提交 a4022932 编写于 作者: A Andy Polyakov

Omit padding in RC4_KEY on IA-64. The idea behind padding was to reserve

room for aligning of the key schedule itself [specific alignment is
required for future performance improvements], but OpenSSH "abuses"
our API by making copies and restoring RC4_KEY, thus ruining the
alignment and making it impossible to recover the key schedule.
PR: 1114
上级 0e3b6b70
......@@ -54,7 +54,11 @@ rx86-out.s: asm/rc4-586.pl ../perlasm/x86asm.pl
rc4-x86_64.s: asm/rc4-x86_64.pl; $(PERL) asm/rc4-x86_64.pl $@
rc4-ia64.s: asm/rc4-ia64.S
$(CC) $(CFLAGS) -E asm/rc4-ia64.S > $@
@case `awk '/^#define RC4_INT/{print$$NF}' $(TOP)/include/openssl/opensslconf.h` in \
int) set -x; $(CC) $(CFLAGS) -DSZ=4 -E asm/rc4-ia64.S > $@ ;; \
char) set -x; $(CC) $(CFLAGS) -DSZ=1 -E asm/rc4-ia64.S > $@ ;; \
*) exit 1 ;; \
esac
files:
$(PERL) $(TOP)/util/files.pl Makefile >> $(TOP)/MINFO
......
......@@ -7,7 +7,7 @@
// disclaimed.
// ====================================================================
.ident "rc4-ia64.S, Version 1.1"
.ident "rc4-ia64.S, Version 2.0"
.ident "IA-64 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>"
// What's wrong with compiler generated code? Because of the nature of
......@@ -27,17 +27,10 @@
// Legitimate "collisions" do occur within every 256^2 bytes window.
// Fortunately there're enough free instruction slots to keep prior
// reference to key[x+1], detect "collision" and compensate for it.
// All this without sacrificing a single clock cycle:-)
// Furthermore. In order to compress loop body to the minimum, I chose
// to deploy deposit instruction, which substitutes for the whole
// key->data+((x&255)<<log2(sizeof(key->data[0]))). This unfortunately
// requires key->data to be aligned at sizeof(key->data) boundary.
// This is why you'll find "RC4_INT pad[512-256-2];" addenum to RC4_KEY
// and "d=(RC4_INT *)(((size_t)(d+255))&~(sizeof(key->data)-1));" in
// rc4_skey.c [and rc4_enc.c, where it's retained for debugging
// purposes]. Throughput is ~210MBps on 900MHz CPU, which is is >3x
// faster than gcc generated code and +30% - if compared to HP-UX C.
// Unrolling loop below should give >30% on top of that...
// All this without sacrificing a single clock cycle:-) Throughput is
// ~210MBps on 900MHz CPU, which is is >3x faster than gcc generated
// code and +30% - if compared to HP-UX C. Unrolling loop below should
// give >30% on top of that...
.text
.explicit
......@@ -48,7 +41,9 @@
# define ADDP add
#endif
#ifndef SZ
#define SZ 4 // this is set to sizeof(RC4_INT)
#endif
// SZ==4 seems to be optimal. At least SZ==8 is not any faster, not for
// assembler implementation, while SZ==1 code is ~30% slower.
#if SZ==1 // RC4_INT is unsigned char
......@@ -101,45 +96,53 @@ RC4:
ADDP out=0,in3
brp.loop.imp .Ltop,.Lexit-16 };;
{ .mmi; LDKEY yy=[key] // load key->y
add ksch=(255+1)*SZ,key // as ksch will be used with
// deposit instruction only,
// I don't have to &~255...
add ksch=SZ,key
mov ar.lc=in1 }
{ .mmi; mov key_y[1]=r0 // guarantee inequality
// in first iteration
add xx=1,xx
mov pr.rot=1<<16 };;
{ .mii; nop.m 0
dep key_x[1]=xx,ksch,OFF,8
dep key_x[1]=xx,r0,OFF,8
mov ar.ec=3 };; // note that epilogue counter
// is off by 1. I compensate
// for this at exit...
.Ltop:
// The loop is scheduled for 3*(n+2) spin-rate on Itanium 2, which
// The loop is scheduled for 4*(n+2) spin-rate on Itanium 2, which
// theoretically gives asymptotic performance of clock frequency
// divided by 3 bytes per seconds, or 500MBps on 1.5GHz CPU. Measured
// performance however is distinctly lower than 1/4:-( The culplrit
// seems to be *(out++)=dat, which inadvertently splits the bundle,
// even though there is M-port available... Unrolling is due...
// Unrolled loop should collect output with variable shift instruction
// in order to avoid starvation for integer shifter... It should be
// possible to get pretty close to theoretical peak...
{ .mmi; (p16) LDKEY tx[0]=[key_x[1]] // tx=key[xx]
(p17) LDKEY ty[0]=[key_y[1]] // ty=key[yy]
(p18) dep rnd[1]=rnd[1],ksch,OFF,8} // &key[(tx+ty)&255]
// divided by 4 bytes per seconds, or 400MBps on 1.6GHz CPU. This is
// for sizeof(RC4_INT)==4. For smaller RC4_INT STKEY inadvertently
// splits the last bundle and you end up with 5*n spin-rate:-(
// Originally the loop was scheduled for 3*n and relied on key
// schedule to be aligned at 256*sizeof(RC4_INT) boundary. But
// *(out++)=dat, which maps to st1, had same effect [inadvertent
// bundle split] and holded the loop back. Rescheduling for 4*n
// made it possible to eliminate dependence on specific alignment
// and allow OpenSSH keep "abusing" our API. Reaching for 3*n would
// require unrolling, sticking to variable shift instruction for
// collecting output [to avoid starvation for integer shifter] and
// copying of key schedule to controlled place in stack [so that
// deposit instruction can serve as substitute for whole
// key->data+((x&255)<<log2(sizeof(key->data[0])))]...
{ .mmi; (p19) st1 [out]=dat[3],1 // *(out++)=dat
(p16) add xx=1,xx // x++
(p16) cmp.ne.unc p20,p21=key_x[1],key_y[1] };;
(p18) dep rnd[1]=rnd[1],r0,OFF,8 } // ((tx+ty)&255)<<OFF
{ .mmi; (p16) add key_x[1]=ksch,key_x[1] // &key[xx&255]
(p17) add key_y[1]=ksch,key_y[1] };; // &key[yy&255]
{ .mmi; (p16) LDKEY tx[0]=[key_x[1]] // tx=key[xx]
(p17) LDKEY ty[0]=[key_y[1]] // ty=key[yy]
(p16) dep key_x[0]=xx,r0,OFF,8 } // (xx&255)<<OFF
{ .mmi; (p18) add rnd[1]=ksch,rnd[1] // &key[(tx+ty)&255]
(p16) cmp.ne.unc p20,p21=key_x[1],key_y[1] };;
{ .mmi; (p18) LDKEY rnd[1]=[rnd[1]] // rnd=key[(tx+ty)&255]
(p16) ld1 dat[0]=[inp],1 // dat=*(inp++)
(p16) dep key_x[0]=xx,ksch,OFF,8 } // &key[xx&255]
(p16) ld1 dat[0]=[inp],1 } // dat=*(inp++)
.pred.rel "mutex",p20,p21
{ .mmi; (p21) add yy=yy,tx[1] // (p16)
(p20) add yy=yy,tx[0] // (p16) y+=tx
(p21) mov tx[0]=tx[1] };; // (p16)
{ .mmi; (p17) STKEY [key_y[1]]=tx[1] // key[yy]=tx
(p17) STKEY [key_x[2]]=ty[0] // key[xx]=ty
(p16) dep key_y[0]=yy,ksch,OFF,8 } // &key[yy&255]
(p16) dep key_y[0]=yy,r0,OFF,8 } // &key[yy&255]
{ .mmb; (p17) add rnd[0]=tx[1],ty[0] // tx+=ty
(p18) xor dat[2]=dat[2],rnd[1] // dat^=rnd
br.ctop.sptk .Ltop };;
......
......@@ -72,10 +72,6 @@ typedef struct rc4_key_st
{
RC4_INT x,y;
RC4_INT data[256];
#if defined(__ia64) || defined(__ia64__) || defined(_M_IA64)
/* see crypto/rc4/asm/rc4-ia64.S for further details... */
RC4_INT pad[512-256-2];
#endif
} RC4_KEY;
......
......@@ -77,10 +77,6 @@ void RC4(RC4_KEY *key, unsigned long len, const unsigned char *indata,
x=key->x;
y=key->y;
d=key->data;
#if defined(__ia64) || defined(__ia64__) || defined(_M_IA64)
/* see crypto/rc4/asm/rc4-ia64.S for further details... */
d=(RC4_INT *)(((size_t)(d+255))&~(sizeof(key->data)-1));
#endif
#if defined(RC4_CHUNK)
/*
......
......@@ -93,10 +93,6 @@ void RC4_set_key(RC4_KEY *key, int len, const unsigned char *data)
unsigned int i;
d= &(key->data[0]);
#if defined(__ia64) || defined(__ia64__) || defined(_M_IA64)
/* see crypto/rc4/asm/rc4-ia64.S for further details... */
d=(RC4_INT *)(((size_t)(d+255))&~(sizeof(key->data)-1));
#endif
key->x = 0;
key->y = 0;
id1=id2=0;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册