svc_xprt.c 33.1 KB
Newer Older
T
Tom Tucker 已提交
1 2 3 4 5 6 7
/*
 * linux/net/sunrpc/svc_xprt.c
 *
 * Author: Tom Tucker <tom@opengridcomputing.com>
 */

#include <linux/sched.h>
A
Alexey Dobriyan 已提交
8
#include <linux/smp_lock.h>
T
Tom Tucker 已提交
9 10
#include <linux/errno.h>
#include <linux/freezer.h>
11
#include <linux/kthread.h>
12
#include <linux/slab.h>
T
Tom Tucker 已提交
13 14 15
#include <net/sock.h>
#include <linux/sunrpc/stats.h>
#include <linux/sunrpc/svc_xprt.h>
16
#include <linux/sunrpc/svcsock.h>
T
Tom Tucker 已提交
17 18 19

#define RPCDBG_FACILITY	RPCDBG_SVCXPRT

20 21 22 23 24 25 26 27 28 29 30 31
static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
static int svc_deferred_recv(struct svc_rqst *rqstp);
static struct cache_deferred_req *svc_defer(struct cache_req *req);
static void svc_age_temp_xprts(unsigned long closure);

/* apparently the "standard" is that clients close
 * idle connections after 5 minutes, servers after
 * 6 minutes
 *   http://www.connectathon.org/talks96/nfstcp.pdf
 */
static int svc_conn_age_period = 6*60;

T
Tom Tucker 已提交
32 33 34 35
/* List of registered transport classes */
static DEFINE_SPINLOCK(svc_xprt_class_lock);
static LIST_HEAD(svc_xprt_class_list);

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/* SMP locking strategy:
 *
 *	svc_pool->sp_lock protects most of the fields of that pool.
 *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
 *	when both need to be taken (rare), svc_serv->sv_lock is first.
 *	BKL protects svc_serv->sv_nrthread.
 *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
 *             and the ->sk_info_authunix cache.
 *
 *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
 *	enqueued multiply. During normal transport processing this bit
 *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
 *	Providers should not manipulate this bit directly.
 *
 *	Some flags can be set to certain values at any time
 *	providing that certain rules are followed:
 *
 *	XPT_CONN, XPT_DATA:
 *		- Can be set or cleared at any time.
 *		- After a set, svc_xprt_enqueue must be called to enqueue
 *		  the transport for processing.
 *		- After a clear, the transport must be read/accepted.
 *		  If this succeeds, it must be set again.
 *	XPT_CLOSE:
 *		- Can set at any time. It is never cleared.
 *      XPT_DEAD:
 *		- Can only be set while XPT_BUSY is held which ensures
 *		  that no other thread will be using the transport or will
 *		  try to set XPT_DEAD.
 */

T
Tom Tucker 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
int svc_reg_xprt_class(struct svc_xprt_class *xcl)
{
	struct svc_xprt_class *cl;
	int res = -EEXIST;

	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);

	INIT_LIST_HEAD(&xcl->xcl_list);
	spin_lock(&svc_xprt_class_lock);
	/* Make sure there isn't already a class with the same name */
	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
			goto out;
	}
	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
	res = 0;
out:
	spin_unlock(&svc_xprt_class_lock);
	return res;
}
EXPORT_SYMBOL_GPL(svc_reg_xprt_class);

void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
{
	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
	spin_lock(&svc_xprt_class_lock);
	list_del_init(&xcl->xcl_list);
	spin_unlock(&svc_xprt_class_lock);
}
EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
/*
 * Format the transport list for printing
 */
int svc_print_xprts(char *buf, int maxlen)
{
	struct list_head *le;
	char tmpstr[80];
	int len = 0;
	buf[0] = '\0';

	spin_lock(&svc_xprt_class_lock);
	list_for_each(le, &svc_xprt_class_list) {
		int slen;
		struct svc_xprt_class *xcl =
			list_entry(le, struct svc_xprt_class, xcl_list);

		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
		slen = strlen(tmpstr);
		if (len + slen > maxlen)
			break;
		len += slen;
		strcat(buf, tmpstr);
	}
	spin_unlock(&svc_xprt_class_lock);

	return len;
}

T
Tom Tucker 已提交
126 127 128 129 130
static void svc_xprt_free(struct kref *kref)
{
	struct svc_xprt *xprt =
		container_of(kref, struct svc_xprt, xpt_ref);
	struct module *owner = xprt->xpt_class->xcl_owner;
131 132
	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
		svcauth_unix_info_release(xprt);
P
Pavel Emelyanov 已提交
133
	put_net(xprt->xpt_net);
T
Tom Tucker 已提交
134 135 136 137 138 139 140 141 142 143
	xprt->xpt_ops->xpo_free(xprt);
	module_put(owner);
}

void svc_xprt_put(struct svc_xprt *xprt)
{
	kref_put(&xprt->xpt_ref, svc_xprt_free);
}
EXPORT_SYMBOL_GPL(svc_xprt_put);

T
Tom Tucker 已提交
144 145 146 147
/*
 * Called by transport drivers to initialize the transport independent
 * portion of the transport instance.
 */
148 149
void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
		   struct svc_serv *serv)
T
Tom Tucker 已提交
150 151 152 153
{
	memset(xprt, 0, sizeof(*xprt));
	xprt->xpt_class = xcl;
	xprt->xpt_ops = xcl->xcl_ops;
T
Tom Tucker 已提交
154
	kref_init(&xprt->xpt_ref);
155
	xprt->xpt_server = serv;
156 157
	INIT_LIST_HEAD(&xprt->xpt_list);
	INIT_LIST_HEAD(&xprt->xpt_ready);
158
	INIT_LIST_HEAD(&xprt->xpt_deferred);
159
	mutex_init(&xprt->xpt_mutex);
160
	spin_lock_init(&xprt->xpt_lock);
161
	set_bit(XPT_BUSY, &xprt->xpt_flags);
162
	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
P
Pavel Emelyanov 已提交
163
	xprt->xpt_net = get_net(&init_net);
T
Tom Tucker 已提交
164 165
}
EXPORT_SYMBOL_GPL(svc_xprt_init);
166

167 168
static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
					 struct svc_serv *serv,
169 170 171
					 const int family,
					 const unsigned short port,
					 int flags)
172 173 174
{
	struct sockaddr_in sin = {
		.sin_family		= AF_INET,
A
Al Viro 已提交
175
		.sin_addr.s_addr	= htonl(INADDR_ANY),
176 177
		.sin_port		= htons(port),
	};
178
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
179 180 181 182 183
	struct sockaddr_in6 sin6 = {
		.sin6_family		= AF_INET6,
		.sin6_addr		= IN6ADDR_ANY_INIT,
		.sin6_port		= htons(port),
	};
184
#endif	/* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
185 186 187
	struct sockaddr *sap;
	size_t len;

188 189
	switch (family) {
	case PF_INET:
190 191 192
		sap = (struct sockaddr *)&sin;
		len = sizeof(sin);
		break;
193
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
194
	case PF_INET6:
195 196 197
		sap = (struct sockaddr *)&sin6;
		len = sizeof(sin6);
		break;
198
#endif	/* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
199 200 201 202 203 204 205
	default:
		return ERR_PTR(-EAFNOSUPPORT);
	}

	return xcl->xcl_ops->xpo_create(serv, sap, len, flags);
}

206
int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
207 208
		    struct net *net, const int family,
		    const unsigned short port, int flags)
209 210 211
{
	struct svc_xprt_class *xcl;

212 213 214
	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
	spin_lock(&svc_xprt_class_lock);
	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
215 216 217 218 219 220 221 222 223
		struct svc_xprt *newxprt;

		if (strcmp(xprt_name, xcl->xcl_name))
			continue;

		if (!try_module_get(xcl->xcl_owner))
			goto err;

		spin_unlock(&svc_xprt_class_lock);
224
		newxprt = __svc_xpo_create(xcl, serv, family, port, flags);
225 226 227
		if (IS_ERR(newxprt)) {
			module_put(xcl->xcl_owner);
			return PTR_ERR(newxprt);
228
		}
229 230 231 232 233 234 235

		clear_bit(XPT_TEMP, &newxprt->xpt_flags);
		spin_lock_bh(&serv->sv_lock);
		list_add(&newxprt->xpt_list, &serv->sv_permsocks);
		spin_unlock_bh(&serv->sv_lock);
		clear_bit(XPT_BUSY, &newxprt->xpt_flags);
		return svc_xprt_local_port(newxprt);
236
	}
237
 err:
238 239
	spin_unlock(&svc_xprt_class_lock);
	dprintk("svc: transport %s not found\n", xprt_name);
240 241 242 243

	/* This errno is exposed to user space.  Provide a reasonable
	 * perror msg for a bad transport. */
	return -EPROTONOSUPPORT;
244 245
}
EXPORT_SYMBOL_GPL(svc_create_xprt);
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

/*
 * Copy the local and remote xprt addresses to the rqstp structure
 */
void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
{
	struct sockaddr *sin;

	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
	rqstp->rq_addrlen = xprt->xpt_remotelen;

	/*
	 * Destination address in request is needed for binding the
	 * source address in RPC replies/callbacks later.
	 */
	sin = (struct sockaddr *)&xprt->xpt_local;
	switch (sin->sa_family) {
	case AF_INET:
		rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
		break;
	case AF_INET6:
		rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
		break;
	}
}
EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
/**
 * svc_print_addr - Format rq_addr field for printing
 * @rqstp: svc_rqst struct containing address to print
 * @buf: target buffer for formatted address
 * @len: length of target buffer
 *
 */
char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
{
	return __svc_print_addr(svc_addr(rqstp), buf, len);
}
EXPORT_SYMBOL_GPL(svc_print_addr);

/*
 * Queue up an idle server thread.  Must have pool->sp_lock held.
 * Note: this is really a stack rather than a queue, so that we only
 * use as many different threads as we need, and the rest don't pollute
 * the cache.
 */
static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
{
	list_add(&rqstp->rq_list, &pool->sp_threads);
}

/*
 * Dequeue an nfsd thread.  Must have pool->sp_lock held.
 */
static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
{
	list_del(&rqstp->rq_list);
}

/*
 * Queue up a transport with data pending. If there are idle nfsd
 * processes, wake 'em up.
 *
 */
void svc_xprt_enqueue(struct svc_xprt *xprt)
{
	struct svc_serv	*serv = xprt->xpt_server;
	struct svc_pool *pool;
	struct svc_rqst	*rqstp;
	int cpu;

	if (!(xprt->xpt_flags &
	      ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
		return;

	cpu = get_cpu();
	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
	put_cpu();

	spin_lock_bh(&pool->sp_lock);

327 328 329 330 331 332
	if (!list_empty(&pool->sp_threads) &&
	    !list_empty(&pool->sp_sockets))
		printk(KERN_ERR
		       "svc_xprt_enqueue: "
		       "threads and transports both waiting??\n");

333 334 335 336 337 338
	if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
		/* Don't enqueue dead transports */
		dprintk("svc: transport %p is dead, not enqueued\n", xprt);
		goto out_unlock;
	}

339 340
	pool->sp_stats.packets++;

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
	/* Mark transport as busy. It will remain in this state until
	 * the provider calls svc_xprt_received. We update XPT_BUSY
	 * atomically because it also guards against trying to enqueue
	 * the transport twice.
	 */
	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
		/* Don't enqueue transport while already enqueued */
		dprintk("svc: transport %p busy, not enqueued\n", xprt);
		goto out_unlock;
	}
	BUG_ON(xprt->xpt_pool != NULL);
	xprt->xpt_pool = pool;

	/* Handle pending connection */
	if (test_bit(XPT_CONN, &xprt->xpt_flags))
		goto process;

	/* Handle close in-progress */
	if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
		goto process;

	/* Check if we have space to reply to a request */
	if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
		/* Don't enqueue while not enough space for reply */
		dprintk("svc: no write space, transport %p  not enqueued\n",
			xprt);
		xprt->xpt_pool = NULL;
		clear_bit(XPT_BUSY, &xprt->xpt_flags);
		goto out_unlock;
	}

 process:
373
	if (!list_empty(&pool->sp_threads)) {
374 375 376 377 378 379 380 381 382 383 384 385 386 387
		rqstp = list_entry(pool->sp_threads.next,
				   struct svc_rqst,
				   rq_list);
		dprintk("svc: transport %p served by daemon %p\n",
			xprt, rqstp);
		svc_thread_dequeue(pool, rqstp);
		if (rqstp->rq_xprt)
			printk(KERN_ERR
				"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
				rqstp, rqstp->rq_xprt);
		rqstp->rq_xprt = xprt;
		svc_xprt_get(xprt);
		rqstp->rq_reserved = serv->sv_max_mesg;
		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
388
		pool->sp_stats.threads_woken++;
389 390 391 392 393
		BUG_ON(xprt->xpt_pool != pool);
		wake_up(&rqstp->rq_wait);
	} else {
		dprintk("svc: transport %p put into queue\n", xprt);
		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
394
		pool->sp_stats.sockets_queued++;
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
		BUG_ON(xprt->xpt_pool != pool);
	}

out_unlock:
	spin_unlock_bh(&pool->sp_lock);
}
EXPORT_SYMBOL_GPL(svc_xprt_enqueue);

/*
 * Dequeue the first transport.  Must be called with the pool->sp_lock held.
 */
static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
{
	struct svc_xprt	*xprt;

	if (list_empty(&pool->sp_sockets))
		return NULL;

	xprt = list_entry(pool->sp_sockets.next,
			  struct svc_xprt, xpt_ready);
	list_del_init(&xprt->xpt_ready);

	dprintk("svc: transport %p dequeued, inuse=%d\n",
		xprt, atomic_read(&xprt->xpt_ref.refcount));

	return xprt;
}

/*
 * svc_xprt_received conditionally queues the transport for processing
 * by another thread. The caller must hold the XPT_BUSY bit and must
 * not thereafter touch transport data.
 *
 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
 * insufficient) data.
 */
void svc_xprt_received(struct svc_xprt *xprt)
{
	BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
	xprt->xpt_pool = NULL;
	clear_bit(XPT_BUSY, &xprt->xpt_flags);
	svc_xprt_enqueue(xprt);
}
EXPORT_SYMBOL_GPL(svc_xprt_received);

/**
 * svc_reserve - change the space reserved for the reply to a request.
 * @rqstp:  The request in question
 * @space: new max space to reserve
 *
 * Each request reserves some space on the output queue of the transport
 * to make sure the reply fits.  This function reduces that reserved
 * space to be the amount of space used already, plus @space.
 *
 */
void svc_reserve(struct svc_rqst *rqstp, int space)
{
	space += rqstp->rq_res.head[0].iov_len;

	if (space < rqstp->rq_reserved) {
		struct svc_xprt *xprt = rqstp->rq_xprt;
		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
		rqstp->rq_reserved = space;

		svc_xprt_enqueue(xprt);
	}
}
462
EXPORT_SYMBOL_GPL(svc_reserve);
463 464 465 466 467 468 469

static void svc_xprt_release(struct svc_rqst *rqstp)
{
	struct svc_xprt	*xprt = rqstp->rq_xprt;

	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);

470 471 472
	kfree(rqstp->rq_deferred);
	rqstp->rq_deferred = NULL;

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
	svc_free_res_pages(rqstp);
	rqstp->rq_res.page_len = 0;
	rqstp->rq_res.page_base = 0;

	/* Reset response buffer and release
	 * the reservation.
	 * But first, check that enough space was reserved
	 * for the reply, otherwise we have a bug!
	 */
	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
		printk(KERN_ERR "RPC request reserved %d but used %d\n",
		       rqstp->rq_reserved,
		       rqstp->rq_res.len);

	rqstp->rq_res.head[0].iov_len = 0;
	svc_reserve(rqstp, 0);
	rqstp->rq_xprt = NULL;

	svc_xprt_put(xprt);
}

/*
 * External function to wake up a server waiting for data
 * This really only makes sense for services like lockd
 * which have exactly one thread anyway.
 */
void svc_wake_up(struct svc_serv *serv)
{
	struct svc_rqst	*rqstp;
	unsigned int i;
	struct svc_pool *pool;

	for (i = 0; i < serv->sv_nrpools; i++) {
		pool = &serv->sv_pools[i];

		spin_lock_bh(&pool->sp_lock);
		if (!list_empty(&pool->sp_threads)) {
			rqstp = list_entry(pool->sp_threads.next,
					   struct svc_rqst,
					   rq_list);
			dprintk("svc: daemon %p woken up.\n", rqstp);
			/*
			svc_thread_dequeue(pool, rqstp);
			rqstp->rq_xprt = NULL;
			 */
			wake_up(&rqstp->rq_wait);
		}
		spin_unlock_bh(&pool->sp_lock);
	}
}
523
EXPORT_SYMBOL_GPL(svc_wake_up);
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539

int svc_port_is_privileged(struct sockaddr *sin)
{
	switch (sin->sa_family) {
	case AF_INET:
		return ntohs(((struct sockaddr_in *)sin)->sin_port)
			< PROT_SOCK;
	case AF_INET6:
		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
			< PROT_SOCK;
	default:
		return 0;
	}
}

/*
540 541 542 543
 * Make sure that we don't have too many active connections. If we have,
 * something must be dropped. It's not clear what will happen if we allow
 * "too many" connections, but when dealing with network-facing software,
 * we have to code defensively. Here we do that by imposing hard limits.
544 545 546 547 548 549 550 551
 *
 * There's no point in trying to do random drop here for DoS
 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
 * attacker can easily beat that.
 *
 * The only somewhat efficient mechanism would be if drop old
 * connections from the same IP first. But right now we don't even
 * record the client IP in svc_sock.
552 553 554 555
 *
 * single-threaded services that expect a lot of clients will probably
 * need to set sv_maxconn to override the default value which is based
 * on the number of threads
556 557 558
 */
static void svc_check_conn_limits(struct svc_serv *serv)
{
559 560 561 562
	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
				(serv->sv_nrthreads+3) * 20;

	if (serv->sv_tmpcnt > limit) {
563 564 565 566 567 568
		struct svc_xprt *xprt = NULL;
		spin_lock_bh(&serv->sv_lock);
		if (!list_empty(&serv->sv_tempsocks)) {
			if (net_ratelimit()) {
				/* Try to help the admin */
				printk(KERN_NOTICE "%s: too many open  "
569 570 571 572
				       "connections, consider increasing %s\n",
				       serv->sv_name, serv->sv_maxconn ?
				       "the max number of connections." :
				       "the number of threads.");
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
			}
			/*
			 * Always select the oldest connection. It's not fair,
			 * but so is life
			 */
			xprt = list_entry(serv->sv_tempsocks.prev,
					  struct svc_xprt,
					  xpt_list);
			set_bit(XPT_CLOSE, &xprt->xpt_flags);
			svc_xprt_get(xprt);
		}
		spin_unlock_bh(&serv->sv_lock);

		if (xprt) {
			svc_xprt_enqueue(xprt);
			svc_xprt_put(xprt);
		}
	}
}

/*
 * Receive the next request on any transport.  This code is carefully
 * organised not to touch any cachelines in the shared svc_serv
 * structure, only cachelines in the local svc_pool.
 */
int svc_recv(struct svc_rqst *rqstp, long timeout)
{
	struct svc_xprt		*xprt = NULL;
	struct svc_serv		*serv = rqstp->rq_server;
	struct svc_pool		*pool = rqstp->rq_pool;
	int			len, i;
	int			pages;
	struct xdr_buf		*arg;
	DECLARE_WAITQUEUE(wait, current);
607
	long			time_left;
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626

	dprintk("svc: server %p waiting for data (to = %ld)\n",
		rqstp, timeout);

	if (rqstp->rq_xprt)
		printk(KERN_ERR
			"svc_recv: service %p, transport not NULL!\n",
			 rqstp);
	if (waitqueue_active(&rqstp->rq_wait))
		printk(KERN_ERR
			"svc_recv: service %p, wait queue active!\n",
			 rqstp);

	/* now allocate needed pages.  If we get a failure, sleep briefly */
	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
	for (i = 0; i < pages ; i++)
		while (rqstp->rq_pages[i] == NULL) {
			struct page *p = alloc_page(GFP_KERNEL);
			if (!p) {
627 628 629
				set_current_state(TASK_INTERRUPTIBLE);
				if (signalled() || kthread_should_stop()) {
					set_current_state(TASK_RUNNING);
630
					return -EINTR;
631 632
				}
				schedule_timeout(msecs_to_jiffies(500));
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
			}
			rqstp->rq_pages[i] = p;
		}
	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
	BUG_ON(pages >= RPCSVC_MAXPAGES);

	/* Make arg->head point to first page and arg->pages point to rest */
	arg = &rqstp->rq_arg;
	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
	arg->head[0].iov_len = PAGE_SIZE;
	arg->pages = rqstp->rq_pages + 1;
	arg->page_base = 0;
	/* save at least one page for response */
	arg->page_len = (pages-2)*PAGE_SIZE;
	arg->len = (pages-1)*PAGE_SIZE;
	arg->tail[0].iov_len = 0;

	try_to_freeze();
	cond_resched();
652
	if (signalled() || kthread_should_stop())
653 654
		return -EINTR;

655 656 657 658 659
	/* Normally we will wait up to 5 seconds for any required
	 * cache information to be provided.
	 */
	rqstp->rq_chandle.thread_wait = 5*HZ;

660 661 662 663 664 665 666
	spin_lock_bh(&pool->sp_lock);
	xprt = svc_xprt_dequeue(pool);
	if (xprt) {
		rqstp->rq_xprt = xprt;
		svc_xprt_get(xprt);
		rqstp->rq_reserved = serv->sv_max_mesg;
		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
667 668

		/* As there is a shortage of threads and this request
J
J. Bruce Fields 已提交
669
		 * had to be queued, don't allow the thread to wait so
670 671 672
		 * long for cache updates.
		 */
		rqstp->rq_chandle.thread_wait = 1*HZ;
673 674 675 676 677 678 679 680 681
	} else {
		/* No data pending. Go to sleep */
		svc_thread_enqueue(pool, rqstp);

		/*
		 * We have to be able to interrupt this wait
		 * to bring down the daemons ...
		 */
		set_current_state(TASK_INTERRUPTIBLE);
682 683 684 685 686 687 688 689 690 691 692 693 694 695

		/*
		 * checking kthread_should_stop() here allows us to avoid
		 * locking and signalling when stopping kthreads that call
		 * svc_recv. If the thread has already been woken up, then
		 * we can exit here without sleeping. If not, then it
		 * it'll be woken up quickly during the schedule_timeout
		 */
		if (kthread_should_stop()) {
			set_current_state(TASK_RUNNING);
			spin_unlock_bh(&pool->sp_lock);
			return -EINTR;
		}

696 697 698
		add_wait_queue(&rqstp->rq_wait, &wait);
		spin_unlock_bh(&pool->sp_lock);

699
		time_left = schedule_timeout(timeout);
700 701 702 703 704

		try_to_freeze();

		spin_lock_bh(&pool->sp_lock);
		remove_wait_queue(&rqstp->rq_wait, &wait);
705 706
		if (!time_left)
			pool->sp_stats.threads_timedout++;
707 708 709 710 711 712

		xprt = rqstp->rq_xprt;
		if (!xprt) {
			svc_thread_dequeue(pool, rqstp);
			spin_unlock_bh(&pool->sp_lock);
			dprintk("svc: server %p, no data yet\n", rqstp);
713 714 715 716
			if (signalled() || kthread_should_stop())
				return -EINTR;
			else
				return -EAGAIN;
717 718 719 720 721
		}
	}
	spin_unlock_bh(&pool->sp_lock);

	len = 0;
722 723 724 725
	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
		dprintk("svc_recv: found XPT_CLOSE\n");
		svc_delete_xprt(xprt);
	} else if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
		struct svc_xprt *newxpt;
		newxpt = xprt->xpt_ops->xpo_accept(xprt);
		if (newxpt) {
			/*
			 * We know this module_get will succeed because the
			 * listener holds a reference too
			 */
			__module_get(newxpt->xpt_class->xcl_owner);
			svc_check_conn_limits(xprt->xpt_server);
			spin_lock_bh(&serv->sv_lock);
			set_bit(XPT_TEMP, &newxpt->xpt_flags);
			list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
			serv->sv_tmpcnt++;
			if (serv->sv_temptimer.function == NULL) {
				/* setup timer to age temp transports */
				setup_timer(&serv->sv_temptimer,
					    svc_age_temp_xprts,
					    (unsigned long)serv);
				mod_timer(&serv->sv_temptimer,
					  jiffies + svc_conn_age_period * HZ);
			}
			spin_unlock_bh(&serv->sv_lock);
			svc_xprt_received(newxpt);
		}
		svc_xprt_received(xprt);
751
	} else {
752 753 754 755 756 757 758
		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
			rqstp, pool->sp_id, xprt,
			atomic_read(&xprt->xpt_ref.refcount));
		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
		if (rqstp->rq_deferred) {
			svc_xprt_received(xprt);
			len = svc_deferred_recv(rqstp);
759
		} else {
760
			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
761 762
			svc_xprt_received(xprt);
		}
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
		dprintk("svc: got len=%d\n", len);
	}

	/* No data, incomplete (TCP) read, or accept() */
	if (len == 0 || len == -EAGAIN) {
		rqstp->rq_res.len = 0;
		svc_xprt_release(rqstp);
		return -EAGAIN;
	}
	clear_bit(XPT_OLD, &xprt->xpt_flags);

	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
	rqstp->rq_chandle.defer = svc_defer;

	if (serv->sv_stats)
		serv->sv_stats->netcnt++;
	return len;
}
781
EXPORT_SYMBOL_GPL(svc_recv);
782 783 784 785 786 787 788 789 790

/*
 * Drop request
 */
void svc_drop(struct svc_rqst *rqstp)
{
	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
	svc_xprt_release(rqstp);
}
791
EXPORT_SYMBOL_GPL(svc_drop);
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821

/*
 * Return reply to client.
 */
int svc_send(struct svc_rqst *rqstp)
{
	struct svc_xprt	*xprt;
	int		len;
	struct xdr_buf	*xb;

	xprt = rqstp->rq_xprt;
	if (!xprt)
		return -EFAULT;

	/* release the receive skb before sending the reply */
	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);

	/* calculate over-all length */
	xb = &rqstp->rq_res;
	xb->len = xb->head[0].iov_len +
		xb->page_len +
		xb->tail[0].iov_len;

	/* Grab mutex to serialize outgoing data. */
	mutex_lock(&xprt->xpt_mutex);
	if (test_bit(XPT_DEAD, &xprt->xpt_flags))
		len = -ENOTCONN;
	else
		len = xprt->xpt_ops->xpo_sendto(rqstp);
	mutex_unlock(&xprt->xpt_mutex);
822
	rpc_wake_up(&xprt->xpt_bc_pending);
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	svc_xprt_release(rqstp);

	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
		return 0;
	return len;
}

/*
 * Timer function to close old temporary transports, using
 * a mark-and-sweep algorithm.
 */
static void svc_age_temp_xprts(unsigned long closure)
{
	struct svc_serv *serv = (struct svc_serv *)closure;
	struct svc_xprt *xprt;
	struct list_head *le, *next;
	LIST_HEAD(to_be_aged);

	dprintk("svc_age_temp_xprts\n");

	if (!spin_trylock_bh(&serv->sv_lock)) {
		/* busy, try again 1 sec later */
		dprintk("svc_age_temp_xprts: busy\n");
		mod_timer(&serv->sv_temptimer, jiffies + HZ);
		return;
	}

	list_for_each_safe(le, next, &serv->sv_tempsocks) {
		xprt = list_entry(le, struct svc_xprt, xpt_list);

		/* First time through, just mark it OLD. Second time
		 * through, close it. */
		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
			continue;
857 858
		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
		    test_bit(XPT_BUSY, &xprt->xpt_flags))
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
			continue;
		svc_xprt_get(xprt);
		list_move(le, &to_be_aged);
		set_bit(XPT_CLOSE, &xprt->xpt_flags);
		set_bit(XPT_DETACHED, &xprt->xpt_flags);
	}
	spin_unlock_bh(&serv->sv_lock);

	while (!list_empty(&to_be_aged)) {
		le = to_be_aged.next;
		/* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
		list_del_init(le);
		xprt = list_entry(le, struct svc_xprt, xpt_list);

		dprintk("queuing xprt %p for closing\n", xprt);

		/* a thread will dequeue and close it soon */
		svc_xprt_enqueue(xprt);
		svc_xprt_put(xprt);
	}

	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
}

/*
 * Remove a dead transport
 */
void svc_delete_xprt(struct svc_xprt *xprt)
{
	struct svc_serv	*serv = xprt->xpt_server;
889 890 891 892 893
	struct svc_deferred_req *dr;

	/* Only do this once */
	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
		return;
894 895 896 897 898 899 900 901 902 903 904 905 906 907

	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
	xprt->xpt_ops->xpo_detach(xprt);

	spin_lock_bh(&serv->sv_lock);
	if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
		list_del_init(&xprt->xpt_list);
	/*
	 * We used to delete the transport from whichever list
	 * it's sk_xprt.xpt_ready node was on, but we don't actually
	 * need to.  This is because the only time we're called
	 * while still attached to a queue, the queue itself
	 * is about to be destroyed (in svc_destroy).
	 */
908 909
	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
		serv->sv_tmpcnt--;
910
	spin_unlock_bh(&serv->sv_lock);
911

912
	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
913 914 915
		kfree(dr);

	svc_xprt_put(xprt);
916 917 918 919 920 921 922 923 924 925 926 927 928 929
}

void svc_close_xprt(struct svc_xprt *xprt)
{
	set_bit(XPT_CLOSE, &xprt->xpt_flags);
	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
		/* someone else will have to effect the close */
		return;

	svc_xprt_get(xprt);
	svc_delete_xprt(xprt);
	clear_bit(XPT_BUSY, &xprt->xpt_flags);
	svc_xprt_put(xprt);
}
930
EXPORT_SYMBOL_GPL(svc_close_xprt);
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959

void svc_close_all(struct list_head *xprt_list)
{
	struct svc_xprt *xprt;
	struct svc_xprt *tmp;

	list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
		set_bit(XPT_CLOSE, &xprt->xpt_flags);
		if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
			/* Waiting to be processed, but no threads left,
			 * So just remove it from the waiting list
			 */
			list_del_init(&xprt->xpt_ready);
			clear_bit(XPT_BUSY, &xprt->xpt_flags);
		}
		svc_close_xprt(xprt);
	}
}

/*
 * Handle defer and revisit of requests
 */

static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
{
	struct svc_deferred_req *dr =
		container_of(dreq, struct svc_deferred_req, handle);
	struct svc_xprt *xprt = dr->xprt;

960 961 962 963 964
	spin_lock(&xprt->xpt_lock);
	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
		spin_unlock(&xprt->xpt_lock);
		dprintk("revisit canceled\n");
965 966 967 968 969 970 971 972 973 974 975 976
		svc_xprt_put(xprt);
		kfree(dr);
		return;
	}
	dprintk("revisit queued\n");
	dr->xprt = NULL;
	list_add(&dr->handle.recent, &xprt->xpt_deferred);
	spin_unlock(&xprt->xpt_lock);
	svc_xprt_enqueue(xprt);
	svc_xprt_put(xprt);
}

977 978 979 980 981 982 983 984 985
/*
 * Save the request off for later processing. The request buffer looks
 * like this:
 *
 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
 *
 * This code can only handle requests that consist of an xprt-header
 * and rpc-header.
 */
986 987 988 989 990
static struct cache_deferred_req *svc_defer(struct cache_req *req)
{
	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
	struct svc_deferred_req *dr;

991
	if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
992 993 994 995 996
		return NULL; /* if more than a page, give up FIXME */
	if (rqstp->rq_deferred) {
		dr = rqstp->rq_deferred;
		rqstp->rq_deferred = NULL;
	} else {
997 998
		size_t skip;
		size_t size;
999
		/* FIXME maybe discard if size too large */
1000
		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
		dr = kmalloc(size, GFP_KERNEL);
		if (dr == NULL)
			return NULL;

		dr->handle.owner = rqstp->rq_server;
		dr->prot = rqstp->rq_prot;
		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
		dr->addrlen = rqstp->rq_addrlen;
		dr->daddr = rqstp->rq_daddr;
		dr->argslen = rqstp->rq_arg.len >> 2;
1011 1012 1013 1014 1015 1016
		dr->xprt_hlen = rqstp->rq_xprt_hlen;

		/* back up head to the start of the buffer and copy */
		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
		       dr->argslen << 2);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	}
	svc_xprt_get(rqstp->rq_xprt);
	dr->xprt = rqstp->rq_xprt;

	dr->handle.revisit = svc_revisit;
	return &dr->handle;
}

/*
 * recv data from a deferred request into an active one
 */
static int svc_deferred_recv(struct svc_rqst *rqstp)
{
	struct svc_deferred_req *dr = rqstp->rq_deferred;

1032 1033 1034 1035
	/* setup iov_base past transport header */
	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
	/* The iov_len does not include the transport header bytes */
	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1036
	rqstp->rq_arg.page_len = 0;
1037 1038
	/* The rq_arg.len includes the transport header bytes */
	rqstp->rq_arg.len     = dr->argslen<<2;
1039 1040 1041
	rqstp->rq_prot        = dr->prot;
	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
	rqstp->rq_addrlen     = dr->addrlen;
1042 1043
	/* Save off transport header len in case we get deferred again */
	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1044 1045
	rqstp->rq_daddr       = dr->daddr;
	rqstp->rq_respages    = rqstp->rq_pages;
1046
	return (dr->argslen<<2) - dr->xprt_hlen;
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
}


static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
{
	struct svc_deferred_req *dr = NULL;

	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
		return NULL;
	spin_lock(&xprt->xpt_lock);
	clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
	if (!list_empty(&xprt->xpt_deferred)) {
		dr = list_entry(xprt->xpt_deferred.next,
				struct svc_deferred_req,
				handle.recent);
		list_del_init(&dr->handle.recent);
		set_bit(XPT_DEFERRED, &xprt->xpt_flags);
	}
	spin_unlock(&xprt->xpt_lock);
	return dr;
}
1068

1069 1070 1071 1072 1073 1074 1075
/**
 * svc_find_xprt - find an RPC transport instance
 * @serv: pointer to svc_serv to search
 * @xcl_name: C string containing transport's class name
 * @af: Address family of transport's local address
 * @port: transport's IP port number
 *
1076 1077 1078 1079 1080 1081 1082 1083
 * Return the transport instance pointer for the endpoint accepting
 * connections/peer traffic from the specified transport class,
 * address family and port.
 *
 * Specifying 0 for the address family or port is effectively a
 * wild-card, and will result in matching the first transport in the
 * service's list that has a matching class name.
 */
1084 1085
struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
			       const sa_family_t af, const unsigned short port)
1086 1087 1088 1089 1090
{
	struct svc_xprt *xprt;
	struct svc_xprt *found = NULL;

	/* Sanity check the args */
1091
	if (serv == NULL || xcl_name == NULL)
1092 1093 1094 1095 1096 1097 1098 1099
		return found;

	spin_lock_bh(&serv->sv_lock);
	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
			continue;
		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
			continue;
1100
		if (port != 0 && port != svc_xprt_local_port(xprt))
1101 1102
			continue;
		found = xprt;
1103
		svc_xprt_get(xprt);
1104 1105 1106 1107 1108 1109
		break;
	}
	spin_unlock_bh(&serv->sv_lock);
	return found;
}
EXPORT_SYMBOL_GPL(svc_find_xprt);
1110

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
static int svc_one_xprt_name(const struct svc_xprt *xprt,
			     char *pos, int remaining)
{
	int len;

	len = snprintf(pos, remaining, "%s %u\n",
			xprt->xpt_class->xcl_name,
			svc_xprt_local_port(xprt));
	if (len >= remaining)
		return -ENAMETOOLONG;
	return len;
}

/**
 * svc_xprt_names - format a buffer with a list of transport names
 * @serv: pointer to an RPC service
 * @buf: pointer to a buffer to be filled in
 * @buflen: length of buffer to be filled in
 *
 * Fills in @buf with a string containing a list of transport names,
 * each name terminated with '\n'.
 *
 * Returns positive length of the filled-in string on success; otherwise
 * a negative errno value is returned if an error occurs.
1135
 */
1136
int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1137 1138
{
	struct svc_xprt *xprt;
1139 1140
	int len, totlen;
	char *pos;
1141 1142 1143 1144 1145 1146

	/* Sanity check args */
	if (!serv)
		return 0;

	spin_lock_bh(&serv->sv_lock);
1147 1148 1149

	pos = buf;
	totlen = 0;
1150
	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1151 1152 1153 1154 1155 1156
		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
		if (len < 0) {
			*buf = '\0';
			totlen = len;
		}
		if (len <= 0)
1157
			break;
1158 1159

		pos += len;
1160 1161
		totlen += len;
	}
1162

1163 1164 1165 1166
	spin_unlock_bh(&serv->sv_lock);
	return totlen;
}
EXPORT_SYMBOL_GPL(svc_xprt_names);
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211


/*----------------------------------------------------------------------------*/

static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
{
	unsigned int pidx = (unsigned int)*pos;
	struct svc_serv *serv = m->private;

	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);

	if (!pidx)
		return SEQ_START_TOKEN;
	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
}

static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
{
	struct svc_pool *pool = p;
	struct svc_serv *serv = m->private;

	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);

	if (p == SEQ_START_TOKEN) {
		pool = &serv->sv_pools[0];
	} else {
		unsigned int pidx = (pool - &serv->sv_pools[0]);
		if (pidx < serv->sv_nrpools-1)
			pool = &serv->sv_pools[pidx+1];
		else
			pool = NULL;
	}
	++*pos;
	return pool;
}

static void svc_pool_stats_stop(struct seq_file *m, void *p)
{
}

static int svc_pool_stats_show(struct seq_file *m, void *p)
{
	struct svc_pool *pool = p;

	if (p == SEQ_START_TOKEN) {
1212
		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1213 1214 1215
		return 0;
	}

1216
	seq_printf(m, "%u %lu %lu %lu %lu\n",
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
		pool->sp_id,
		pool->sp_stats.packets,
		pool->sp_stats.sockets_queued,
		pool->sp_stats.threads_woken,
		pool->sp_stats.threads_timedout);

	return 0;
}

static const struct seq_operations svc_pool_stats_seq_ops = {
	.start	= svc_pool_stats_start,
	.next	= svc_pool_stats_next,
	.stop	= svc_pool_stats_stop,
	.show	= svc_pool_stats_show,
};

int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
{
	int err;

	err = seq_open(file, &svc_pool_stats_seq_ops);
	if (!err)
		((struct seq_file *) file->private_data)->private = serv;
	return err;
}
EXPORT_SYMBOL(svc_pool_stats_open);

/*----------------------------------------------------------------------------*/