shadow.py 23.5 KB
Newer Older
Q
Quleaf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2021 Institute for Quantum Computing, Baidu Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
shadow sample module
"""

import numpy as np
import paddle
import re
Q
Quleaf 已提交
22
import math
Q
Quleaf 已提交
23 24 25 26 27 28 29 30
from paddle_quantum import circuit
from paddle_quantum.utils import Hamiltonian

__all__ = [
    "shadow_sample"
]


Q
Quleaf 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
def random_pauli_sample(num_qubits, beta=None):
    r"""根据概率分布 beta, 随机选取 pauli 测量基

    Args:
        num_qubits (int): 量子比特数目
        beta (list, optional): 量子位上不同 pauli 测量基的概率分布

    Returns:
        str: 返回随机选择的 pauli 测量基

    Note:
        这是内部函数,你并不需要直接调用到该函数。
    """
    # assume beta obeys a uniform distribution if it is not given
    if beta is None:
        beta = list()
        for _ in range(0, num_qubits):
            beta.append([1 / 3] * 3)
    pauli_sample = str()
    for qubit_idx in range(num_qubits):
        sample = np.random.choice(['x', 'y', 'z'], 1, p=beta[qubit_idx])
        pauli_sample += sample[0]
    return pauli_sample


def measure_by_pauli_str(pauli_str, phi, num_qubits, mode, method):
    r"""搭建 pauli 测量电路,返回测量结果

    Args:
        pauli_str (str): 输入的是随机选取的num_qubits pauli 测量基
        phi (numpy.ndarray): 输入量子态,支持态矢量和密度矩阵形式
        num_qubits (int): 量子比特数量
        mode (str): 输入量子态的表示方式,``"state_vector"`` 表示态矢量形式, ``"density_matrix"`` 表示密度矩阵形式
        method (str): 进行测量的方法,有 "CS"、"LBCS"、"APS"

    Returns:
        str: 返回测量结果

    Note:
        这是内部函数,你并不需要直接调用到该函数。
    """
    if method == "clifford":
        # Add the clifford function
        pass
    else:
        # Other method are transformed as follows
        # Convert to tensor form
        input_state = paddle.to_tensor(phi)
        cir = circuit.UAnsatz(num_qubits)
        for qubit in range(num_qubits):
            if pauli_str[qubit] == 'x':
                cir.h(qubit)
            elif pauli_str[qubit] == 'y':
                cir.h(qubit)
                cir.s(qubit)
                cir.h(qubit)
        if mode == 'state_vector':
            cir.run_state_vector(input_state)
        else:
            cir.run_density_matrix(input_state)
        result = cir.measure(shots=1)
        bit_string, = result
        return bit_string


def paulistr_to_matrix(paulistr):
    r"""识别随机选取的 pauli 并转换成作用于 Z 测量的酉变换的矩阵形式

    Args:
        paulistr (str): 输入的是某一量子位上随机选取的 Pauli 测量基

    Returns:
        numpy.ndarray: 返回酉变换的矩阵形式

    Note:
        这是内部函数,你并不需要直接调用到该函数。
    """

    # Define the matrix form of H, S gates
    a = math.pow(2, 0.5)
    H_matrix = np.array([[1 / a, 1 / a], [1 / a, -1 / a]])
    S_matrix = np.array([[1, 0], [0, 1j]])
    I_matrix = np.array([[1, 0], [0, 1]])

    if paulistr == 'x':
        paulistr_matrix = H_matrix
    elif paulistr == 'y':
        paulistr_matrix = np.dot(np.dot(H_matrix, S_matrix), H_matrix)
    elif paulistr == 'z':
        paulistr_matrix = I_matrix
    return paulistr_matrix


def measure_result_to_matrix(measure_str):
    r"""将单个量子位上测量的结果转换为密度矩阵形式

    Args:
        measure_str (str): 输入的是某一量子位上的测量结果

    Returns:
        numpy.ndarray: 返回测量结果的密度矩阵形式
    Note:
        这是内部函数,你并不需要直接调用到该函数。
    """

    ket_0 = np.array([[1, 0]]).T
    ket_1 = np.array([[0, 1]]).T
    if measure_str == '0':
        b_matrix = np.kron(ket_0, ket_0.conj().T)
    elif measure_str == '1':
        b_matrix = np.kron(ket_1, ket_1.conj().T)
    return b_matrix


Q
Quleaf 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
def shadow_sample(state, num_qubits, sample_shots, mode, hamiltonian=None, method='CS'):
    r"""对给定的量子态进行随机的泡利测量并返回测量结果。

    Args:
        state (numpy.ndarray): 输入量子态,支持态矢量和密度矩阵形式
        num_qubits (int): 量子比特数量
        sample_shots (int): 随机采样的次数
        mode (str): 输入量子态的表示方式,``"state_vector"`` 表示态矢量形式, ``"density_matrix"`` 表示密度矩阵形式
        hamiltonian (Hamiltonian, optional): 可观测量的相关信息,输入形式为 ``Hamiltonian`` 类,默认为 ``None``
        method (str, optional): 进行随机采样的方法,有 ``"CS"`` 、 ``"LBCS"`` 、 ``"APS"`` 三种方法,默认为 ``"CS"``

    Returns:
        list: 随机选择的泡利测量基和测量结果,形状为 ``(sample_shots, 2)`` 的list

    代码示例:

    .. code-block:: python
Q
Quleaf 已提交
162

Q
Quleaf 已提交
163 164 165 166 167 168 169 170 171 172 173
        from paddle_quantum.shadow import shadow_sample
        from paddle_quantum.state import vec_random
        from paddle_quantum.utils import Hamiltonian

        n_qubit = 2
        sample_shots = 10
        state = vec_random(n_qubit)
        sample_data_cs = shadow_sample(state, n_qubit, sample_shots, mode='state_vector')

        ham = [[0.1, 'x1'], [0.2, 'y0']]
        ham = Hamiltonian(ham)
Q
Quleaf 已提交
174 175
        sample_data_lbcs, beta_lbcs = shadow_sample(state, n_qubit, sample_shots, 'state_vector', ham, "LBCS")
        sample_data_aps = shadow_sample(state, n_qubit, sample_shots, 'state_vector', ham, "APS")
Q
Quleaf 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

        print('sample data CS = ', sample_data_cs)
        print('sample data LBCS = ', sample_data_lbcs)
        print('beta LBCS = ', beta_lbcs)
        print('sample data APS = ', sample_data_aps)

    ::

        sample data CS =  [('zy', '10'), ('yx', '01'), ('zx', '01'), ('xz', '00'), ('zy', '11'), ('xz', '00'), ('xz', '11'), ('yy', '01'), ('yx', '00'), ('xx', '00')]
        sample data LBCS =  [('yx', '00'), ('yx', '01'), ('yx', '00'), ('yx', '01'), ('yx', '00'), ('yx', '01'), ('yx', '01'), ('yx', '00'), ('yx', '01'), ('yx', '01')]
        beta LBCS =  [[2.539244934862217e-05, 0.9999492151013026, 2.539244934862217e-05], [0.9999492151013026, 2.539244934862217e-05, 2.539244934862217e-05]]
        sample data APS =  [('yx', '10'), ('yx', '01'), ('yx', '00'), ('yx', '01'), ('yx', '10'), ('yx', '01'), ('yx', '10'), ('yx', '10'), ('yx', '00'), ('yx', '01')]

    """

    if hamiltonian is not None:
        if isinstance(hamiltonian, Hamiltonian):
            hamiltonian = hamiltonian.pauli_str

    def prepare_hamiltonian(hamiltonian, num_qubits):
        r"""改写可观测量[[0.3147,'y2'], [-0.5484158742278,'x2,z1'],...]的形式

        Args:
            hamiltonian (list): 可观测量的相关信息
            num_qubits (int): 量子比特数目

        Returns:
            list: 可观测量的形式改写为[[0.3147,'iiy'], [-0.5484158742278,'izx'],...]

        Note:
            这是内部函数,你并不需要直接调用到该函数。
        """
        new_hamiltonian = list()
        for idx, (coeff, pauli_term) in enumerate(hamiltonian):
            pauli_term = re.split(r',\s*', pauli_term.lower())
            pauli_list = ['i'] * num_qubits
            for item in pauli_term:
                if len(item) > 1:
                    pauli_list[int(item[1:])] = item[0]
                elif item[0].lower() != 'i':
                    raise ValueError('Expecting I for ', item[0])
            new_term = [coeff, ''.join(pauli_list)]
            new_hamiltonian.append(new_term)
        return new_hamiltonian

    if hamiltonian is not None:
        hamiltonian = prepare_hamiltonian(hamiltonian, num_qubits)

    pauli2index = {'x': 0, 'y': 1, 'z': 2}

    # Define the function used to update the beta of the LBCS algorithm
    def calculate_diagonal_product(pauli_str, beta):
        r"""迭代 LBCS beta 公式中的一部分

        Hint:
            计算 \prod_{j \in supp(Q)} \beta_{j}(Q_{j})^{-1}

        Args:
            pauli_str (str): 输入的是 hamiltonian 的 pauli 项
            beta (list): 量子位上不同 pauli 测量基的概率分布

        Returns:
            float: 返回计算值

        Note:
            这是内部函数,你并不需要直接调用到该函数。
        """
        product = 1
        for qubit_idx in range(len(pauli_str)):
            if pauli_str[qubit_idx] != 'i':
                index = pauli2index[pauli_str[qubit_idx]]
                b = beta[qubit_idx][index]
                if b == 0:
                    return float('inf')
                else:
                    product *= b

        return 1 / product

    def lagrange_restriction_numerator(qubit_idx, hamiltonian, beta):
        r"""迭代 LBCS beta 公式中的分子

        Hint:
            计算 \sum_{Q \mid Q_{i}=P_{i}} \alpha_{Q}^{2} \prod_{j \in supp(Q)} \beta_{j}(Q_{j})^{-1}

        Args:
            qubit_idx (int): 第 qubit_idx 个量子位
            hamiltonian (list): 可观测量的相关信息
            beta (list): 量子位上不同 pauli 测量基的概率分布

        Returns:
            list: 返回第 qubit_idx 个量子位上不同 pauli 算子的在该式下的数值

        Note:
            这是内部函数,你并不需要直接调用到该函数。
        """
        tally = [0, 0, 0]
        for coeff, pauli_term in hamiltonian:
            if pauli_term[qubit_idx] == 'x':
                tally[0] += (coeff ** 2) * calculate_diagonal_product(pauli_term, beta)
            elif pauli_term[qubit_idx] == 'y':
                tally[1] += (coeff ** 2) * calculate_diagonal_product(pauli_term, beta)
            elif pauli_term[qubit_idx] == 'z':
                tally[2] += (coeff ** 2) * calculate_diagonal_product(pauli_term, beta)
        return tally

    def lagrange_restriction_denominator(qubit_idx, random_observable, beta):
        r"""迭代 LBCS beta 公式中的分母

        Hint:
            计算 \sum_{Q \mid Q_{i} \neq I} \alpha_{Q}^{2} \prod_{j \in supp(Q)} \beta_{j}(Q_{j})^{-1}

        Args:
            qubit_idx (int): 第 qubit_idx 个量子位
            random_observable (list): 可观测量的相关信息
            beta (list): 量子位上不同 pauli 测量基的概率分布

        Returns:
            float: 返回第 qubit_idx 个量子位上在该式下的数值

        Note:
            这是内部函数,你并不需要直接调用到该函数。
        """
        tally = 0.0
        for coeff, pauli_term in random_observable:
            if pauli_term[qubit_idx] != "i":
                tally += (coeff ** 2) * calculate_diagonal_product(pauli_term, beta)
        if tally == 0.0:
            tally = 1
        return tally

    def lagrange_restriction(qubit_idx, hamiltonian, beta, denominator=None):
        r"""迭代 LBCS beta 公式,将分子与分母结合起来

        Args:
            qubit_idx (int): 第 qubit_idx 个量子位
            hamiltonian (list): 可观测量的相关信息
            beta (list): 量子位上不同 pauli 测量基的概率分布
            denominator (float, optional): 迭代公式的分母,可默认为None

        Returns:
            list: 返回第 qubit_idx 个量子位上在该式下的数值

        Note:
            这是内部函数,你并不需要直接调用到该函数。
        """
        numerator = lagrange_restriction_numerator(qubit_idx, hamiltonian, beta)
        if denominator is None:
            denominator = lagrange_restriction_denominator(qubit_idx, hamiltonian, beta)
        return [item / denominator for item in numerator]

    def beta_distance(beta1, beta2):
        r"""计算迭代前后 beta 差距,以便停止迭代

        Args:
            beta1 (list): 迭代后的全部量子位上的概率分布
            beta2 (list): 迭代前的全部量子位上的概率分布

        Returns:
            numpy.float: 返回迭代前后 beta 差距

        Note:
            这是内部函数,你并不需要直接调用到该函数。
        """
        two_norm_squared = 0.0
        for qubit in range(len(beta1)):
            two_norm_squared_qubit = np.sum((np.array(beta1[qubit]) - np.array(beta2[qubit])) ** 2)
            two_norm_squared += two_norm_squared_qubit
        return np.sqrt(two_norm_squared)

    def update_beta_in_lbcs(hamiltonian, num_qubit, beta_old=None, weight=0.1):
        r"""LBCS 的 beta 迭代函数

        Args:
            hamiltonian (list): 可观测量的相关信息
            num_qubit (int): 量子比特数
            beta_old (list): 迭代前的全部量子位上的概率分布
            weight (float): 更新的步长,可根据需要修改

        Returns:
            list: 返回更新后的 beta
            numpy.float: 返回迭代前后 beta 差距

        Note:
            这是内部函数,你并不需要直接调用到该函数。
        """
        if beta_old is None:
            beta_old = list()
            for _ in range(0, num_qubit):
                beta_old.append([1 / 3] * 3)

        beta_new = list()
        for qubit in range(num_qubit):
            denominator = lagrange_restriction_denominator(qubit, hamiltonian, beta_old)
            lagrange_rest = lagrange_restriction(qubit, hamiltonian, beta_old, denominator)
            beta_new.append(lagrange_rest)
            if sum(beta_new[qubit]) != 0:
                beta_new[qubit] = [item / sum(beta_new[qubit]) for item in beta_new[qubit]]
            else:
                beta_new[qubit] = beta_old[qubit]
            for idx in range(len(beta_new[qubit])):
                beta_new[qubit][idx] = (1 - weight) * beta_old[qubit][idx] + weight * beta_new[qubit][idx]
        return beta_new, beta_distance(beta_new, beta_old)

    # Define the function used to update the beta of the APS algorithm
    def in_omega(pauli_str, qubit_idx, qubit_shift, base_shift):
        r"""用于判断 hamiltonian 的 pauli 项是否属于集合Omega

        Args:
            pauli_str (str): 可观测量的 pauli 项
            qubit_idx (int): 第 qubit_idx 量子位
            qubit_shift (list): 乱序重排量子位,比如第1位映射到第4位
            base_shift (float): 乱序排放的 pauli 测量基

        Note:
            这是内部函数,你并不需要直接调用到该函数。
        """
        if pauli_str[qubit_shift[qubit_idx]] == 'i':
            return False
        for former_qubit in range(qubit_idx):
            idx = qubit_shift[former_qubit]
            if not pauli_str[idx] in ('i', base_shift[former_qubit]):
                return False
        return True

    def update_in_aps(qubit_idx, qubits_shift, bases_shift, hamiltonian):
        r"""用于更新 APS 的 beta

        Args:
            qubit_idx (int): 第 qubit_idx 量子位
            qubit_shift (list): 乱序重排量子位,比如第1位映射到第4位
            base_shift (float): 乱序排放的 pauli 测量基
            hamiltonian (list): 可观测量的相关信息

        Returns:
            list: 返回更新后的 beta

        Note:
            这是内部函数,你并不需要直接调用到该函数。
        """
        constants = [0.0, 0.0, 0.0]
        for coeff, pauli_term in hamiltonian:
            if in_omega(pauli_term, qubit_idx, qubits_shift, bases_shift):
                pauli = pauli_term[qubits_shift[qubit_idx]]
                index = pauli2index[pauli]
                constants[index] += coeff ** 2
        beta_sqrt = np.sqrt(constants)
        # The beta may be zero, use a judgment statement to avoid
        if np.sum(beta_sqrt) == 0.0:
            beta = [1 / 3, 1 / 3, 1 / 3]
        else:
            beta = beta_sqrt / np.sum(beta_sqrt)
        return beta

    def single_random_pauli_sample_in_aps(qubit_idx, qubits_shift, pauli_str_shift, hamiltonian):
        r"""用于在单量子位上根据概率分布随机选取 pauli 测量基

        Args:
            qubit_idx (int): 第 qubit_idx 量子位
            qubit_shift (list): 乱序重排量子位,比如第1位映射到第4位
            base_shift (float): 乱序排放的 pauli 测量基
            hamiltonian (list): 可观测量的相关信息

        Returns:
            str: 返回在第 qubit_idx 量子位上选取的 pauli 测量基

        Note:
            这是内部函数,你并不需要直接调用到该函数。
        """
        assert len(pauli_str_shift) == qubit_idx
        beta = update_in_aps(qubit_idx, qubits_shift, pauli_str_shift, hamiltonian)
        single_pauli = np.random.choice(['x', 'y', 'z'], p=beta)
        return single_pauli

    def random_pauli_sample_in_aps(hamiltonian):
        r"""用于根据概率分布随机选择所有量子位上的 pauli 测量基

        Args:
            hamiltonian (list): 可观测量的相关信息

        Returns:
            list: 返回所有量子位上随机选择的 pauli 测量基

        Note:
            这是内部函数,你并不需要直接调用到该函数。
        """
        num_qubits = len(hamiltonian[0][1])
        # The qubits_shift is used to ignore the order of the qubits
        qubits_shift = list(np.random.choice(range(num_qubits), size=num_qubits, replace=False))
        pauli_str_shift = list()
        for qubit_idx in range(num_qubits):
            single_pauli = single_random_pauli_sample_in_aps(qubit_idx, qubits_shift, pauli_str_shift, hamiltonian)
            pauli_str_shift.append(single_pauli)
        pauli_sample = str()
        for i in range(num_qubits):
            j = qubits_shift.index(i)
            # The qubits_shift.index(i) sorts the qubits in order
            pauli_sample = pauli_sample + pauli_str_shift[j]
        return pauli_sample

    sample_result = list()
    if method == "CS":
        for _ in range(sample_shots):
            random_pauli_str = random_pauli_sample(num_qubits, beta=None)
Q
Quleaf 已提交
480
            measurement_result = measure_by_pauli_str(random_pauli_str, state, num_qubits, mode, method)
Q
Quleaf 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
            sample_result.append((random_pauli_str, measurement_result))
        return sample_result
    elif method == "LBCS":
        beta = list()
        for _ in range(0, num_qubits):
            beta.append([1 / 3] * 3)
        beta_opt_iter_num = 10000
        distance_limit = 1.0e-6
        for _ in range(beta_opt_iter_num):
            beta_opt, distance = update_beta_in_lbcs(hamiltonian, num_qubits, beta)
            beta = beta_opt
            if distance < distance_limit:
                break
        sample_result = list()
        for _ in range(sample_shots):
            random_pauli_str = random_pauli_sample(num_qubits, beta)
Q
Quleaf 已提交
497
            measurement_result = measure_by_pauli_str(random_pauli_str, state, num_qubits, mode, method)
Q
Quleaf 已提交
498 499 500 501 502
            sample_result.append((random_pauli_str, measurement_result))
        return sample_result, beta
    elif method == "APS":
        for _ in range(sample_shots):
            random_pauli_str = random_pauli_sample_in_aps(hamiltonian)
Q
Quleaf 已提交
503
            measurement_result = measure_by_pauli_str(random_pauli_str, state, num_qubits, mode, method)
Q
Quleaf 已提交
504 505
            sample_result.append((random_pauli_str, measurement_result))
        return sample_result
Q
Quleaf 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584


def classical_shadow(state, num_qubits, sample_shots, mode, method=None):
    r"""获得量子态 state 的经典影子

    Args:
        state (numpy.ndarray): 输入量子态,支持态矢量和密度矩阵形式
        num_qubits (int): 量子比特数量
        sample_shots (int): 随机采样的次数
        mode (str): 输入量子态的表示方式,``"state_vector"`` 表示态矢量形式, ``"density_matrix"`` 表示密度矩阵形式
        method (str, optional): 可选方法 restructure (R),获得量子态的密度矩阵形式;或默认为None (即 not restructure, NR),获得量子态的密度矩阵形式

    Returns:
        tuple: 包含如下两个元素
            - state_hat (list): 返回量子态 state 的经典影子 (method = 'NR')
            - reconstructed_state (numpy.ndarray): 返回估计的量子态 state 的密度矩阵 (method = 'R')

    代码示例:

    .. code-block:: python

        from paddle_quantum.shadow import classical_shadow
        from paddle_quantum.state import vec_random

        n_qubit = 2
        sample_shots = 2
        state = vec_random(n_qubit)
        state_shadow = classical_shadow(state, n_qubit, sample_shots, mode='state_vector', method='NR')
        state_density_matrix = classical_shadow(state, n_qubit, sample_shots, mode='state_vector', method='R')

        print('classical shadow of quantum state = ', state_shadow)
        print('density matrix of quantum state = ', state_density_matrix)

    ::
        classical shadow of quantum state =  [array([[ 0.25+0.j  ,  0.  +0.75j, -0.75+0.j  , -0.  -2.25j],
                                                    [ 0.  -0.75j,  0.25+0.j  ,  0.  +2.25j, -0.75+0.j  ],
                                                    [-0.75+0.j  , -0.  -2.25j,  0.25+0.j  ,  0.  +0.75j],
                                                    [ 0.  +2.25j, -0.75+0.j  ,  0.  -0.75j,  0.25+0.j  ]]),
                                            array([[0.25+0.j  , 0.  -0.75j, 0.75+0.j  , 0.  -2.25j],
                                                    [0.  +0.75j, 0.25+0.j  , 0.  +2.25j, 0.75+0.j  ],
                                                    [0.75+0.j  , 0.  -2.25j, 0.25+0.j  , 0.  -0.75j],
                                                    [0.  +2.25j, 0.75+0.j  , 0.  +0.75j, 0.25+0.j  ]])]
        density matrix of quantum state =  [[ 0.625+0.j     0.375+0.j    -1.5  +0.375j  0.   +1.125j]
                                            [ 0.375+0.j    -0.125+0.j     0.   +1.125j  0.75 +0.375j]
                                            [-1.5  -0.375j  0.   -1.125j  0.625+0.j     0.375+0.j   ]
                                            [ 0.   -1.125j  0.75 -0.375j  0.375+0.j    -0.125+0.j   ]]

    """
    # Used to store the classic shadow for each sample
    state_hat = []
    I_matrix = np.array([[1, 0], [0, 1]])

    for _ in range(sample_shots):
        # Randomly selected Pauli
        random_pauli_str = random_pauli_sample(num_qubits, beta=None)
        # Measure according to the selected Pauli
        measurement_result = measure_by_pauli_str(random_pauli_str, state, num_qubits, mode, None)
        # Generate a 1×1 matrix, convenient tensor product
        hat_state = np.eye(1)
        for i in range(num_qubits):
            single_pauli_matrix = paulistr_to_matrix(random_pauli_str[i])
            single_b_matrix = measure_result_to_matrix(measurement_result[i])
            # The classical shadow on a single qubit is obtained according to the derived M inverse
            single_qubit_state_left = np.dot(np.dot(single_pauli_matrix.conj().T, single_b_matrix), single_pauli_matrix)
            single_qubit_state = 3 * single_qubit_state_left - I_matrix
            # The classical shadow of quantum state is obtained
            hat_state = np.kron(hat_state, single_qubit_state)

        # Store classical shadows
        state_hat.append(hat_state)

    if method == 'R':
        # Returns the density matrix of the quantum state
        reconstructed_state = sum(state_hat)/len(state_hat)        
        return reconstructed_state

    else:
        # Returns the classical shadow of the quantum state
        return state_hat