train_cifar.py 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
import os, sys, numpy as np, argparse
from pathlib import Path
import paddle.fluid as fluid
import math, time, paddle
import paddle.fluid.layers.ops as ops
#from tb_paddle import SummaryWriter

lib_dir = (Path(__file__).parent / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from models import resnet_cifar, NASCifarNet, Networks
from utils import AverageMeter, time_for_file, time_string, convert_secs2time
from utils import reader_creator


def inference_program(model_name, num_class):
    # The image is 32 * 32 with RGB representation.
    data_shape = [3, 32, 32]
    images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')

    if model_name == 'ResNet20':
        predict = resnet_cifar(images, 20, num_class)
    elif model_name == 'ResNet32':
        predict = resnet_cifar(images, 32, num_class)
    elif model_name == 'ResNet110':
        predict = resnet_cifar(images, 110, num_class)
    else:
        predict = NASCifarNet(images, 36, 6, 3, num_class, Networks[model_name],
                              True)
    return predict


def train_program(predict):
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    if isinstance(predict, (list, tuple)):
        predict, aux_predict = predict
        x_losses = fluid.layers.cross_entropy(input=predict, label=label)
        aux_losses = fluid.layers.cross_entropy(input=aux_predict, label=label)
        x_loss = fluid.layers.mean(x_losses)
        aux_loss = fluid.layers.mean(aux_losses)
        loss = x_loss + aux_loss * 0.4
        accuracy = fluid.layers.accuracy(input=predict, label=label)
    else:
        losses = fluid.layers.cross_entropy(input=predict, label=label)
        loss = fluid.layers.mean(losses)
        accuracy = fluid.layers.accuracy(input=predict, label=label)
    return [loss, accuracy]


# For training test cost
def evaluation(program, reader, fetch_list, place):
    feed_var_list = [
        program.global_block().var('pixel'), program.global_block().var('label')
    ]
    feeder_test = fluid.DataFeeder(feed_list=feed_var_list, place=place)
    test_exe = fluid.Executor(place)
    losses, accuracies = AverageMeter(), AverageMeter()
    for tid, test_data in enumerate(reader()):
        loss, acc = test_exe.run(program=program,
                                 feed=feeder_test.feed(test_data),
                                 fetch_list=fetch_list)
        losses.update(float(loss), len(test_data))
        accuracies.update(float(acc) * 100, len(test_data))
    return losses.avg, accuracies.avg


def cosine_decay_with_warmup(learning_rate, step_each_epoch, epochs=120):
    """Applies cosine decay to the learning rate.
  lr = 0.05 * (math.cos(epoch * (math.pi / 120)) + 1)
  decrease lr for every mini-batch and start with warmup.
  """
    from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
    global_step = _decay_step_counter()
    lr = fluid.layers.tensor.create_global_var(
        shape=[1],
        value=0.0,
        dtype='float32',
        persistable=True,
        name="learning_rate")

    warmup_epoch = fluid.layers.fill_constant(
        shape=[1], dtype='float32', value=float(5), force_cpu=True)

83 84 85 86 87 88 89 90 91 92
    epoch = ops.floor(global_step / step_each_epoch)
    with fluid.layers.control_flow.Switch() as switch:
        with switch.case(epoch < warmup_epoch):
            decayed_lr = learning_rate * (global_step /
                                          (step_each_epoch * warmup_epoch))
            fluid.layers.tensor.assign(input=decayed_lr, output=lr)
        with switch.default():
            decayed_lr = learning_rate * \
              (ops.cos((global_step - warmup_epoch * step_each_epoch) * (math.pi / (epochs * step_each_epoch))) + 1)/2
            fluid.layers.tensor.assign(input=decayed_lr, output=lr)
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
    return lr


def main(xargs):

    save_dir = Path(xargs.log_dir) / time_for_file()
    save_dir.mkdir(parents=True, exist_ok=True)

    print('save dir : {:}'.format(save_dir))
    print('xargs : {:}'.format(xargs))

    if xargs.dataset == 'cifar-10':
        train_data = reader_creator(xargs.data_path, 'data_batch', True, False)
        test__data = reader_creator(xargs.data_path, 'test_batch', False, False)
        class_num = 10
        print('create cifar-10  dataset')
    elif xargs.dataset == 'cifar-100':
        train_data = reader_creator(xargs.data_path, 'train', True, False)
        test__data = reader_creator(xargs.data_path, 'test', False, False)
        class_num = 100
        print('create cifar-100 dataset')
    else:
        raise ValueError('invalid dataset : {:}'.format(xargs.dataset))

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            train_data, buf_size=5000),
        batch_size=xargs.batch_size)

    # Reader for testing. A separated data set for testing.
    test_reader = paddle.batch(test__data, batch_size=xargs.batch_size)

    place = fluid.CUDAPlace(0)

    main_program = fluid.default_main_program()
    star_program = fluid.default_startup_program()

    # programs
    predict = inference_program(xargs.model_name, class_num)
    [loss, accuracy] = train_program(predict)
    print('training program setup done')
    test_program = main_program.clone(for_test=True)
    print('testing  program setup done')

    #infer_writer = SummaryWriter( str(save_dir / 'infer') )
    #infer_writer.add_paddle_graph(fluid_program=fluid.default_main_program(), verbose=True)
    #infer_writer.close()
    #print(test_program.to_string(True))

    #learning_rate = fluid.layers.cosine_decay(learning_rate=xargs.lr, step_each_epoch=xargs.step_each_epoch, epochs=xargs.epochs)
    #learning_rate = fluid.layers.cosine_decay(learning_rate=0.1, step_each_epoch=196, epochs=300)
    learning_rate = cosine_decay_with_warmup(xargs.lr, xargs.step_each_epoch,
                                             xargs.epochs)
    optimizer = fluid.optimizer.Momentum(
        learning_rate=learning_rate,
        momentum=0.9,
        regularization=fluid.regularizer.L2Decay(0.0005),
        use_nesterov=True)
    optimizer.minimize(loss)

    exe = fluid.Executor(place)

    feed_var_list_loop = [
        main_program.global_block().var('pixel'),
        main_program.global_block().var('label')
    ]
    feeder = fluid.DataFeeder(feed_list=feed_var_list_loop, place=place)
    exe.run(star_program)

    start_time, epoch_time = time.time(), AverageMeter()
    for iepoch in range(xargs.epochs):
        losses, accuracies, steps = AverageMeter(), AverageMeter(), 0
        for step_id, train_data in enumerate(train_reader()):
            tloss, tacc, xlr = exe.run(
                main_program,
                feed=feeder.feed(train_data),
                fetch_list=[loss, accuracy, learning_rate])
            tloss, tacc, xlr = float(tloss), float(tacc) * 100, float(xlr)
            steps += 1
            losses.update(tloss, len(train_data))
            accuracies.update(tacc, len(train_data))
            if step_id % 100 == 0:
                print(
                    '{:} [{:03d}/{:03d}] [{:03d}] lr = {:.7f}, loss = {:.4f} ({:.4f}), accuracy = {:.2f} ({:.2f}), error={:.2f}'.
                    format(time_string(
                    ), iepoch, xargs.epochs, step_id, xlr, tloss, losses.avg,
                           tacc, accuracies.avg, 100 - accuracies.avg))
        test_loss, test_acc = evaluation(test_program, test_reader,
                                         [loss, accuracy], place)
        need_time = 'Time Left: {:}'.format(
            convert_secs2time(epoch_time.avg * (xargs.epochs - iepoch), True))
        print(
            '{:}x[{:03d}/{:03d}] {:} train-loss = {:.4f}, train-accuracy = {:.2f}, test-loss = {:.4f}, test-accuracy = {:.2f} test-error = {:.2f} [{:} steps per epoch]\n'.
            format(time_string(), iepoch, xargs.epochs, need_time, losses.avg,
                   accuracies.avg, test_loss, test_acc, 100 - test_acc, steps))
        if isinstance(predict, list):
            fluid.io.save_inference_model(
                str(save_dir / 'inference_model'), ["pixel"], predict, exe)
        else:
            fluid.io.save_inference_model(
                str(save_dir / 'inference_model'), ["pixel"], [predict], exe)
        # measure elapsed time
        epoch_time.update(time.time() - start_time)
        start_time = time.time()

    print('finish training and evaluation with {:} epochs in {:}'.format(
        xargs.epochs, convert_secs2time(epoch_time.sum, True)))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(
        description='Train.',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('--log_dir', type=str, help='Save dir.')
    parser.add_argument('--dataset', type=str, help='The dataset name.')
    parser.add_argument('--data_path', type=str, help='The dataset path.')
    parser.add_argument('--model_name', type=str, help='The model name.')
    parser.add_argument('--lr', type=float, help='The learning rate.')
    parser.add_argument('--batch_size', type=int, help='The batch size.')
    parser.add_argument('--step_each_epoch', type=int, help='The batch size.')
    parser.add_argument('--epochs', type=int, help='The total training epochs.')
    args = parser.parse_args()
    main(args)