ec2_mult.c 13.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* crypto/ec/ec2_mult.c */
/* ====================================================================
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
 *
 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
 * to the OpenSSL project.
 *
 * The ECC Code is licensed pursuant to the OpenSSL open source
 * license provided below.
 *
 * The software is originally written by Sheueling Chang Shantz and
 * Douglas Stebila of Sun Microsystems Laboratories.
 *
 */
/* ====================================================================
17
 * Copyright (c) 1998-2003 The OpenSSL Project.  All rights reserved.
18 19 20 21 22 23
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
24
 *    notice, this list of conditions and the following disclaimer.
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

#include <openssl/err.h>

72
#include "internal/bn_int.h"
73 74
#include "ec_lcl.h"

75 76
#ifndef OPENSSL_NO_EC2M

77
/*-
78
 * Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
79
 * coordinates.
80 81
 * Uses algorithm Mdouble in appendix of
 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
B
Bodo Möller 已提交
82
 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
83 84
 * modified to not require precomputation of c=b^{2^{m-1}}.
 */
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z,
                        BN_CTX *ctx)
{
    BIGNUM *t1;
    int ret = 0;

    /* Since Mdouble is static we can guarantee that ctx != NULL. */
    BN_CTX_start(ctx);
    t1 = BN_CTX_get(ctx);
    if (t1 == NULL)
        goto err;

    if (!group->meth->field_sqr(group, x, x, ctx))
        goto err;
    if (!group->meth->field_sqr(group, t1, z, ctx))
        goto err;
    if (!group->meth->field_mul(group, z, x, t1, ctx))
        goto err;
    if (!group->meth->field_sqr(group, x, x, ctx))
        goto err;
    if (!group->meth->field_sqr(group, t1, t1, ctx))
        goto err;
    if (!group->meth->field_mul(group, t1, group->b, t1, ctx))
        goto err;
    if (!BN_GF2m_add(x, x, t1))
        goto err;

    ret = 1;
113 114

 err:
115 116 117
    BN_CTX_end(ctx);
    return ret;
}
118

119
/*-
120
 * Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
121
 * projective coordinates.
122 123
 * Uses algorithm Madd in appendix of
 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
B
Bodo Möller 已提交
124
 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
125
 */
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1,
                     BIGNUM *z1, const BIGNUM *x2, const BIGNUM *z2,
                     BN_CTX *ctx)
{
    BIGNUM *t1, *t2;
    int ret = 0;

    /* Since Madd is static we can guarantee that ctx != NULL. */
    BN_CTX_start(ctx);
    t1 = BN_CTX_get(ctx);
    t2 = BN_CTX_get(ctx);
    if (t2 == NULL)
        goto err;

    if (!BN_copy(t1, x))
        goto err;
    if (!group->meth->field_mul(group, x1, x1, z2, ctx))
        goto err;
    if (!group->meth->field_mul(group, z1, z1, x2, ctx))
        goto err;
    if (!group->meth->field_mul(group, t2, x1, z1, ctx))
        goto err;
    if (!BN_GF2m_add(z1, z1, x1))
        goto err;
    if (!group->meth->field_sqr(group, z1, z1, ctx))
        goto err;
    if (!group->meth->field_mul(group, x1, z1, t1, ctx))
        goto err;
    if (!BN_GF2m_add(x1, x1, t2))
        goto err;

    ret = 1;
158 159

 err:
160 161 162
    BN_CTX_end(ctx);
    return ret;
}
163

164
/*-
165 166 167
 * Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
 * using Montgomery point multiplication algorithm Mxy() in appendix of
 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
B
Bodo Möller 已提交
168
 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
169 170 171 172 173
 * Returns:
 *     0 on error
 *     1 if return value should be the point at infinity
 *     2 otherwise
 */
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y,
                    BIGNUM *x1, BIGNUM *z1, BIGNUM *x2, BIGNUM *z2,
                    BN_CTX *ctx)
{
    BIGNUM *t3, *t4, *t5;
    int ret = 0;

    if (BN_is_zero(z1)) {
        BN_zero(x2);
        BN_zero(z2);
        return 1;
    }

    if (BN_is_zero(z2)) {
        if (!BN_copy(x2, x))
            return 0;
        if (!BN_GF2m_add(z2, x, y))
            return 0;
        return 2;
    }

    /* Since Mxy is static we can guarantee that ctx != NULL. */
    BN_CTX_start(ctx);
    t3 = BN_CTX_get(ctx);
    t4 = BN_CTX_get(ctx);
    t5 = BN_CTX_get(ctx);
    if (t5 == NULL)
        goto err;

    if (!BN_one(t5))
        goto err;

    if (!group->meth->field_mul(group, t3, z1, z2, ctx))
        goto err;

    if (!group->meth->field_mul(group, z1, z1, x, ctx))
        goto err;
    if (!BN_GF2m_add(z1, z1, x1))
        goto err;
    if (!group->meth->field_mul(group, z2, z2, x, ctx))
        goto err;
    if (!group->meth->field_mul(group, x1, z2, x1, ctx))
        goto err;
    if (!BN_GF2m_add(z2, z2, x2))
        goto err;

    if (!group->meth->field_mul(group, z2, z2, z1, ctx))
        goto err;
    if (!group->meth->field_sqr(group, t4, x, ctx))
        goto err;
    if (!BN_GF2m_add(t4, t4, y))
        goto err;
    if (!group->meth->field_mul(group, t4, t4, t3, ctx))
        goto err;
    if (!BN_GF2m_add(t4, t4, z2))
        goto err;

    if (!group->meth->field_mul(group, t3, t3, x, ctx))
        goto err;
    if (!group->meth->field_div(group, t3, t5, t3, ctx))
        goto err;
    if (!group->meth->field_mul(group, t4, t3, t4, ctx))
        goto err;
    if (!group->meth->field_mul(group, x2, x1, t3, ctx))
        goto err;
    if (!BN_GF2m_add(z2, x2, x))
        goto err;

    if (!group->meth->field_mul(group, z2, z2, t4, ctx))
        goto err;
    if (!BN_GF2m_add(z2, z2, y))
        goto err;

    ret = 2;
248 249

 err:
250 251 252
    BN_CTX_end(ctx);
    return ret;
}
D
Dr. Stephen Henson 已提交
253

254 255
/*-
 * Computes scalar*point and stores the result in r.
256
 * point can not equal r.
D
Dr. Stephen Henson 已提交
257
 * Uses a modified algorithm 2P of
258
 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
B
Bodo Möller 已提交
259
 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
D
Dr. Stephen Henson 已提交
260 261 262
 *
 * To protect against side-channel attack the function uses constant time swap,
 * avoiding conditional branches.
263
 */
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group,
                                             EC_POINT *r,
                                             const BIGNUM *scalar,
                                             const EC_POINT *point,
                                             BN_CTX *ctx)
{
    BIGNUM *x1, *x2, *z1, *z2;
    int ret = 0, i;
    BN_ULONG mask, word;

    if (r == point) {
        ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT);
        return 0;
    }

    /* if result should be point at infinity */
    if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) ||
        EC_POINT_is_at_infinity(group, point)) {
        return EC_POINT_set_to_infinity(group, r);
    }

    /* only support affine coordinates */
    if (!point->Z_is_one)
        return 0;

    /*
     * Since point_multiply is static we can guarantee that ctx != NULL.
     */
    BN_CTX_start(ctx);
    x1 = BN_CTX_get(ctx);
    z1 = BN_CTX_get(ctx);
    if (z1 == NULL)
        goto err;

    x2 = r->X;
    z2 = r->Y;

    bn_wexpand(x1, bn_get_top(group->field));
    bn_wexpand(z1, bn_get_top(group->field));
    bn_wexpand(x2, bn_get_top(group->field));
    bn_wexpand(z2, bn_get_top(group->field));

    if (!BN_GF2m_mod_arr(x1, point->X, group->poly))
        goto err;               /* x1 = x */
    if (!BN_one(z1))
        goto err;               /* z1 = 1 */
    if (!group->meth->field_sqr(group, z2, x1, ctx))
        goto err;               /* z2 = x1^2 = x^2 */
    if (!group->meth->field_sqr(group, x2, z2, ctx))
        goto err;
    if (!BN_GF2m_add(x2, x2, group->b))
        goto err;               /* x2 = x^4 + b */

    /* find top most bit and go one past it */
    i = bn_get_top(scalar) - 1;
    mask = BN_TBIT;
    word = bn_get_words(scalar)[i];
    while (!(word & mask))
        mask >>= 1;
    mask >>= 1;
    /* if top most bit was at word break, go to next word */
    if (!mask) {
        i--;
        mask = BN_TBIT;
    }

    for (; i >= 0; i--) {
        word = bn_get_words(scalar)[i];
        while (mask) {
            BN_consttime_swap(word & mask, x1, x2, bn_get_top(group->field));
            BN_consttime_swap(word & mask, z1, z2, bn_get_top(group->field));
            if (!gf2m_Madd(group, point->X, x2, z2, x1, z1, ctx))
                goto err;
            if (!gf2m_Mdouble(group, x1, z1, ctx))
                goto err;
            BN_consttime_swap(word & mask, x1, x2, bn_get_top(group->field));
            BN_consttime_swap(word & mask, z1, z2, bn_get_top(group->field));
            mask >>= 1;
        }
        mask = BN_TBIT;
    }

    /* convert out of "projective" coordinates */
    i = gf2m_Mxy(group, point->X, point->Y, x1, z1, x2, z2, ctx);
    if (i == 0)
        goto err;
    else if (i == 1) {
        if (!EC_POINT_set_to_infinity(group, r))
            goto err;
    } else {
        if (!BN_one(r->Z))
            goto err;
        r->Z_is_one = 1;
    }

    /* GF(2^m) field elements should always have BIGNUM::neg = 0 */
    BN_set_negative(r->X, 0);
    BN_set_negative(r->Y, 0);

    ret = 1;
364 365

 err:
366 367 368
    BN_CTX_end(ctx);
    return ret;
}
369

370 371
/*-
 * Computes the sum
372 373 374
 *     scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1]
 * gracefully ignoring NULL scalar values.
 */
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r,
                       const BIGNUM *scalar, size_t num,
                       const EC_POINT *points[], const BIGNUM *scalars[],
                       BN_CTX *ctx)
{
    BN_CTX *new_ctx = NULL;
    int ret = 0;
    size_t i;
    EC_POINT *p = NULL;
    EC_POINT *acc = NULL;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    /*
     * This implementation is more efficient than the wNAF implementation for
     * 2 or fewer points.  Use the ec_wNAF_mul implementation for 3 or more
     * points, or if we can perform a fast multiplication based on
     * precomputation.
     */
    if ((scalar && (num > 1)) || (num > 2)
        || (num == 0 && EC_GROUP_have_precompute_mult(group))) {
        ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
        goto err;
    }

    if ((p = EC_POINT_new(group)) == NULL)
        goto err;
    if ((acc = EC_POINT_new(group)) == NULL)
        goto err;

    if (!EC_POINT_set_to_infinity(group, acc))
        goto err;

    if (scalar) {
        if (!ec_GF2m_montgomery_point_multiply
            (group, p, scalar, group->generator, ctx))
            goto err;
        if (BN_is_negative(scalar))
            if (!group->meth->invert(group, p, ctx))
                goto err;
        if (!group->meth->add(group, acc, acc, p, ctx))
            goto err;
    }

    for (i = 0; i < num; i++) {
        if (!ec_GF2m_montgomery_point_multiply
            (group, p, scalars[i], points[i], ctx))
            goto err;
        if (BN_is_negative(scalars[i]))
            if (!group->meth->invert(group, p, ctx))
                goto err;
        if (!group->meth->add(group, acc, acc, p, ctx))
            goto err;
    }

    if (!EC_POINT_copy(r, acc))
        goto err;

    ret = 1;

 err:
    if (p)
        EC_POINT_free(p);
    if (acc)
        EC_POINT_free(acc);
    if (new_ctx != NULL)
        BN_CTX_free(new_ctx);
    return ret;
}

/*
 * Precomputation for point multiplication: fall back to wNAF methods because
 * ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate
 */
453

454
int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
455 456 457
{
    return ec_wNAF_precompute_mult(group, ctx);
}
458 459

int ec_GF2m_have_precompute_mult(const EC_GROUP *group)
460 461 462
{
    return ec_wNAF_have_precompute_mult(group);
}
463 464

#endif