提交 84336202 编写于 作者: D Dmitry Kurtaev

Bidirectional LSTM

上级 11d565ca
......@@ -93,6 +93,7 @@ class LSTMLayerImpl CV_FINAL : public LSTMLayer
float forgetBias, cellClip;
bool useCellClip, usePeephole;
bool reverse; // If true, go in negative direction along the time axis
bool bidirectional; // If true, produces both forward and reversed directions along time axis
public:
......@@ -101,6 +102,7 @@ public:
{
setParamsFrom(params);
bidirectional = params.get<bool>("bidirectional", false);
if (!blobs.empty())
{
CV_Assert(blobs.size() >= 3);
......@@ -113,7 +115,7 @@ public:
CV_CheckEQ(Wh.dims, 2, "");
CV_CheckEQ(Wx.dims, 2, "");
CV_CheckEQ(Wh.rows, Wx.rows, "");
CV_CheckEQ(Wh.rows, 4*Wh.cols, "");
CV_CheckEQ(Wh.rows, (1 + static_cast<int>(bidirectional))*4*Wh.cols, "");
CV_CheckEQ(Wh.rows, (int)bias.total(), "");
CV_Assert(Wh.type() == Wx.type() && Wx.type() == bias.type());
......@@ -136,6 +138,7 @@ public:
useCellClip = params.get<bool>("use_cell_clip", false);
usePeephole = params.get<bool>("use_peephole", false);
reverse = params.get<bool>("reverse", false);
CV_Assert(!reverse || !bidirectional);
allocated = false;
outTailShape.clear();
......@@ -207,6 +210,7 @@ public:
outResShape.push_back(_numSamples);
outResShape.insert(outResShape.end(), outTailShape_.begin(), outTailShape_.end());
outResShape.back() *= (1 + static_cast<int>(bidirectional));
size_t noutputs = produceCellOutput ? 2 : 1;
outputs.assign(noutputs, outResShape);
......@@ -253,6 +257,7 @@ public:
outTsShape.clear();
outTsShape.push_back(numSamples);
outTsShape.insert(outTsShape.end(), outTailShape.begin(), outTailShape.end());
outTsShape.back() *= (1 + static_cast<int>(bidirectional));
allocated = true;
}
......@@ -273,91 +278,96 @@ public:
outputs_arr.getMatVector(output);
internals_arr.getMatVector(internals);
const Mat &Wh = blobs[0];
const Mat &Wx = blobs[1];
const Mat &bias = blobs[2];
int numOut = Wh.size[1];
Mat hInternal = internals[0], cInternal = internals[1],
dummyOnes = internals[2], gates = internals[3];
hInternal.setTo(0.);
cInternal.setTo(0.);
dummyOnes.setTo(1.);
int numSamplesTotal = numTimeStamps*numSamples;
Mat xTs = input[0].reshape(1, numSamplesTotal);
Mat hOutTs = output[0].reshape(1, numSamplesTotal);
Mat cOutTs = produceCellOutput ? output[1].reshape(1, numSamplesTotal) : Mat();
int tsStart, tsEnd, tsInc;
if (reverse) {
tsStart = numTimeStamps - 1;
tsEnd = -1;
tsInc = -1;
}
else {
tsStart = 0;
tsEnd = numTimeStamps;
tsInc = 1;
}
for (int ts = tsStart; ts != tsEnd; ts += tsInc)
const int numDirs = 1 + static_cast<int>(bidirectional);
for (int i = 0; i < numDirs; ++i)
{
Range curRowRange(ts*numSamples, (ts + 1)*numSamples);
Mat xCurr = xTs.rowRange(curRowRange);
const Mat &Wh = blobs[0].rowRange(i * blobs[0].rows / numDirs, (i + 1) * blobs[0].rows / numDirs);
const Mat &Wx = blobs[1].rowRange(i * blobs[1].rows / numDirs, (i + 1) * blobs[1].rows / numDirs);
const Mat &bias = blobs[2].colRange(i * blobs[2].cols / numDirs, (i + 1) * blobs[2].cols / numDirs);
int numOut = Wh.size[1];
Mat hInternal = internals[0], cInternal = internals[1],
dummyOnes = internals[2], gates = internals[3];
hInternal.setTo(0.);
cInternal.setTo(0.);
dummyOnes.setTo(1.);
int numSamplesTotal = numTimeStamps*numSamples;
Mat xTs = input[0].reshape(1, numSamplesTotal);
Mat hOutTs = output[0].reshape(1, numSamplesTotal);
hOutTs = hOutTs.colRange(i * hOutTs.cols / numDirs, (i + 1) * hOutTs.cols / numDirs);
Mat cOutTs = produceCellOutput ? output[1].reshape(1, numSamplesTotal) : Mat();
int tsStart, tsEnd, tsInc;
if (reverse || i == 1) {
tsStart = numTimeStamps - 1;
tsEnd = -1;
tsInc = -1;
}
else {
tsStart = 0;
tsEnd = numTimeStamps;
tsInc = 1;
}
for (int ts = tsStart; ts != tsEnd; ts += tsInc)
{
Range curRowRange(ts*numSamples, (ts + 1)*numSamples);
Mat xCurr = xTs.rowRange(curRowRange);
gemm(xCurr, Wx, 1, gates, 0, gates, GEMM_2_T); // Wx * x_t
gemm(hInternal, Wh, 1, gates, 1, gates, GEMM_2_T); //+Wh * h_{t-1}
gemm(dummyOnes, bias, 1, gates, 1, gates); //+b
gemm(xCurr, Wx, 1, gates, 0, gates, GEMM_2_T); // Wx * x_t
gemm(hInternal, Wh, 1, gates, 1, gates, GEMM_2_T); //+Wh * h_{t-1}
gemm(dummyOnes, bias, 1, gates, 1, gates); //+b
Mat gateI = gates.colRange(0*numOut, 1*numOut);
Mat gateF = gates.colRange(1*numOut, 2*numOut);
Mat gateO = gates.colRange(2*numOut, 3*numOut);
Mat gateG = gates.colRange(3*numOut, 4*numOut);
Mat gateI = gates.colRange(0*numOut, 1*numOut);
Mat gateF = gates.colRange(1*numOut, 2*numOut);
Mat gateO = gates.colRange(2*numOut, 3*numOut);
Mat gateG = gates.colRange(3*numOut, 4*numOut);
if (forgetBias)
add(gateF, forgetBias, gateF);
if (forgetBias)
add(gateF, forgetBias, gateF);
if (usePeephole)
{
Mat gatesIF = gates.colRange(0, 2*numOut);
gemm(cInternal, blobs[3], 1, gateI, 1, gateI);
gemm(cInternal, blobs[4], 1, gateF, 1, gateF);
sigmoid(gatesIF, gatesIF);
}
else
{
Mat gatesIFO = gates.colRange(0, 3*numOut);
sigmoid(gatesIFO, gatesIFO);
}
if (usePeephole)
{
Mat gatesIF = gates.colRange(0, 2*numOut);
gemm(cInternal, blobs[3], 1, gateI, 1, gateI);
gemm(cInternal, blobs[4], 1, gateF, 1, gateF);
sigmoid(gatesIF, gatesIF);
}
else
{
Mat gatesIFO = gates.colRange(0, 3*numOut);
sigmoid(gatesIFO, gatesIFO);
}
tanh(gateG, gateG);
tanh(gateG, gateG);
//compute c_t
multiply(gateF, cInternal, gateF); // f_t (*) c_{t-1}
multiply(gateI, gateG, gateI); // i_t (*) g_t
add(gateF, gateI, cInternal); // c_t = f_t (*) c_{t-1} + i_t (*) g_t
//compute c_t
multiply(gateF, cInternal, gateF); // f_t (*) c_{t-1}
multiply(gateI, gateG, gateI); // i_t (*) g_t
add(gateF, gateI, cInternal); // c_t = f_t (*) c_{t-1} + i_t (*) g_t
if (useCellClip)
{
min(cInternal, cellClip, cInternal);
max(cInternal, -cellClip, cInternal);
}
if (usePeephole)
{
gemm(cInternal, blobs[5], 1, gateO, 1, gateO);
sigmoid(gateO, gateO);
}
if (useCellClip)
{
min(cInternal, cellClip, cInternal);
max(cInternal, -cellClip, cInternal);
}
if (usePeephole)
{
gemm(cInternal, blobs[5], 1, gateO, 1, gateO);
sigmoid(gateO, gateO);
}
//compute h_t
tanh(cInternal, hInternal);
multiply(gateO, hInternal, hInternal);
//compute h_t
tanh(cInternal, hInternal);
multiply(gateO, hInternal, hInternal);
//save results in output blobs
hInternal.copyTo(hOutTs.rowRange(curRowRange));
if (produceCellOutput)
cInternal.copyTo(cOutTs.rowRange(curRowRange));
//save results in output blobs
hInternal.copyTo(hOutTs.rowRange(curRowRange));
if (produceCellOutput)
cInternal.copyTo(cOutTs.rowRange(curRowRange));
}
}
}
};
......
......@@ -630,37 +630,44 @@ void ONNXImporter::populateNet(Net dstNet)
Mat Wx = getBlob(node_proto, constBlobs, 1);
Mat Wh = getBlob(node_proto, constBlobs, 2);
Mat b = getBlob(node_proto, constBlobs, 3);
b = b.reshape(1, b.size[0]);
const int numHidden = lstmParams.get<int>("hidden_size");
Wx = Wx.reshape(1, Wx.size[1]);
Wh = Wh.reshape(1, Wh.size[1]);
b = b.reshape(1, 2);
reduce(b, b, 0, REDUCE_SUM);
const int numDirs = Wx.size[0]; // Is 1 for forward only and 2 for bidirectional LSTM.
const int numFeatures = Wx.size[2];
Mat bx = b.colRange(0, b.cols / 2);
Mat bh = b.colRange(b.cols / 2, b.cols);
b = bx + bh;
// IFGO->IGFO
float* WxData = (float*)Wx.data;
float* WhData = (float*)Wh.data;
float* biasData = (float*)b.data;
for (int j = 0; j < numHidden; ++j)
for (int k = 0; k < numDirs; ++k)
{
for (int i = 0; i < Wx.cols; ++i)
{
std::swap(WxData[(numHidden + j) * Wx.cols + i],
WxData[(numHidden * 2 + j) * Wx.cols + i]);
}
for (int i = 0; i < Wh.cols; ++i)
float* WxData = Wx.ptr<float>(k);
float* WhData = Wh.ptr<float>(k);
float* biasData = b.ptr<float>(k);
for (int j = 0; j < numHidden; ++j)
{
std::swap(WhData[(numHidden + j) * Wh.cols + i],
WhData[(numHidden * 2 + j) * Wh.cols + i]);
for (int i = 0; i < numFeatures; ++i)
{
std::swap(WxData[(numHidden + j) * numFeatures + i],
WxData[(numHidden * 2 + j) * numFeatures + i]);
}
for (int i = 0; i < numHidden; ++i)
{
std::swap(WhData[(numHidden + j) * numHidden + i],
WhData[(numHidden * 2 + j) * numHidden + i]);
}
std::swap(biasData[numHidden + j], biasData[numHidden * 2 + j]);
}
std::swap(biasData[numHidden + j], biasData[numHidden * 2 + j]);
}
Wx = Wx.reshape(1, Wx.size[0] * Wx.size[1]);
Wh = Wh.reshape(1, Wh.size[0] * Wh.size[1]);
lstmParams.blobs.resize(3);
lstmParams.blobs[0] = Wh;
lstmParams.blobs[1] = Wx;
lstmParams.blobs[2] = b;
lstmParams.set("bidirectional", lstmParams.get<String>("direction", "") == "bidirectional");
node_proto.set_output(0, lstmParams.name); // set different name so output shapes will be registered on that name
addLayer(dstNet, lstmParams, node_proto, layer_id, outShapes);
......
......@@ -456,6 +456,11 @@ TEST_P(Test_ONNX_layers, LSTM)
testONNXModels("lstm");
}
TEST_P(Test_ONNX_layers, LSTM_bidirectional)
{
testONNXModels("lstm_bidirectional");
}
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_ONNX_layers, dnnBackendsAndTargets());
class Test_ONNX_nets : public Test_ONNX_layers
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册