jidctfst.c 12.4 KB
Newer Older
S
s00567839 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/*
 * jidctfst.c
 *
 * Copyright (C) 1994-1998, Thomas G. Lane.
 * Modified 2015-2017 by Guido Vollbeding.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains a fast, not so accurate integer implementation of the
 * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
 * must also perform dequantization of the input coefficients.
 *
 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
 * on each row (or vice versa, but it's more convenient to emit a row at
 * a time).  Direct algorithms are also available, but they are much more
 * complex and seem not to be any faster when reduced to code.
 *
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
 * JPEG textbook (see REFERENCES section in file README).  The following code
 * is based directly on figure 4-8 in P&M.
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
 * possible to arrange the computation so that many of the multiplies are
 * simple scalings of the final outputs.  These multiplies can then be
 * folded into the multiplications or divisions by the JPEG quantization
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
 * to be done in the DCT itself.
 * The primary disadvantage of this method is that with fixed-point math,
 * accuracy is lost due to imprecise representation of the scaled
 * quantization values.  The smaller the quantization table entry, the less
 * precise the scaled value, so this implementation does worse with high-
 * quality-setting files than with low-quality ones.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h"		/* Private declarations for DCT subsystem */

#ifdef DCT_IFAST_SUPPORTED


/*
 * This module is specialized to the case DCTSIZE = 8.
 */

#if DCTSIZE != 8
  Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
#endif


/* Scaling decisions are generally the same as in the LL&M algorithm;
 * see jidctint.c for more details.  However, we choose to descale
 * (right shift) multiplication products as soon as they are formed,
 * rather than carrying additional fractional bits into subsequent additions.
 * This compromises accuracy slightly, but it lets us save a few shifts.
 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
 * everywhere except in the multiplications proper; this saves a good deal
 * of work on 16-bit-int machines.
 *
 * The dequantized coefficients are not integers because the AA&N scaling
 * factors have been incorporated.  We represent them scaled up by PASS1_BITS,
 * so that the first and second IDCT rounds have the same input scaling.
 * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
 * avoid a descaling shift; this compromises accuracy rather drastically
 * for small quantization table entries, but it saves a lot of shifts.
 * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
 * so we use a much larger scaling factor to preserve accuracy.
 *
 * A final compromise is to represent the multiplicative constants to only
 * 8 fractional bits, rather than 13.  This saves some shifting work on some
 * machines, and may also reduce the cost of multiplication (since there
 * are fewer one-bits in the constants).
 */

#if BITS_IN_JSAMPLE == 8
#define CONST_BITS  8
#define PASS1_BITS  2
#else
#define CONST_BITS  8
#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
#endif

/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
 * causing a lot of useless floating-point operations at run time.
 * To get around this we use the following pre-calculated constants.
 * If you change CONST_BITS you may want to add appropriate values.
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
 */

#if CONST_BITS == 8
#define FIX_1_082392200  ((INT32)  277)		/* FIX(1.082392200) */
#define FIX_1_414213562  ((INT32)  362)		/* FIX(1.414213562) */
#define FIX_1_847759065  ((INT32)  473)		/* FIX(1.847759065) */
#define FIX_2_613125930  ((INT32)  669)		/* FIX(2.613125930) */
#else
#define FIX_1_082392200  FIX(1.082392200)
#define FIX_1_414213562  FIX(1.414213562)
#define FIX_1_847759065  FIX(1.847759065)
#define FIX_2_613125930  FIX(2.613125930)
#endif


/* We can gain a little more speed, with a further compromise in accuracy,
 * by omitting the addition in a descaling shift.  This yields an incorrectly
 * rounded result half the time...
 */

#ifndef USE_ACCURATE_ROUNDING
#undef DESCALE
#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
#endif


/* Multiply a DCTELEM variable by an INT32 constant, and immediately
 * descale to yield a DCTELEM result.
 */

#define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))


/* Dequantize a coefficient by multiplying it by the multiplier-table
 * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16
 * multiplication will do.  For 12-bit data, the multiplier table is
 * declared INT32, so a 32-bit multiply will be used.
 */

#if BITS_IN_JSAMPLE == 8
#define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval))
#else
#define DEQUANTIZE(coef,quantval)  \
	DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
#endif


/*
 * Perform dequantization and inverse DCT on one block of coefficients.
 *
 * cK represents cos(K*pi/16).
 */

GLOBAL(void)
jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
		 JCOEFPTR coef_block,
		 JSAMPARRAY output_buf, JDIMENSION output_col)
{
  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  DCTELEM tmp10, tmp11, tmp12, tmp13;
  DCTELEM z5, z10, z11, z12, z13;
  JCOEFPTR inptr;
  IFAST_MULT_TYPE * quantptr;
  int * wsptr;
  JSAMPROW outptr;
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  int ctr;
  int workspace[DCTSIZE2];	/* buffers data between passes */
  SHIFT_TEMPS			/* for DESCALE */
  ISHIFT_TEMPS			/* for IRIGHT_SHIFT */

  /* Pass 1: process columns from input, store into work array. */

  inptr = coef_block;
  quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
  wsptr = workspace;
  for (ctr = DCTSIZE; ctr > 0; ctr--) {
    /* Due to quantization, we will usually find that many of the input
     * coefficients are zero, especially the AC terms.  We can exploit this
     * by short-circuiting the IDCT calculation for any column in which all
     * the AC terms are zero.  In that case each output is equal to the
     * DC coefficient (with scale factor as needed).
     * With typical images and quantization tables, half or more of the
     * column DCT calculations can be simplified this way.
     */
    
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
	inptr[DCTSIZE*7] == 0) {
      /* AC terms all zero */
      int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);

      wsptr[DCTSIZE*0] = dcval;
      wsptr[DCTSIZE*1] = dcval;
      wsptr[DCTSIZE*2] = dcval;
      wsptr[DCTSIZE*3] = dcval;
      wsptr[DCTSIZE*4] = dcval;
      wsptr[DCTSIZE*5] = dcval;
      wsptr[DCTSIZE*6] = dcval;
      wsptr[DCTSIZE*7] = dcval;
      
      inptr++;			/* advance pointers to next column */
      quantptr++;
      wsptr++;
      continue;
    }
    
    /* Even part */

    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);

    tmp10 = tmp0 + tmp2;	/* phase 3 */
    tmp11 = tmp0 - tmp2;

    tmp13 = tmp1 + tmp3;	/* phases 5-3 */
    tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */

    tmp0 = tmp10 + tmp13;	/* phase 2 */
    tmp3 = tmp10 - tmp13;
    tmp1 = tmp11 + tmp12;
    tmp2 = tmp11 - tmp12;
    
    /* Odd part */

    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);

    z13 = tmp6 + tmp5;		/* phase 6 */
    z10 = tmp6 - tmp5;
    z11 = tmp4 + tmp7;
    z12 = tmp4 - tmp7;

    tmp7 = z11 + z13;		/* phase 5 */
    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */

    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
    tmp10 = z5 - MULTIPLY(z12, FIX_1_082392200); /* 2*(c2-c6) */
    tmp12 = z5 - MULTIPLY(z10, FIX_2_613125930); /* 2*(c2+c6) */

    tmp6 = tmp12 - tmp7;	/* phase 2 */
    tmp5 = tmp11 - tmp6;
    tmp4 = tmp10 - tmp5;

    wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
    wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
    wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
    wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
    wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
    wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
    wsptr[DCTSIZE*3] = (int) (tmp3 + tmp4);
    wsptr[DCTSIZE*4] = (int) (tmp3 - tmp4);

    inptr++;			/* advance pointers to next column */
    quantptr++;
    wsptr++;
  }
  
  /* Pass 2: process rows from work array, store into output array.
   * Note that we must descale the results by a factor of 8 == 2**3,
   * and also undo the PASS1_BITS scaling.
   */

  wsptr = workspace;
  for (ctr = 0; ctr < DCTSIZE; ctr++) {
    outptr = output_buf[ctr] + output_col;

    /* Add range center and fudge factor for final descale and range-limit. */
    z5 = (DCTELEM) wsptr[0] +
	   ((((DCTELEM) RANGE_CENTER) << (PASS1_BITS+3)) +
	    (1 << (PASS1_BITS+2)));

    /* Rows of zeroes can be exploited in the same way as we did with columns.
     * However, the column calculation has created many nonzero AC terms, so
     * the simplification applies less often (typically 5% to 10% of the time).
     * On machines with very fast multiplication, it's possible that the
     * test takes more time than it's worth.  In that case this section
     * may be commented out.
     */
    
#ifndef NO_ZERO_ROW_TEST
    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
      /* AC terms all zero */
      JSAMPLE dcval = range_limit[(int) IRIGHT_SHIFT(z5, PASS1_BITS+3)
				  & RANGE_MASK];
      
      outptr[0] = dcval;
      outptr[1] = dcval;
      outptr[2] = dcval;
      outptr[3] = dcval;
      outptr[4] = dcval;
      outptr[5] = dcval;
      outptr[6] = dcval;
      outptr[7] = dcval;

      wsptr += DCTSIZE;		/* advance pointer to next row */
      continue;
    }
#endif
    
    /* Even part */

    tmp10 = z5 + (DCTELEM) wsptr[4];
    tmp11 = z5 - (DCTELEM) wsptr[4];

    tmp13 = (DCTELEM) wsptr[2] + (DCTELEM) wsptr[6];
    tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6],
		     FIX_1_414213562) - tmp13; /* 2*c4 */

    tmp0 = tmp10 + tmp13;
    tmp3 = tmp10 - tmp13;
    tmp1 = tmp11 + tmp12;
    tmp2 = tmp11 - tmp12;

    /* Odd part */

    z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
    z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
    z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
    z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];

    tmp7 = z11 + z13;		/* phase 5 */
    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */

    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
    tmp10 = z5 - MULTIPLY(z12, FIX_1_082392200); /* 2*(c2-c6) */
    tmp12 = z5 - MULTIPLY(z10, FIX_2_613125930); /* 2*(c2+c6) */

    tmp6 = tmp12 - tmp7;	/* phase 2 */
    tmp5 = tmp11 - tmp6;
    tmp4 = tmp10 - tmp5;

    /* Final output stage: scale down by a factor of 8 and range-limit */

    outptr[0] = range_limit[(int) IRIGHT_SHIFT(tmp0 + tmp7, PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[7] = range_limit[(int) IRIGHT_SHIFT(tmp0 - tmp7, PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[1] = range_limit[(int) IRIGHT_SHIFT(tmp1 + tmp6, PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[6] = range_limit[(int) IRIGHT_SHIFT(tmp1 - tmp6, PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[2] = range_limit[(int) IRIGHT_SHIFT(tmp2 + tmp5, PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[5] = range_limit[(int) IRIGHT_SHIFT(tmp2 - tmp5, PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[3] = range_limit[(int) IRIGHT_SHIFT(tmp3 + tmp4, PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[4] = range_limit[(int) IRIGHT_SHIFT(tmp3 - tmp4, PASS1_BITS+3)
			    & RANGE_MASK];

    wsptr += DCTSIZE;		/* advance pointer to next row */
  }
}

#endif /* DCT_IFAST_SUPPORTED */