reuseMap[lp] = lp;
        memHosts[lp] = mat;
    }

    std::map<LayerPin, int> refCounter;
    // Maps pin to origin blob (for whom memory was allocated firstly).
    // For origin blobs key == value.
    std::map<LayerPin, LayerPin> reuseMap;
    std::map<LayerPin, Mat> memHosts;
};

999
static Ptr<BackendWrapper> wrapMat(int backendId, int targetId, cv::Mat& m)
1000
{
1001
    if (backendId == DNN_BACKEND_OPENCV)
1002
    {
1003 1004
        if (targetId == DNN_TARGET_CPU)
            return Ptr<BackendWrapper>();
1005
#ifdef HAVE_OPENCL
L
Li Peng 已提交
1006
        else if (IS_DNN_OPENCL_TARGET(targetId))
1007
            return OpenCLBackendWrapper::create(m);
1008
#endif
1009
        else
1010
            CV_Error(Error::StsNotImplemented, "Unknown/unsupported target identifier");
1011 1012 1013 1014 1015 1016 1017
    }
    else if (backendId == DNN_BACKEND_HALIDE)
    {
        CV_Assert(haveHalide());
#ifdef HAVE_HALIDE
        return Ptr<BackendWrapper>(new HalideBackendWrapper(targetId, m));
#endif  // HAVE_HALIDE
1018
    }
1019
    else if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
1020 1021 1022
    {
#ifdef HAVE_INF_ENGINE
        return Ptr<BackendWrapper>(new InfEngineBackendWrapper(targetId, m));
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
#else
        CV_Error(Error::StsNotImplemented, "This OpenCV version is built without Inference Engine API support");
#endif
    }
    else if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
    {
#ifdef HAVE_DNN_NGRAPH
        return Ptr<BackendWrapper>(new NgraphBackendWrapper(targetId, m));
#else
        CV_Error(Error::StsNotImplemented, "This OpenCV version is built without support of Inference Engine + nGraph");
#endif
1034 1035 1036
    }
    else
        CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
1037
    return Ptr<BackendWrapper>();  // TODO Error?
1038 1039
}

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
struct Net::Impl
{
    typedef std::map<int, LayerShapes> LayersShapesMap;
    typedef std::map<int, LayerData> MapIdToLayerData;

    Impl()
    {
        //allocate fake net input layer
        netInputLayer = Ptr<DataLayer>(new DataLayer());
        LayerData &inpl = layers.insert( make_pair(0, LayerData()) ).first->second;
        inpl.id = 0;
1051
        netInputLayer->name = inpl.name = "_input";
1052 1053 1054 1055
        inpl.type = "__NetInputLayer__";
        inpl.layerInstance = netInputLayer;
        layerNameToId.insert(std::make_pair(inpl.name, inpl.id));

1056
        lastLayerId = 0;
1057
        netWasAllocated = false;
1058
        fusion = true;
1059
        isAsync = false;
1060 1061
        preferableBackend = DNN_BACKEND_DEFAULT;
        preferableTarget = DNN_TARGET_CPU;
1062
        skipInfEngineInit = false;
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
    }

    Ptr<DataLayer> netInputLayer;
    std::vector<LayerPin> blobsToKeep;
    MapIdToLayerData layers;
    std::map<String, int> layerNameToId;
    BlobManager blobManager;
    int preferableBackend;
    int preferableTarget;
    String halideConfigFile;
1073
    bool skipInfEngineInit;
1074 1075
    // Map host data to backend specific wrapper.
    std::map<void*, Ptr<BackendWrapper> > backendWrappers;
1076 1077 1078 1079

    int lastLayerId;

    bool netWasAllocated;
1080
    bool fusion;
1081
    bool isAsync;
1082
    std::vector<int64> layersTimings;
L
Li Peng 已提交
1083
    Mat output_blob;
1084

1085
    Ptr<BackendWrapper> wrap(Mat& host)
1086
    {
1087
        if (preferableBackend == DNN_BACKEND_OPENCV && preferableTarget == DNN_TARGET_CPU)
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
            return Ptr<BackendWrapper>();

        MatShape shape(host.dims);
        for (int i = 0; i < host.dims; ++i)
            shape[i] = host.size[i];

        void* data = host.data;
        if (backendWrappers.find(data) != backendWrappers.end())
        {
            Ptr<BackendWrapper> baseBuffer = backendWrappers[data];
1098
            if (preferableBackend == DNN_BACKEND_OPENCV)
1099
            {
1100
#ifdef HAVE_OPENCL
L
Li Peng 已提交
1101
                CV_Assert(IS_DNN_OPENCL_TARGET(preferableTarget));
1102
                return OpenCLBackendWrapper::create(baseBuffer, host);
1103 1104 1105
#else
                CV_Error(Error::StsInternal, "");
#endif
1106 1107
            }
            else if (preferableBackend == DNN_BACKEND_HALIDE)
1108 1109
            {
                CV_Assert(haveHalide());
1110
#ifdef HAVE_HALIDE
1111
                return Ptr<BackendWrapper>(new HalideBackendWrapper(baseBuffer, shape));
1112
#endif
1113
            }
1114 1115 1116 1117 1118
            else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
            {
                return wrapMat(preferableBackend, preferableTarget, host);
            }
            else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
1119 1120 1121
            {
                return wrapMat(preferableBackend, preferableTarget, host);
            }
1122 1123 1124 1125 1126 1127 1128 1129 1130
            else
                CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
        }

        Ptr<BackendWrapper> wrapper = wrapMat(preferableBackend, preferableTarget, host);
        backendWrappers[data] = wrapper;
        return wrapper;
    }

1131
#ifdef HAVE_HALIDE
1132 1133
    void compileHalide()
    {
A
Alexander Alekhin 已提交
1134 1135
        CV_TRACE_FUNCTION();

1136 1137 1138
        CV_Assert(preferableBackend == DNN_BACKEND_HALIDE);

        HalideScheduler scheduler(halideConfigFile);
1139 1140
        std::vector< std::reference_wrapper<LayerData> > compileList; compileList.reserve(64);
        for (MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); ++it)
1141 1142 1143
        {
            LayerData &ld = it->second;
            Ptr<Layer> layer = ld.layerInstance;
1144
            if (layer->supportBackend(DNN_BACKEND_HALIDE) && !ld.skip)
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
            {
                CV_Assert(!ld.backendNodes[DNN_BACKEND_HALIDE].empty());
                bool scheduled = scheduler.process(ld.backendNodes[DNN_BACKEND_HALIDE]);
                if (!scheduled)
                {
                    // Use automatic scheduling provided by layer.
                    layer->applyHalideScheduler(ld.backendNodes[DNN_BACKEND_HALIDE],
                                                ld.inputBlobs, ld.outputBlobs,
                                                preferableTarget);
                }
1155
                compileList.emplace_back(ld);
1156 1157
            }
        }
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
        std::atomic<int> progress(0);
        auto fn = ([&] () -> void
        {
            for (;;)
            {
                int id = progress.fetch_add(1);
                if ((size_t)id >= compileList.size())
                    return;
                const LayerData& ld = compileList[id].get();
                Ptr<BackendNode> node = ld.backendNodes.find(DNN_BACKEND_HALIDE)->second;
                dnn::compileHalide(ld.outputBlobs, node, preferableTarget);
            }
        });
        size_t num_threads = std::min(compileList.size(), (size_t)std::thread::hardware_concurrency());
        num_threads = std::max((size_t)1u, std::min((size_t)8u, num_threads));
        std::vector<std::thread> threads(num_threads - 1);
        for (auto& t: threads) t = std::thread(fn);
        fn(); // process own tasks
        for (auto& t: threads) t.join();
1177
    }
1178
#endif
1179 1180 1181

    void clear()
    {
A
Alexander Alekhin 已提交
1182 1183
        CV_TRACE_FUNCTION();

1184 1185 1186 1187
        MapIdToLayerData::iterator it;
        for (it = layers.begin(); it != layers.end(); it++)
        {
            if (it->second.id != 0) {
A
Aleksandr Rybnikov 已提交
1188
                it->second.inputBlobs.clear();
1189 1190 1191
                it->second.outputBlobs.clear();
                it->second.internals.clear();
            }
1192
            it->second.skip = false;
1193 1194
            //it->second.consumers.clear();
            Ptr<Layer> currLayer = it->second.layerInstance;
1195

1196 1197 1198
            if( currLayer.empty() )
                continue;

1199
            currLayer->unsetAttached();
1200
        }
1201 1202

        layersTimings.clear();
1203 1204 1205 1206
    }

    void setUpNet(const std::vector<LayerPin>& blobsToKeep_ = std::vector<LayerPin>())
    {
A
Alexander Alekhin 已提交
1207 1208
        CV_TRACE_FUNCTION();

1209
        if (preferableBackend == DNN_BACKEND_DEFAULT)
1210
            preferableBackend = (Backend)PARAM_DNN_BACKEND_DEFAULT;
1211 1212 1213 1214
#ifdef HAVE_INF_ENGINE
        if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE)
            preferableBackend = getInferenceEngineBackendTypeParam();
#endif
1215

1216 1217 1218 1219 1220 1221 1222
        CV_Assert(preferableBackend != DNN_BACKEND_OPENCV ||
                  preferableTarget == DNN_TARGET_CPU ||
                  preferableTarget == DNN_TARGET_OPENCL ||
                  preferableTarget == DNN_TARGET_OPENCL_FP16);
        CV_Assert(preferableBackend != DNN_BACKEND_HALIDE ||
                  preferableTarget == DNN_TARGET_CPU ||
                  preferableTarget == DNN_TARGET_OPENCL);
1223 1224 1225 1226
        if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
            preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
        {
            CV_Assert(
1227 1228 1229
                  preferableTarget == DNN_TARGET_CPU ||
                  preferableTarget == DNN_TARGET_OPENCL ||
                  preferableTarget == DNN_TARGET_OPENCL_FP16 ||
1230
                  preferableTarget == DNN_TARGET_MYRIAD ||
1231 1232 1233
                  preferableTarget == DNN_TARGET_FPGA
            );
        }
1234 1235
        if (!netWasAllocated || this->blobsToKeep != blobsToKeep_)
        {
1236
            if (preferableBackend == DNN_BACKEND_OPENCV && IS_DNN_OPENCL_TARGET(preferableTarget))
1237
#ifndef HAVE_OPENCL
1238
            {
1239
                CV_LOG_WARNING(NULL, "DNN: OpenCL target is not available in this OpenCV build, switching to CPU.");
1240 1241
                preferableTarget = DNN_TARGET_CPU;
            }
1242 1243
#else
            {
1244
                if (!DNN_OPENCL_ALLOW_ALL_DEVICES)
1245
                {
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
                    // Current implementation is only valid for GPU (#11494)
                    if (ocl::Device::getDefault().type() != ocl::Device::TYPE_GPU)
                    {
                        CV_LOG_WARNING(NULL, "DNN: OpenCL target is not supported with current OpenCL device (tested with GPUs only), switching to CPU.");
                        preferableTarget = DNN_TARGET_CPU;
                    }
                    else if (preferableTarget == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel())
                    {
                        CV_LOG_WARNING(NULL,
                            "DNN: OpenCL target with fp16 precision is not supported "
                            "with current OpenCL device (tested with Intel GPUs only), "
                            "switching to OpenCL with fp32 precision.");
                        preferableTarget = DNN_TARGET_OPENCL;
                    }
1260 1261
                }
            }
1262
#endif
1263 1264 1265
            clear();

            allocateLayers(blobsToKeep_);
1266 1267 1268 1269 1270

            MapIdToLayerData::iterator it = layers.find(0);
            CV_Assert(it != layers.end());
            it->second.skip = netInputLayer->skip;

1271 1272 1273 1274
            initBackend();

            if (!netWasAllocated )
            {
1275
#ifdef HAVE_HALIDE
1276 1277
                if (preferableBackend == DNN_BACKEND_HALIDE)
                    compileHalide();
1278 1279 1280
#else
                CV_Assert(preferableBackend != DNN_BACKEND_HALIDE);
#endif
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
            }

            netWasAllocated = true;
            this->blobsToKeep = blobsToKeep_;
        }
    }

    int getLayerId(const String &layerName)
    {
        std::map<String, int>::iterator it = layerNameToId.find(layerName);
        return (it != layerNameToId.end()) ? it->second : -1;
    }

    int getLayerId(int id)
    {
        MapIdToLayerData::iterator it = layers.find(id);
        return (it != layers.end()) ? id : -1;
    }

    int getLayerId(DictValue &layerDesc)
    {
        if (layerDesc.isInt())
            return getLayerId(layerDesc.get<int>());
        else if (layerDesc.isString())
            return getLayerId(layerDesc.get<String>());

        CV_Assert(layerDesc.isInt() || layerDesc.isString());
        return -1;
    }

    String getLayerName(int id)
    {
        MapIdToLayerData::iterator it = layers.find(id);
        return (it != layers.end()) ? it->second.name : "(unknown layer)";
    }

    LayerData& getLayerData(int id)
    {
        MapIdToLayerData::iterator it = layers.find(id);

        if (it == layers.end())
            CV_Error(Error::StsObjectNotFound, format("Layer with requested id=%d not found", id));

        return it->second;
    }

    LayerData& getLayerData(const String &layerName)
    {
        int id = getLayerId(layerName);

        if (id < 0)
L
luz.paz 已提交
1332
            CV_Error(Error::StsError, "Requested layer \"" + layerName + "\" not found");
1333 1334 1335 1336 1337 1338

        return getLayerData(id);
    }

    LayerData& getLayerData(const DictValue &layerDesc)
    {
1339
        CV_Assert(layerDesc.isInt() || layerDesc.isString());
1340 1341
        if (layerDesc.isInt())
            return getLayerData(layerDesc.get<int>());
1342
        else /*if (layerDesc.isString())*/
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
            return getLayerData(layerDesc.get<String>());
    }

    static void addLayerInput(LayerData &ld, int inNum, LayerPin from)
    {
        if ((int)ld.inputBlobsId.size() <= inNum)
        {
            ld.inputBlobsId.resize(inNum + 1);
        }
        else
        {
            LayerPin storedFrom = ld.inputBlobsId[inNum];
            if (storedFrom.valid() && !storedFrom.equal(from))
1356 1357
                CV_Error(Error::StsError, format("Input #%d of layer \"%s\" already was connected",
                                                 inNum, ld.name.c_str()));
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
        }

        ld.inputBlobsId[inNum] = from;
    }

    int resolvePinOutputName(LayerData &ld, const String &outName)
    {
        if (outName.empty())
            return 0;
        return ld.getLayerInstance()->outputNameToIndex(outName);
    }

1370
    LayerPin getPinByAlias(const String &layerName)
1371 1372 1373 1374 1375
    {
        LayerPin pin;
        pin.lid = (layerName.empty()) ? 0 : getLayerId(layerName);

        if (pin.lid >= 0)
1376
            pin.oid = resolvePinOutputName(getLayerData(pin.lid), layerName);
1377 1378 1379 1380

        return pin;
    }

1381
    std::vector<LayerPin> getLayerOutPins(const String &layerName)
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
    {
        int lid = (layerName.empty()) ? 0 : getLayerId(layerName);

        std::vector<LayerPin> pins;

        for (int i = 0; i < layers[lid].outputBlobs.size(); i++)
        {
            pins.push_back(LayerPin(lid, i));
        }

        return pins;
    }

    void connect(int outLayerId, int outNum, int inLayerId, int inNum)
    {
        CV_Assert(outLayerId < inLayerId);
        LayerData &ldOut = getLayerData(outLayerId);
        LayerData &ldInp = getLayerData(inLayerId);

        addLayerInput(ldInp, inNum, LayerPin(outLayerId, outNum));
        ldOut.requiredOutputs.insert(outNum);
        ldOut.consumers.push_back(LayerPin(inLayerId, outNum));
    }

    void initBackend()
    {
A
Alexander Alekhin 已提交
1408
        CV_TRACE_FUNCTION();
1409
        if (preferableBackend == DNN_BACKEND_OPENCV)
L
Li Peng 已提交
1410
            CV_Assert(preferableTarget == DNN_TARGET_CPU || IS_DNN_OPENCL_TARGET(preferableTarget));
1411 1412
        else if (preferableBackend == DNN_BACKEND_HALIDE)
            initHalideBackend();
1413 1414 1415
        else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
        {
#ifdef HAVE_INF_ENGINE
1416
            initInfEngineBackend();
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
#else
            CV_Assert(false && "This OpenCV version is built without Inference Engine API support");
#endif
        }
        else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
        {
#ifdef HAVE_DNN_NGRAPH
            initNgraphBackend();
#else
            CV_Error(Error::StsNotImplemented, "This OpenCV version is built without support of Inference Engine + nGraph");
#endif
        }
1429 1430 1431 1432 1433 1434 1435
        else
            CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
    }

    void initHalideBackend()
    {
        CV_TRACE_FUNCTION();
1436
        CV_Assert_N(preferableBackend == DNN_BACKEND_HALIDE, haveHalide());
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472

        // Iterator to current layer.
        MapIdToLayerData::iterator it = layers.begin();
        // Iterator to base layer for fusion. In example, in case of conv+bn+relu
        // it'll be a conv layer.
        MapIdToLayerData::iterator baseIt = layers.begin();
        for (; it != layers.end(); it++)
        {
            LayerData &ldTop = it->second;
            Ptr<Layer> layerTop = ldTop.layerInstance;
            if (!layerTop->supportBackend(preferableBackend))
            {
                // Move base iterator to layer that don't support preferable
                // backend to prevent fusion over layer of different backend.
                baseIt = it;
                continue;
            }
            // Try to do layers fusion.
            LayerData &ldBot = baseIt->second;
            Ptr<Layer> layerBot = ldBot.layerInstance;
            // 1. Check that bottom and top from the same backends.
            if (it != layers.begin() && layerBot->supportBackend(preferableBackend))
            {
                // 2. Check that current layer works in-place.
                bool inPlace = ldTop.inputBlobs.size() == 1 &&
                               ldBot.outputBlobs.size() == 1 &&
                               ldTop.inputBlobs[0]->data ==
                               ldBot.outputBlobs[0].data;
                if (inPlace)
                {
                    // 3. Try to attach node.
                    CV_Assert(!ldBot.backendNodes[preferableBackend].empty());
                    Ptr<BackendNode> fusedNode =
                        layerTop->tryAttach(ldBot.backendNodes[preferableBackend]);
                    if (!fusedNode.empty())
                    {
1473
                        ldTop.skip = true;
1474
                        ldBot.backendNodes[preferableBackend] = fusedNode;
1475
                        ldBot.outputBlobsWrappers = ldTop.outputBlobsWrappers;
1476 1477 1478 1479 1480
                        continue;
                    }
                }
            }
            // No layers fusion.
1481
            ldTop.skip = false;
1482 1483 1484 1485 1486 1487
            ldTop.backendNodes[DNN_BACKEND_HALIDE] =
                layerTop->initHalide(ldTop.inputBlobsWrappers);
            baseIt = it;
        }
    }

1488 1489 1490 1491 1492 1493
#ifdef HAVE_INF_ENGINE
    // Before launching Inference Engine graph we need to specify output blobs.
    // This function requests output blobs based on inputs references of
    // layers from default backend or layers from different graphs.
    void addInfEngineNetOutputs(LayerData &ld)
    {
1494
        CV_TRACE_FUNCTION();
1495 1496 1497 1498 1499 1500 1501
        Ptr<InfEngineBackendNet> layerNet;
        if (ld.backendNodes.find(preferableBackend) != ld.backendNodes.end())
        {
            Ptr<BackendNode> node = ld.backendNodes[preferableBackend];
            if (!node.empty())
            {
                Ptr<InfEngineBackendNode> ieNode = node.dynamicCast<InfEngineBackendNode>();
1502
                CV_Assert(!ieNode.empty()); CV_Assert(!ieNode->net.empty());
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
                layerNet = ieNode->net;
            }
        }
        // For an every input reference we check that it belongs to one of
        // the Inference Engine backend graphs. Request an output blob if it is.
        // Do nothing if layer's input is from the same graph.
        for (int i = 0; i < ld.inputBlobsId.size(); ++i)
        {
            LayerData &inpLd = layers[ld.inputBlobsId[i].lid];
            Ptr<BackendNode> inpNode = inpLd.backendNodes[preferableBackend];
            if (!inpNode.empty())
            {
                Ptr<InfEngineBackendNode> ieInpNode = inpNode.dynamicCast<InfEngineBackendNode>();
1516
                CV_Assert(!ieInpNode.empty()); CV_Assert(!ieInpNode->net.empty());
1517 1518 1519
                if (layerNet != ieInpNode->net)
                {
                    // layerNet is empty or nodes are from different graphs.
1520
                    ieInpNode->net->addOutput(ieInpNode->layer.getName());
1521 1522 1523 1524 1525
                }
            }
        }
    }

1526 1527 1528
    void initInfEngineBackend()
    {
        CV_TRACE_FUNCTION();
1529
        CV_Assert_N(preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, haveInfEngine());
1530 1531
        MapIdToLayerData::iterator it;
        Ptr<InfEngineBackendNet> net;
1532

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
        for (it = layers.begin(); it != layers.end(); ++it)
        {
            LayerData &ld = it->second;
            if (ld.id == 0)
            {
                CV_Assert((netInputLayer->outNames.empty() && ld.outputBlobsWrappers.size() == 1) ||
                          (netInputLayer->outNames.size() == ld.outputBlobsWrappers.size()));
                for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
                {
                    InferenceEngine::DataPtr dataPtr = infEngineDataNode(ld.outputBlobsWrappers[i]);
1543
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2019010000)
1544
                    dataPtr->name = netInputLayer->outNames.empty() ? ld.name : netInputLayer->outNames[i];
1545 1546 1547
#else
                    dataPtr->setName(netInputLayer->outNames.empty() ? ld.name : netInputLayer->outNames[i]);
#endif
1548 1549 1550 1551 1552 1553 1554
                }
            }
            else
            {
                for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
                {
                    InferenceEngine::DataPtr dataPtr = infEngineDataNode(ld.outputBlobsWrappers[i]);
1555
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2019010000)
1556
                    dataPtr->name = ld.name;
1557 1558 1559
#else
                    dataPtr->setName(ld.name);
#endif
1560 1561 1562 1563
                }
            }
        }

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
        if (skipInfEngineInit)
        {
            Ptr<BackendNode> node = layers[lastLayerId].backendNodes[preferableBackend];
            CV_Assert(!node.empty());

            Ptr<InfEngineBackendNode> ieNode = node.dynamicCast<InfEngineBackendNode>();
            CV_Assert(!ieNode.empty());

            for (it = layers.begin(); it != layers.end(); ++it)
            {
                LayerData &ld = it->second;
1575
                if (ld.id == 0)
1576
                {
1577 1578 1579
                    for (int i = 0; i < ld.inputBlobsWrappers.size(); ++i)
                    {
                        InferenceEngine::DataPtr dataPtr = infEngineDataNode(ld.inputBlobsWrappers[i]);
1580
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2019010000)
1581
                        dataPtr->name = netInputLayer->outNames[i];
1582 1583 1584
#else
                        dataPtr->setName(netInputLayer->outNames[i]);
#endif
1585 1586 1587 1588 1589 1590 1591
                    }
                }
                else
                {
                    for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
                    {
                        InferenceEngine::DataPtr dataPtr = infEngineDataNode(ld.outputBlobsWrappers[i]);
1592
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2019010000)
1593
                        dataPtr->name = ld.name;
1594 1595 1596
#else
                        dataPtr->setName(ld.name);
#endif
1597
                    }
1598 1599 1600 1601 1602 1603
                }
                ieNode->net->addBlobs(ld.inputBlobsWrappers);
                ieNode->net->addBlobs(ld.outputBlobsWrappers);
                ld.skip = true;
            }
            layers[lastLayerId].skip = false;
1604
            ieNode->net->init((Target)preferableTarget);
1605 1606 1607 1608 1609
            return;
        }

        // Build Inference Engine networks from sets of layers that support this
        // backend. Split a whole model on several Inference Engine networks if
1610
        // some of layers are not implemented.
1611

1612 1613 1614
        bool supportsCPUFallback = preferableTarget == DNN_TARGET_CPU ||
                                   BackendRegistry::checkIETarget(DNN_TARGET_CPU);

1615
        // Set of all input and output blobs wrappers for current network.
1616
        std::map<LayerPin, Ptr<BackendWrapper> > netBlobsWrappers;
1617 1618 1619
        for (it = layers.begin(); it != layers.end(); ++it)
        {
            LayerData &ld = it->second;
1620
            if (ld.id == 0 && ld.skip)
1621 1622
                continue;
            bool fused = ld.skip;
1623

1624
            Ptr<Layer> layer = ld.layerInstance;
1625
            if (!fused && !layer->supportBackend(preferableBackend))
1626
            {
1627
                bool customizable = ld.id != 0 &&
1628 1629
                                    INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R2) &&
                                    supportsCPUFallback;
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
                // TODO: there is a bug in Myriad plugin with custom layers shape infer.
                if (preferableTarget == DNN_TARGET_MYRIAD)
                {
                    for (int i = 0; customizable && i < ld.inputBlobs.size(); ++i)
                    {
                        customizable = ld.inputBlobs[i]->size[0] == 1;
                    }
                }

                // TODO: fix these workarounds
                if (preferableTarget == DNN_TARGET_MYRIAD ||
                    preferableTarget == DNN_TARGET_OPENCL ||
                    preferableTarget == DNN_TARGET_OPENCL_FP16)
                    customizable &= ld.type != "Concat";

                if (preferableTarget == DNN_TARGET_OPENCL ||
                    preferableTarget == DNN_TARGET_OPENCL_FP16)
                    customizable &= ld.type != "Power";

                if (preferableTarget == DNN_TARGET_OPENCL)
                    customizable &= ld.type != "Eltwise";

                if (!customizable)
                {
                    addInfEngineNetOutputs(ld);
                    net = Ptr<InfEngineBackendNet>();
                    netBlobsWrappers.clear();  // Is not used for R5 release but we don't wrap it to #ifdef.
                    layer->preferableTarget = DNN_TARGET_CPU;
                    continue;
                }
1660
            }
1661
            ld.skip = true;  // Initially skip all Inference Engine supported layers.
1662

1663
            // Create a new network if one of inputs from different Inference Engine graph.
1664 1665 1666 1667 1668 1669 1670
            for (int i = 0; i < ld.inputBlobsId.size(); ++i)
            {
                LayerData &inpLd = layers[ld.inputBlobsId[i].lid];
                Ptr<BackendNode> inpNode = inpLd.backendNodes[preferableBackend];
                if (!inpNode.empty())
                {
                    Ptr<InfEngineBackendNode> ieInpNode = inpNode.dynamicCast<InfEngineBackendNode>();
1671
                    CV_Assert(!ieInpNode.empty()); CV_Assert(!ieInpNode->net.empty());
1672 1673 1674
                    if (ieInpNode->net != net)
                    {
                        net = Ptr<InfEngineBackendNet>();
1675
                        netBlobsWrappers.clear();  // Is not used for R5 release but we don't wrap it to #ifdef.
1676 1677 1678 1679 1680
                        break;
                    }
                }
            }

1681 1682 1683
            Ptr<BackendNode> node;
            if (!net.empty())
            {
1684
                if (fused)
1685
                {
1686 1687 1688 1689 1690
                    bool inPlace = ld.inputBlobsId.size() == 1 && ld.outputBlobs.size() == 1 &&
                                   ld.inputBlobs[0]->data == ld.outputBlobs[0].data;
                    CV_Assert(inPlace);
                    node = layers[ld.inputBlobsId[0].lid].backendNodes[preferableBackend];
                    ld.inputBlobsWrappers = layers[ld.inputBlobsId[0].lid].inputBlobsWrappers;
1691
                }
1692 1693
            }
            else
1694 1695 1696
                net = Ptr<InfEngineBackendNet>(new InfEngineBackendNet());

            if (!fused)
1697
            {
1698 1699 1700 1701 1702 1703 1704
                if (layer->supportBackend(preferableBackend))
                    node = layer->initInfEngine(ld.inputBlobsWrappers);
                else
                {
                    node = Ptr<BackendNode>(new InfEngineBackendNode(
                        ld.layerInstance, ld.inputBlobs, ld.outputBlobs, ld.internals));
                }
1705
            }
1706 1707
            else if (node.empty())
                continue;
1708 1709 1710 1711 1712 1713 1714 1715

            CV_Assert(!node.empty());
            ld.backendNodes[preferableBackend] = node;

            Ptr<InfEngineBackendNode> ieNode = node.dynamicCast<InfEngineBackendNode>();
            CV_Assert(!ieNode.empty());
            ieNode->net = net;

1716 1717 1718 1719 1720
            // Convert weights in FP16 for specific targets.
            if ((preferableTarget == DNN_TARGET_OPENCL_FP16 ||
                 preferableTarget == DNN_TARGET_MYRIAD ||
                 preferableTarget == DNN_TARGET_FPGA) && !fused)
            {
1721
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
1722 1723 1724 1725 1726
                for (const std::string& name : {"weights", "biases"})
                {
                    auto it = ieNode->layer.getParameters().find(name);
                    if (it != ieNode->layer.getParameters().end())
                    {
1727 1728
                        InferenceEngine::Blob::Ptr bp = it->second.as<InferenceEngine::Blob::Ptr>();
                        it->second = convertFp16(std::const_pointer_cast<InferenceEngine::Blob>(bp));
1729 1730 1731
                    }
                }
#else
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
                auto& blobs = ieNode->layer.getConstantData();
                if (blobs.empty())
                {
                    // In case of non weightable layer we have to specify
                    // it's precision adding dummy blob.
                    auto blob = InferenceEngine::make_shared_blob<int16_t>(
                                    InferenceEngine::Precision::FP16,
                                    InferenceEngine::Layout::C, {1});
                    blob->allocate();
                    blobs[""] = blob;
                }
                else
                {
                    for (auto& it : blobs)
                        it.second = convertFp16(std::const_pointer_cast<InferenceEngine::Blob>(it.second));
                }
1748
#endif
1749 1750 1751 1752 1753 1754 1755 1756 1757
            }

            if (!fused)
                net->addLayer(ieNode->layer);

            net->connect(ld.inputBlobsWrappers, ld.outputBlobsWrappers, ieNode->layer.getName());
            net->addBlobs(ld.inputBlobsWrappers);
            net->addBlobs(ld.outputBlobsWrappers);
            addInfEngineNetOutputs(ld);
1758
        }
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778

        // Initialize all networks.
        for (MapIdToLayerData::reverse_iterator it = layers.rbegin(); it != layers.rend(); ++it)
        {
            LayerData &ld = it->second;
            if (ld.backendNodes.find(preferableBackend) == ld.backendNodes.end())
                continue;

            Ptr<BackendNode> node = ld.backendNodes[preferableBackend];
            if (node.empty())
                continue;

            Ptr<InfEngineBackendNode> ieNode = node.dynamicCast<InfEngineBackendNode>();
            if (ieNode.empty())
                continue;

            CV_Assert(!ieNode->net.empty());

            if (!ieNode->net->isInitialized())
            {
1779
                ieNode->net->init((Target)preferableTarget);
1780 1781 1782
                ld.skip = false;
            }
        }
1783
    }
1784
#endif  // HAVE_INF_ENGINE
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042


#ifdef HAVE_DNN_NGRAPH
    void addNgraphOutputs(LayerData &ld)
    {
        CV_TRACE_FUNCTION();

        Ptr<InfEngineNgraphNet> layerNet;
        auto it = ld.backendNodes.find(preferableBackend);
        if (it != ld.backendNodes.end())
        {
            Ptr<BackendNode> node = it->second;
            if (!node.empty())
            {
                Ptr<InfEngineNgraphNode> ieNode = node.dynamicCast<InfEngineNgraphNode>();
                CV_Assert(!ieNode.empty()); CV_Assert(!ieNode->net.empty());
                layerNet = ieNode->net;
            }
        }

        for (int i = 0; i < ld.inputBlobsId.size(); ++i)
        {
            LayerData &inpLd = layers[ld.inputBlobsId[i].lid];
            Ptr<BackendNode> inpNode = inpLd.backendNodes[preferableBackend];
            if (!inpNode.empty())
            {
                Ptr<InfEngineNgraphNode> ieInpNode = inpNode.dynamicCast<InfEngineNgraphNode>();
                CV_Assert(!ieInpNode.empty()); CV_Assert(!ieInpNode->net.empty());
                if (layerNet != ieInpNode->net)
                {
                    ieInpNode->net->addOutput(ieInpNode->node->get_friendly_name());
                    ieInpNode->net->setUnconnectedNodes(ieInpNode);
                }
            }
        }
    }

    void initNgraphBackend()
    {
        CV_TRACE_FUNCTION();
        CV_Assert_N(preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, haveInfEngine());

        MapIdToLayerData::iterator it;
        Ptr<InfEngineNgraphNet> net;

        for (it = layers.begin(); it != layers.end(); ++it)
        {
            LayerData &ld = it->second;
            if (ld.id == 0)
            {
                CV_Assert((netInputLayer->outNames.empty() && ld.outputBlobsWrappers.size() == 1) ||
                          (netInputLayer->outNames.size() == ld.outputBlobsWrappers.size()));
                for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
                {
                    InferenceEngine::DataPtr dataPtr = ngraphDataNode(ld.outputBlobsWrappers[i]);
                    dataPtr->setName(netInputLayer->outNames.empty() ? ld.name : netInputLayer->outNames[i]);
                }
            }
            else
            {
                for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
                {
                    InferenceEngine::DataPtr dataPtr = ngraphDataNode(ld.outputBlobsWrappers[i]);
                    dataPtr->setName(ld.name);
                }
            }
        }

        if (skipInfEngineInit)
        {
            Ptr<BackendNode> node = layers[lastLayerId].backendNodes[preferableBackend];
            CV_Assert(!node.empty());

            Ptr<InfEngineNgraphNode> ieNode = node.dynamicCast<InfEngineNgraphNode>();
            CV_Assert(!ieNode.empty());

            for (it = layers.begin(); it != layers.end(); ++it)
            {
                LayerData &ld = it->second;
                if (ld.id == 0)
                {
                    for (int i = 0; i < ld.inputBlobsWrappers.size(); ++i)
                    {
                        InferenceEngine::DataPtr dataPtr = ngraphDataNode(ld.inputBlobsWrappers[i]);
                        dataPtr->setName(netInputLayer->outNames[i]);
                    }
                }
                else
                {
                    for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
                    {
                        InferenceEngine::DataPtr dataPtr = ngraphDataNode(ld.outputBlobsWrappers[i]);
                        dataPtr->setName(ld.name);
                    }
                }
                ieNode->net->addBlobs(ld.inputBlobsWrappers);
                ieNode->net->addBlobs(ld.outputBlobsWrappers);
                ld.skip = true;
            }
            layers[lastLayerId].skip = false;
            ieNode->net->init((Target)preferableTarget);
            return;
        }

        // Build Inference Engine networks from sets of layers that support this
        // backend. Split a whole model on several Inference Engine networks if
        // some of layers are not implemented.
        for (it = layers.begin(); it != layers.end(); ++it)
        {
            LayerData &ld = it->second;

            if (ld.id == 0 && ld.skip)
                continue;

            bool fused = ld.skip;
            Ptr<Layer> layer = ld.layerInstance;
            if (!fused && !layer->supportBackend(preferableBackend))
            {
                addNgraphOutputs(ld);
                net = Ptr<InfEngineNgraphNet>();
                layer->preferableTarget = DNN_TARGET_CPU;

                for (int i = 0; i < ld.inputBlobsId.size(); ++i)
                {
                    LayerData &inpLd = layers[ld.inputBlobsId[i].lid];
                    Ptr<BackendNode> inpNode = inpLd.backendNodes[preferableBackend];
                    if (!inpNode.empty()) {
                        Ptr<InfEngineNgraphNode> ieNode = inpNode.dynamicCast<InfEngineNgraphNode>();
                        ieNode->net->setUnconnectedNodes(ieNode);
                    }
                }
                continue;
            }
            ld.skip = true;  // Initially skip all Inference Engine supported layers.

            // Create a new network if one of inputs from different Inference Engine graph.
            std::vector<Ptr<BackendNode>> inputNodes;
            for (int i = 0; i < ld.inputBlobsId.size(); ++i)
            {
                // Layer_Test_ROIPooling.Accuracy has 2 inputs inpLD = 0, 0 -> has 4 inputNodes (input, rois, input, rois)
                if (inputNodes.size() == ld.inputBlobsId.size()) {
                    break;
                }
                LayerData &inpLd = layers[ld.inputBlobsId[i].lid];
                Ptr<BackendNode> inpNode = inpLd.backendNodes[preferableBackend];
                if (!inpNode.empty())
                {
                     Ptr<InfEngineNgraphNode> ieInpNode = inpNode.dynamicCast<InfEngineNgraphNode>();
                     CV_Assert(!ieInpNode.empty()); CV_Assert(!ieInpNode->net.empty());
                     if (ieInpNode->net == net && !fused) {
                        inputNodes.push_back(inpNode);
                        continue;
                     }
                }

                if (net.empty()) {
                    net = Ptr<InfEngineNgraphNet>(new InfEngineNgraphNet());
                }

                if (!fused) {
                    std::vector<std::string> inputNames;
                    std::vector<cv::Mat> inputs;

                    auto curr_pos = inpLd.consumers.begin();
                    auto compare = [&ld] (const LayerPin& lp) { return lp.lid == ld.id; };
                    auto cons = curr_pos;
                    while ((cons = std::find_if(curr_pos, inpLd.consumers.end(), compare)) !=
                            inpLd.consumers.end()) {
                        int cons_inp = cons->oid;
                        Ptr<NgraphBackendWrapper> inpWrapper = inpLd.outputBlobsWrappers[cons_inp].
                                                                     dynamicCast<NgraphBackendWrapper>();
                        auto iter = std::find(inputNames.begin(), inputNames.end(),
                                              inpWrapper->dataPtr->getName());
                        if (iter == inputNames.end()) {
                            inputNames.push_back(inpWrapper->dataPtr->getName());
                            inputs.push_back(inpLd.outputBlobs[cons_inp]);
                        }
                        curr_pos = cons + 1;
                    }

                    auto inps = net->setInputs(inputs, inputNames);
                    for (auto& inp : inps) {
                        inputNodes.emplace_back(Ptr<BackendNode>(new InfEngineNgraphNode(inp)));
                    }
                }
            }

            Ptr<BackendNode> node;
            if (!net.empty())
            {
                if (fused)
                {
                    bool inPlace = ld.inputBlobsId.size() == 1 && ld.outputBlobs.size() == 1 &&
                                   ld.inputBlobs[0]->data == ld.outputBlobs[0].data;
                    CV_Assert(inPlace);
                    node = layers[ld.inputBlobsId[0].lid].backendNodes[preferableBackend];
                    ld.inputBlobsWrappers = layers[ld.inputBlobsId[0].lid].inputBlobsWrappers;
                }
            }
            else {
                net = Ptr<InfEngineNgraphNet>(new InfEngineNgraphNet());
            }

            if (!fused)
            {
                CV_Assert(!inputNodes.empty());
                node = layer->initNgraph(ld.inputBlobsWrappers, inputNodes);
                for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
                {
                    InferenceEngine::DataPtr dataPtr = ngraphDataNode(ld.outputBlobsWrappers[i]);
                    node.dynamicCast<InfEngineNgraphNode>()->setName(dataPtr->getName());
                }
            }
            else if (node.empty())
                continue;

            ld.backendNodes[preferableBackend] = node;

            Ptr<InfEngineNgraphNode> ieNode = node.dynamicCast<InfEngineNgraphNode>();
            CV_Assert(!ieNode.empty());
            ieNode->net = net;

            if (ld.consumers.empty()) {
                // TF EAST_text_detection
                ieNode->net->setUnconnectedNodes(ieNode);
            }
            ieNode->net->setNodePtr(&ieNode->node);

            net->addBlobs(ld.inputBlobsWrappers);
            net->addBlobs(ld.outputBlobsWrappers);
            addNgraphOutputs(ld);
        }

        // Initialize all networks.
        for (MapIdToLayerData::reverse_iterator it = layers.rbegin(); it != layers.rend(); ++it)
        {
            LayerData &ld = it->second;
            auto iter = ld.backendNodes.find(preferableBackend);
            if (iter == ld.backendNodes.end())
                continue;

            Ptr<BackendNode>& node = iter->second;
            if (node.empty())
                continue;

            Ptr<InfEngineNgraphNode> ieNode = node.dynamicCast<InfEngineNgraphNode>();
            if (ieNode.empty())
                continue;

            CV_Assert(!ieNode->net.empty());

            if (!ieNode->net->isInitialized())
            {
                ieNode->net->setUnconnectedNodes(ieNode);
                ieNode->net->createNet((Target)preferableTarget);
                ld.skip = false;
            }
        }
2043
    }
2044
#endif  // HAVE_DNN_NGRAPH
2045 2046 2047

    void allocateLayer(int lid, const LayersShapesMap& layersShapes)
    {
A
Alexander Alekhin 已提交
2048 2049
        CV_TRACE_FUNCTION();

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
        LayerData &ld = layers[lid];

        //already allocated
        if (ld.flag)
            return;

        size_t ninputs = ld.inputBlobsId.size();
#if 0
        printf("layer %s:", ld.name.c_str());
        for (size_t i = 0; i < ninputs; i++)
        {
            int inp_lid = ld.inputBlobsId[i].lid;
            LayerData &inp_ld = layers[inp_lid];
            int inp_outputs = (int)inp_ld.outputBlobs.size();
            std::cout << " " << inp_ld.name << "(" << inp_outputs;

            for( int j = 0; j < inp_outputs; j++ )
            {
                std::cout << (j == 0 ? ": " : ", ") << inp_ld.outputBlobs[j].size;
            }
            std::cout << ")";
        }
        printf("\n");
#endif

        //determine parent layers
        for (size_t i = 0; i < ninputs; i++)
            ld.inputLayersId.insert(ld.inputBlobsId[i].lid);

        //allocate parents
        for (set<int>::iterator i = ld.inputLayersId.begin(); i != ld.inputLayersId.end(); i++)
            allocateLayer(*i, layersShapes);

        //bind inputs
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
        if (ld.id == 0)  // DataLayer
        {
            ninputs = netInputLayer->inputsData.size();
            ld.inputBlobsWrappers.resize(ninputs);
            for (size_t i = 0; i < ninputs; i++)
            {
                ld.inputBlobsWrappers[i] = wrap(netInputLayer->inputsData[i]);
            }
        }
        else
2094
        {
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
            ld.inputBlobs.resize(ninputs);
            ld.inputBlobsWrappers.resize(ninputs);
            for (size_t i = 0; i < ninputs; i++)
            {
                LayerPin from = ld.inputBlobsId[i];
                CV_Assert(from.valid());
                CV_DbgAssert(layers.count(from.lid) && (int)layers[from.lid].outputBlobs.size() > from.oid);
                ld.inputBlobs[i] = &layers[from.lid].outputBlobs[from.oid];
                ld.inputBlobsWrappers[i] = layers[from.lid].outputBlobsWrappers[from.oid];
            }
2105 2106 2107 2108 2109 2110 2111
        }

        LayersShapesMap::const_iterator layerShapesIt = layersShapes.find(lid);

        CV_Assert(layerShapesIt != layersShapes.end());

        std::vector<LayerPin> pinsForInternalBlobs;
2112
        blobManager.allocateBlobsForLayer(ld, layerShapesIt->second, pinsForInternalBlobs,
2113
                                          preferableBackend == DNN_BACKEND_OPENCV &&
L
Li Peng 已提交
2114
                                          preferableTarget == DNN_TARGET_OPENCL_FP16);
2115 2116 2117 2118 2119
        ld.outputBlobsWrappers.resize(ld.outputBlobs.size());
        for (int i = 0; i < ld.outputBlobs.size(); ++i)
        {
            ld.outputBlobsWrappers[i] = wrap(ld.outputBlobs[i]);
        }
2120 2121 2122 2123 2124
        ld.internalBlobsWrappers.resize(ld.internals.size());
        for (int i = 0; i < ld.internals.size(); ++i)
        {
            ld.internalBlobsWrappers[i] = wrap(ld.internals[i]);
        }
2125 2126 2127

        Ptr<Layer> layerPtr = ld.getLayerInstance();
        {
2128 2129 2130 2131 2132 2133
            std::vector<Mat> inps(ld.inputBlobs.size());
            for (int i = 0; i < ld.inputBlobs.size(); ++i)
            {
                inps[i] = *ld.inputBlobs[i];
            }
            layerPtr->finalize(inps, ld.outputBlobs);
2134
            layerPtr->preferableTarget = preferableTarget;
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
#if 0
            std::cout << "\toutputs:";
            size_t noutputs = ld.outputBlobs.size();
            for (size_t j = 0; j < noutputs; j++)
            {
                std::cout << (j == 0 ? " " : ", ") << ld.outputBlobs[j].size;
            }
            std::cout << "\n";
#endif
        }

        // After allocation of layer, we decrease counters to it's input blobs.
        blobManager.releaseReferences(ld.inputBlobsId);
        blobManager.releaseReferences(pinsForInternalBlobs);

        ld.flag = 1;
    }

2153 2154 2155 2156 2157 2158
#if 0
#define printf_(args) printf args
#else
#define printf_(args)
#endif

2159 2160
    void fuseLayers(const std::vector<LayerPin>& blobsToKeep_)
    {
A
Alexander Alekhin 已提交
2161 2162
        CV_TRACE_FUNCTION();

2163 2164 2165 2166 2167
        if(!fusion || (preferableBackend != DNN_BACKEND_OPENCV &&
                        preferableBackend != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 &&
                        preferableBackend != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH))
           return;

2168 2169 2170 2171 2172 2173 2174 2175 2176
        // scan through all the layers. If there is convolution layer followed by the activation layer,
        // we try to embed this activation into the convolution and disable separate execution of the activation
        std::set<LayerPin> pinsToKeep(blobsToKeep_.begin(),
                                      blobsToKeep_.end());
        MapIdToLayerData::iterator it;
        for (it = layers.begin(); it != layers.end(); it++)
        {
            int lid = it->first;
            LayerData& ld = layers[lid];
2177
            if( ld.skip )
2178
            {
2179
                printf_(("skipped %s: %s\n", ld.layerInstance->name.c_str(), ld.layerInstance->type.c_str()));
2180 2181
                continue;
            }
2182
            printf_(("analyzing %s: %s\n", ld.layerInstance->name.c_str(), ld.layerInstance->type.c_str()));
2183

2184 2185 2186 2187
            // the optimization #1. try to fuse batch norm, scaling and/or activation layers
            // with the current layer if they follow it. Normally, the are fused with the convolution layer,
            // but some of them (like activation) may be fused with fully-connected, elemwise (+) and
            // some other layers.
2188 2189
            Ptr<Layer>& currLayer = ld.layerInstance;
            if( ld.consumers.size() == 1 && pinsToKeep.count(LayerPin(lid, 0)) == 0 )
2190 2191 2192
            {
                LayerData* nextData = &layers[ld.consumers[0].lid];
                LayerPin lpNext(ld.consumers[0].lid, 0);
2193
                while (nextData)
2194
                {
2195 2196
                    Ptr<Layer> nextLayer = nextData->layerInstance;
                    if (currLayer->tryFuse(nextLayer))
2197
                    {
2198 2199
                        printf_(("\tfused with %s\n", nextLayer->name.c_str()));
                        nextData->skip = true;
2200 2201
                        ld.outputBlobs = layers[lpNext.lid].outputBlobs;
                        ld.outputBlobsWrappers = layers[lpNext.lid].outputBlobsWrappers;
2202
                        if (nextData->consumers.size() == 1)
A
Aleksandr Rybnikov 已提交
2203
                        {
2204 2205 2206
                            int nextLayerId = nextData->consumers[0].lid;
                            nextData = &layers[nextLayerId];
                            lpNext = LayerPin(nextLayerId, 0);
A
Aleksandr Rybnikov 已提交
2207
                        }
2208
                        else
A
Aleksandr Rybnikov 已提交
2209
                        {
2210 2211
                            nextData = 0;
                            break;
A
Aleksandr Rybnikov 已提交
2212
                        }
2213
                    }
2214 2215
                    else
                        break;
2216 2217
                }

2218
                if (preferableBackend != DNN_BACKEND_OPENCV)
2219 2220
                    continue;  // Go to the next layer.

2221 2222 2223 2224 2225 2226 2227
                // TODO: OpenCL target support more fusion styles.
                if ( preferableBackend == DNN_BACKEND_OPENCV && IS_DNN_OPENCL_TARGET(preferableTarget) &&
                     (!cv::ocl::useOpenCL() || (ld.layerInstance->type != "Convolution" &&
                     ld.layerInstance->type != "MVN" && ld.layerInstance->type != "Pooling" &&
                     ld.layerInstance->type != "Concat")) )
                    continue;

2228
                while (nextData)
2229
                {
2230 2231 2232 2233 2234 2235 2236 2237
                    // For now, OpenCL target support fusion with activation of ReLU/ChannelsPReLU/Power/Tanh
                    if (IS_DNN_OPENCL_TARGET(preferableTarget) &&
                        nextData->type != "ReLU" &&
                        nextData->type != "ChannelsPReLU" &&
                        nextData->type != "ReLU6" &&
                        nextData->type != "TanH" &&
                        nextData->type != "Power")
                        break;
W
Wu Zhiwen 已提交
2238

2239 2240 2241
                    Ptr<ActivationLayer> nextActivLayer = nextData->layerInstance.dynamicCast<ActivationLayer>();
                    if (nextActivLayer.empty())
                        break;
W
Wu Zhiwen 已提交
2242

2243
                    if (currLayer->setActivation(nextActivLayer))
W
Wu Zhiwen 已提交
2244 2245
                    {
                        printf_(("\tfused with %s\n", nextActivLayer->name.c_str()));
2246
                        nextData->skip = true;
2247 2248
                        ld.outputBlobs = layers[lpNext.lid].outputBlobs;
                        ld.outputBlobsWrappers = layers[lpNext.lid].outputBlobsWrappers;
2249
                        if (nextData->consumers.size() == 1)
2250
                        {
2251 2252 2253 2254 2255
                            int nextLayerId = nextData->consumers[0].lid;
                            nextData = &layers[nextLayerId];
                            lpNext = LayerPin(nextLayerId, 0);
                        }
                        else
2256
                        {
2257 2258
                            nextData = 0;
                            break;
2259 2260
                        }
                    }
2261 2262
                    else
                        break;
2263 2264
                }

K
Kuang Fangjun 已提交
2265
                // fuse convolution layer followed by eltwise + relu
2266
                if ( IS_DNN_OPENCL_TARGET(preferableTarget) && ld.layerInstance->type == "Convolution" )
2267 2268 2269 2270 2271
                {
                    Ptr<EltwiseLayer> nextEltwiseLayer;
                    if( nextData )
                        nextEltwiseLayer = nextData->layerInstance.dynamicCast<EltwiseLayer>();

2272
                    if( !nextEltwiseLayer.empty() && pinsToKeep.count(lpNext) == 0 &&
A
Alexander Alekhin 已提交
2273
                        nextData && nextData->inputBlobsId.size() == 2 )
2274 2275 2276
                    {
                        LayerData *eltwiseData = nextData;

2277 2278 2279 2280
                        // Eltwise layer has two inputs. We need to determine which
                        // is a base convolution layer and which could be used as it's bias.
                        LayerData* biasLayerData = 0;
                        for (int i = 0; i < 2; ++i)
2281
                        {
2282 2283
                            LayerData *downLayerData = &layers[eltwiseData->inputBlobsId[i].lid];
                            CV_Assert(downLayerData);
2284
                            while (downLayerData->skip)
2285
                            {
2286
                                if (downLayerData->inputBlobsId.size() == 1)
2287
                                    downLayerData = &layers[downLayerData->inputBlobsId[0].lid];
2288 2289 2290 2291 2292
                                else
                                {
                                    downLayerData = 0;
                                    break;
                                }
2293
                            }
2294 2295 2296 2297 2298 2299 2300 2301 2302
                            if (downLayerData && ld.id == downLayerData->id)
                            {
                                biasLayerData = &layers[eltwiseData->inputBlobsId[1 - i].lid];
                                break;
                            }
                        }
                        CV_Assert(biasLayerData);
                        {
                            if( eltwiseData->consumers.size() == 1 )
2303 2304
                            {
                                // fuse eltwise + activation layer
2305
                                if (biasLayerData->id < ld.id)
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
                                {
                                    nextData = &layers[eltwiseData->consumers[0].lid];
                                    lpNext = LayerPin(eltwiseData->consumers[0].lid, 0);
                                    Ptr<ActivationLayer> nextActivLayer;
                                    if( nextData )
                                        nextActivLayer = nextData->layerInstance.dynamicCast<ActivationLayer>();

                                    if( !nextActivLayer.empty() && pinsToKeep.count(lpNext) == 0 &&
                                            (!nextData->type.compare("ReLU") ||
                                             !nextData->type.compare("ChannelsPReLU") ||
                                             !nextData->type.compare("Power")) &&
                                            currLayer->setActivation(nextActivLayer) )
                                    {
2319 2320
                                        CV_Assert_N(biasLayerData->outputBlobsWrappers.size() == 1, ld.inputBlobsWrappers.size() == 1);
                                        ld.inputBlobsWrappers.push_back(biasLayerData->outputBlobsWrappers[0]);
2321 2322
                                        printf_(("\tfused with %s\n", nextEltwiseLayer->name.c_str()));
                                        printf_(("\tfused with %s\n", nextActivLayer->name.c_str()));
2323 2324
                                        eltwiseData->skip = true;
                                        nextData->skip = true;
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
                                        // This optimization for cases like
                                        // some_layer   conv
                                        //   |             |
                                        //   +-- eltwise --+
                                        //          |
                                        //        activ
                                        // This way all the element-wise computations
                                        // (i.e. some_layer+conv or some_layer*conv)
                                        // would be done at [conv] layer. So we need to
                                        // replace [conv]'s output blob to [eltwise]'s one
                                        // considering that [activ] is an in-place layer.
                                        // Also we need to move all the consumers' references.
                                        // To prevent memory collisions (i.e. when input of
                                        // [conv] and output of [eltwise] is the same blob)
                                        // we allocate a new blob.
2340
                                        CV_Assert_N(ld.outputBlobs.size() == 1, ld.outputBlobsWrappers.size() == 1);
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
                                        ld.outputBlobs[0] = ld.outputBlobs[0].clone();
                                        ld.outputBlobsWrappers[0] = wrap(ld.outputBlobs[0]);

                                        eltwiseData->outputBlobs = ld.outputBlobs;
                                        nextData->outputBlobs = ld.outputBlobs;
                                        eltwiseData->outputBlobsWrappers = ld.outputBlobsWrappers;
                                        nextData->outputBlobsWrappers = ld.outputBlobsWrappers;

                                        // Move references of [activ] layer consumers to the newly allocated blob.
                                        for (int i = 0; i < nextData->consumers.size(); ++i)
                                        {
                                            LayerData& consumer = layers[nextData->consumers[i].lid];
                                            for (int j = 0; j < consumer.inputBlobsId.size(); ++j)
                                            {
                                                if (consumer.inputBlobsId[j].lid == lpNext.lid)
                                                {
                                                    consumer.inputBlobs[j] = &ld.outputBlobs[0];
                                                    consumer.inputBlobsWrappers[j] = ld.outputBlobsWrappers[0];
                                                    break;
                                                }
                                            }
                                        }
2363 2364 2365 2366
                                    }
                                }
                            }
                        }
W
Wu Zhiwen 已提交
2367
                    }
2368 2369
                }
            }
2370

2371 2372 2373
            if (preferableBackend != DNN_BACKEND_OPENCV)
                continue;  // Go to the next layer.

2374
            // the optimization #2. if there is concat layer that concatenates channels
2375
            // from the inputs together (i.e. axis == 1) then we make the inputs of
K
Kuang Fangjun 已提交
2376
            // the concat layer to write to the concatenation output buffer
2377 2378 2379
            // (and so we eliminate the concatenation layer, because the channels
            // are concatenated implicitly).
            Ptr<ConcatLayer> concatLayer = ld.layerInstance.dynamicCast<ConcatLayer>();
2380
            if( !concatLayer.empty() && concatLayer->axis == 1 && !concatLayer->padding &&
2381 2382 2383
                ld.outputBlobs.size() == 1 )
            {
                Mat& output = ld.outputBlobs[0];
2384
                UMat umat_output;
2385
#ifdef HAVE_OPENCL
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
                if (!ld.outputBlobsWrappers.empty() &&
                    (preferableBackend == DNN_BACKEND_OPENCV && IS_DNN_OPENCL_TARGET(preferableTarget)))
                {
                    size_t i, ninputs = ld.inputBlobsId.size();
                    bool conv_layer = true;
                    for( i = 0; i < ninputs; i++ )
                    {
                        LayerPin pin = ld.inputBlobsId[i];
                        LayerData* inp_i_data = &layers[pin.lid];
                        while(inp_i_data->skip &&
                              inp_i_data->inputBlobsId.size() == 1 &&
                              inp_i_data->consumers.size() == 1)
                        {
                            pin = inp_i_data->inputBlobsId[0];
                            inp_i_data = &layers[pin.lid];
                        }
                        conv_layer = conv_layer && (inp_i_data->getLayerInstance()->type == "Convolution");
                    }
                    if (!conv_layer)
                        continue;
                    std::vector<UMat> umat_outputBlobs;
                    umat_outputBlobs = OpenCLBackendWrapper::getUMatVector(ld.outputBlobsWrappers);
                    umat_output = umat_outputBlobs[0];
                }
2410
#endif
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425

                // TODO: in general, this optimization can always be done, but
                // many layers currently check that the input/output blobs are
                // continuous arrays. Unfortunately, this is not true when
                // the concatenation optimization is applied with batch_size > 1.
                // so, for now, we only apply this optimization in the most popular
                // case batch_size == 1.
                if( output.dims == 4 && output.size[0] == 1 )
                {
                    size_t i, ninputs = ld.inputBlobsId.size();
                    std::vector<LayerPin> realinputs(ninputs);
                    for( i = 0; i < ninputs; i++ )
                    {
                        LayerPin pin = ld.inputBlobsId[i];
                        LayerData* inp_i_data = &layers[pin.lid];
2426
                        while(inp_i_data->skip &&
D
Dmitry Kurtaev 已提交
2427 2428
                              inp_i_data->inputBlobsId.size() == 1 &&
                              inp_i_data->consumers.size() == 1)
2429 2430 2431 2432 2433 2434 2435 2436
                        {
                            pin = inp_i_data->inputBlobsId[0];
                            inp_i_data = &layers[pin.lid];
                        }
                        printf_(("\treal input for %s is %s\n",
                               layers[ld.inputBlobsId[i].lid].getLayerInstance()->name.c_str(),
                               inp_i_data->getLayerInstance()->name.c_str()));

2437
                        if(inp_i_data->skip || inp_i_data->consumers.size() != 1)
2438 2439 2440 2441 2442 2443
                            break;
                        realinputs[i] = pin;
                    }

                    if( i >= ninputs )
                    {
2444 2445 2446
                        // Allocate new memory to prevent collisions during memory
                        // reusing (see https://github.com/opencv/opencv/pull/10456).
                        output = output.clone();
2447
#ifdef HAVE_OPENCL
2448 2449 2450 2451 2452 2453 2454 2455
                        if (preferableBackend == DNN_BACKEND_OPENCV &&
                            IS_DNN_OPENCL_TARGET(preferableTarget))
                        {
                            std::vector<UMat> umats(1);
                            umat_output = umat_output.clone();
                            umats[0] = umat_output;
                            OpenCLBackendWrapper::update(ld.outputBlobsWrappers, umats);
                        }
2456
#endif
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
                        Range chrange[] = { Range::all(), Range::all(), Range::all(), Range::all() };
                        int ofs = 0;
                        for( i = 0; i < ninputs; i++ )
                        {
                            LayerPin pin = realinputs[i];
                            LayerData* inp_i_data = &layers[pin.lid];
                            int channels_i = ld.inputBlobs[i]->size[1];
                            chrange[1] = Range(ofs, ofs + channels_i);
                            printf_(("\toutput %s(%d) to channels (%d, %d)\n", inp_i_data->layerInstance->name.c_str(),
                                   pin.oid, ofs, ofs + channels_i));
                            ofs += channels_i;
                            Mat output_slice = output(chrange);
                            Mat& curr_output = inp_i_data->outputBlobs[pin.oid];
                            CV_Assert(output_slice.isContinuous() && output_slice.size == curr_output.size);
D
Dmitry Kurtaev 已提交
2471
                            Mat* oldPtr = &curr_output;
2472
                            curr_output = output_slice;
2473
#ifdef HAVE_OPENCL
2474 2475 2476 2477 2478 2479
                            if (preferableBackend == DNN_BACKEND_OPENCV && IS_DNN_OPENCL_TARGET(preferableTarget))
                            {
                                std::vector<UMat> umats(inp_i_data->outputBlobsWrappers.size());
                                umats[pin.oid] = umat_output(chrange);
                                OpenCLBackendWrapper::update(inp_i_data->outputBlobsWrappers, umats);
                            }
2480
#endif
D
Dmitry Kurtaev 已提交
2481 2482
                            // Layers that refer old input Mat will refer to the
                            // new data but the same Mat object.
2483
                            CV_Assert_N(curr_output.data == output_slice.data, oldPtr == &curr_output);
2484
                        }
2485
                        ld.skip = true;
2486 2487
                        printf_(("\toptimized out Concat layer %s\n", concatLayer->name.c_str()));
                    }
2488
                }
2489 2490 2491 2492 2493 2494
            }
        }
    }

    void allocateLayers(const std::vector<LayerPin>& blobsToKeep_)
    {
A
Alexander Alekhin 已提交
2495 2496
        CV_TRACE_FUNCTION();

2497 2498 2499 2500 2501 2502 2503 2504
        MapIdToLayerData::iterator it;
        for (it = layers.begin(); it != layers.end(); it++)
            it->second.flag = 0;

        CV_Assert(!layers[0].outputBlobs.empty());
        ShapesVec inputShapes;
        for(int i = 0; i < layers[0].outputBlobs.size(); i++)
        {
2505 2506 2507
            Mat& inp = layers[0].outputBlobs[i];
            CV_Assert(inp.total());
            if (preferableBackend == DNN_BACKEND_OPENCV &&
L
Li Peng 已提交
2508 2509
                preferableTarget == DNN_TARGET_OPENCL_FP16)
            {
2510
                layers[0].outputBlobs[i].create(inp.dims, inp.size, CV_16S);
L
Li Peng 已提交
2511
            }
2512
            inputShapes.push_back(shape(inp));
2513 2514 2515 2516 2517
        }
        LayersShapesMap layersShapes;
        getLayersShapes(inputShapes, layersShapes);

        blobManager.reset();
2518
        backendWrappers.clear();
2519 2520 2521
        // Fake references to input blobs.
        for (int i = 0; i < layers[0].outputBlobs.size(); ++i)
            blobManager.addReference(LayerPin(0, i));
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
        for (it = layers.begin(); it != layers.end(); ++it)
        {
            const LayerData& ld = it->second;
            blobManager.addReferences(ld.inputBlobsId);
        }

        for (int i = 0; i < blobsToKeep_.size(); i++)
        {
            blobManager.addReference(blobsToKeep_[i]);
        }

        for (it = layers.begin(); it != layers.end(); it++)
        {
            int lid = it->first;
            allocateLayer(lid, layersShapes);
        }

2539
        layersTimings.resize(lastLayerId + 1, 0);
2540 2541 2542 2543 2544
        fuseLayers(blobsToKeep_);
    }

    void forwardLayer(LayerData &ld)
    {
A
Alexander Alekhin 已提交
2545 2546
        CV_TRACE_FUNCTION();

2547 2548
        Ptr<Layer> layer = ld.layerInstance;

2549 2550 2551
        TickMeter tm;
        tm.start();

2552
        if( !ld.skip )
2553
        {
2554 2555
            std::map<int, Ptr<BackendNode> >::iterator it = ld.backendNodes.find(preferableBackend);
            if (preferableBackend == DNN_BACKEND_OPENCV || it == ld.backendNodes.end() || it->second.empty())
2556
            {
2557 2558 2559
                if (isAsync)
                    CV_Error(Error::StsNotImplemented, "Default implementation fallbacks in asynchronous mode");

2560 2561 2562 2563
                if (!layer->supportBackend(DNN_BACKEND_OPENCV))
                    CV_Error(Error::StsNotImplemented, format("Layer \"%s\" of type \"%s\" unsupported on OpenCV backend",
                                                       ld.name.c_str(), ld.type.c_str()));

2564
#ifdef HAVE_OPENCL
2565
                if (preferableBackend == DNN_BACKEND_OPENCV && IS_DNN_OPENCL_TARGET(preferableTarget))
2566
                {
2567
                    std::vector<UMat> umat_inputBlobs = OpenCLBackendWrapper::getUMatVector(ld.inputBlobsWrappers);
2568
                    std::vector<UMat> umat_outputBlobs = OpenCLBackendWrapper::getUMatVector(ld.outputBlobsWrappers);
2569 2570
                    std::vector<UMat> umat_internalBlobs = OpenCLBackendWrapper::getUMatVector(ld.internalBlobsWrappers);
                    layer->forward(umat_inputBlobs,
2571
                                   umat_outputBlobs,
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
                                   umat_internalBlobs);
                    if (DNN_CHECK_NAN_INF)
                    {
                        bool fail = false;
                        for (size_t i = 0; i < umat_outputBlobs.size(); ++i)
                        {
                            UMat& u = umat_outputBlobs[i];
                            Mat m;
                            if (u.depth() == CV_16S) // FP16
                                convertFp16(u, m);
                            else
                                m = u.getMat(ACCESS_READ);
                            if (!checkRange(m))
                            {
                                std::cerr << "WARNING: NaN detected in layer output: id=" << ld.id << " name=" << layer->name << std::endl;
                                std::cerr << "output id=" << i << " output shape=" << shape(m) << std::endl;
                                fail = true;
                            }
                            else if (!checkRange(m, true, NULL, -1e6, 1e6))
                            {
                                std::cerr << "WARNING: Inf detected in layer output: id=" << ld.id << " name=" << layer->name << std::endl;
                                std::cerr << "output id=" << i << " output shape=" << shape(m) << std::endl;
                                fail = true;
                            }
                        }
                        if (fail)
                        {
                            for (size_t i = 0; i < umat_inputBlobs.size(); ++i)
                            {
                                UMat& u = umat_inputBlobs[i];
                                Mat m;
                                if (u.depth() == CV_16S) // FP16
                                    convertFp16(u, m);
                                else
                                    m = u.getMat(ACCESS_READ);
                                std::cout << "INPUT " << i << " " << cv::typeToString(u.type()) << " " << shape(m) << std::endl;
                                if (DNN_CHECK_NAN_INF_DUMP) std::cout << m.reshape(1, 1) << std::endl;
                            }
                            for (size_t i = 0; i < umat_outputBlobs.size(); ++i)
                            {
                                UMat& u = umat_outputBlobs[i];
                                Mat m;
                                if (u.depth() == CV_16S) // FP16
                                    convertFp16(u, m);
                                else
                                    m = u.getMat(ACCESS_READ);
                                std::cout << "OUTPUT " << i << " " << cv::typeToString(u.type()) << " " << shape(m) << std::endl;
                                if (DNN_CHECK_NAN_INF_DUMP) std::cout << m.reshape(1, 1) << std::endl;
                            }
                            for (size_t i = 0; i < umat_internalBlobs.size(); ++i)
                            {
                                UMat& u = umat_internalBlobs[i];
                                Mat m;
                                if (u.depth() == CV_16S) // FP16
                                    convertFp16(u, m);
                                else
                                    m = u.getMat(ACCESS_READ);
                                std::cout << "INTERNAL " << i << " " << shape(m) << std::endl;
                                if (DNN_CHECK_NAN_INF_DUMP) std::cout << cv::typeToString(u.type()) << " " << m.reshape(1, 1) << std::endl;
                            }
                            if (DNN_CHECK_NAN_INF_RAISE_ERROR)
                                CV_Assert(!fail);
                        }
                    }
2636
                    OpenCLBackendWrapper::update(ld.outputBlobsWrappers, umat_outputBlobs);
2637
                }
L
Li Peng 已提交
2638
                else
2639
#endif
2640
                {
2641 2642 2643 2644 2645 2646
                    for (int i = 0, n = ld.inputBlobsWrappers.size(); i < n; ++i)
                    {
                        if (!ld.inputBlobsWrappers[i].empty())
                            ld.inputBlobsWrappers[i]->copyToHost();
                    }

2647 2648 2649 2650 2651 2652
                    std::vector<Mat> inps(ld.inputBlobs.size());
                    for (int i = 0; i < ld.inputBlobs.size(); ++i)
                    {
                        inps[i] = *ld.inputBlobs[i];
                    }
                    layer->forward(inps, ld.outputBlobs, ld.internals);
2653

2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
                    if (DNN_CHECK_NAN_INF)
                    {
                        bool fail = false;
                        for (size_t i = 0; i < ld.outputBlobs.size(); ++i)
                        {
                            const Mat& m = ld.outputBlobs[i];
                            if (!checkRange(m))
                            {
                                std::cerr << "WARNING: NaN detected in layer output: id=" << ld.id << " name=" << layer->name << std::endl;
                                std::cerr << "output id=" << i << " output shape=" << shape(m) << std::endl;
                                fail = true;
                            }
                            else if (!checkRange(m, true, NULL, -1e6, 1e6))
                            {
                                std::cerr << "WARNING: Inf detected in layer output: id=" << ld.id << " name=" << layer->name << std::endl;
                                std::cerr << "output id=" << i << " output shape=" << shape(m) << std::endl;
                                fail = true;
                            }
                        }
                        if (fail)
                        {
                            for (size_t i = 0; i < ld.inputBlobs.size(); ++i)
                            {
                                const Mat* pM = ld.inputBlobs[i];
                                if (!pM)
                                {
                                    std::cout << "INPUT " << i << " is NULL" << std::endl;
                                    continue;
                                }
                                const Mat& m = *pM;
                                std::cout << "INPUT " << i << " " << cv::typeToString(m.type()) << " " << shape(m) << std::endl;
                                if (DNN_CHECK_NAN_INF_DUMP) std::cout << m.reshape(1, 1) << std::endl;
                            }
                            for (size_t i = 0; i < ld.outputBlobs.size(); ++i)
                            {
                                const Mat& m = ld.outputBlobs[i];
                                std::cout << "OUTPUT " << i << " " << cv::typeToString(m.type()) << " " << shape(m) << std::endl;
                                if (DNN_CHECK_NAN_INF_DUMP) std::cout << m.reshape(1, 1) << std::endl;
                            }
                            for (size_t i = 0; i < ld.internals.size(); ++i)
                            {
                                const Mat& m = ld.internals[i];
                                std::cout << "INTERNAL " << i << " " << cv::typeToString(m.type()) << " " << shape(m) << std::endl;
                                if (DNN_CHECK_NAN_INF_DUMP) std::cout << m.reshape(1, 1) << std::endl;
                            }
                            if (DNN_CHECK_NAN_INF_RAISE_ERROR)
                                CV_Assert(!fail);
                        }
                    }

2704 2705 2706 2707 2708
                    for (int i = 0, n = ld.outputBlobsWrappers.size(); i < n; ++i)
                    {
                        if (!ld.outputBlobsWrappers[i].empty())
                            ld.outputBlobsWrappers[i]->setHostDirty();
                    }
2709 2710
                }
            }
2711
            else
2712
            {
2713 2714 2715 2716 2717 2718
                Ptr<BackendNode> node = it->second;
                CV_Assert(!node.empty());
                if (preferableBackend == DNN_BACKEND_HALIDE)
                {
                    forwardHalide(ld.outputBlobsWrappers, node);
                }
2719
                else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
2720
                {
2721
                    forwardInfEngine(ld.outputBlobsWrappers, node, isAsync);
2722
                }
2723 2724 2725 2726
                else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
                {
                    forwardNgraph(ld.outputBlobsWrappers, node, isAsync);
                }
2727 2728 2729 2730
                else
                {
                    CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
                }
2731 2732
            }
        }
2733 2734
        else
            tm.reset();
2735

2736 2737 2738
        tm.stop();
        layersTimings[ld.id] = tm.getTimeTicks();

2739 2740 2741 2742 2743
        ld.flag = 1;
    }

    void forwardToLayer(LayerData &ld, bool clearFlags = true)
    {
A
Alexander Alekhin 已提交
2744 2745
        CV_TRACE_FUNCTION();

2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
        if (clearFlags)
        {
            MapIdToLayerData::iterator it;
            for (it = layers.begin(); it != layers.end(); it++)
                it->second.flag = 0;
        }

        //already was forwarded
        if (ld.flag)
            return;

        //forward parents
        MapIdToLayerData::iterator it;
2759
        for (it = layers.begin(); it != layers.end() && (it->second.id < ld.id); ++it)
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
        {
            LayerData &ld = it->second;
            if (ld.flag)
                continue;
            forwardLayer(ld);
        }

        //forward itself
        forwardLayer(ld);
    }

    void getLayerShapesRecursively(int id, LayersShapesMap& inOutShapes)
    {
        std::vector<LayerPin>& inputLayerIds = layers[id].inputBlobsId;

2775
        if (id == 0 && inOutShapes[id].in[0].empty())
2776
        {
2777
            if (!layers[0].outputBlobs.empty())
2778
            {
2779 2780 2781 2782 2783 2784 2785 2786
                ShapesVec shapes;
                for (int i = 0; i < layers[0].outputBlobs.size(); i++)
                {
                    Mat& inp = layers[0].outputBlobs[i];
                    CV_Assert(inp.total());
                    shapes.push_back(shape(inp));
                }
                inOutShapes[0].in = shapes;
2787
            }
2788 2789 2790 2791 2792 2793
            else
            {
                inOutShapes[0].out.clear();
                return;
            }
        }
2794

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
        if (inOutShapes[id].in.empty())
        {
            for(int i = 0; i < inputLayerIds.size(); i++)
            {
                int layerId = inputLayerIds[i].lid;
                LayersShapesMap::iterator it =
                        inOutShapes.find(layerId);
                if(it == inOutShapes.end() ||
                        it->second.out.empty())
                {
                    getLayerShapesRecursively(layerId, inOutShapes);
                }
                const MatShape& shape = inOutShapes[layerId].out[inputLayerIds[i].oid];
                inOutShapes[id].in.push_back(shape);
            }
        }
        const ShapesVec& is = inOutShapes[id].in;
        ShapesVec& os = inOutShapes[id].out;
        ShapesVec& ints = inOutShapes[id].internal;
        int requiredOutputs = layers[id].requiredOutputs.size();
        inOutShapes[id].supportInPlace =
                layers[id].getLayerInstance()->getMemoryShapes(is, requiredOutputs, os, ints);
2817 2818 2819 2820 2821 2822

        for (int i = 0; i < ints.size(); i++)
            CV_Assert(total(ints[i]) > 0);

        for (int i = 0; i < os.size(); i++)
            CV_Assert(total(os[i]) > 0);
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
    }

    void getLayersShapes(const ShapesVec& netInputShapes,
                         LayersShapesMap& inOutShapes)
    {
        inOutShapes.clear();

        inOutShapes[0].in = netInputShapes; //insert shape for first input layer
        for (MapIdToLayerData::iterator it = layers.begin();
             it != layers.end(); it++)
        {
            getLayerShapesRecursively(it->first, inOutShapes);
        }
    }

    void getLayerShapes(const ShapesVec& netInputShapes,
                        const int layerId,
                        LayerShapes& shapes)
    {
        LayersShapesMap inOutShapes;
        inOutShapes[0].in = netInputShapes; //insert shape for first input layer
        getLayerShapesRecursively(layerId, inOutShapes);
        shapes = inOutShapes[layerId];
    }

    LayerPin getLatestLayerPin(const std::vector<LayerPin>& pins)
    {
        return *std::max_element(pins.begin(), pins.end());
    }

    Mat getBlob(const LayerPin& pin)
    {
A
Alexander Alekhin 已提交
2855 2856
        CV_TRACE_FUNCTION();

2857 2858 2859 2860 2861 2862
        if (!pin.valid())
            CV_Error(Error::StsObjectNotFound, "Requested blob not found");

        LayerData &ld = layers[pin.lid];
        if ((size_t)pin.oid >= ld.outputBlobs.size())
        {
2863
            CV_Error(Error::StsOutOfRange, format("Layer \"%s\" produce only %d outputs, "
L
luz.paz 已提交
2864
                                           "the #%d was requested", ld.name.c_str(),
2865
                                           ld.outputBlobs.size(), pin.oid));
2866
        }
2867
        if (preferableTarget != DNN_TARGET_CPU)
2868
        {
2869
            CV_Assert(!ld.outputBlobsWrappers.empty() && !ld.outputBlobsWrappers[pin.oid].empty());
2870
            // Transfer data to CPU if it's require.
2871
            ld.outputBlobsWrappers[pin.oid]->copyToHost();
2872
        }
L
Li Peng 已提交
2873 2874 2875 2876 2877 2878 2879 2880

        if (ld.outputBlobs[pin.oid].depth() == CV_16S)
        {
            convertFp16(ld.outputBlobs[pin.oid], output_blob);
            return output_blob;
        }
        else
            return ld.outputBlobs[pin.oid];
2881 2882 2883 2884 2885 2886
    }

    Mat getBlob(String outputName)
    {
        return getBlob(getPinByAlias(outputName));
    }
2887 2888

#ifdef CV_CXX11
A
Alexander Alekhin 已提交
2889
    AsyncArray getBlobAsync(const LayerPin& pin)
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
    {
        CV_TRACE_FUNCTION();
#ifdef HAVE_INF_ENGINE
        if (!pin.valid())
            CV_Error(Error::StsObjectNotFound, "Requested blob not found");

        LayerData &ld = layers[pin.lid];
        if ((size_t)pin.oid >= ld.outputBlobs.size())
        {
            CV_Error(Error::StsOutOfRange, format("Layer \"%s\" produce only %d outputs, "
                                           "the #%d was requested", ld.name.c_str(),
                                           ld.outputBlobs.size(), pin.oid));
        }
        if (preferableTarget != DNN_TARGET_CPU)
        {
            CV_Assert(!ld.outputBlobsWrappers.empty() && !ld.outputBlobsWrappers[pin.oid].empty());
            // Transfer data to CPU if it's require.
            ld.outputBlobsWrappers[pin.oid]->copyToHost();
        }
2909
        CV_Assert(preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
2910

2911 2912 2913 2914 2915 2916 2917 2918 2919
        if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) {
            Ptr<InfEngineBackendWrapper> wrapper = ld.outputBlobsWrappers[pin.oid].dynamicCast<InfEngineBackendWrapper>();
            return std::move(wrapper->futureMat);
        }
        else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
        {
#ifdef HAVE_DNN_NGRAPH
            Ptr<NgraphBackendWrapper> wrapper = ld.outputBlobsWrappers[pin.oid].dynamicCast<NgraphBackendWrapper>();
            return std::move(wrapper->futureMat);
2920
#else
2921
            CV_Error(Error::StsNotImplemented, "This OpenCV version is built without support of Inference Engine + nGraph");
2922
#endif
2923 2924 2925
        }
#endif  // HAVE_INF_ENGINE
        CV_Error(Error::StsNotImplemented, "DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 backend is required");
2926 2927
    }

A
Alexander Alekhin 已提交
2928
    AsyncArray getBlobAsync(String outputName)
2929 2930 2931 2932
    {
        return getBlobAsync(getPinByAlias(outputName));
    }
#endif  // CV_CXX11
2933 2934 2935 2936 2937 2938
};

Net::Net() : impl(new Net::Impl)
{
}

2939 2940 2941
Net Net::readFromModelOptimizer(const String& xml, const String& bin)
{
#ifndef HAVE_INF_ENGINE
2942
    CV_Error(Error::StsError, "Build OpenCV with Inference Engine to enable loading models from Model Optimizer.");
2943
#else
2944 2945

#if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R3)
2946 2947 2948 2949 2950
    InferenceEngine::CNNNetReader reader;
    reader.ReadNetwork(xml);
    reader.ReadWeights(bin);

    InferenceEngine::CNNNetwork ieNet = reader.getNetwork();
2951 2952 2953 2954
#else
    InferenceEngine::Core& ie = getCore();
    InferenceEngine::CNNNetwork ieNet = ie.ReadNetwork(xml, bin);
#endif
2955 2956

    std::vector<String> inputsNames;
2957
    std::vector<MatShape> inp_shapes;
2958 2959 2960
    for (auto& it : ieNet.getInputsInfo())
    {
        inputsNames.push_back(it.first);
2961 2962
        std::vector<size_t> dims = it.second->getTensorDesc().getDims();
        inp_shapes.push_back(std::vector<int>(dims.begin(), dims.end()));
2963 2964
    }

2965
    Net cvNet;
2966 2967
    cvNet.setInputsNames(inputsNames);

2968 2969 2970 2971 2972 2973
    // set empty input to determine input shapes
    for (int inp_id = 0; inp_id < inputsNames.size(); ++inp_id)
    {
        cvNet.setInput(Mat(inp_shapes[inp_id], CV_32F), inputsNames[inp_id]);
    }

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
    Ptr<BackendNode> backendNode;
#ifdef HAVE_DNN_NGRAPH
    if (DNN_BACKEND_INFERENCE_ENGINE_NGRAPH == getInferenceEngineBackendTypeParam())
    {
        auto fake_node = std::make_shared<ngraph::op::Parameter>(ngraph::element::f32, ngraph::Shape{});
        Ptr<InfEngineNgraphNode> backendNodeNGraph(new InfEngineNgraphNode(fake_node));
        backendNodeNGraph->net = Ptr<InfEngineNgraphNet>(new InfEngineNgraphNet(ieNet));
        backendNode = backendNodeNGraph;
    }
    else
#endif
    {
        Ptr<InfEngineBackendNode> backendNodeNN(new InfEngineBackendNode(InferenceEngine::Builder::Layer("")));
        backendNodeNN->net = Ptr<InfEngineBackendNet>(new InfEngineBackendNet(ieNet));
        backendNode = backendNodeNN;
    }
2990 2991 2992 2993 2994 2995
    for (auto& it : ieNet.getOutputsInfo())
    {
        LayerParams lp;
        int lid = cvNet.addLayer(it.first, "", lp);

        LayerData& ld = cvNet.impl->layers[lid];
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024

#ifdef HAVE_DNN_NGRAPH
        if (DNN_BACKEND_INFERENCE_ENGINE_NGRAPH == getInferenceEngineBackendTypeParam())
        {
            Ptr<Layer> cvLayer(new NgraphBackendLayer(ieNet));

            InferenceEngine::CNNLayerPtr ieLayer = ieNet.getLayerByName(it.first.c_str());
            CV_Assert(ieLayer);

            cvLayer->name = it.first;
            cvLayer->type = ieLayer->type;
            ld.layerInstance = cvLayer;

            ld.backendNodes[DNN_BACKEND_INFERENCE_ENGINE_NGRAPH] = backendNode;
        }
        else
#endif
        {
            Ptr<Layer> cvLayer(new InfEngineBackendLayer(ieNet));

            InferenceEngine::CNNLayerPtr ieLayer = ieNet.getLayerByName(it.first.c_str());
            CV_Assert(ieLayer);

            cvLayer->name = it.first;
            cvLayer->type = ieLayer->type;
            ld.layerInstance = cvLayer;

            ld.backendNodes[DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019] = backendNode;
        }
3025

3026 3027
        for (int i = 0; i < inputsNames.size(); ++i)
            cvNet.connect(0, i, lid, i);
3028
    }
3029
    cvNet.setPreferableBackend(getInferenceEngineBackendTypeParam());
3030 3031 3032

    cvNet.impl->skipInfEngineInit = true;
    return cvNet;
3033
#endif  // HAVE_INF_ENGINE
3034 3035
}

3036 3037 3038 3039 3040 3041
Net::~Net()
{
}

int Net::addLayer(const String &name, const String &type, LayerParams &params)
{
A
Alexander Alekhin 已提交
3042 3043
    CV_TRACE_FUNCTION();

3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
    if (impl->getLayerId(name) >= 0)
    {
        CV_Error(Error::StsBadArg, "Layer \"" + name + "\" already into net");
        return -1;
    }

    int id = ++impl->lastLayerId;
    impl->layerNameToId.insert(std::make_pair(name, id));
    impl->layers.insert(std::make_pair(id, LayerData(id, name, type, params)));

    return id;
}

int Net::addLayerToPrev(const String &name, const String &type, LayerParams &params)
{
A
Alexander Alekhin 已提交
3059 3060
    CV_TRACE_FUNCTION();

3061 3062 3063 3064 3065 3066 3067 3068
    int prvLid = impl->lastLayerId;
    int newLid = this->addLayer(name, type, params);
    this->connect(prvLid, 0, newLid, 0);
    return newLid;
}

void Net::connect(int outLayerId, int outNum, int inpLayerId, int inpNum)
{
A
Alexander Alekhin 已提交
3069 3070
    CV_TRACE_FUNCTION();

3071 3072 3073 3074 3075
    impl->connect(outLayerId, outNum, inpLayerId, inpNum);
}

void Net::connect(String _outPin, String _inPin)
{
A
Alexander Alekhin 已提交
3076 3077
    CV_TRACE_FUNCTION();

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
    LayerPin outPin = impl->getPinByAlias(_outPin);
    LayerPin inpPin = impl->getPinByAlias(_inPin);

    CV_Assert(outPin.valid() && inpPin.valid());

    impl->connect(outPin.lid, outPin.oid, inpPin.lid, inpPin.oid);
}

Mat Net::forward(const String& outputName)
{
A
Alexander Alekhin 已提交
3088 3089
    CV_TRACE_FUNCTION();

3090 3091 3092 3093 3094
    String layerName = outputName;

    if (layerName.empty())
        layerName = getLayerNames().back();

D
Dmitry Kurtaev 已提交
3095 3096
    std::vector<LayerPin> pins(1, impl->getPinByAlias(layerName));
    impl->setUpNet(pins);
3097 3098 3099 3100 3101
    impl->forwardToLayer(impl->getLayerData(layerName));

    return impl->getBlob(layerName);
}

A
Alexander Alekhin 已提交
3102
AsyncArray Net::forwardAsync(const String& outputName)
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
{
    CV_TRACE_FUNCTION();
#ifdef CV_CXX11
    String layerName = outputName;

    if (layerName.empty())
        layerName = getLayerNames().back();

    std::vector<LayerPin> pins(1, impl->getPinByAlias(layerName));
    impl->setUpNet(pins);

3114 3115
    if (!(impl->preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || impl->preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH))
        CV_Error(Error::StsNotImplemented, "DNN: Asynchronous forward is supported for Inference Engine backends only");
3116

3117 3118 3119 3120 3121 3122
    impl->isAsync = true;
    impl->forwardToLayer(impl->getLayerData(layerName));
    impl->isAsync = false;

    return impl->getBlobAsync(layerName);
#else
3123
    CV_Error(Error::StsNotImplemented, "DNN: Asynchronous forward requires build with enabled C++11");
3124 3125 3126
#endif  // CV_CXX11
}

3127
void Net::forward(OutputArrayOfArrays outputBlobs, const String& outputName)
3128
{
A
Alexander Alekhin 已提交
3129 3130
    CV_TRACE_FUNCTION();

3131 3132 3133 3134 3135
    String layerName = outputName;

    if (layerName.empty())
        layerName = getLayerNames().back();

D
Dmitry Kurtaev 已提交
3136 3137
    std::vector<LayerPin> pins(1, impl->getPinByAlias(layerName));
    impl->setUpNet(pins);
3138 3139 3140 3141
    impl->forwardToLayer(impl->getLayerData(layerName));

    LayerPin pin = impl->getPinByAlias(layerName);
    LayerData &ld = impl->layers[pin.lid];
L
Li Peng 已提交
3142

3143
    if (outputBlobs.isUMat())
L
Li Peng 已提交
3144
    {
3145
        impl->getBlob(layerName).copyTo(outputBlobs);
3146 3147 3148 3149 3150 3151 3152
    }
    else if (outputBlobs.isMat())
    {
        outputBlobs.assign(impl->getBlob(layerName));
    }
    else if (outputBlobs.isMatVector())
    {
3153
        if (impl->preferableTarget != DNN_TARGET_CPU)
3154
        {
3155 3156 3157 3158 3159
            for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
            {
                CV_Assert(!ld.outputBlobsWrappers[i].empty());
                ld.outputBlobsWrappers[i]->copyToHost();
            }
3160
        }
L
Li Peng 已提交
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
        if (ld.outputBlobs[0].depth() == CV_32F)
        {
            std::vector<Mat> & outputvec = *(std::vector<Mat> *)outputBlobs.getObj();
            outputvec = ld.outputBlobs;
        } else {
            std::vector<Mat> & outputvec = *(std::vector<Mat> *)outputBlobs.getObj();
            outputvec.resize(ld.outputBlobs.size());
            for (int i = 0; i < outputvec.size(); i++)
                convertFp16(ld.outputBlobs[i], outputvec[i]);
        }
3171 3172 3173
    }
    else if (outputBlobs.isUMatVector())
    {
3174 3175
        std::vector<UMat> & outputvec = *(std::vector<UMat> *)outputBlobs.getObj();

3176
#ifdef HAVE_OPENCL
3177
        if (impl->preferableBackend == DNN_BACKEND_OPENCV &&
L
Li Peng 已提交
3178
            IS_DNN_OPENCL_TARGET(impl->preferableTarget))
3179
        {
L
Li Peng 已提交
3180 3181 3182 3183 3184 3185 3186 3187 3188
            if (impl->preferableTarget == DNN_TARGET_OPENCL)
                outputvec = OpenCLBackendWrapper::getUMatVector(ld.outputBlobsWrappers);
            else if (impl->preferableTarget == DNN_TARGET_OPENCL_FP16)
            {
                std::vector<UMat> out_vec = OpenCLBackendWrapper::getUMatVector(ld.outputBlobsWrappers);
                outputvec.resize(out_vec.size());
                for (int i = 0; i < out_vec.size(); i++)
                    convertFp16(out_vec[i], outputvec[i]);
            }
3189 3190
        }
        else
3191
#endif
3192
        {
3193 3194
            outputvec.resize(ld.outputBlobs.size());
            for (int i = 0; i < outputvec.size(); ++i)
3195
                ld.outputBlobs[i].copyTo(outputvec[i]);
3196
        }
L
Li Peng 已提交
3197
    }
3198 3199
}

3200
void Net::forward(OutputArrayOfArrays outputBlobs,
3201 3202
                  const std::vector<String>& outBlobNames)
{
A
Alexander Alekhin 已提交
3203 3204
    CV_TRACE_FUNCTION();

3205 3206 3207
    std::vector<LayerPin> pins;
    for (int i = 0; i < outBlobNames.size(); i++)
    {
3208
        pins.push_back(impl->getPinByAlias(outBlobNames[i]));
3209 3210 3211 3212 3213 3214 3215 3216
    }

    impl->setUpNet(pins);

    LayerPin out = impl->getLatestLayerPin(pins);

    impl->forwardToLayer(impl->getLayerData(out.lid));

3217
    std::vector<Mat> matvec;
3218 3219
    for (int i = 0; i < pins.size(); i++)
    {
3220
        matvec.push_back(impl->getBlob(pins[i]));
3221
    }
3222 3223 3224

    std::vector<Mat> & outputvec = *(std::vector<Mat> *)outputBlobs.getObj();
    outputvec = matvec;
3225 3226 3227 3228 3229
}

void Net::forward(std::vector<std::vector<Mat> >& outputBlobs,
                     const std::vector<String>& outBlobNames)
{
A
Alexander Alekhin 已提交
3230 3231
    CV_TRACE_FUNCTION();

3232 3233 3234
    std::vector<LayerPin> pins;
    for (int i = 0; i < outBlobNames.size(); i++)
    {
3235
        pins.push_back(impl->getPinByAlias(outBlobNames[i]));
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
    }

    impl->setUpNet(pins);

    LayerPin out = impl->getLatestLayerPin(pins);

    impl->forwardToLayer(impl->getLayerData(out.lid));

    outputBlobs.resize(outBlobNames.size());
    for (int i = 0; i < outBlobNames.size(); i++)
    {
        std::vector<LayerPin> lp = impl->getLayerOutPins(outBlobNames[i]);
3248 3249
        outputBlobs[i].resize(lp.size());
        for (int j = 0; j < lp.size(); j++)
3250
        {
3251
            outputBlobs[i][j] = impl->getBlob(lp[j]);
3252 3253 3254 3255 3256 3257
        }
    }
}

void Net::setPreferableBackend(int backendId)
{
A
Alexander Alekhin 已提交
3258 3259 3260
    CV_TRACE_FUNCTION();
    CV_TRACE_ARG(backendId);

3261 3262 3263 3264 3265
#ifdef HAVE_INF_ENGINE
    if (backendId == DNN_BACKEND_INFERENCE_ENGINE)
        backendId = getInferenceEngineBackendTypeParam();
#endif

3266 3267 3268 3269 3270 3271
    if( impl->preferableBackend != backendId )
    {
        impl->preferableBackend = backendId;
        impl->netWasAllocated = false;
        impl->clear();
    }
3272 3273 3274 3275
}

void Net::setPreferableTarget(int targetId)
{
A
Alexander Alekhin 已提交
3276 3277 3278
    CV_TRACE_FUNCTION();
    CV_TRACE_ARG(targetId);

3279 3280 3281
    if( impl->preferableTarget != targetId )
    {
        impl->preferableTarget = targetId;
L
Li Peng 已提交
3282 3283 3284
        if (IS_DNN_OPENCL_TARGET(targetId))
        {
#ifndef HAVE_OPENCL
3285 3286 3287 3288 3289 3290 3291
#ifdef HAVE_INF_ENGINE
            if (impl->preferableBackend == DNN_BACKEND_OPENCV)
#else
            if (impl->preferableBackend == DNN_BACKEND_DEFAULT ||
                impl->preferableBackend == DNN_BACKEND_OPENCV)
#endif  // HAVE_INF_ENGINE
                impl->preferableTarget = DNN_TARGET_CPU;
L
Li Peng 已提交
3292 3293 3294 3295 3296 3297
#else
            bool fp16 = ocl::Device::getDefault().isExtensionSupported("cl_khr_fp16");
            if (!fp16 && targetId == DNN_TARGET_OPENCL_FP16)
                impl->preferableTarget = DNN_TARGET_OPENCL;
#endif
        }
3298 3299 3300
        impl->netWasAllocated = false;
        impl->clear();
    }
3301 3302 3303 3304
}

void Net::setInputsNames(const std::vector<String> &inputBlobNames)
{
A
Alexander Alekhin 已提交
3305 3306
    CV_TRACE_FUNCTION();

3307 3308 3309
    impl->netInputLayer->setNames(inputBlobNames);
}

3310
void Net::setInput(InputArray blob, const String& name, double scalefactor, const Scalar& mean)
3311
{
A
Alexander Alekhin 已提交
3312 3313 3314
    CV_TRACE_FUNCTION();
    CV_TRACE_ARG_VALUE(name, "name", name.c_str());

3315 3316 3317 3318 3319 3320 3321 3322
    LayerPin pin;
    pin.lid = 0;
    pin.oid = impl->resolvePinOutputName(impl->getLayerData(pin.lid), name);

    if (!pin.valid())
        CV_Error(Error::StsObjectNotFound, "Requested blob \"" + name + "\" not found");

    LayerData &ld = impl->layers[pin.lid];
3323 3324 3325 3326
    const int numInputs = std::max(pin.oid+1, (int)ld.requiredOutputs.size());
    ld.outputBlobs.resize(numInputs);
    ld.outputBlobsWrappers.resize(numInputs);
    impl->netInputLayer->inputsData.resize(numInputs);
3327 3328
    impl->netInputLayer->scaleFactors.resize(numInputs);
    impl->netInputLayer->means.resize(numInputs);
3329 3330 3331

    MatShape prevShape = shape(impl->netInputLayer->inputsData[pin.oid]);
    Mat blob_ = blob.getMat();
3332 3333
    bool oldShape = prevShape == shape(blob_);
    if (oldShape)
L
Li Peng 已提交
3334
    {
3335
        blob_.copyTo(impl->netInputLayer->inputsData[pin.oid]);
L
Li Peng 已提交
3336
    }
3337
    else
L
Li Peng 已提交
3338
    {
3339
        ld.outputBlobs[pin.oid] = blob_.clone();
3340
        impl->netInputLayer->inputsData[pin.oid] = ld.outputBlobs[pin.oid];
L
Li Peng 已提交
3341
    }
3342

3343 3344 3345 3346
    if (!ld.outputBlobsWrappers[pin.oid].empty())
    {
        ld.outputBlobsWrappers[pin.oid]->setHostDirty();
    }
3347 3348
    impl->netInputLayer->scaleFactors[pin.oid] = scalefactor;
    impl->netInputLayer->means[pin.oid] = mean;
3349 3350 3351 3352 3353 3354
    impl->netWasAllocated = impl->netWasAllocated && oldShape;
}

Mat Net::getParam(LayerId layer, int numParam)
{
    LayerData &ld = impl->getLayerData(layer);
D
Dmitry Kurtaev 已提交
3355
    std::vector<Mat> &layerBlobs = ld.getLayerInstance()->blobs;
3356 3357 3358 3359 3360 3361 3362 3363
    CV_Assert(numParam < (int)layerBlobs.size());
    return layerBlobs[numParam];
}

void Net::setParam(LayerId layer, int numParam, const Mat &blob)
{
    LayerData &ld = impl->getLayerData(layer);

D
Dmitry Kurtaev 已提交
3364
    std::vector<Mat> &layerBlobs = ld.getLayerInstance()->blobs;
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
    CV_Assert(numParam < (int)layerBlobs.size());
    //we don't make strong checks, use this function carefully
    layerBlobs[numParam] = blob;
}

int Net::getLayerId(const String &layer)
{
    return impl->getLayerId(layer);
}

3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
String parseLayerParams(const String& name, const LayerParams& lp) {
    DictValue param = lp.get(name);
    std::ostringstream out;
    out << name << " ";
    switch (param.size()) {
        case 1: out << ": "; break;
        case 2: out << "(HxW): "; break;
        case 3: out << "(DxHxW): "; break;
        default: CV_Error(Error::StsNotImplemented, format("Unsupported %s size = %d", name.c_str(), param.size()));
    }
    for (size_t i = 0; i < param.size() - 1; i++) {
        out << param.get<int>(i) << " x ";
    }
    out << param.get<int>(param.size() - 1) << "\\l";
    return out.str();
}

3392 3393 3394
String Net::dump()
{
    CV_Assert(!empty());
3395 3396 3397 3398 3399 3400 3401

    if (impl->netInputLayer->inputsData.empty())
        CV_Error(Error::StsError, "Requested set input");

    if (!impl->netWasAllocated)
        impl->setUpNet();

3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
    std::ostringstream out;
    std::map<int, LayerData>& map = impl->layers;
    int prefBackend = impl->preferableBackend;
    std::vector<std::vector<int> > skippedLayers;
    std::vector<int> skipId;
    std::vector<int> allLayers(map.size(), -1);
    int idPrev = -1;
    Ptr<BackendNode> prevNode;
    for (std::map<int, LayerData>::reverse_iterator rit = map.rbegin(); rit != map.rend(); ++rit)
    {
        std::map<int, Ptr<BackendNode> >::iterator itBackend = rit->second.backendNodes.find(prefBackend);
        if (prefBackend == DNN_BACKEND_OPENCV || itBackend == rit->second.backendNodes.end() ||
            itBackend->second.empty())
        {
                if (rit->second.skip)
                    skipId.push_back(rit->first);
                else if (!skipId.empty())
                {
                    if (prefBackend == DNN_BACKEND_OPENCV || prevNode.empty())
                        skipId.push_back(rit->first);
                    else if (idPrev != -1)
                        skipId.push_back(idPrev);

                    std::sort(skipId.begin(), skipId.end());
                    for (int i = 0; i < skipId.size(); i++) {
                        allLayers[skipId[i]] = skippedLayers.size();
                    }
                    skippedLayers.push_back(skipId);
                    skipId.clear();
                }
        }
        else
        {
            if (itBackend->second == prevNode)
                skipId.push_back(idPrev);
            else if (!skipId.empty())
            {
                skipId.push_back(idPrev);
                std::sort(skipId.begin(), skipId.end());
                for (int i = 0; i < skipId.size(); i++) {
                    allLayers[skipId[i]] = skippedLayers.size();
                }
                skippedLayers.push_back(skipId);
                skipId.clear();
            }
            idPrev = rit->first;
            prevNode = itBackend->second;
        }
    }
    String colors[] = {"#ffffb3", "#fccde5", "#8dd3c7", "#bebada", "#80b1d3", "#fdb462"};
    String backend;
    switch (prefBackend) {
        case DNN_BACKEND_DEFAULT: backend = "DEFAULT/"; break;
        case DNN_BACKEND_HALIDE: backend = "HALIDE/"; break;
3456 3457 3458
        case DNN_BACKEND_INFERENCE_ENGINE: // fallthru
        case DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019: backend = "DLIE/"; break;
        case DNN_BACKEND_INFERENCE_ENGINE_NGRAPH: backend = "NGRAPH/"; break;
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
        case DNN_BACKEND_OPENCV: backend = "OCV/"; break;
    }
    out << "digraph G {" << '\n';
    // Add nodes
    for (std::map<int, LayerData>::iterator it = map.begin(); it != map.end(); ++it)
    {
        String name = it->second.params.name;
        if (allLayers[it->first] == -1 && !name.empty()) {
            out << "	" << "\"" << name << "\"" << " [label=\"";
            skipId.clear();
            skipId.push_back(it->first);
        }
        else if (name.empty() || it->first != skippedLayers[allLayers[it->first]][0])
            continue;
        else { // first node in cluster : it->first == skippedLayers[allLayers[it->first]][0]
            int cluster = allLayers[it->first];
            out << "	" << "\"" << "cluster_" << cluster << "\"" << " [label=\"{";
            skipId = skippedLayers[allLayers[it->first]]; // vertices in current cluster
        }
        for (int i = 0; i < skipId.size(); i++)
        {
            LayerParams& lp = map[skipId[i]].params;
            if (!lp.name.empty()) {
                if (i > 0) {
                    out << " | ";
                }
                out << lp.name << "\\n" << lp.type << "\\n";
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
                if (lp.has("kernel_size")) {
                    String kernel = parseLayerParams("kernel_size", lp);
                    out << kernel;
                } else if (lp.has("kernel_h") && lp.has("kernel_w")) {
                    DictValue h = lp.get("kernel_h");
                    DictValue w = lp.get("kernel_w");
                    out << "kernel (HxW): " << h << " x " << w << "\\l";
                }
                if (lp.has("stride")) {
                    String stride = parseLayerParams("stride", lp);
                    out << stride;
                } else if (lp.has("stride_h") && lp.has("stride_w")) {
                    DictValue h = lp.get("stride_h");
                    DictValue w = lp.get("stride_w");
                    out << "stride (HxW): " << h << " x " << w << "\\l";
                }
                if (lp.has("dilation")) {
                    String dilation = parseLayerParams("dilation", lp);
                    out << dilation;
                } else if (lp.has("dilation_h") && lp.has("dilation_w")) {
                    DictValue h = lp.get("dilation_h");
                    DictValue w = lp.get("dilation_w");
                    out << "dilation (HxW): " << h << " x " << w << "\\l";
                }
                if (lp.has("pad")) {
                    DictValue pad = lp.get("pad");
                    out << "pad ";
                    switch (pad.size()) {
                        case 1: out << ": " << pad << "\\l"; break;
                        case 2: out << "(HxW): (" << pad.get<int>(0) << " x " << pad.get<int>(1) << ")" << "\\l"; break;
                        case 4: out << "(HxW): (" << pad.get<int>(0) << ", " << pad.get<int>(2) << ") x (" << pad.get<int>(1) << ", " << pad.get<int>(3) << ")" << "\\l"; break;
                        case 6: out << "(DxHxW): (" << pad.get<int>(0) << ", " << pad.get<int>(3) << ") x (" << pad.get<int>(1) << ", " << pad.get<int>(4)
                                << ") x (" << pad.get<int>(2) << ", " << pad.get<int>(5) << ")" << "\\l"; break;
                        default: CV_Error(Error::StsNotImplemented,  format("Unsupported pad size = %d", pad.size()));
                    }
3521 3522 3523 3524 3525
                 } else if (lp.has("pad_l") && lp.has("pad_t") && lp.has("pad_r") && lp.has("pad_b")) {
                     DictValue l = lp.get("pad_l");
                     DictValue t = lp.get("pad_t");
                     DictValue r = lp.get("pad_r");
                     DictValue b = lp.get("pad_b");
3526
                     out << "pad (HxW): (" << t << ", " << b << ") x (" << l << ", " << r << ")" << "\\l";
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
                 }
                 else if (lp.has("pooled_w") || lp.has("pooled_h")) {
                     DictValue h = lp.get("pooled_h");
                     DictValue w = lp.get("pooled_w");
                     out << "pad (HxW): " << h << " x " << w << "\\l";
                 }
                 if (lp.has("pool")) {
                     out << "pool: " << lp.get("pool") << "\\l";
                 }
                 if (lp.has("global_pooling")) {
                     out << "global_pooling: " << lp.get("global_pooling") << "\\l";
                 }
                 if (lp.has("group")) {
                     out << "group: " << lp.get("group") << "\\l";
                 }
             }
         }
         if (!it->second.outputBlobs.empty())
             out << "output: " << it->second.outputBlobs[0].size << "\\l";

         Ptr<BackendNode> layerBackend = it->second.backendNodes[prefBackend];
         out << (!layerBackend.empty() ? backend : "OCV/");
         int colorId = 0;
         switch (it->second.layerInstance->preferableTarget) {
             case DNN_TARGET_CPU: out << "CPU\\n"; colorId = layerBackend.empty() ? 0 : 5; break;
             case DNN_TARGET_OPENCL: out << "OCL\\n"; colorId = 1; break;
             case DNN_TARGET_OPENCL_FP16: out << "OCL_FP16\\n"; colorId = 2; break;
             case DNN_TARGET_MYRIAD: out << "MYRIAD\\n"; colorId = 3; break;
             case DNN_TARGET_FPGA: out << "FPGA\\n"; colorId = 4; break;
         }
         out << ((skipId.size() == 1)? "\" " : " }\" ");
         out << "fillcolor=\"" << colors[colorId] << "\" ";
         out << "style=filled ";
         out << "shape=" << ((skipId.size() == 1)? "box" : "record") << "]" << '\n';
    }
    out << '\n';
    // Add edges
    int inputsSize = impl->netInputLayer->outNames.size();
    for (std::map<int, LayerData>::iterator it = map.begin(); it != map.end(); ++it)
    {
        if (allLayers[it->first] == -1)  // node
        {
            for (int i = 0; i < it->second.consumers.size(); i++)
            {
                int outId = it->second.consumers[i].lid;
                if (it == map.begin() && inputsSize > 1)
                    out << "	" << "\"" << it->second.name << "_" << i << "\"" << " -> ";
                else
                    out << "	" << "\"" << it->second.name << "\"" << " -> ";
                if (allLayers[outId] == -1)  // node
                    out << "\"" << map[outId].name << "\"" << '\n';
                else  // cluster
                    out << "\"" << "cluster_" << allLayers[outId] << "\"" << '\n';
            }
        }
        else if (it->first == skippedLayers[allLayers[it->first]].back())  // edges from last layer in cluster
        {
            for (int i = 0; i < it->second.consumers.size(); i++)
            {
                int outId = it->second.consumers[i].lid;
                if (allLayers[outId] == -1) { // node
                    out << "	" << "\"" << "cluster_" << allLayers[it->first] << "\"" << " -> ";
                    out << "\"" << map[outId].name << "\"" << '\n';
                }
                else if (allLayers[outId] != allLayers[it->first]) { // another cluster
                    out << "	" << "\"" << "cluster_" << allLayers[it->first] << "\"" << " -> ";
                    out << "\"" << "cluster_" << allLayers[outId] << "\"" << '\n';
                }
            }
        }
    }
    out << "}";
    return out.str();
}

void Net::dumpToFile(const String& path) {
    std::ofstream file(path.c_str());
    file << dump();
    file.close();
}

3608 3609 3610
Ptr<Layer> Net::getLayer(LayerId layerId)
{
    LayerData &ld = impl->getLayerData(layerId);
A
abratchik 已提交
3611
    return ld.getLayerInstance();
3612 3613 3614 3615 3616 3617 3618
}

std::vector<Ptr<Layer> > Net::getLayerInputs(LayerId layerId)
{
    LayerData &ld = impl->getLayerData(layerId);

    std::vector<Ptr<Layer> > inputLayers;
D
Dimitri Gerin 已提交
3619 3620 3621
    inputLayers.reserve(ld.inputBlobsId.size());
    for (int i = 0; i < ld.inputBlobsId.size(); ++i) {
        inputLayers.push_back(getLayer(ld.inputBlobsId[i].lid));
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
    }
    return inputLayers;
}

std::vector<String> Net::getLayerNames() const
{
    std::vector<String> res;
    res.reserve(impl->layers.size());

    Impl::MapIdToLayerData::iterator it;
    for (it = impl->layers.begin(); it != impl->layers.end(); it++)
    {
        if (it->second.id) //skip Data layer
            res.push_back(it->second.name);
    }

    return res;
}

bool Net::empty() const
{
    return impl->layers.size() <= 1; //first layer is default Data layer
}

std::vector<int> Net::getUnconnectedOutLayers() const
{
    std::vector<int> layersIds;

    Impl::MapIdToLayerData::iterator it;
    for (it = impl->layers.begin(); it != impl->layers.end(); it++)
    {
        int lid = it->first;
        LayerData &ld = it->second;

        if (ld.requiredOutputs.size() == 0)
            layersIds.push_back(lid);
    }

    return layersIds;
}

3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
std::vector<String> Net::getUnconnectedOutLayersNames() const
{
    std::vector<int> ids = getUnconnectedOutLayers();
    const size_t n = ids.size();
    std::vector<String> names(n);
    for (size_t i = 0; i < n; ++i)
    {
        names[i] = impl->layers[ids[i]].name;
    }
    return names;
}

3675
void Net::getLayersShapes(const ShapesVec& netInputShapes,
3676 3677 3678
                          std::vector<int>& layersIds,
                          std::vector<ShapesVec>& inLayersShapes,
                          std::vector<ShapesVec>& outLayersShapes) const
3679
{
3680 3681 3682
    layersIds.clear();
    inLayersShapes.clear();
    outLayersShapes.clear();
3683 3684 3685 3686 3687 3688 3689

    Impl::LayersShapesMap inOutShapes;
    impl->getLayersShapes(netInputShapes, inOutShapes);

    for(Impl::LayersShapesMap::const_iterator it = inOutShapes.begin();
        it != inOutShapes.end(); it++)
    {
3690 3691 3692
        layersIds.push_back(it->first);
        inLayersShapes.push_back(it->second.in);
        outLayersShapes.push_back(it->second.out);
3693 3694 3695 3696
    }
}

void Net::getLayersShapes(const MatShape& netInputShape,
3697 3698 3699
                          std::vector<int>& layerIds,
                          std::vector<ShapesVec>& inLayersShapes,
                          std::vector<ShapesVec>& outLayersShapes) const
3700 3701 3702 3703 3704 3705 3706
{
    getLayersShapes(ShapesVec(1, netInputShape),
                    layerIds, inLayersShapes, outLayersShapes);
}

void Net::getLayerShapes(const MatShape& netInputShape,
                         const int layerId,
3707 3708
                         ShapesVec& inLayerShapes,
                         ShapesVec& outLayerShapes) const
3709 3710 3711 3712 3713 3714 3715 3716
{
    getLayerShapes(ShapesVec(1, netInputShape),
                   layerId, inLayerShapes, outLayerShapes);

}

void Net::getLayerShapes(const ShapesVec& netInputShapes,
                    const int layerId,
3717 3718
                    ShapesVec& inLayerShapes,
                    ShapesVec& outLayerShapes) const
3719 3720 3721
{
    LayerShapes shapes;
    impl->getLayerShapes(netInputShapes, layerId, shapes);
3722 3723
    inLayerShapes = shapes.in;
    outLayerShapes = shapes.out;
3724 3725 3726 3727
}

int64 Net::getFLOPS(const std::vector<MatShape>& netInputShapes) const
{
A
Alexander Alekhin 已提交
3728 3729
    CV_TRACE_FUNCTION();

3730 3731 3732
    int64 flops = 0;
    std::vector<int> ids;
    std::vector<std::vector<MatShape> > inShapes, outShapes;
3733
    getLayersShapes(netInputShapes, ids, inShapes, outShapes);
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
    CV_Assert(inShapes.size() == outShapes.size());
    CV_Assert(inShapes.size() == ids.size());

    for(int i = 0; i < ids.size(); i++)
    {
        flops += impl->layers[ids[i]].getLayerInstance()->getFLOPS(inShapes[i],
                                                                   outShapes[i]);
    }

    return flops;
}

int64 Net::getFLOPS(const MatShape& netInputShape) const
{
    return getFLOPS(std::vector<MatShape>(1, netInputShape));
}

int64 Net::getFLOPS(const int layerId,
              const std::vector<MatShape>& netInputShapes) const
{
    Impl::MapIdToLayerData::iterator layer = impl->layers.find(layerId);
    CV_Assert(layer != impl->layers.end());

    LayerShapes shapes;
    impl->getLayerShapes(netInputShapes, layerId, shapes);

    return layer->second.getLayerInstance()->getFLOPS(shapes.in, shapes.out);
}

int64 Net::getFLOPS(const int layerId,
              const MatShape& netInputShape) const
{
    return getFLOPS(layerId, std::vector<MatShape>(1, netInputShape));
}

void Net::getLayerTypes(std::vector<String>& layersTypes) const
{
    layersTypes.clear();

    std::map<String, int> layers;
    for (Impl::MapIdToLayerData::iterator it = impl->layers.begin();
         it != impl->layers.end(); it++)
    {
        if (layers.find(it->second.type) == layers.end())
            layers[it->second.type] = 0;
        layers[it->second.type]++;
    }

    for (std::map<String, int>::iterator it = layers.begin();
         it != layers.end(); it++)
    {
        layersTypes.push_back(it->first);
    }
}

int Net::getLayersCount(const String& layerType) const
{
    int count = 0;
    for (Impl::MapIdToLayerData::iterator it = impl->layers.begin();
         it != impl->layers.end(); it++)
    {
        if (it->second.type == layerType)
            count++;
    }
    return count;
}

void Net::getMemoryConsumption(const int layerId,
                               const std::vector<MatShape>& netInputShapes,
                               size_t& weights, size_t& blobs) const
{
A
Alexander Alekhin 已提交
3805 3806
    CV_TRACE_FUNCTION();

3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
    Impl::MapIdToLayerData::iterator layer = impl->layers.find(layerId);
    CV_Assert(layer != impl->layers.end());

    weights = blobs = 0;

    for(int i = 0; i < layer->second.params.blobs.size(); i++)
    {
        const Mat& weightsBlob = layer->second.params.blobs[i];
        weights += weightsBlob.total()*weightsBlob.elemSize();
    }

3818 3819
    ShapesVec inLayerShapes, outLayerShapes;
    getLayerShapes(netInputShapes, layerId, inLayerShapes, outLayerShapes);
3820 3821 3822 3823 3824 3825 3826 3827 3828
    for(int i = 0; i < outLayerShapes.size(); i++)
    {
        blobs += total(outLayerShapes[i]) * sizeof(float);
    }
}

void Net::getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
                               size_t& weights, size_t& blobs) const
{
A
Alexander Alekhin 已提交
3829 3830
    CV_TRACE_FUNCTION();

3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
    std::vector<int> layerIds;
    std::vector<size_t> w, b;
    getMemoryConsumption(netInputShapes, layerIds, w, b);

    weights = blobs = 0;
    for(int i = 0; i < layerIds.size(); i++)
    {
        weights += w[i];
        blobs += b[i];
    }
}

void Net::getMemoryConsumption(const int layerId,
                               const MatShape& netInputShape,
                               size_t& weights, size_t& blobs) const
{
    getMemoryConsumption(layerId, std::vector<MatShape>(1, netInputShape),
                         weights, blobs);
}

void Net::getMemoryConsumption(const MatShape& netInputShape,
                               size_t& weights, size_t& blobs) const
{
    getMemoryConsumption(std::vector<MatShape>(1, netInputShape),
                         weights, blobs);
}

void Net::getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
                                  std::vector<int>& layerIds, std::vector<size_t>& weights,
                                  std::vector<size_t>& blobs) const
{
A
Alexander Alekhin 已提交
3862 3863
    CV_TRACE_FUNCTION();

3864 3865 3866 3867
    layerIds.clear();
    weights.clear();
    blobs.clear();

3868
    std::vector<std::vector<MatShape> > inLayerShapes, outLayerShapes;
3869

3870
    getLayersShapes(netInputShapes, layerIds, inLayerShapes, outLayerShapes);
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900

    for(int i = 0; i < layerIds.size(); i++)
    {
        int w = 0, b = 0;
        Impl::MapIdToLayerData::iterator layer = impl->layers.find(layerIds[i]);
        CV_Assert(layer != impl->layers.end());

        for(int j = 0; j < layer->second.params.blobs.size(); j++)
        {
            const Mat& weightsBlob = layer->second.params.blobs[j];
            w += weightsBlob.total()*weightsBlob.elemSize();
        }

        for(int j = 0; j < outLayerShapes[i].size(); j++)
        {
            b += total(outLayerShapes[i][j]) * sizeof(float);
        }

        weights.push_back(w);
        blobs.push_back(b);
    }
}

void Net::getMemoryConsumption(const MatShape& netInputShape, std::vector<int>& layerIds,
                               std::vector<size_t>& weights, std::vector<size_t>& blobs) const
{
    getMemoryConsumption(std::vector<MatShape>(1, netInputShape), layerIds,
                         weights, blobs);
}

3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
void Net::enableFusion(bool fusion)
{
    if( impl->fusion != fusion )
    {
        impl->fusion = fusion;
        impl->netWasAllocated = false;
        impl->clear();
    }
}

3911 3912
void Net::setHalideScheduler(const String& scheduler)
{
A
Alexander Alekhin 已提交
3913 3914 3915
    CV_TRACE_FUNCTION();
    CV_TRACE_ARG_VALUE(scheduler, "scheduler", scheduler.c_str());

3916 3917 3918
    impl->halideConfigFile = scheduler;
}

3919 3920 3921
int64 Net::getPerfProfile(std::vector<double>& timings)
{
    timings = std::vector<double>(impl->layersTimings.begin() + 1, impl->layersTimings.end());
3922
    int64 total = (int64)std::accumulate(timings.begin(), timings.end(), 0.0);
3923 3924 3925
    return total;
}

3926 3927
//////////////////////////////////////////////////////////////////////////

3928
Layer::Layer() { preferableTarget = DNN_TARGET_CPU; }
3929 3930 3931 3932

Layer::Layer(const LayerParams &params)
    : blobs(params.blobs), name(params.name), type(params.type)
{
3933
    preferableTarget = DNN_TARGET_CPU;
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
}

void Layer::setParamsFrom(const LayerParams &params)
{
    blobs = params.blobs;
    name = params.name;
    type = params.type;
}

int Layer::inputNameToIndex(String)
{
    return -1;
}

3948
int Layer::outputNameToIndex(const String&)
3949
{
3950
    return 0;
3951 3952 3953 3954
}

bool Layer::supportBackend(int backendId)
{
3955
    return backendId == DNN_BACKEND_OPENCV;
3956 3957 3958 3959 3960 3961 3962 3963 3964
}

Ptr<BackendNode> Layer::initHalide(const std::vector<Ptr<BackendWrapper> > &)
{
    CV_Error(Error::StsNotImplemented, "Halide pipeline of " + type +
                                       " layers is not defined.");
    return Ptr<BackendNode>();
}

3965
Ptr<BackendNode> Layer::initInfEngine(const std::vector<Ptr<BackendWrapper> > &)
3966 3967 3968 3969 3970 3971 3972
{
    CV_Error(Error::StsNotImplemented, "Inference Engine pipeline of " + type +
                                       " layers is not defined.");
    return Ptr<BackendNode>();
}

Ptr<BackendNode> Layer::initNgraph(const std::vector<Ptr<BackendWrapper> > & inputs, const std::vector<Ptr<BackendNode> >& nodes)
3973 3974 3975 3976 3977 3978
{
    CV_Error(Error::StsNotImplemented, "Inference Engine pipeline of " + type +
                                       " layers is not defined.");
    return Ptr<BackendNode>();
}

3979 3980 3981 3982
void Layer::applyHalideScheduler(Ptr<BackendNode>& node, const std::vector<Mat*> &inputs,
                                 const std::vector<Mat> &outputs, int targetId) const
{
#ifdef  HAVE_HALIDE
A
Alexander Alekhin 已提交
3983 3984
    CV_TRACE_FUNCTION();

3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
    Halide::Var x("x"), y("y"), c("c"), n("n"), co("co"), ci("ci"),
                xo("xo"), xi("xi"), yo("yo"), yi("yi"), tile("tile");
    Halide::Func& top = node.dynamicCast<HalideBackendNode>()->funcs.back();

    int outW, outH, outC, outN;
    getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN);

    if (targetId == DNN_TARGET_CPU)
    {
        if (outW == 1 && outH == 1)
        {
            if (outC + outN == 1)
                return;

            if (outC > 8)
              top.split(c, co, ci, 8)
                 .fuse(x, y, tile).fuse(co, tile, tile).fuse(n, tile, tile)
                 .parallel(tile)
                 .vectorize(ci, 8);
            else
              top.fuse(x, y, tile).fuse(c, tile, tile).fuse(n, tile, tile)
                 .parallel(tile);
        }
        else
        {
            if (outH > 2)
            {
                top.reorder(x, c, y)
                   .split(y, yo, yi, 2)
                   .fuse(yo, n, tile)
                   .parallel(tile)
                   .unroll(yi)
                   .vectorize(x, outW >= 16 ? 16 : outW);
            }
        }
    }
    else if (targetId == DNN_TARGET_OPENCL)
    {
        if (outW == 1 && outH == 1)
        {
D
Dmitry Kurtaev 已提交
4025
            int c_split = outC > 8 ? (outC > 16 ? 8 : 4) : outC;
4026 4027 4028 4029 4030 4031 4032 4033 4034
            top.split(c, co, ci, c_split)
               .fuse(x, y, tile).fuse(co, tile, tile).fuse(n, tile, tile)
               .gpu_blocks(tile)
               .gpu_threads(ci);
        }
        else
        {
            int x_split = outW > 8 ? (outW >= 32 ? 16 : 8) : outW;
            int y_split = outH > 8 ? (outH >= 32 ? 16 : 8) : outH;
D
Dmitry Kurtaev 已提交
4035 4036
            // Supported vectorization widths: 2, 3, 4, 8, 16
            int c_split = outC > 8 ? (outC > 16 ? 8 : 4) : std::min(4, outC);
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
            top.split(x, xo, xi, x_split).split(y, yo, yi, y_split)
               .split(c, co, ci, c_split)
               .gpu_blocks(xo, yo, co)
               .gpu_threads(xi, yi)
               .reorder(xi, yi, ci, xo, yo, co)
               .vectorize(ci);
        }
    }
    else
        CV_Error(Error::StsNotImplemented, "Unknown target identifier");
#endif  // HAVE_HALIDE
}

Ptr<BackendNode> Layer::tryAttach(const Ptr<BackendNode>& node)
{
    return Ptr<BackendNode>();
}

4055
bool Layer::setActivation(const Ptr<ActivationLayer>&) { return false; }
4056 4057 4058 4059 4060 4061 4062
bool Layer::tryFuse(Ptr<Layer>&) { return false; }
void Layer::getScaleShift(Mat& scale, Mat& shift) const
{
    scale = Mat();
    shift = Mat();
}

4063 4064 4065 4066
void Layer::unsetAttached()
{
    setActivation(Ptr<ActivationLayer>());
}
4067

4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
template <typename T>
static void vecToPVec(const std::vector<T> &v, std::vector<T*> &pv)
{
    pv.resize(v.size());
    for (size_t i = 0; i < v.size(); i++)
        pv[i] = const_cast<T*>(&v[i]);
}

void Layer::finalize(const std::vector<Mat> &inputs, std::vector<Mat> &outputs)
{
A
Alexander Alekhin 已提交
4078
    CV_TRACE_FUNCTION();
4079
    this->finalize((InputArrayOfArrays)inputs, (OutputArrayOfArrays)outputs);
4080 4081 4082 4083
}

void Layer::finalize(const std::vector<Mat*> &input, std::vector<Mat> &output)
{
H
Hamdi Sahloul 已提交
4084
    CV_UNUSED(input);CV_UNUSED(output);
4085 4086
}

4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
void Layer::finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr)
{
    CV_TRACE_FUNCTION();
    std::vector<Mat> inputs, outputs;
    inputs_arr.getMatVector(inputs);
    outputs_arr.getMatVector(outputs);

    std::vector<Mat*> inputsp;
    vecToPVec(inputs, inputsp);
    this->finalize(inputsp, outputs);
}

4099 4100
std::vector<Mat> Layer::finalize(const std::vector<Mat> &inputs)
{
A
Alexander Alekhin 已提交
4101 4102
    CV_TRACE_FUNCTION();

4103 4104 4105 4106 4107
    std::vector<Mat> outputs;
    this->finalize(inputs, outputs);
    return outputs;
}

4108 4109 4110 4111 4112 4113
void Layer::forward(std::vector<Mat*> &input, std::vector<Mat> &output, std::vector<Mat> &internals)
{
    // We kept this method for compatibility. DNN calls it now only to support users' implementations.
}

void Layer::forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
4114 4115 4116 4117
{
    CV_TRACE_FUNCTION();
    CV_TRACE_ARG_VALUE(name, "name", name.c_str());

4118
    Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
4119 4120
}

L
Li Peng 已提交
4121
void Layer::forward_fallback(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
4122
{
A
Alexander Alekhin 已提交
4123
    CV_TRACE_FUNCTION();
L
Li Peng 已提交
4124
    CV_TRACE_ARG_VALUE(name, "name", name.c_str());
A
Alexander Alekhin 已提交
4125

L
Li Peng 已提交
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
    if (preferableTarget == DNN_TARGET_OPENCL_FP16 && inputs_arr.depth() == CV_16S)
    {
        std::vector<UMat> inputs;
        std::vector<UMat> outputs;
        std::vector<UMat> internals;

        std::vector<UMat> orig_inputs;
        std::vector<UMat> orig_outputs;
        std::vector<UMat> orig_internals;

        inputs_arr.getUMatVector(orig_inputs);
        outputs_arr.getUMatVector(orig_outputs);
        internals_arr.getUMatVector(orig_internals);

        inputs.resize(orig_inputs.size());
        for (size_t i = 0; i < orig_inputs.size(); i++)
            convertFp16(orig_inputs[i], inputs[i]);

        outputs.resize(orig_outputs.size());
        for (size_t i = 0; i < orig_outputs.size(); i++)
            outputs[i].create(shape(orig_outputs[i]), CV_32F);

        internals.resize(orig_internals.size());
        for (size_t i = 0; i < orig_internals.size(); i++)
            internals[i].create(shape(orig_internals[i]), CV_32F);

        forward(inputs, outputs, internals);

        for (size_t i = 0; i < outputs.size(); i++)
            convertFp16(outputs[i], orig_outputs[i]);

        // sync results back
        outputs_arr.assign(orig_outputs);
        internals_arr.assign(orig_internals);
        return;
    }
L
Li Peng 已提交
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
    std::vector<Mat> inpvec;
    std::vector<Mat> outputs;
    std::vector<Mat> internals;

    inputs_arr.getMatVector(inpvec);
    outputs_arr.getMatVector(outputs);
    internals_arr.getMatVector(internals);

    std::vector<Mat*> inputs(inpvec.size());
    for (int i = 0; i < inpvec.size(); i++)
        inputs[i] = &inpvec[i];

    this->forward(inputs, outputs, internals);
4175 4176 4177 4178

    // sync results back
    outputs_arr.assign(outputs);
    internals_arr.assign(internals);
4179 4180 4181 4182
}

void Layer::run(const std::vector<Mat> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
{
A
Alexander Alekhin 已提交
4183 4184
    CV_TRACE_FUNCTION();

4185 4186
    this->finalize(inputs, outputs);
    this->forward(inputs, outputs, internals);
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
}

Layer::~Layer() {}

bool Layer::getMemoryShapes(const std::vector<MatShape> &inputs,
                            const int requiredOutputs,
                            std::vector<MatShape> &outputs,
                            std::vector<MatShape> &internals) const
{
    CV_Assert(inputs.size());
    outputs.assign(std::max(requiredOutputs, (int)inputs.size()), inputs[0]);
    return false;
}

//////////////////////////////////////////////////////////////////////////

4203
static Mutex& getLayerFactoryMutex()
4204
{
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
    static Mutex* volatile instance = NULL;
    if (instance == NULL)
    {
        cv::AutoLock lock(getInitializationMutex());
        if (instance == NULL)
            instance = new Mutex();
    }
    return *instance;
}

4215
typedef std::map<String, std::vector<LayerFactory::Constructor> > LayerFactory_Impl;
4216 4217 4218 4219 4220 4221

static LayerFactory_Impl& getLayerFactoryImpl_()
{
    static LayerFactory_Impl impl;
    return impl;
}
4222

4223
static LayerFactory_Impl& getLayerFactoryImpl()
4224
{
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
    static LayerFactory_Impl* volatile instance = NULL;
    if (instance == NULL)
    {
        cv::AutoLock lock(getLayerFactoryMutex());
        if (instance == NULL)
        {
            instance = &getLayerFactoryImpl_();
            initializeLayerFactory();
        }
    }
    return *instance;
4236 4237
}

4238
void LayerFactory::registerLayer(const String &type, Constructor constructor)
4239
{
A
Alexander Alekhin 已提交
4240 4241 4242
    CV_TRACE_FUNCTION();
    CV_TRACE_ARG_VALUE(type, "type", type.c_str());

4243
    cv::AutoLock lock(getLayerFactoryMutex());
A
Alexander Alekhin 已提交
4244
    String type_ = type.toLowerCase();
4245
    LayerFactory_Impl::iterator it = getLayerFactoryImpl().find(type_);
4246

4247
    if (it != getLayerFactoryImpl().end())
4248
    {
4249 4250 4251
        if (it->second.back() == constructor)
            CV_Error(cv::Error::StsBadArg, "Layer \"" + type_ + "\" already was registered");
        it->second.push_back(constructor);
4252
    }
4253
    getLayerFactoryImpl().insert(std::make_pair(type_, std::vector<Constructor>(1, constructor)));
4254 4255
}

A
Alexander Alekhin 已提交
4256
void LayerFactory::unregisterLayer(const String &type)
4257
{
A
Alexander Alekhin 已提交
4258 4259 4260
    CV_TRACE_FUNCTION();
    CV_TRACE_ARG_VALUE(type, "type", type.c_str());

4261
    cv::AutoLock lock(getLayerFactoryMutex());
A
Alexander Alekhin 已提交
4262
    String type_ = type.toLowerCase();
4263 4264 4265 4266 4267 4268 4269 4270 4271

    LayerFactory_Impl::iterator it = getLayerFactoryImpl().find(type_);
    if (it != getLayerFactoryImpl().end())
    {
        if (it->second.size() > 1)
            it->second.pop_back();
        else
            getLayerFactoryImpl().erase(it);
    }
4272 4273
}

A
Alexander Alekhin 已提交
4274
Ptr<Layer> LayerFactory::createLayerInstance(const String &type, LayerParams& params)
4275
{
A
Alexander Alekhin 已提交
4276 4277 4278
    CV_TRACE_FUNCTION();
    CV_TRACE_ARG_VALUE(type, "type", type.c_str());

4279
    cv::AutoLock lock(getLayerFactoryMutex());
A
Alexander Alekhin 已提交
4280 4281
    String type_ = type.toLowerCase();
    LayerFactory_Impl::const_iterator it = getLayerFactoryImpl().find(type_);
4282

4283
    if (it != getLayerFactoryImpl().end())
4284
    {
4285 4286
        CV_Assert(!it->second.empty());
        return it->second.back()(params);
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
    }
    else
    {
        return Ptr<Layer>(); //NULL
    }
}

BackendNode::BackendNode(int backendId) : backendId(backendId) {}

BackendNode::~BackendNode() {};

BackendWrapper::BackendWrapper(int backendId, int targetId)
    : backendId(backendId), targetId(targetId) {}

BackendWrapper::BackendWrapper(int targetId, const cv::Mat& m)
{
    CV_Error(Error::StsNotImplemented,
             "Constructor of backend wrapper must be implemented");
}

BackendWrapper::BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape)
{
    CV_Error(Error::StsNotImplemented,
             "Constructor of backend wrapper must be implemented");
}

BackendWrapper::~BackendWrapper() {}

4315
Net readNet(const String& _model, const String& _config, const String& _framework)
4316
{
4317 4318 4319
    String framework = _framework.toLowerCase();
    String model = _model;
    String config = _config;
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
    const std::string modelExt = model.substr(model.rfind('.') + 1);
    const std::string configExt = config.substr(config.rfind('.') + 1);
    if (framework == "caffe" || modelExt == "caffemodel" || configExt == "caffemodel" ||
                                modelExt == "prototxt" || configExt == "prototxt")
    {
        if (modelExt == "prototxt" || configExt == "caffemodel")
            std::swap(model, config);
        return readNetFromCaffe(config, model);
    }
    if (framework == "tensorflow" || modelExt == "pb" || configExt == "pb" ||
                                     modelExt == "pbtxt" || configExt == "pbtxt")
    {
        if (modelExt == "pbtxt" || configExt == "pb")
            std::swap(model, config);
        return readNetFromTensorflow(model, config);
    }
    if (framework == "torch" || modelExt == "t7" || modelExt == "net" ||
                                configExt == "t7" || configExt == "net")
    {
        return readNetFromTorch(model.empty() ? config : model);
    }
    if (framework == "darknet" || modelExt == "weights" || configExt == "weights" ||
                                  modelExt == "cfg" || configExt == "cfg")
    {
        if (modelExt == "cfg" || configExt == "weights")
            std::swap(model, config);
        return readNetFromDarknet(config, model);
    }
4348 4349 4350 4351 4352 4353 4354
    if (framework == "dldt" || modelExt == "bin" || configExt == "bin" ||
                               modelExt == "xml" || configExt == "xml")
    {
        if (modelExt == "xml" || configExt == "bin")
            std::swap(model, config);
        return readNetFromModelOptimizer(config, model);
    }
4355 4356 4357 4358
    if (framework == "onnx" || modelExt == "onnx")
    {
        return readNetFromONNX(model);
    }
4359
    CV_Error(Error::StsError, "Cannot determine an origin framework of files: " +
4360
                                      model + (config.empty() ? "" : ", " + config));
4361 4362
}

4363 4364
Net readNet(const String& _framework, const std::vector<uchar>& bufferModel,
            const std::vector<uchar>& bufferConfig)
4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
{
    String framework = _framework.toLowerCase();
    if (framework == "caffe")
        return readNetFromCaffe(bufferConfig, bufferModel);
    else if (framework == "tensorflow")
        return readNetFromTensorflow(bufferModel, bufferConfig);
    else if (framework == "darknet")
        return readNetFromDarknet(bufferConfig, bufferModel);
    else if (framework == "torch")
        CV_Error(Error::StsNotImplemented, "Reading Torch models from buffers");
    else if (framework == "dldt")
        CV_Error(Error::StsNotImplemented, "Reading Intel's Model Optimizer models from buffers");
    CV_Error(Error::StsError, "Cannot determine an origin framework with a name " + framework);
}

4380 4381 4382 4383 4384
Net readNetFromModelOptimizer(const String &xml, const String &bin)
{
    return Net::readFromModelOptimizer(xml, bin);
}

4385 4386
CV__DNN_EXPERIMENTAL_NS_END
}} // namespace