README.md 26.6 KB
Newer Older
M
Max Bruckner 已提交
1 2 3 4 5 6 7 8
# cJSON

Ultralightweight JSON parser in ANSI C.

## Table of contents
* [License](#license)
* [Usage](#usage)
  * [Welcome to cJSON](#welcome-to-cjson)
M
Max Bruckner 已提交
9
  * [Building](#building)
10 11 12
    * [Copying the source](#copying-the-source)
    * [CMake](#cmake)
    * [Makefile](#makefile)
A
Alanscut 已提交
13
    * [Vcpkg](#Vcpkg)
M
Max Bruckner 已提交
14
  * [Including cJSON](#including-cjson)
15
  * [Data Structure](#data-structure)
16
  * [Working with the data structure](#working-with-the-data-structure)
17 18 19
    * [Basic types](#basic-types)
    * [Arrays](#arrays)
    * [Objects](#objects)
M
Max Bruckner 已提交
20
  * [Parsing JSON](#parsing-json)
M
Max Bruckner 已提交
21
  * [Printing JSON](#printing-json)
M
Max Bruckner 已提交
22
  * [Example](#example)
23 24
    * [Printing](#printing)
    * [Parsing](#parsing)
M
Max Bruckner 已提交
25
  * [Caveats](#caveats)
26 27 28 29 30 31 32
    * [Zero Character](#zero-character)
    * [Character Encoding](#character-encoding)
    * [C Standard](#c-standard)
    * [Floating Point Numbers](#floating-point-numbers)
    * [Deep Nesting Of Arrays And Objects](#deep-nesting-of-arrays-and-objects)
    * [Thread Safety](#thread-safety)
    * [Case Sensitivity](#case-sensitivity)
33
    * [Duplicate Object Members](#duplicate-object-members)
M
Max Bruckner 已提交
34 35 36 37
  * [Enjoy cJSON!](#enjoy-cjson)

## License

M
Max Bruckner 已提交
38 39 40
MIT License

>  Copyright (c) 2009-2017 Dave Gamble and cJSON contributors
M
Max Bruckner 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
>
>  Permission is hereby granted, free of charge, to any person obtaining a copy
>  of this software and associated documentation files (the "Software"), to deal
>  in the Software without restriction, including without limitation the rights
>  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
>  copies of the Software, and to permit persons to whom the Software is
>  furnished to do so, subject to the following conditions:
>
>  The above copyright notice and this permission notice shall be included in
>  all copies or substantial portions of the Software.
>
>  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
>  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
>  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
>  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
>  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
>  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
>  THE SOFTWARE.

## Usage

### Welcome to cJSON.
K
Kevin Branigan 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

cJSON aims to be the dumbest possible parser that you can get your job done with.
It's a single file of C, and a single header file.

JSON is described best here: http://www.json.org/
It's like XML, but fat-free. You use it to move data around, store things, or just
generally represent your program's state.

As a library, cJSON exists to take away as much legwork as it can, but not get in your way.
As a point of pragmatism (i.e. ignoring the truth), I'm going to say that you can use it
in one of two modes: Auto and Manual. Let's have a quick run-through.

I lifted some JSON from this page: http://www.json.org/fatfree.html
That page inspired me to write cJSON, which is a parser that tries to share the same
philosophy as JSON itself. Simple, dumb, out of the way.

M
Max Bruckner 已提交
79 80 81 82 83
### Building

There are several ways to incorporate cJSON into your project.

#### copying the source
E
Erez Oxman 已提交
84

M
Max Bruckner 已提交
85 86 87 88 89
Because the entire library is only one C file and one header file, you can just copy `cJSON.h` and `cJSON.c` to your projects source and start using it.

cJSON is written in ANSI C (C89) in order to support as many platforms and compilers as possible.

#### CMake
E
Erez Oxman 已提交
90

91
With CMake, cJSON supports a full blown build system. This way you get the most features. CMake with an equal or higher version than 2.8.5 is supported. With CMake it is recommended to do an out of tree build, meaning the compiled files are put in a directory separate from the source files. So in order to build cJSON with CMake on a Unix platform, make a `build` directory and run CMake inside it.
M
Max Bruckner 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

```
mkdir build
cd build
cmake ..
```

This will create a Makefile and a bunch of other files. You can then compile it:

```
make
```

And install it with `make install` if you want. By default it installs the headers `/usr/local/include/cjson` and the libraries to `/usr/local/lib`. It also installs files for pkg-config to make it easier to detect and use an existing installation of CMake. And it installs CMake config files, that can be used by other CMake based projects to discover the library.

You can change the build process with a list of different options that you can pass to CMake. Turn them on with `On` and off with `Off`:
E
Erez Oxman 已提交
108

R
Romain Porte 已提交
109
* `-DENABLE_CJSON_TEST=On`: Enable building the tests. (on by default)
M
Max Bruckner 已提交
110 111
* `-DENABLE_CJSON_UTILS=On`: Enable building cJSON_Utils. (off by default)
* `-DENABLE_TARGET_EXPORT=On`: Enable the export of CMake targets. Turn off if it makes problems. (on by default)
112
* `-DENABLE_CUSTOM_COMPILER_FLAGS=On`: Enable custom compiler flags (currently for Clang, GCC and MSVC). Turn off if it makes problems. (on by default)
113 114
* `-DENABLE_VALGRIND=On`: Run tests with [valgrind](http://valgrind.org). (off by default)
* `-DENABLE_SANITIZERS=On`: Compile cJSON with [AddressSanitizer](https://github.com/google/sanitizers/wiki/AddressSanitizer) and [UndefinedBehaviorSanitizer](https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html) enabled (if possible). (off by default)
115
* `-DENABLE_SAFE_STACK`: Enable the [SafeStack](https://clang.llvm.org/docs/SafeStack.html) instrumentation pass. Currently only works with the Clang compiler. (off by default)
M
Max Bruckner 已提交
116
* `-DBUILD_SHARED_LIBS=On`: Build the shared libraries. (on by default)
117
* `-DBUILD_SHARED_AND_STATIC_LIBS=On`: Build both shared and static libraries. (off by default)
M
Max Bruckner 已提交
118
* `-DCMAKE_INSTALL_PREFIX=/usr`: Set a prefix for the installation.
119
* `-DENABLE_LOCALES=On`: Enable the usage of localeconv method. ( on by default )
M
Max Bruckner 已提交
120
* `-DCJSON_OVERRIDE_BUILD_SHARED_LIBS=On`: Enable overriding the value of `BUILD_SHARED_LIBS` with `-DCJSON_BUILD_SHARED_LIBS`.
M
Max Bruckner 已提交
121 122 123 124 125

If you are packaging cJSON for a distribution of Linux, you would probably take these steps for example:
```
mkdir build
cd build
R
Romain Porte 已提交
126
cmake .. -DENABLE_CJSON_UTILS=On -DENABLE_CJSON_TEST=Off -DCMAKE_INSTALL_PREFIX=/usr
M
Max Bruckner 已提交
127 128 129 130
make
make DESTDIR=$pkgdir install
```

131 132
On Windows CMake is usually used to create a Visual Studio solution file by running it inside the Developer Command Prompt for Visual Studio, for exact steps follow the official documentation from CMake and Microsoft and use the online search engine of your choice. The descriptions of the the options above still generally apply, although not all of them work on Windows.

M
Max Bruckner 已提交
133
#### Makefile
E
Erez Oxman 已提交
134

M
Max Bruckner 已提交
135 136
**NOTE:** This Method is deprecated. Use CMake if at all possible. Makefile support is limited to fixing bugs.

137
If you don't have CMake available, but still have GNU make. You can use the makefile to build cJSON:
M
Max Bruckner 已提交
138

M
Max Bruckner 已提交
139
Run this command in the directory with the source code and it will automatically compile static and shared libraries and a little test program (not the full test suite).
M
Max Bruckner 已提交
140 141 142 143 144

```
make all
```

A
Alanscut 已提交
145
If you want, you can install the compiled library to your system using `make install`. By default it will install the headers in `/usr/local/include/cjson` and the libraries in `/usr/local/lib`. But you can change this behavior by setting the `PREFIX` and `DESTDIR` variables: `make PREFIX=/usr DESTDIR=temp install`. And uninstall them with: `make PREFIX=/usr DESTDIR=temp uninstall`.
M
Max Bruckner 已提交
146

A
Alanscut 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159
#### Vcpkg

You can download and install cJSON using the [vcpkg](https://github.com/Microsoft/vcpkg) dependency manager:
```
git clone https://github.com/Microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.sh
./vcpkg integrate install
vcpkg install cjson
```

The cJSON port in vcpkg is kept up to date by Microsoft team members and community contributors. If the version is out of date, please [create an issue or pull request](https://github.com/Microsoft/vcpkg) on the vcpkg repository.

160
### Including cJSON
E
Erez Oxman 已提交
161

M
Max Bruckner 已提交
162
If you installed it via CMake or the Makefile, you can include cJSON like this:
163 164 165 166 167

```c
#include <cjson/cJSON.h>
```

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
### Data Structure

cJSON represents JSON data using the `cJSON` struct data type:

```c
/* The cJSON structure: */
typedef struct cJSON
{
    struct cJSON *next;
    struct cJSON *prev;
    struct cJSON *child;
    int type;
    char *valuestring;
    /* writing to valueint is DEPRECATED, use cJSON_SetNumberValue instead */
    int valueint;
    double valuedouble;
    char *string;
} cJSON;
```

An item of this type represents a JSON value. The type is stored in `type` as a bit-flag (**this means that you cannot find out the type by just comparing the value of `type`**).

To check the type of an item, use the corresponding `cJSON_Is...` function. It does a `NULL` check followed by a type check and returns a boolean value if the item is of this type.

The type can be one of the following:
E
Erez Oxman 已提交
193

194 195 196 197 198 199
* `cJSON_Invalid` (check with `cJSON_IsInvalid`): Represents an invalid item that doesn't contain any value. You automatically have this type if you set the item to all zero bytes.
* `cJSON_False` (check with `cJSON_IsFalse`): Represents a `false` boolean value. You can also check for boolean values in general with `cJSON_IsBool`.
* `cJSON_True` (check with `cJSON_IsTrue`): Represents a `true` boolean value. You can also check for boolean values in general with `cJSON_IsBool`.
* `cJSON_NULL` (check with `cJSON_IsNull`): Represents a `null` value.
* `cJSON_Number` (check with `cJSON_IsNumber`): Represents a number value. The value is stored as a double in `valuedouble` and also in `valueint`. If the number is outside of the range of an integer, `INT_MAX` or `INT_MIN` are used for `valueint`.
* `cJSON_String` (check with `cJSON_IsString`): Represents a string value. It is stored in the form of a zero terminated string in `valuestring`.
A
Alanscut 已提交
200
* `cJSON_Array` (check with `cJSON_IsArray`): Represent an array value. This is implemented by pointing `child` to a linked list of `cJSON` items that represent the values in the array. The elements are linked together using `next` and `prev`, where the first element has `prev.next == NULL` and the last element `next == NULL`.
201 202 203 204
* `cJSON_Object` (check with `cJSON_IsObject`): Represents an object value. Objects are stored same way as an array, the only difference is that the items in the object store their keys in `string`.
* `cJSON_Raw` (check with `cJSON_IsRaw`): Represents any kind of JSON that is stored as a zero terminated array of characters in `valuestring`. This can be used, for example, to avoid printing the same static JSON over and over again to save performance. cJSON will never create this type when parsing. Also note that cJSON doesn't check if it is valid JSON.

Additionally there are the following two flags:
E
Erez Oxman 已提交
205

A
Alanscut 已提交
206
* `cJSON_IsReference`: Specifies that the item that `child` points to and/or `valuestring` is not owned by this item, it is only a reference. So `cJSON_Delete` and other functions will only deallocate this item, not its `child`/`valuestring`.
207 208
* `cJSON_StringIsConst`: This means that `string` points to a constant string. This means that `cJSON_Delete` and other functions will not try to deallocate `string`.

209 210 211 212
### Working with the data structure

For every value type there is a `cJSON_Create...` function that can be used to create an item of that type.
All of these will allocate a `cJSON` struct that can later be deleted with `cJSON_Delete`.
A
Alanscut 已提交
213 214
Note that you have to delete them at some point, otherwise you will get a memory leak.  
**Important**: If you have added an item to an array or an object already, you **mustn't** delete it with `cJSON_Delete`. Adding it to an array or object transfers its ownership so that when that array or object is deleted, 
215
it gets deleted as well. You also could use `cJSON_SetValuestring` to change a `cJSON_String`'s `valuestring`, and you needn't to free the previous `valuestring` manually.
216 217

#### Basic types
E
Erez Oxman 已提交
218

219 220 221
* **null** is created with `cJSON_CreateNull`
* **booleans** are created with `cJSON_CreateTrue`, `cJSON_CreateFalse` or `cJSON_CreateBool`
* **numbers** are created with `cJSON_CreateNumber`. This will set both `valuedouble` and `valueint`. If the number is outside of the range of an integer, `INT_MAX` or `INT_MIN` are used for `valueint`
S
Square789 已提交
222
* **strings** are created with `cJSON_CreateString` (copies the string) or with `cJSON_CreateStringReference` (directly points to the string. This means that `valuestring` won't be deleted by `cJSON_Delete` and you are responsible for its lifetime, useful for constants)
223 224 225 226 227 228

#### Arrays

You can create an empty array with `cJSON_CreateArray`. `cJSON_CreateArrayReference` can be used to create an array that doesn't "own" its content, so its content doesn't get deleted by `cJSON_Delete`.

To add items to an array, use `cJSON_AddItemToArray` to append items to the end.
A
Alanscut 已提交
229
Using `cJSON_AddItemReferenceToArray` an element can be added as a reference to another item, array or string. This means that `cJSON_Delete` will not delete that items `child` or `valuestring` properties, so no double frees are occurring if they are already used elsewhere.
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
To insert items in the middle, use `cJSON_InsertItemInArray`. It will insert an item at the given 0 based index and shift all the existing items to the right.

If you want to take an item out of an array at a given index and continue using it, use `cJSON_DetachItemFromArray`, it will return the detached item, so be sure to assign it to a pointer, otherwise you will have a memory leak.

Deleting items is done with `cJSON_DeleteItemFromArray`. It works like `cJSON_DetachItemFromArray`, but deletes the detached item via `cJSON_Delete`.

You can also replace an item in an array in place. Either with `cJSON_ReplaceItemInArray` using an index or with `cJSON_ReplaceItemViaPointer` given a pointer to an element. `cJSON_ReplaceItemViaPointer` will return `0` if it fails. What this does internally is to detach the old item, delete it and insert the new item in its place.

To get the size of an array, use `cJSON_GetArraySize`. Use `cJSON_GetArrayItem` to get an element at a given index.

Because an array is stored as a linked list, iterating it via index is inefficient (`O(n²)`), so you can iterate over an array using the `cJSON_ArrayForEach` macro in `O(n)` time complexity.

#### Objects

You can create an empty object with `cJSON_CreateObject`. `cJSON_CreateObjectReference` can be used to create an object that doesn't "own" its content, so its content doesn't get deleted by `cJSON_Delete`.

To add items to an object, use `cJSON_AddItemToObject`. Use `cJSON_AddItemToObjectCS` to add an item to an object with a name that is a constant or reference (key of the item, `string` in the `cJSON` struct), so that it doesn't get freed by `cJSON_Delete`.
A
Alanscut 已提交
247
Using `cJSON_AddItemReferenceToArray` an element can be added as a reference to another object, array or string. This means that `cJSON_Delete` will not delete that items `child` or `valuestring` properties, so no double frees are occurring if they are already used elsewhere.
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

If you want to take an item out of an object, use `cJSON_DetachItemFromObjectCaseSensitive`, it will return the detached item, so be sure to assign it to a pointer, otherwise you will have a memory leak.

Deleting items is done with `cJSON_DeleteItemFromObjectCaseSensitive`. It works like `cJSON_DetachItemFromObjectCaseSensitive` followed by `cJSON_Delete`.

You can also replace an item in an object in place. Either with `cJSON_ReplaceItemInObjectCaseSensitive` using a key or with `cJSON_ReplaceItemViaPointer` given a pointer to an element. `cJSON_ReplaceItemViaPointer` will return `0` if it fails. What this does internally is to detach the old item, delete it and insert the new item in its place.

To get the size of an object, you can use `cJSON_GetArraySize`, this works because internally objects are stored as arrays.

If you want to access an item in an object, use `cJSON_GetObjectItemCaseSensitive`.

To iterate over an object, you can use the `cJSON_ArrayForEach` macro the same way as for arrays.

cJSON also provides convenient helper functions for quickly creating a new item and adding it to an object, like `cJSON_AddNullToObject`. They return a pointer to the new item or `NULL` if they failed.

M
Max Bruckner 已提交
263 264 265 266 267 268 269 270
### Parsing JSON

Given some JSON in a zero terminated string, you can parse it with `cJSON_Parse`.

```c
cJSON *json = cJSON_Parse(string);
```

C
caglarivriz 已提交
271 272 273 274 275 276
Given some JSON in a string (whether zero terminated or not), you can parse it with `cJSON_ParseWithLength`.

```c
cJSON *json = cJSON_ParseWithLength(string, buffer_length);
```

M
Max Bruckner 已提交
277 278 279 280 281 282 283 284 285 286
It will parse the JSON and allocate a tree of `cJSON` items that represents it. Once it returns, you are fully responsible for deallocating it after use with `cJSON_Delete`.

The allocator used by `cJSON_Parse` is `malloc` and `free` by default but can be changed (globally) with `cJSON_InitHooks`.

If an error occurs a pointer to the position of the error in the input string can be accessed using `cJSON_GetErrorPtr`. Note though that this can produce race conditions in multithreading scenarios, in that case it is better to use `cJSON_ParseWithOpts` with `return_parse_end`.
By default, characters in the input string that follow the parsed JSON will not be considered as an error.

If you want more options, use `cJSON_ParseWithOpts(const char *value, const char **return_parse_end, cJSON_bool require_null_terminated)`.
`return_parse_end` returns a pointer to the end of the JSON in the input string or the position that an error occurs at (thereby replacing `cJSON_GetErrorPtr` in a thread safe way). `require_null_terminated`, if set to `1` will make it an error if the input string contains data after the JSON.

C
caglarivriz 已提交
287 288
If you want more options giving buffer length, use `cJSON_ParseWithLengthOpts(const char *value, size_t buffer_length, const char **return_parse_end, cJSON_bool require_null_terminated)`.

M
Max Bruckner 已提交
289 290 291 292 293 294 295 296 297 298 299 300
### Printing JSON

Given a tree of `cJSON` items, you can print them as a string using `cJSON_Print`.

```c
char *string = cJSON_Print(json);
```

It will allocate a string and print a JSON representation of the tree into it. Once it returns, you are fully responsible for deallocating it after use with your allocator. (usually `free`, depends on what has been set with `cJSON_InitHooks`).

`cJSON_Print` will print with whitespace for formatting. If you want to print without formatting, use `cJSON_PrintUnformatted`.

S
Square789 已提交
301
If you have a rough idea of how big your resulting string will be, you can use `cJSON_PrintBuffered(const cJSON *item, int prebuffer, cJSON_bool fmt)`. `fmt` is a boolean to turn formatting with whitespace on and off. `prebuffer` specifies the first buffer size to use for printing. `cJSON_Print` currently uses 256 bytes for its first buffer size. Once printing runs out of space, a new buffer is allocated and the old gets copied over before printing is continued.
M
Max Bruckner 已提交
302

S
Square789 已提交
303
These dynamic buffer allocations can be completely avoided by using `cJSON_PrintPreallocated(cJSON *item, char *buffer, const int length, const cJSON_bool format)`. It takes a buffer to a pointer to print to and its length. If the length is reached, printing will fail and it returns `0`. In case of success, `1` is returned. Note that you should provide 5 bytes more than is actually needed, because cJSON is not 100% accurate in estimating if the provided memory is enough.
M
Max Bruckner 已提交
304

M
Max Bruckner 已提交
305
### Example
E
Erez Oxman 已提交
306

M
Max Bruckner 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
In this example we want to build and parse the following JSON:

```json
{
    "name": "Awesome 4K",
    "resolutions": [
        {
            "width": 1280,
            "height": 720
        },
        {
            "width": 1920,
            "height": 1080
        },
        {
            "width": 3840,
            "height": 2160
        }
    ]
}
```

#### Printing
E
Erez Oxman 已提交
330

M
Max Bruckner 已提交
331
Let's build the above JSON and print it to a string:
E
Erez Oxman 已提交
332

M
Max Bruckner 已提交
333 334
```c
//create a monitor with a list of supported resolutions
335
//NOTE: Returns a heap allocated string, you are required to free it after use.
D
dm8.kim 已提交
336
char *create_monitor(void)
M
Max Bruckner 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
{
    const unsigned int resolution_numbers[3][2] = {
        {1280, 720},
        {1920, 1080},
        {3840, 2160}
    };
    char *string = NULL;
    cJSON *name = NULL;
    cJSON *resolutions = NULL;
    cJSON *resolution = NULL;
    cJSON *width = NULL;
    cJSON *height = NULL;
    size_t index = 0;

    cJSON *monitor = cJSON_CreateObject();
    if (monitor == NULL)
    {
        goto end;
    }

    name = cJSON_CreateString("Awesome 4K");
    if (name == NULL)
    {
        goto end;
    }
    /* after creation was successful, immediately add it to the monitor,
A
Alanscut 已提交
363
     * thereby transferring ownership of the pointer to it */
M
Max Bruckner 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    cJSON_AddItemToObject(monitor, "name", name);

    resolutions = cJSON_CreateArray();
    if (resolutions == NULL)
    {
        goto end;
    }
    cJSON_AddItemToObject(monitor, "resolutions", resolutions);

    for (index = 0; index < (sizeof(resolution_numbers) / (2 * sizeof(int))); ++index)
    {
        resolution = cJSON_CreateObject();
        if (resolution == NULL)
        {
            goto end;
        }
        cJSON_AddItemToArray(resolutions, resolution);

        width = cJSON_CreateNumber(resolution_numbers[index][0]);
        if (width == NULL)
        {
            goto end;
        }
        cJSON_AddItemToObject(resolution, "width", width);

        height = cJSON_CreateNumber(resolution_numbers[index][1]);
        if (height == NULL)
        {
            goto end;
        }
        cJSON_AddItemToObject(resolution, "height", height);
    }

    string = cJSON_Print(monitor);
    if (string == NULL)
    {
        fprintf(stderr, "Failed to print monitor.\n");
    }

end:
    cJSON_Delete(monitor);
    return string;
}
```

Alternatively we can use the `cJSON_Add...ToObject` helper functions to make our lifes a little easier:
E
Erez Oxman 已提交
410

M
Max Bruckner 已提交
411
```c
412
//NOTE: Returns a heap allocated string, you are required to free it after use.
M
Max Bruckner 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
char *create_monitor_with_helpers(void)
{
    const unsigned int resolution_numbers[3][2] = {
        {1280, 720},
        {1920, 1080},
        {3840, 2160}
    };
    char *string = NULL;
    cJSON *resolutions = NULL;
    size_t index = 0;

    cJSON *monitor = cJSON_CreateObject();

    if (cJSON_AddStringToObject(monitor, "name", "Awesome 4K") == NULL)
    {
        goto end;
    }

    resolutions = cJSON_AddArrayToObject(monitor, "resolutions");
    if (resolutions == NULL)
    {
        goto end;
    }

    for (index = 0; index < (sizeof(resolution_numbers) / (2 * sizeof(int))); ++index)
    {
        cJSON *resolution = cJSON_CreateObject();

        if (cJSON_AddNumberToObject(resolution, "width", resolution_numbers[index][0]) == NULL)
        {
            goto end;
        }

D
dm8.kim 已提交
446
        if (cJSON_AddNumberToObject(resolution, "height", resolution_numbers[index][1]) == NULL)
M
Max Bruckner 已提交
447 448 449 450 451 452 453 454
        {
            goto end;
        }

        cJSON_AddItemToArray(resolutions, resolution);
    }

    string = cJSON_Print(monitor);
D
dm8.kim 已提交
455 456
    if (string == NULL)
    {
M
Max Bruckner 已提交
457 458 459 460 461 462 463 464 465 466
        fprintf(stderr, "Failed to print monitor.\n");
    }

end:
    cJSON_Delete(monitor);
    return string;
}
```

#### Parsing
E
Erez Oxman 已提交
467

M
Max Bruckner 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
In this example we will parse a JSON in the above format and check if the monitor supports a Full HD resolution while printing some diagnostic output:

```c
/* return 1 if the monitor supports full hd, 0 otherwise */
int supports_full_hd(const char * const monitor)
{
    const cJSON *resolution = NULL;
    const cJSON *resolutions = NULL;
    const cJSON *name = NULL;
    int status = 0;
    cJSON *monitor_json = cJSON_Parse(monitor);
    if (monitor_json == NULL)
    {
        const char *error_ptr = cJSON_GetErrorPtr();
        if (error_ptr != NULL)
        {
            fprintf(stderr, "Error before: %s\n", error_ptr);
        }
        status = 0;
        goto end;
    }

    name = cJSON_GetObjectItemCaseSensitive(monitor_json, "name");
    if (cJSON_IsString(name) && (name->valuestring != NULL))
    {
        printf("Checking monitor \"%s\"\n", name->valuestring);
    }

    resolutions = cJSON_GetObjectItemCaseSensitive(monitor_json, "resolutions");
    cJSON_ArrayForEach(resolution, resolutions)
    {
        cJSON *width = cJSON_GetObjectItemCaseSensitive(resolution, "width");
        cJSON *height = cJSON_GetObjectItemCaseSensitive(resolution, "height");

        if (!cJSON_IsNumber(width) || !cJSON_IsNumber(height))
        {
            status = 0;
            goto end;
        }

        if ((width->valuedouble == 1920) && (height->valuedouble == 1080))
        {
            status = 1;
            goto end;
        }
    }

end:
    cJSON_Delete(monitor_json);
    return status;
}
```

Note that there are no NULL checks except for the result of `cJSON_Parse` because `cJSON_GetObjectItemCaseSensitive` checks for `NULL` inputs already, so a `NULL` value is just propagated and `cJSON_IsNumber` and `cJSON_IsString` return `0` if the input is `NULL`.

M
Max Bruckner 已提交
523 524
### Caveats

525 526 527 528
#### Zero Character

cJSON doesn't support strings that contain the zero character `'\0'` or `\u0000`. This is impossible with the current API because strings are zero terminated.

529 530
#### Character Encoding

M
Max Bruckner 已提交
531
cJSON only supports UTF-8 encoded input. In most cases it doesn't reject invalid UTF-8 as input though, it just propagates it through as is. As long as the input doesn't contain invalid UTF-8, the output will always be valid UTF-8.
532

M
Max Bruckner 已提交
533 534 535 536
#### C Standard

cJSON is written in ANSI C (or C89, C90). If your compiler or C library doesn't follow this standard, correct behavior is not guaranteed.

M
Max Bruckner 已提交
537
NOTE: ANSI C is not C++ therefore it shouldn't be compiled with a C++ compiler. You can compile it with a C compiler and link it with your C++ code however. Although compiling with a C++ compiler might work, correct behavior is not guaranteed.
M
Max Bruckner 已提交
538 539 540

#### Floating Point Numbers

M
Max Bruckner 已提交
541
cJSON does not officially support any `double` implementations other than IEEE754 double precision floating point numbers. It might still work with other implementations but bugs with these will be considered invalid.
M
Max Bruckner 已提交
542 543 544

The maximum length of a floating point literal that cJSON supports is currently 63 characters.

545 546 547 548
#### Deep Nesting Of Arrays And Objects

cJSON doesn't support arrays and objects that are nested too deeply because this would result in a stack overflow. To prevent this cJSON limits the depth to `CJSON_NESTING_LIMIT` which is 1000 by default but can be changed at compile time.

M
Max Bruckner 已提交
549 550 551 552 553
#### Thread Safety

In general cJSON is **not thread safe**.

However it is thread safe under the following conditions:
E
Erez Oxman 已提交
554

M
Max Bruckner 已提交
555 556 557
* `cJSON_GetErrorPtr` is never used (the `return_parse_end` parameter of `cJSON_ParseWithOpts` can be used instead)
* `cJSON_InitHooks` is only ever called before using cJSON in any threads.
* `setlocale` is never called before all calls to cJSON functions have returned.
M
Max Bruckner 已提交
558

559 560 561 562
#### Case Sensitivity

When cJSON was originally created, it didn't follow the JSON standard and didn't make a distinction between uppercase and lowercase letters. If you want the correct, standard compliant, behavior, you need to use the `CaseSensitive` functions where available.

563 564 565 566
#### Duplicate Object Members

cJSON supports parsing and printing JSON that contains objects that have multiple members with the same name. `cJSON_GetObjectItemCaseSensitive` however will always only return the first one.

M
Max Bruckner 已提交
567
# Enjoy cJSON!
K
Kevin Branigan 已提交
568

569
- Dave Gamble (original author)
A
Alanscut 已提交
570
- Max Bruckner and Alan Wang (current maintainer)
571
- and the other [cJSON contributors](CONTRIBUTORS.md)