Fisher_EN.ipynb 131.5 KB
Notebook
Newer Older
Q
Quleaf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
{
 "cells": [
  {
   "cell_type": "markdown",
   "source": [
    "# Quantum Fisher Information\n",
    "\n",
    "<em> Copyright (c) 2021 Institute for Quantum Computing, Baidu Inc. All Rights Reserved. </em>"
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "## Overview\n",
    "\n",
    "In this tutorial, we briefly introduce the concepts of the classical and quantum Fisher information, along with their applications in quantum machine learning, and show how to compute them with Paddle Quantum."
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "## Background\n",
    "\n",
    "The quantum Fisher information (QFI) originates from the field of quantum sensing and have been versatile tools to study parameterized quantum systems [[1]](https://arxiv.org/abs/2103.15191), such as characterizing the overparameterization [[2]](https://arxiv.org/abs/2102.01659) and performing the quantum natural gradient descent [[3]](https://arxiv.org/abs/1909.02108). The QFI is a quantum analogue of the classical Fisher information (CFI). The CFI characterizes the sensibility of a parameterized **probability distribution** to parameter changes, while the QFI characterizes the sensibility of a parameterized **quantum state** to parameter changes.\n",
    "\n",
    "In a traditional introduction, the CFI will appear as a quantity of parameter estimation in mathematical statistics, which might be complicated and confusing for the beginners. This tutorial will introduce the CFI from a geometric point of view, which is not only helpful for intuitive understanding, but also easier to see the relationship between the CFI and QFI."
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "### Classical Fisher information\n",
    "\n",
    "Let's consider the classical Fisher information first. Suppose we now have a parameterized probability distribution $p(\\boldsymbol{x};\\boldsymbol{\\theta})$. Here comes a question:\n",
    "\n",
    "- How much does a small parameter change result in the probability distribution change ?\n",
    "\n",
    "Since the question sounds like a perturbation problem, an intuition is to perform something like the Taylor expansion. But before expansion, we need to know which function to expand, i.e. we need to quantify the probability distribution change first. More formally, we need to define a distance measure between any two probability distributions, denoted by $d(p(\\boldsymbol{x};\\boldsymbol{\\theta}),p(\\boldsymbol{x};\\boldsymbol{\\theta}'))$, or $d(\\boldsymbol{\\theta},\\boldsymbol{\\theta}')$ for short.\n",
    "\n",
    "Generally, a legal distance measure is supposed to be non-negative and equal to zero if and only if two points are identical, i.e.\n",
    "\n",
    "$$\n",
    "\\begin{aligned}\n",
    "&d(\\boldsymbol{\\theta},\\boldsymbol{\\theta}')\\geq 0,\\\\\n",
    "&d(\\boldsymbol{\\theta},\\boldsymbol{\\theta}')=0~\\Leftrightarrow~\\boldsymbol{\\theta}=\\boldsymbol{\\theta}'.\n",
    "\\end{aligned}\n",
    "\\tag{1}\n",
    "$$\n",
    "\n",
    "Considering the expansion of a small distance $d(\\boldsymbol{\\theta},\\boldsymbol{\\theta}+\\boldsymbol{\\delta})$, the conditions above lead to\n",
    "\n",
    "$$\n",
    "\\begin{aligned}\n",
    "&d(\\boldsymbol{\\theta},\\boldsymbol{\\theta})=0~\\Rightarrow~\\text{the zero order}=0,\\\\\n",
    "&d(\\boldsymbol{\\theta},\\boldsymbol{\\theta}+\\boldsymbol{\\delta})\\geq 0~\\Rightarrow~\\boldsymbol{\\delta}=0~\\text{takes minimum}\n",
    "~\\Rightarrow~\\text{the first order}=0.\n",
    "\\end{aligned}\n",
    "\\tag{2}\n",
    "$$\n",
    "\n",
    "Thus, the second order is the lowest order that does not vanish in the expansion. So the expansion can be written as\n",
    "\n",
    "$$\n",
    "\\begin{aligned}\n",
    "d(\\boldsymbol{\\theta},\\boldsymbol{\\theta}+\\boldsymbol{\\delta})\n",
    "=\\frac{1}{2}\\sum_{ij}\\delta_iM_{ij}\\delta_j+O(\\|\\boldsymbol{\\delta}\\|^3) \n",
    "=\\frac{1}{2} \\boldsymbol{\\delta}^T M \\boldsymbol{\\delta} + O(\\|\\boldsymbol{\\delta}\\|^3),\n",
    "\\end{aligned}\n",
    "\\tag{3}\n",
    "$$\n",
    "\n",
    "where\n",
    "\n",
    "$$\n",
    "M_{ij}(\\boldsymbol{\\theta})=\\left.\\frac{\\partial^2}{\\partial\\delta_i\\partial\\delta_j}d(\\boldsymbol{\\theta},\\boldsymbol{\\theta}+\\boldsymbol{\\delta})\\right|_{\\boldsymbol{\\delta}=0},\n",
    "\\tag{4}\n",
    "$$\n",
    "\n",
    "is exactly the Hessian matrix of the distance expansion, which is called [metric](http://en.wikipedia.org/wiki/Metric_tensor) of manifold in the context of differentiable geometry. The brief derivation above tells us that we can approximate a small distance as a quadratic form of the corresponding parameters, as shown in Fig.1, and the coefficient matrix  of the quadratic form is exactly the Hessian matrix from the distance expansion, up to a $1/2$ factor.\n",
    "\n",
    "![feature map](./figures/FIM-fig-Sphere-metric.png \"Figure 1. Approximate a small distance on the 2-sphere as a quadratic form\")\n",
    "<div style=\"text-align:center\">Figure 1. Approximate a small distance on the 2-sphere as a quadratic form </div>\n",
    "\n",
    "If the distance measure is specified to be the relative entropy / KL divergence, i.e.\n",
    "$$\n",
    "d_{\\mathrm{KL}}(\\boldsymbol{\\theta}, \\boldsymbol{\\theta}^{\\prime})=\\sum_{\\boldsymbol{x}} p(\\boldsymbol{x};\\boldsymbol{\\theta}) \\log \\frac{p(\\boldsymbol{x};\\boldsymbol{\\theta})}{p(\\boldsymbol{x};\\boldsymbol{\\theta}^{\\prime})}.\n",
    "\\tag{5}\n",
    "$$\n",
    "\n",
    "The corresponding Hessian matrix\n",
    "\n",
    "$$\n",
    "\\begin{aligned}\n",
    "\\mathcal{I}_{ij}(\\boldsymbol{\\theta})&= \\left.\\frac{\\partial^2}{\\partial\\delta_i\\partial\\delta_j}d_{\\mathrm{KL}}(\\boldsymbol{\\theta},\\boldsymbol{\\theta}+\\boldsymbol{\\delta})\\right|_{\\boldsymbol{\\delta}=0}\\\\\n",
    "&=-\\sum_{\\boldsymbol{x}} p(\\boldsymbol{x};\\boldsymbol{\\theta}) \\partial_{i} \\partial_{j} \\log p(\\boldsymbol{x};\\boldsymbol{\\theta})\n",
    "=\\mathbb{E}_{\\boldsymbol{x}}[-\\partial_{i} \\partial_{j} \\log p(\\boldsymbol{x};\\boldsymbol{\\theta})] \\\\\n",
    "&=\\sum_{\\boldsymbol{x}}  \\frac{1}{p(\\boldsymbol{x};\\boldsymbol{\\theta})} \\partial_i p(\\boldsymbol{x};\\boldsymbol{\\theta}) \\cdot \\partial_j p(\\boldsymbol{x};\\boldsymbol{\\theta})\n",
    "=\\mathbb{E}_{\\boldsymbol{x}}[\\partial_i\\log p(\\boldsymbol{x};\\boldsymbol{\\theta})\\cdot \\partial_j \\log p(\\boldsymbol{x};\\boldsymbol{\\theta})].\n",
    "\\end{aligned}\n",
    "\\tag{6}\n",
    "$$\n",
    "\n",
    "is the so-called classical Fisher information matrix (CFIM), with large entries indicating large sensibility to the corresponding parameter changes. Here we use the notation $\\partial_i=\\partial/\\partial \\theta_i$.\n",
    "\n",
    "Why is $\\mathcal{I}(\\boldsymbol{\\theta})$ called \"information\"? Geometrically, the CFIM characterizes the sensitivity / sharpness of a probability distribution in the vicinity of $\\boldsymbol{\\theta}$. The more sensitive it is to a parameter change, the easier one can discriminate it from others, the fewer samples are needed to discriminate it, the more information per sample can give.\n",
    "\n",
    "The measurement outcomes from a parameterized quantum circuit (PQC) form a parameterized probability distribution. So one can define a CFIM for each kind of measurement on a PQC. Currently, the main challenge of calculating CFIM on NISQ devices is that the number of possible measurement outputs increases exponentially with the number of qubits, which means that there may be many measurement outputs with low probabilities that never appear, leading to divergence in CFIM calculations. Possible solutions includes neglecting small probabilities (cause diverge) and Bayesian updating [[1]](https://arxiv.org/abs/2103.15191)."
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "### Quantum Fisher information\n",
    "\n",
    "The quantum Fisher information is a natural quantum analogue of the classical notion above, where the expanded distance is not defined between two probability distributions, but two quantum states. A common choice is the fidelity distance \n",
    "\n",
    "$$\n",
    "d_f(\\boldsymbol{\\theta},\\boldsymbol{\\theta}')=2-2|\\langle\\psi(\\boldsymbol{\\theta})|\\psi(\\boldsymbol{\\theta}')\\rangle|^2.\n",
    "\\tag{7}\n",
    "$$\n",
    "\n",
    "where an additional factor $2$ here is manually multiplied to make the subsequent results resemble the CFIM. Hence formally, the quantum Fisher information matrix (QFIM) at a parameterized pure quantum state $|\\psi(\\boldsymbol{\\theta})\\rangle, \\boldsymbol{\\theta}\\in\\mathbb{R}^m$ is the Hessian matrix of the fidelity distance expansion, i.e.\n",
    "\n",
    "$$\n",
    "\\begin{aligned}\n",
    "\\mathcal{F}_{ij}(\\boldsymbol{\\theta})\n",
    "&= \\left.\\frac{\\partial^2}{\\partial\\delta_i\\partial\\delta_j}d_{f}(\\boldsymbol{\\theta},\\boldsymbol{\\theta}+\\boldsymbol{\\delta})\\right|_{\\boldsymbol{\\delta}=0} \\\\\n",
    "&=4 \\operatorname{Re}\\left[\\left\\langle\\partial_{i} \\psi \\mid \\partial_{j} \\psi\\right\\rangle - \\left\\langle\\partial_{i} \\psi \\mid \\psi\\right\\rangle\\left\\langle\\psi \\mid \\partial_{j} \\psi\\right\\rangle\\right],\n",
    "\\end{aligned}\n",
    "\\tag{8}\n",
    "$$\n",
    "\n",
    "where we have omitted the argument $\\boldsymbol{\\theta}$ for simplicity. Similar to the CFIM, the QFIM characterizes the sensibility of a parameterized quantum state to a small change of parameters. In addition, it is worth mentioning that the QFIM can be seen as the real part of a complex matrix called the quantum geometric tensor, or say the Fubini-Study metric [[1]](https://arxiv.org/abs/2103.15191).\n",
    "\n",
    "Currently, the community has developed some techniques to calculate the QFIM for pure states on NISQ devices, among which the two most straight methods are\n",
    "\n",
    "- applying the second order parameter shift rule [[4]](https://arxiv.org/abs/2008.06517)\n",
    "$$\n",
    "\\begin{aligned}\n",
    "\\mathcal{F}_{i j}=-\\frac{1}{2} \\Big(&|\\langle\\psi(\\boldsymbol{\\theta}) \\mid \\psi(\\boldsymbol{\\theta}+(\\boldsymbol{e}_{i}+\\boldsymbol{e}_{j}) \\frac{\\pi}{2})\\rangle|^{2}\n",
    "-|\\langle\\psi(\\boldsymbol{\\theta}) \\mid \\psi(\\boldsymbol{\\theta}+(\\boldsymbol{e}_{i}-\\boldsymbol{e}_{j}) \\frac{\\pi}{2})\\rangle|^{2}\\\\\n",
    "-&|\\langle\\psi(\\boldsymbol{\\theta}) \\mid \\psi(\\boldsymbol{\\theta}-(\\boldsymbol{e}_{i}-\\boldsymbol{e}_{j}) \\frac{\\pi}{2})\\rangle|^{2}\n",
    "+|\\langle\\psi(\\boldsymbol{\\theta}) \\mid \\psi(\\boldsymbol{\\theta}-(\\boldsymbol{e}_{i}+\\boldsymbol{e}_{j}) \\frac{\\pi}{2})\\rangle|^{2}\\Big),\n",
    "\\end{aligned}\n",
    "\\tag{9}\n",
    "$$\n",
    "where $\\boldsymbol{e}_{i}$ denotes the unit vector corresponding to $\\theta_i$.\n",
    "\n",
    "- applying the finite difference expression to calculate the projection along a certain direction [[1]](https://arxiv.org/abs/2103.15191)\n",
    "$$\n",
    "\\boldsymbol{v}^{T} \\mathcal{F} \\boldsymbol{v} \\approx \\frac{4 d_{f}(\\boldsymbol{\\theta}, \\boldsymbol{\\theta}+\\epsilon \\boldsymbol{v})}{\\epsilon^{2}}.\n",
    "\\tag{10}\n",
    "$$\n",
    "which can be regarded as the quantum analogue of the famed Fisher-Rao norm.\n",
    "\n",
    "For mixed states, the QFIM can be defined by the expansion of the Bures fidelity distance\n",
    "\n",
    "$$\n",
    "d_B(\\boldsymbol{\\theta},\\boldsymbol{\\theta}')\\equiv \n",
    "2-2\\left[\\text{Tr}\\left([\\sqrt{\\rho(\\boldsymbol{\\theta})} \\rho(\\boldsymbol{\\theta}')\\sqrt{\\rho(\\boldsymbol{\\theta})}]^{1/2}\\right)\\right]^2,\n",
    "\\tag{11}\n",
    "$$\n",
    "\n",
    "or equivalently ($\\log x\\sim x-1$), the $\\alpha=1/2$ \"sandwiched\" Rényi relative entropy [[5]](https://arxiv.org/abs/1308.5961)\n",
    "\n",
    "$$\n",
    "\\begin{aligned}\n",
    "d_R(\\boldsymbol{\\theta},\\boldsymbol{\\theta}') &\\equiv 2\\widetilde{D}_{\\alpha=1/2}(\\rho(\\boldsymbol{\\theta'}) \\| \\rho(\\boldsymbol{\\theta})), \\\\\n",
    "\\widetilde{D}_{\\alpha}(\\rho \\| \\sigma) \n",
    "&\\equiv \n",
    "\\frac{1}{\\alpha-1} \\log \\operatorname{Tr}\\left[\\left(\\sigma^{\\frac{1-\\alpha}{2 \\alpha}} \\rho \\sigma^{\\frac{1-\\alpha}{2 \\alpha}}\\right)^{\\alpha}\\right].\\\\\n",
    "\\end{aligned}\n",
    "\\tag{12}\n",
    "$$\n",
    "\n",
    "Please see the review [[1]](https://arxiv.org/abs/2103.15191) for more details."
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "### The relation between CFIM and QFIM\n",
    "\n",
    "By definition, for a parameterized quantum circuit, the CFIM depends on the measurement bases while the QFIM does not. In fact, one can prove that the QFIM of a quantum state $\\rho(\\boldsymbol{\\theta})$ is an upper bound of the CFIM obtained by arbitrary measurement from the same quantum state, i.e.\n",
    "\n",
    "$$\n",
    "\\mathcal{I}[\\mathcal{E}[\\rho(\\boldsymbol{\\theta})]]\\leq \\mathcal{F}[\\rho(\\boldsymbol{\\theta})],~\\forall\\mathcal{E},\n",
    "\\tag{13}\n",
    "$$\n",
    "\n",
    "where $\\mathcal{E}$ denotes the quantum operation corresponding to the measurement, and the inequality between two positive matrices means that the large minus the small is still a positive matrix. This is a natural result since measurements can not extract more information than the quantum state itself, which mathematically stems from the monotonicity of the fidelity distance with respect to trace-preserving quantum operations [[1]](https://arxiv.org/abs/2103.15191)."
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "### Application: effective dimension\n",
    "\n",
    "The maximal rank of the CFIM / QFIM over the parameter space $\\Theta$ is a quantity to characterize the **capacity** of a classical / quantum neural network, called effective classical / quantum dimension\n",
    "\n",
    "$$\n",
    "d_{\\text{eff}}=\\underset{\\boldsymbol{\\theta}\\in\\Theta} {\\max}\n",
    "\\operatorname{rank}{\\mathcal{F}}(\\boldsymbol{\\theta}).\n",
    "\\tag{14}\n",
    "$$\n",
    "\n",
    "The rank captures in how many directions parameter changes will result in the probability distribution / quantum state changes. A not-full rank means that some changes of parameters can not actually change the probability distribution / quantum state, or say there are redundant degrees of freedom of parameters that can be projected out and the model is therefore overparameterized. On the other hand, a larger effective dimension corresponds to more directions that can be extended, suggesting a more extensive space occupied by the model, i.e. a larger capacity.\n",
    "\n",
    "In the context of machine learning, the so-called empirical CFIM [[6]](https://arxiv.org/abs/2011.00027) is more widely used, which is defined by a summation over samples instead of the expectation in the original definition\n",
    "\n",
    "$$\n",
    "\\tilde{\\mathcal{I}}_{ij}(\\boldsymbol{\\theta})\n",
    "=\\frac{1}{n}\\sum_{k=1}^{n}\n",
    "\\partial_i\\log p(x_k,y_k;\\boldsymbol{\\theta})\n",
    "\\partial_j\\log p(x_k,y_k;\\boldsymbol{\\theta}),\n",
    "\\tag{15}\n",
    "$$\n",
    "\n",
    "where $(x_k,y_k)^{n}_{k=1}$ are identical independent distributed training data drawn from the distribution $p(x,y;\\boldsymbol{\\theta})=p(y|x;\\boldsymbol{\\theta})p(x)$. Clearly, the empirical CFIM can converge to the CFIM in the limit of infinite samples if (1) the model has been well-trained and (2) the model has enough capacity to cover the underlying data distribution. The advantage of the empirical CFIM is that it can be calculated directly using the training data at hand, instead of calculating the original integral by generating new samples. \n",
    "\n",
    "By use of the empirical CFIM, a variant of the effective dimension can be defined as\n",
    "\n",
    "$$\n",
    "d_{\\text{eff}}(\\gamma, n)=\n",
    "2 \\frac{\\log \\left(\\frac{1}{V_{\\Theta}} \\int_{\\Theta} \\sqrt{\\operatorname{det}\\left( 1 + \\frac{\\gamma n}{2 \\pi \\log n} \\hat{\\mathcal{I}}( \\boldsymbol{\\theta})\\right)} \\mathrm{d}  \\boldsymbol{\\theta} \\right)}\n",
    "{\\log \\left(\\frac{\\gamma n}{2 \\pi \\log n}\\right)},\n",
    "\\tag{16}\n",
    "$$\n",
    "\n",
    "where $V_{\\Theta}:=\\int_{\\Theta} \\mathrm{d} \\boldsymbol{\\theta} \\in \\mathbb{R}_{+}$ is the volume of the parameter space. $\\gamma\\in(0,1]$ is an artificial tunable parameter. $\\hat{\\mathcal{I}} (\\boldsymbol{\\theta}) \\in \\mathbb{R}^{d\\times d}$ is the normalized empirical CFIM\n",
    "\n",
    "$$\n",
    "\\hat{\\mathcal{I}}_{i j}(\\boldsymbol{\\theta}):= \\frac{V_{\\Theta} d }{\\int_{\\Theta} \\operatorname{Tr}(F( \\boldsymbol{\\theta} ) \\mathrm{d} \\theta} \\tilde{\\mathcal{I}}_{i j}(\\boldsymbol{\\theta}).\n",
    "\\tag{17}\n",
    "$$\n",
    "\n",
    "This definition might be strange and confusing at first glance, which is far more complicated than the maximal rank of the CFIM. However, it can converge to the maximal rank of the CFIM in the limit of infinite samples $n\\rightarrow \\infty$ [[6]](https://arxiv.org/abs/2011.00027). Regardless of the coefficients and the logarithm, the effective dimension here can be seen roughly as the geometric mean of the spectrum of the normalized CFIM plus an identity, then averaging over the parameter space. Associated with the inequality between the geometric mean and the arithmetic mean, we may expect that a more uniform empirical CFIM spectrum leads to a larger effective dimension, which is consistent with our natural impression. In this sense, it is a \"soft\" version of the effective dimension.\n",
    "\n",
    "In addition, the Fisher information can not only provide an capacity measure, but also can serve as an indicator of trainability. If the entries of the Fisher information vanish exponentially with the system size averaging over the parameter space, i.e. the sensitivity becomes exponentially small, we can not distinguish them efficiently, which indicates the existence of barrens plateaus [[6]](https://arxiv.org/abs/2011.00027)."
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "## Paddle Quantum Implementation"
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "### Calculate the QFIM\n",
    "\n",
    "With Paddle Quantum, one can obtain the QFIM conveniently by the following steps.\n",
    "\n",
    "1. Define a quantum circuit using `UAnsatz`.\n",
    "2. Define a `QuantumFisher` class as a calculator of the QFIM.\n",
    "3. Use the method `get_qfisher_matrix()` to calculate the QFIM.\n",
    "\n",
    "The calculator `QuantumFisher` will keep track of the change of the circuit `UAnsatz`.\n",
    "\n",
    "Now let's code. Firstly, import packages."
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "source": [
    "import paddle\n",
    "from paddle_quantum.circuit import UAnsatz\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "from paddle_quantum.utils import QuantumFisher, ClassicalFisher\n",
    "import warnings\n",
    "warnings.filterwarnings(\"ignore\")"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "Then, define a quantum circuit. As a simple example, we exploit a single qubit parameterized by two Bloch angles\n",
    "\n",
    "$$\n",
    "|\\psi(\\theta,\\phi)\\rangle=R_z(\\phi)R_y(\\theta)|0\\rangle=e^{-i\\phi/2}\\cos\\frac{\\theta}{2}|0\\rangle+e^{i\\phi/2}\\sin\\frac{\\theta}{2}|1\\rangle.\n",
    "\\tag{18}\n",
    "$$\n",
    "\n",
    "The corresponding QFIM can be directly calculated using Eq.(8). The analytical result reads\n",
    "\n",
    "$$\n",
    "\\mathcal{F}(\\theta,\\phi)=\\left(\\begin{matrix}\n",
    "1&0\\\\\n",
    "0&\\sin^2\\theta\n",
    "\\end{matrix}\\right).\n",
    "\\tag{19}\n",
    "$$"
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "source": [
    "def circuit_bloch():\n",
    "    cir = UAnsatz(1)\n",
    "    theta = 2 * np.pi * np.random.random(2)\n",
    "    theta = paddle.to_tensor(theta, stop_gradient=False, dtype='float64')\n",
    "    cir.ry(theta[0], which_qubit=0)\n",
    "    cir.rz(theta[1], which_qubit=0)\n",
    "    \n",
    "    return cir"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "source": [
    "cir = circuit_bloch()\n",
    "print(cir)"
   ],
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "--Ry(1.888)----Rz(2.181)--\n",
      "                          \n"
     ]
    }
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "Define a QFIM calculator and calculate the QFIM element $\\mathcal{F}_{\\phi\\phi}$ corresponding to different $\\theta$."
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "source": [
    "qf = QuantumFisher(cir)\n",
    "# Record the QFIM element F_{phi,phi}\n",
    "list_qfisher_elements = []\n",
    "num_thetas = 21\n",
    "thetas = np.linspace(0, np.pi, num_thetas)\n",
    "for theta in thetas:\n",
    "    list_param = cir.get_param().tolist()\n",
    "    list_param[0] = theta\n",
    "    cir.update_param(list_param)\n",
    "    # Calculate the QFIM\n",
    "    qfim = qf.get_qfisher_matrix()\n",
    "    print(f'The QFIM at {np.array(list_param)} is \\n {qfim.round(14)}.')\n",
    "    list_qfisher_elements.append(qfim[1][1])"
   ],
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "The QFIM at [0.         2.18107874] is \n",
      " [[1. 0.]\n",
      " [0. 0.]].\n",
      "The QFIM at [0.15707963 2.18107874] is \n",
      " [[1.         0.        ]\n",
      " [0.         0.02447174]].\n",
      "The QFIM at [0.31415927 2.18107874] is \n",
      " [[1.        0.       ]\n",
      " [0.        0.0954915]].\n",
      "The QFIM at [0.4712389  2.18107874] is \n",
      " [[1.         0.        ]\n",
      " [0.         0.20610737]].\n",
      "The QFIM at [0.62831853 2.18107874] is \n",
      " [[ 1.        -0.       ]\n",
      " [-0.         0.3454915]].\n",
      "The QFIM at [0.78539816 2.18107874] is \n",
      " [[1.  0. ]\n",
      " [0.  0.5]].\n",
      "The QFIM at [0.9424778  2.18107874] is \n",
      " [[ 1.        -0.       ]\n",
      " [-0.         0.6545085]].\n",
      "The QFIM at [1.09955743 2.18107874] is \n",
      " [[1.         0.        ]\n",
      " [0.         0.79389263]].\n",
      "The QFIM at [1.25663706 2.18107874] is \n",
      " [[1.        0.       ]\n",
      " [0.        0.9045085]].\n",
      "The QFIM at [1.41371669 2.18107874] is \n",
      " [[1.         0.        ]\n",
      " [0.         0.97552826]].\n",
      "The QFIM at [1.57079633 2.18107874] is \n",
      " [[1. 0.]\n",
      " [0. 1.]].\n",
      "The QFIM at [1.72787596 2.18107874] is \n",
      " [[1.         0.        ]\n",
      " [0.         0.97552826]].\n",
      "The QFIM at [1.88495559 2.18107874] is \n",
      " [[1.        0.       ]\n",
      " [0.        0.9045085]].\n",
      "The QFIM at [2.04203522 2.18107874] is \n",
      " [[1.         0.        ]\n",
      " [0.         0.79389263]].\n",
      "The QFIM at [2.19911486 2.18107874] is \n",
      " [[1.        0.       ]\n",
      " [0.        0.6545085]].\n",
      "The QFIM at [2.35619449 2.18107874] is \n",
      " [[1.  0. ]\n",
      " [0.  0.5]].\n",
      "The QFIM at [2.51327412 2.18107874] is \n",
      " [[1.        0.       ]\n",
      " [0.        0.3454915]].\n",
      "The QFIM at [2.67035376 2.18107874] is \n",
      " [[ 1.         -0.        ]\n",
      " [-0.          0.20610737]].\n",
      "The QFIM at [2.82743339 2.18107874] is \n",
      " [[1.        0.       ]\n",
      " [0.        0.0954915]].\n",
      "The QFIM at [2.98451302 2.18107874] is \n",
      " [[1.         0.        ]\n",
      " [0.         0.02447174]].\n",
      "The QFIM at [3.14159265 2.18107874] is \n",
      " [[1. 0.]\n",
      " [0. 0.]].\n"
     ]
    }
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "Plot the outputs of the QFIM element $\\mathcal{F}_{\\phi\\phi}$ as function of $\\theta$."
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "source": [
    "# Create a figure\n",
    "fig = plt.figure(figsize=(9, 6))\n",
    "ax = fig.add_subplot(111)\n",
    "# Plot the QFIM\n",
    "ax.plot(thetas, list_qfisher_elements, 's', markersize=11, markerfacecolor='none')\n",
    "# Plot sin^2 theta\n",
    "ax.plot(thetas, np.sin(thetas) ** 2, linestyle=(0, (5, 3)))\n",
    "# Set legends, labels, ticks\n",
    "label_font_size = 18\n",
    "ax.legend(['get_qfisher_matrix()[1][1]', '$\\\\sin^2\\\\theta$'], \n",
    "          prop= {'size': label_font_size}, frameon=False) \n",
    "ax.set_xlabel('$\\\\theta$', fontsize=label_font_size)\n",
    "ax.set_ylabel('QFIM element $\\\\mathcal{F}_{\\\\phi\\\\phi}$', fontsize=label_font_size)\n",
    "ax.tick_params(labelsize=label_font_size)"
   ],
   "outputs": [
    {
     "output_type": "display_data",
     "data": {
      "text/plain": [
       "<Figure size 648x432 with 1 Axes>"
      ],
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGDCAYAAADK5Q/LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABYRklEQVR4nO3dd3hU1drG4d+bUEOLEBCIQASlWSliQZoFUIq94BHE3lDBgljRY+OoKHbFgorlw4ZdEaSIKAqC7YAFBFFQCChICS1Z3x97wkmZJDPJTPaU576uuQK75cnOZOadtddey5xziIiIiCSzFL8DiIiIiPhNBZGIiIgkPRVEIiIikvRUEImIiEjSU0EkIiIiSU8FkYiIiCS9Kn4HiGUZGRkuKyvL7xgiIiISAV999dVa51zDYOtUEJUiKyuL+fPn+x1DREREIsDMfi1pnS6ZiYiISNJTQSQiIiJJTwWRiIiIJD0VRCIiIpL0VBCJiIhI0lNBJCIiIklPBZGIiIgkvZgdh8jMrgM6Ap2APYFfnXNZ5TjOEGAE0Bb4B3gHuM45lx25tCISL7qOmc7K9TkhbZuZXpM5o46IciIRiQUxWxABdwJ/AQuA9PIcwMxGAPcBs4ArgD2AK4FDzayLc25zZKKKSLxYuT6H5WP6hbRt1qj3opxGRGJFLBdErZxzvwCY2fdA7XB2NrMM4HZgHnCkcy43sHwe8DZegXRnRBOLiIhIXIrZPkT5xVAFHA+kAQ/lF0OB474D/AKcWcHji4iISIKI2YIoAg4KfP08yLq5QFszC6vVSUQSjHOQ/ZP3cM7vNCLio1i+ZFZRTQNfVwZZtxKwwDY/FVxhZhcAFwA0b948mvlExE+fPwrzn4Z1S7z/N9gL2vaHdgOgaUdISeTPiyJSVCL/xacFvm4Lsm5rkW12cc6Nd851ds51btiwYdTCiUglyssrvmzzGqjXDPqNhWPvhXp7wOcPw1NHwrtXVH5GEfFVIrcQbQl8rQ4Uvce2RpFtRCTR7MiBpdNh8buwZCpc+iWk1f/f+iNHg9n//t/lfMj5G36a4hVKBeXu9I7RsidUrVkp8UWkciVyQbQq8DUTWFJkXSbgCmwjIjGk3GMFbd0AP30Ei9+GJdNgxxaoUQ9aHwPbNxcuiAoWQ/lq7gYHnF58+YrP4eXToWot2OtIaDcQWvf2jh2J3CLiu0QuiObh9QU6lOIF0SHAj865TZWeSkTKVK6xgv5eDg91hrwdUHt3r7BpNwCyukFq1YoFan4IDJ4Mi9+BH97zCq6UqtCyh9fvaP/ToFqaxjgSiWMJURCZWXO8/kBLnXM7AovfAh4EhpnZSwXGIRoAtARu8iWsiFTc38th20ZovN//lqW3gB4jvctamZ0j2yk6tSq0OsJ7HDsWfp8HP7zjFUhTbgjeqiQicSVmCyIzGwy0CPy3IVDNzG4M/P9X59zEAps/D/TAm+JjOYBzLtvMbgLuBaaZ2ct4l8quAn4AxkX7ZxCRCHEO1iwOtNC8A39+5xU+Q9763zZmXkFUhsz0miG3zmSmB+kvlJICzQ/2HkffBht+L96v6JN7vMxt+0OjdsEvz4lITInZggg4F6/IKei2wNdZwETK4Jwba2br8OYyexBvLrNXgFG6XCYSJ3Zug8kXwn8nAwbNukDv271ioxwi2m/HDNKbFV++ciH8+D7MuAP2OQFOeAKqVI/c9xWRiIvZgsg51zMS2zrnngWerXAgEal82zbC//0Lls2CHqOg89lQp7Hfqco26CXY+CfMnwCzxnh3r532IlTXWLAisSqRxyESkXi3bRNs+A2Ofxx6XRcfxVC+Oo29zMc/Bstmw/MDYfM6v1OJSAlUEIlI7KrbBC6ZCwcO8jtJ+R14Bpz2Avz5PUzVvRwisSpmL5mJiACJ0fem7bEw9F3I2NvvJCJSAhVEIhI7Vi6AhRNJIQEHLGzWxe8EIlIKXTITkdjwyyx4bgAsmUYGG/xOE3W1yIHfvvQ7hogEqIVIRPy3+B147Ryo3woGT6bqo4srNlaQT8IZ4+j+Wq/AszPg5Ge8EbVFxFfmnPM7Q8zq3Lmzmz9/vt8xRBLbgonwzuWQ2QnOeKXwfGOJbMtf8OIpsGoBDHgQOg72O5FIwjOzr5xznYOt0yUzEfHPnAfg7WHQspc36nSyFEPg/axD3oI9e3jnYM4DficSSWoqiETEH9s3e61D+5wIg/4PqtXyO1Hlq14bzpjkjWY99WbvoVZ7EV+oD5GI+KNaLTjnQ6i5G6Sk+p3GP1Wqw0lPQ410r5WoTlM45CK/U4kkHRVEIuKfWhl+J4gNKanQ/35ovB/sf5rfaUSSki6ZiUjl2PoPzLgTcnf4nSQ2mcFB52q+MxGfqCASkejbvNYbY+iTe+H3eX6niR9b/vLOnYhEnQoiEYmu9b/BM30h+wcY9DK0OMzvRPHBOXhliHfu1v/mdxqRhKeCSESiJ/tHeKYPbFoDgydD6z5+J4ofZtDzOti02juH2T/6nUgkoalTtYiUS9cx01m5PqfE9fvbUp6t9h9ySeXq6qN5Ti1D4cvqCkPfgxdOZP0jRzJk20i+da3K3C0zvSZzRiXgfHAiUaSCSETKZeX6HJaP6Rd8pXMw4Rj4pwEMeZNZdy+u3HCJpMn+cM4UNj7Qh7fr/AdOfxFa9ix1l1CnDxGR/9ElMxGJPDM45Tk4ZwrUb+l3mvjXoBUnbb8F6jXzpvv49XO/E4kkHLUQiUh01Nnd7wQJZQ27wdnvwyf3QNMOfscRSThqIRKRyFj5Fezc5neKxJZWH/reBVVr+J1EJOGoIBKRivt7OTw3ED641u8kIiLlooJIRComLxcmXwSWAt2u9DtNcvn7V/jweu93ICIVooJIRCrmswdhxedw7D2Q3tzvNMnl189g7iPw2UN+JxGJeyqIRKT8/vgWpt8B7Y/TpKR+OOB0aDcApt8Of37ndxqRuKaCSETKpTrb4Y0LIK0B9B/n3WovlcsM+j/gdbZ+4wLYsdXvRCJxSwWRiJTLkNSPIHsxHPeI94Ys/qjVwPsdrFkE02/zO41I3NI4RCJSLh/VPp5lG5sw7eltQOkjI2em16ycUAksM71mqSNQ31blKP712SP8a1Y9MtM7V2IykcRgzjm/M8Sszp07u/nz5/sdQ0SkbNs3wxPdYd+Todd1fqcRiUlm9pVzLugnBrUQiYgkgmq14IKZUL2O30lE4pL6EIlI6JbOgL9+8TuFlETFkEi5qSASkdD8swpeHQrvDPc7iYhIxKkgEpGy5eXBm5dA7nbod5/faSQUP7wHr58H6icqEhIVRCJStnlPwS8zoPftkLGX32kkFBv/gO9e9X53IlImFUQiUrrsH2HqTbDX0dD5HL/TSKg6n+v9zj66CbJ/8juNSMxTQSQiJdu5Hd44H6qmwXEPazTqeGLm/c6q1oTJF0DuDr8TicQ0FUQiUrJfZsAf38CAB6BOY7/TSLjqNPZ+d6sWwqy7/U4jEtNUEIlIyVr3gYs/g/YD/U4i5dV+IBxwBsy+F36b53cakZilgkhESrf7Pn4nkIo6Zgzsvi9sWed3EpGYpZGqRUQSXY16cMEsSNFnYJGS6K9DRAr7eSp8/7rfKSTSVAyJlEotRCLyP5vXwpsXQ+3G0O44SNVLRMLKy4WUVL9TiMQMfWQQEY9z8PblsHUDnDhexVAi++hGeGWIRrEWKUAFkYh4Fr4AP74HR46G3dv7nUaiqfbu8MO78PWLficRiRkqiEQE/loGH46CrG5wyCV+p5FoO+RS73f9wbXw93K/04jEBBVEIskuLxcmXwSWCsc/ps63ySAlxftdW4r3u8/L9TuRiO9i9pXPzFLMbISZ/WBmW83sNzMba2a1Qty/tpldb2bfmdlGM1trZp+Z2VAzzT8gssu6pbD2J+h3L6Q38zuNVJb0ZnDsvbDic5jzgN9pRHwXswURcD9wH7AIuAx4FbgceMfMSs0dWP8BcBswD7gKuB1IBSYAY6IXWyTONGwNl30F+53idxKpbPufCu2Phxl3elO0iCSxmLyNxMz2wSuC3nDOnVRg+TLgQeB04KVSDnEwcDgwzjk3osD+jwI/ABcC10Yhukh8SqvvdwLxgxn0vx9cLlSv43caEV/FZEEEDAIMGFdk+ZN4rTtnUnpBVDfwdVXBhc657Wa2FqgemZgisa/rmOmsXJ8T0raZ6TWZM+qIKCeSWNL1wa9ZuX4QLFwMLC51Wz0/JJHFakF0EJAHfFlwoXNuq5l9HVhfmi+B9cBIM1sOfAGkAWcBnYCLIhtXJHatXJ/D8jH9Ci/8ZSYsegt63wHV0nYtzhr1XuWGE98FfX6UQM8PSWSxWhA1BdY657YFWbcSOMzMqjnntgfb2Tn3t5kNBJ4CXimwaiNwknPuzUgHFokbOX/D5IuhWkj3J0iy2bkdcrfpEpoknVjtVJ0GBCuGALYW2KY0m4DvgXuBE4HzgCXAS2Z2dEk7mdkFZjbfzOZnZ2eHl1okHrx3NWxe441GXa2sPyNJKrk7YUJfeHdE2duKJJhYLYi2UHI/nxoFtgnKzPYDPgOmOueucc5Nds49jdfR+k/gSTMLOomPc268c66zc65zw4YNy/8TiMSiHz+E71+DHtdCZke/00isSa0CrfvCd6/CT1P8TiNSqWK1IFoFZJhZsKIoE+9yWtDLZQEj8AqnVwsudM5tAd4DWgBZkYkqEidyd8LUm6DBXnC4WgCkBIePgPqt4KObvOeMSJKI1YJoHl62LgUXmlkN4EBgfhn7Zwa+BmsFqlLkq0hyWPi8NwDjUbdCalW/00isSq0KR98Ka3+EhRP9TiNSaWK1IJoEOGB4keXn4/Ud2jUjoZm1MrO2RbZbFPg6tOBCM0sHjgP+xutPJJI8lk6H5odB29DuKJIk1rY/NDvEG7Bx2ya/04hUiphsJXHOfWdmjwDDzOwN4H2gHd5I1bMoPAbRx3iXwApOxzEOGAKMCfQnmgPUxyuomgCXOuc0eY8kl1Mnwtb13mB8IqUxg963w9NHwWcPQq/r/U4kEnUxWRAFDAeWAxcA/YC1wEPAzc65vNJ2dM79amZdgJuBI/FGts4Bvgaucs69EbXUIrHKDGru5ncKiRfNDoIDzoCUWH6bEImcmH2mB1pwxgYepW2XVcLypXgDMYqISHkc/6haFCVpxGxBJCIRkP0TR9ZdGfIIw5npNaMcSGJNZnpNPT9EUEEkktg+HMXTqQvg34s0CKMEpbnJRDyxepeZiFTU0umw9GPodrWKIamYndvh80dg2Wy/k4hETURaiMysNnAZsA/eSNBvOuc+jcSxRaQc8nK9gfXSW0CX8/1OI3HPwRePQ/V6cOEsSAk60L9IXItUC9FzwJl4xVAD4DUzm1TCSNMiEm3f/B+s/h6OGg1V9GcoFVSlOhw5GlZ/B99O8juNSFSUuyAys2/M7EUzuwHoDRzvnLvaOXc23rQYO4DbIhNTREK2fQtMvx0yO8E+J/qdRhLFPidC047ec2t7iVNJisStirQQjcYbEXofoCawyMx+N7O3gGvxBlMcVPGIIhKWuY/CxlXewHq6ZVoiJSXFe079s9J7jokkmHL3IXLOvQm8CWBmHYCTgbpAR6ATcAKQaWar8Qqnxc65SyqYV0TK0uYY72uLw/zNIYknqyu0ORY+HQcdz4LaDf1OJBIxkepDdA/wMrDTOfeIc+4c4Gy80aX7Ac8A6yP0vUSkNLvvA92v9juFJKqjboUdW+Dzh/1OIhJREbnLzDn3TKAD9VQz2wz8BbQBbnfOzafs2elFRCQeNGwNZ7zitRaJJJCIDczonHvMzJ4GegG7A4sCxZCIVAbn1GdIKsfeR/mdQCTiIjowo3Nuu3NuinPueRVDIpVo+RwY3xP+WuZ3EhGRuKSBGUXiXV4efHQjbM6G2rv7nUaSzaZsSGvg3YUmEsc0MKNIvPvvG7BqARxxo6bokMr153fwwAHec1AkzpW7hcjMvgG+x7ulvjfQ0Tn3c2BdDeApvIEZR0Ygp4gEs3MbfHwr7L4f7H+a32kk2TRqD/X39J6D7QZoVHSJaxqYUSSefTke1q+A3rdpfimpfCmp3nNv/Qr48km/04hUiAZmFIlXW/6CT+6BvY6CVr38TiPJqtUR0OpI+ORuOPAMSKvvdyKRctHAjCLxasXn3iWzozVloPis922wbSPMHut3EpFyC7mFyMzuBA4ArnPOfVtwnQZmFPFB235w5WJ9Ihf/7b6P1zr0xRNw0HlevyKROBNSQWRmA4ABeP2FFgPF5gUoMDBjT6AxGphRJPpUDEms6HUD/PENbF6rgkjiUqgtRH2BgcAhwOclbeSc2w58FIFcIiIST+o2hQtna7R0iVuh9iHKcM4tc8697JxbDmBm90YvlogE5Rz8903I3el3EpHiVAxJHAu1IKodZNlhkQwiIiH44V149Sz4/jW/k4iIJJRQC6JWZlavyDJ9FBCpTLk7YOpoyGgD+57sdxqRkv39K3x4vfecFYkToRZETYDfzOx1MzvHzJoALoq5RKSo+RPgr6Vw9L8hNSLTEIpEx5rFMPcR+OpZv5OIhCzUgigH77LZCcCTwO9ARzO7y8wON9OFY5Go2roBZo2BrG7Quo/faURK17qP91ydeZf33BWJA6EWRKuAo/H6Dd2FN4dZNbwpOmYBa8zsCTPbJyopRZLdp/fDlnXeAHj6/CGxzsx7rm5ZB5+O8zuNSEhCLYjmAH865+Y65250zh0ANAcuBaYAtYDzgQVmdnxUkookq/W/wdzHYL9ToWkHv9OIhKZpB+85O/dR2PC732lEyhRqQfQoUKid3jn3u3PuMefcsUAD4Hi8CV3/E9GEIsmu5m7QdTgceZPfSUTCc+RN3lAR0+/wO4lImUIqiJxzi4GdZtashPU5zrm3nXMn4LUmiUikVK8Nva6D9OZ+JxEJT3pzOOQi+OZlWLfU7zQipTLnQr9ZzMzSnHNbopgnpnTu3NnNn6/ZRyT6uo6Zzsr1OSFtm5lekzmjjohyIpGK6zpmOhvXr2W/lF+Yk7dfqdvqeS2Vwcy+cs51DrYurHt3k6kYEqlMK9fnsHxMv8ILnQvagTpr1HuVlEqkYrzn9akhbavntfgt1D5EIlKZcnfCM31h4Qt+JxERSQoqiERi0dcvwG9zoXodv5OIRNbmtX4nEAlKBZFIrNm+BWbcCc0OhnYD/U4jEjnTboXHunrPcZEYo4JIJNbMfwY2rYajbtUgjJJY9j4aNv0JX03wO4lIMSqIRGLJ9i0w5wHYswe0ONTvNCKR1eIw2LO79xzfEdpdlSKVJayCyMyeMbODS1nfxcyeqXgskST11QTYvAZ6jvI7iUh09BjltYDOVyuRxJZwW4iGAq1KWb8ncFa504gkM+fg+9e9T9AtDvM7jUh0ZHX1Jn6dM06tRBJTIn3JrBawI8LHFEkOZnD2h3DCE34nEYmunoFWoq+e9TuJyC5lDsxoZs2BrAKL2ppZ9yCb1gcuBpZEJppIEqpSDeo29TuFSHRlHe61hGo6D4khoYxUfTYwGnCBxw2BR1EG5AW2F5EwZKbXDHmk3sz0mlFOIxIZpT2vq3IeO6gCs9/bta2In8qcy8zMDgAOxCt4ngHGA58X2cwBm4B5zrnfIh/TH5rLTCrFjhzIWQ91m/idREQkoVVoLjPn3DfAN4EDtQBed859H9mIIknsq2dh6mi49Auov6ffaUREklJYnaqdc7eqGBKJoB058Ok4aNZFxZAkJ+fgxw9hx1a/k0iS08CMIn766jlv5N4e1/qdRMQfv8+Dl0+DBc/5nUSSXNgFkZkdamYvmtmXZrbUzH4p8ojIbQNmlmJmI8zsBzPbama/mdlYM6sVxjHqm9m9ZrYkcIxsM5thZt0ikVGkQnZshU/vhxaHw556SkqS2uMgaNHV+1tQK5H4KJS7zHYxsyHABLyxhn4CVkQjVMD9wOXAZGAs0C7w/w5mdpRzLq+MrC2AmUBt4OlA3nrA/kBm9GKLhGhBoHXopCf9TiLiHzOvhfT5gbDgeTj4Ar8TSZIKqyDCu93+R+Ao59yqKOQBwMz2AS4D3nDOnVRg+TLgQeB04KUyDvMC3s+3v3Puj2hlFSmXXa1DgVF7RZLZnt2h+aHe30THIVC1ht+JJAmFe8msBfBYNIuhgEF4t/mPK7L8SWALcGZpOwcGjjwcuNs594eZVTWztGgEFSmXf1ZCWgPvk7FmtJdkZ+aNXr1xFSyc6HcaSVLhFkS/A9WjEaSIg/AGefyy4ELn3Fbg68D60hwb+LrCzN4BcoDNZvaTmZVaTIlUigat4MLZ3idjEYE9e0CzQ2D2fbBzm99pJAmFWxA9DvzLzFKjEaaApsBa51ywv4qVQIaZVStl/zaBr0/iTSlyFnAOsB2YaGYljqZtZheY2Xwzm5+dnV2+9CKhSElR65BIPjPodT20PVaTvoovwu1D9BVwEvClmT0CLANyi27knPukgrnSgJI+ImwtsM32ErapE/i6EejlnNsOYGZvAr8Ad5rZc8E6ZjvnxuONxk3nzp1LH8ZbREQip2UP7yHig3ALoo8L/PspvCk7CrLAsoq2IG0BGpWwrkaBbUqS//Hi5fxiCMA597eZvQ0MwWtFWlzBnCLhWTod6mZCwzZlbysiIpUm3IKosiZuXQW0N7PqQS6bZeJdTiupdQi8vk4AfwZZl3/H2W4VzCgSnp3b4K1hkN4CzvnA7zQiIlJAWAWRc66yhhKdB/QGugCz8xeaWQ28iWbLuiT3JXARsEeQdfnL1lQ4pUg4Fk707i477hG/k4jEtrw8+PoFqJoG+53sdxpJEuWeusPMqptZZhmdm8trEt6lt+FFlp+P13foxQI5WplZ2yLbvYnXf+hMM6tdYNsmwPHAT865JRFPLVKSndu8u2eaHQwte/qdRiS2mcGCid6kx7rjTCpJeabu6Ghm0/EKjhV44/1gZo3M7GMzO6qioZxz3wGPACea2Rtmdp6ZjQXuA2ZReFDGjynSF8g59zdwNd7ltblmdqWZjQLmAtXwBn0UqTwLX/Bah3qO0p1lImXJH5fon9+9vx2RShBWQWRmB+JdwmoFPF9wnXNuDVAT7xb3SBiOV9Tsg1ccnQ48BPQva9qOQJ7xeHfEbQJu43+jbPdyzn0UoYwiZctvHdqjC7Ts5XcakfjQ6ghvnrPZ98HO0rqMikRGuC1E/8br8LwPMArvrrKCPsbr91Nhzrlc59xY51wb51x151ymc+5K59ymIttlOeeCfuR2zr3hnDvEOVfLOVfHOdfbOTcnEvlEQrbwBe+TrlqHREJXsJXoa7USSfSFWxB1A54MFCXBxuhZgTeooojka3IAHHKJ94lXRELX6kjI7KxWIqkU4RZENYANpayvW4EsIolpj87Q9y61DomEywx6XgcbfoNvyprPW6Riwi2IlgKdSll/BLCo/HFEREQK2OtI6HcftD/e7ySS4MItiF4CBhe5k8wBmNlVQF9AUxWLiEhkmMFB50LNdL+TSIILtyC6F+/W9Sl4gyM64H4zWwncDUwFHo1oQpF4tHM7vH4+rFrodxIREQlBWAVRYLqMo/Fuh8/Bm2i1NbAWGEmIt8SLJLxvXoLvXoHNa/1OIpJYnObclugIe2BG59xO59z9zrnOgdvZ05xzBwRukd8ZjZAicWXndvhkLGR2gr0qPE6piOT7ZhI82Qtyd/idRBJQuafuEJESfPMybFgBPTTukEhE1Uz3LkN/87LfSSQBlWfqjjPMbI6ZrTGz3CAPtRJJ8srdAbPvhaYdYe+j/U4jklj27g1NO8An96qVSCIurNnuzexG4FZgNfAZ8Hc0QonErW9ehvUr4Nh71TokEmlmXsvry6fBN/8HHQf7nUgSSFgFEXAJMBPo65xTeS5SUF6eN6Ju0w7eJ1kRibzWfaDJgV5L7AGnQ2pVvxNJggj3klld4BUVQyJBpKTAoP/zBpFT65BIdOTPcfb3cvh2kt9pJIGEWxAtBJpFI4hIQmjUFjI7+p1CJLG17uvNEfi1pvOQyAn3ktmNwOtm9rpzTiPOiYhI5TODU5+HOk38TiIJJKyCyDk3y8zOBeaa2VxgOZBbfDN3boTyicS+vFzAvEtmIlI5dsvyO4EkmHDvMjsYeA6oCnQLPIpygAoiSR7f/B/MfRQGT4bajfxOIyIi5RDuJbMHgO3AccBs59z6iCcSiVFdx0xn5fqcQstSyeXjareykZoMuP1LwOtMnZlekzmjjvAhpUhyKPj32JD1/EUdckkNuq3+HiUU4RZE+wO3OOfeiUYYkVi2cn0Oy8f0K7xw4Yvw1mo4/WWWtz121+KsUe9VcjqR5LLr73HNYhjfE/qPgwMHBd1Wf48SinA7PazBayESkdyd8Mk90Hh/aHOM32lEklPDtpCxN3xyt/c3KVJO4RZEzwBnmlm4LUsiiee7V+DvZd6YKBp3SMQf+aNX//ULfPeq32kkjoVb2HwK9Me7y+xRYBnF7zLDOfdJBLKJxK5drUP7QZtjy95eRKKnbT/vb/GTu2G/UyBVn9klfOE+a6YV+PdTeHeUFWSBZcF7tokkij+/gQ0r4eRn1Dok4jcz6HEtTDoTvn/Nm9JDJEzhFkRnRyWFSLzJ7ATDv9Nt9iKxok0/2H0/r+V235PVSiRhC3dgxueiFUQk7tTZ3e8EIpIvJQV6jISZd8HGPyBds0xJeMpdQptZdSADyHbO6c4zERHxV9v+3kOjxks5hP2sMbOOZjYd2AisAA4PLG9kZh+b2VERzigSO9YthZ2q/0ViUkqKiiEpt7CeOWZ2IDAbaAU8X3Cdc24NUBM4K1LhRGJJCnnw0qlex00REUko4V4y+zewCugA1ADOKbL+Y+DUCOQSiTln1ZkP65Zw0R/9+bCMkW8z02tWUiqR5JSZXrPUEahb2UrS2cRXro3+HiUk4RZE3YC7nHObAn2IiloBNK14LJEYk5fL6LrvQeo+PH7RaDXLi/is1LnJnIMnusGOrXDpF5CikWCkbOG+qtcANpSyvm4FsojEru/fgHU/e3exqBgSiW1m0O1q72/2v5P9TiNxItxX9qVAp1LWHwEsKn8ckRiUlwuz/gON2kO7gX6nEZFQtBvo/c3O+o/3NyxShnALopeAwUXuJHMAZnYV0BeYGKFsIrHhv5PVOiQSb1JSoPs1sPYntRJJSMJ9db8XmAtMAT7BK4buN7OVwN3AVODRiCYU8dv2zdD8MGh3nN9JRCQc7Y+Hhm1h1t1qJZIyhVUQBQZgPBq4GsgBtgKtgbXASKC/cy4v0iFFfNXpLDj7fbUOicSb/NGr1/4Ii970O43EuLBHqnbO7QTuDzxEkoMmcBWJT+2Phw7ToV5zv5NIjNPsdyIikrhSUuG4R/xOIXGg1ILIzIaU56DOuefL3kokhuXlwryn4YDToEY9v9OIiEiUldVC9Cxex+lwrhc4ikzrIRJ3Fr0JH1wDtRrAvif5nUZERKKsrIKoV6WkEIkleXneXSkZbbz+ByKSGFYthK+eg3736SYJKabUgsg5N6uygojEjEVvQvYPcNLTGvJfJJGsWwpfTYCWPWCfE/xOIzGm3CWymVU3s0wzqxbJQCK+2tU61FovmCKJZp8TvL/tWXd7f+siBYRdEJlZRzObDmzEm8z18MDyRmb2cZFRrEXiy+K3IHsx9LhWrUMiiSYlFbqPhDWLYPHbfqeRGBNWQWRmBwKzgVYU6TjtnFsD1ATOilQ4kUql1iGRxLfvidBgb7USSTHhthD9G1gF7AOMovjdZx8DXSKQS6TyuTzocj4cdatah0QSVUqqN3r1mv/CD+/4nUZiSLgFUTfgSefcJgKTuhaxAmha4VQifkitAp3PgbbH+p1ERKJp35OgwV4w6x5wwd7KJBmFWxDVADaUsr5uBbIUYmYpZjbCzH4ws61m9puZjTWzWuU4VpqZ/WJmzswejlRGERGJQympMOBBOHG8puWRXcKdumMp0KmU9UcAi8ofp5D7gcuBycBYoF3g/x3M7KgwJ5H9N9AwQrlERCTeZXX1O4HEmHBbiF4CBhe5k8wBmNlVQF9gYkVDmdk+wGXAG865E51zTzrnrgSuxBss8vQwjtURGA6MrmguSVA/vA/vj4Rtm/xOIiIiPgm3ILoXmAtMAT7BK4buN7OVwN3AVODRCOQahNdhe1yR5U8CW4AzQzmImaUG9vkQeCMCuSTR5OXBjDtg6cdQpYbfaUTED86pL5GEVxA557YDRwNXAznAVqA1sBYYCfQP81JWSQ4C8oAvi3z/rcDXgfWhGAG0BYZFIJMkoh/fg9Xfe2OTpIZ7BVlE4t6G3+GJ7vDDe34nEZ+FPTCjc26nc+5+51xn51wt51yac+4A59xY59zOCOVqCqx1zm0Lsm4lkFHWCNlmtidwK/Bv59zyUL+xmV1gZvPNbH52dnY4mSXe5OXBzP9A/VaawFUkWdVuDNs3wawxaiVKcrE6u10aEKwYAq9VKn+b0jwO/ALcF843ds6NDxR7nRs2VD/shPbj+7D6O29MErUOiSSn1CpeC/Gf33mvCZK0YrUg2gJUL2FdjQLbBGVmZ+Jd2rvYObcjwtkkETjnfSKs3xL2PdnvNCLip/1O8V4LZqqVKJnFakG0Cu+yWLCiKBPvctr2YDsG9rkPeB/408z2MrO9gBaBTeoFlqVHIbfEi6XTvU+E6jskIqlVoPs18Oe38OMHfqcRn8RqQTQPL1uhaUDMrAZwIDC/lH1r4o051A/4ucBjZmD9mYH/nxfJwBJnWvaCQZO8T4YiIvudCrvtCTPvUitRkorVgmgS3i39w4ssPx+v79CL+QvMrJWZtS2wzWbglCCPSwLrPwz8X1MdJ7OUFGjTV61DIuJJreL1J8z+AdYs9juN+CAm3w2cc9+Z2SPAMDN7A+/yV/5I1bPwBojM9zHe5TAL7LsDeK3oMc0sK/DPpc65YutFRCTJ7Xcq7NkD6mX6nUR8EJMFUcBwYDlwAd7lr7XAQ8DNERrrSJLRzm1QpaT++iKS1FKrqBhKYjFbEDnncvHmMBtbxnZZIR5vOYFWJElSzsEzfSHrcOh9m99pREQkhpRZEJnZ9DCP6ZxzR5Yzj0j0/PQhrFoAB53rdxIRiXW5O2Djn5DezO8kUklCaSHqCewAgt7mHoS650vscc4bY2S3LNj/NL/TiEise+FE2LYRzp8BposLySCUu8x24l1qmgb8C6jnnKtTyqNuVBOLlMdPU+CPr6Hb1ZBa1e80IhLr9jsFVi2Enz/yO4lUklBaiDKBIcBQYDKwxsyeB55xzv0YxWwiYes6Zjor1+cUWep4q9pN7EZDjnilLjtf8SZxzEyvyZxRR1R+SBGJaV3HTGf1+nrMqNaQv14YxXHbd1BSF1S9jiSOMgsi51w2gc7NZtYFOAfvzq+rzexL4Gng/5xzm6KaVCQEK9fnsHxMv8ILf5oCL/0CAx9iScfjdi3OGqXZrUWkOO915DhYsIFmb1/G8nOqQeveQbfV60jiCGtgRufcl865i4AmeK1Gm4EngD8C84eJxJ6lMyC9ORwwyO8kIhJPDhjkvXZo9OqkUK6Rqp1zW51zLwKj8QZGrAW0jGQwkYg5ZgxcMEt9h0QkPKlVvX6HqxbAkml+p5EoC7sgMrMmZjbKzH4APsEbQfouYEKkw4lETFp9vxOISDw6YBDsvi9sWed3EomykAZmNLOqwHHA2UBvIBdvLrARwBSNHC0iIgmpSjW4cLY3/6EktDJ/w2b2IPAH3oSrmcBVQFPn3KnOuQ9UDElM2rEVls/xO4WIJAIVQ0khlBaiYUAO8DKwILDPUCt5oCrnnLs/MvFEyumLx2HaaLjoU2i8n99pREQkxoU6l1lN4IzAoywOUEEk/tm8DmaPhdZ9VQyJSORs3wxzH4XO56pfYgIKpSDqFfUUIpH0yd2wfRMcdavfSUQkkaz/DWbc6X3oOmaM32kkwkIZmHFWZQQRiYQs+wPmPQUdh0Cjtn7HEZFE0qgtdBjsvcZ0OR8atPI7kURQqJfMROLC6JqvsTk3lZ5zupA9p/QRZDPTa1ZSKhGJJ5npNUscgbohXZhZ/f+YOe4iLt0xXK8jCaTMgsjMrgz3oM65+8oXR6QCVnxBr7zPodf1zOv5L7/TiEicKnNuspm/02/mXfS7oCE061I5oSTqQmkhujfMYzpABZFUvjq7Q6ehcNgwv5OISCI77DKYPwGm3ADnfgQl33UtcUSdqiVx7JYFAx7wO4WIJLpqtaDX9fDO5fDTh9DmGL8TSQSoU7WIiEi4OpzpzXW211F+J5EICWWk6i5mpgEXRERE8qWkwoFnaNLoBBLKeOSfA33z/2Nmtc3sJTNrH71YIiHKWQ9P94EVc/1OIiIicSyUgqhob7HqwOlA48jHEQnT7LHw2xdQNc3vJCKSzLZt9DuBVJBmrJP49fev8MUTcMAgaLK/32lEJFl9/zrc1x7Wr/A7iVSACiKJX9Nv8253PeJGv5OISDJrdjDkboePb/M7iVSACiKJTysXwHevwiGXQL1Mv9OISDKrt4f3WvTdK7Bqod9ppJxCnbrjWDPL7zOUhjf44ilmdmCQbZ1zTrPdS/Q4Bx/dBGkZcPgIv9OIiMDhw2HBc95r01nvaLDGOBRqQXRG4FHQhSVs6wAVRBI9f/0CqxbA0f+GGnX9TiMiAjXqQc/r4P2r4acp0KZv2ftITNFI1RJ/GrSCyxZArQy/k4iI/E+nofDF4zD1Zm/AxlTNnx5PNFK1xKe6TfxOICJSWGpVOOoWmPUf2LRa/RvjTLnKVzNLA+oAa51zuZGNJCIiEqfa9oc2/SBF9yzFm5B/Y2aWYWb/MbMlwEZgFbDVzJaY2Wgzaxi1lCIAv34OO7b6nUJEpGRmKobiVEi/NTPrAnwHXAM0A74HPgMWBf4/GlhgZh0K7FNSp2uR8P2zCiaeAB/d4HcSERFJQKFM7toQeBeoAVwKpDvnDnDOdXPOHQCkA5cAtYB3zayumQ0HHo1aakk+M+4AlwuHXeZ3EhGR0KxZDF8+6XcKCVEofYiuBuoBhzrnFhRd6ZzLAR43sy/xWo0+BfYBPohkUElif34PC1+EQy+F3bL8TiMiEpqFL8DcR6HFYbD7Pn6nkTKEcsmsPzAxWDFUUGD9C8C+wFvACRWPJ4J3C2uNutDtKr+TiIiErttVUL2O9xomMS+UgigLmBvi8b7AG5jxZOfcjvKGEtllycew9GPoPhLS6vudRkQkdGn1ofs1sGQaLJ3udxopQygFUS5QNcTjVQE2O+fyyh9JJCAv1/tkld4CupzvdxoRkfB1uQDSm8NHN3uvaRKzQimIfib00ap7BrYXqTiXB/ufBn3ugCrV/U4jIhK+KtXhyNGw+jv4dpLfaaQUoRREbwInmlmpE7OYWR/gROCNCOQS8UZ97Xo5tBvgdxIRkfLb9yRo2hGm3wG56k0Sq0K5y2wccA7wppndDzzpnPslf6WZtQTOA64EVgAPRCGniIhIfDKD/vd5l8xSQ+2BIpUtlLnMNgZaf94BrgVGmtlGYANQN/Aw4CdgoHNuUxTzioiIxJ+mHcreRnwV0kjVzrmfgAOBK/DGGdoJNMHrcD0buBzoENhOpGKm3AAzx/idQkREkkjIk7sGBmB8KPAQiY7sn2DuY9D5HL+TiIhEh3OwfTNUr+13EilAM9BJbJk2GqqmQc9RficREYk85+Dl02GypvuMNSG3EIlEStcx01m5PqfY8i62mFeqv8/dO07j0du+ACAzvSZzRh1R2RFFRKKi639mcPzGulxT9RVOuW4s81zbErfV61/litmCyMxS8PosXYg3WnY28Apws3Nucxn7tgbOBHoDrfAmpl0KvAqMK2t/ia6V63NYPqZf4YV5efDUvbApk5GXPcDIqjUByBr1ng8JRUSiY+X6HK759wPw0Ke82vRdOG8EpAS/WKPXv8oVy5fM7gfuAxYBl+EVM5cD7wSKpdKcA4zAK4L+DVwD/AjcDnxmZjWjFVrK6b9vwKoFcMSNUFW/HhFJYNXSvNe6VQu81z6JCTHZQmRm++AVQW84504qsHwZ8CBwOvBSKYd4DbjLObehwLLHzexn4AbgXODhiAeX8vt2EjTezxuZWkQk0R1wuncDyce3eoPPajR+38VqC9EgvLGNxhVZ/iSwBe9yWImcc/OLFEP58sdN37eiASXCTn8ZBv0fpKT6nUREJPpSUqH3v2H9Cvj8Eb/TCLFbEB0E5AFfFlzonNsKfB1YXx57BL6uLncyiY7UKlBvj7K3ExFJFK2OgHYDYcs6v5MIMXrJDGgKrHXObQuybiVwmJlVc85tD/WAZpYK3IQ3qGRpl9tEREQqx8kTvA+E4rtYbSFKA4IVQwBbC2wTjnHAoXh3qf1Y0kZmdoGZzTez+dnZ2WF+CwnLvKdg7RK/U4iI+EfFUMyI1YJoC1BSD7MaBbYJiZndBgwDxjvn7iptW+fceOdcZ+dc54YNG4b6LSRcy2bDe1fDl0/4nUREJHY453eCpBWrBdEqIMPMghVFmXiX00K6XGZmtwA3AhOAiyKWUMqtDlvgzYuhfks46ha/44iIxIafpsAT3WFrsHuCJNpitSCah5etS8GFZlYDb5LZ+aEcJFAMjQaeA85zTqV3LLil6rPwzyo4cTxUq+V3HBGR2FCzPqz+Hj7Q1EV+iNWLl5OA64HhwOwCy8/H6zv0Yv4CM2sFVHXO/VDwAGZ2M14xNBE4xzmXF+XMEor/Tuak1E8Zt+NExj28Gih9JNbMdA3SKCKJIzO9ZqkjUI+ochxXfPMSF81rRGZ6j0pMJharjSZm9hBev5/JwPtAO7yRqucAR+QXOGa2HGjhnLMC+16KN/DiCrw7y4oWQ6udc1PLytC5c2c3f35IjVESin/+gMcOhd32hHM/gtSqficSEYktuTvg6aPh7+VwyVyo09jvRAnFzL5yznUOti5WW4jAax1aDlwA9APWAg/h3SVWVmtP/jhFzfEulxU1CyizIJIIWzIVdm73LpWpGBIRKS61Kpz4JDzeDd66FP71GpiVvZ9UWMy2EMUCtRBFwcbVUGd3v1OIiMS2L5+E96+GfmPhoPP8TpMw4rWFSBKRiiERkbIddB789gXUauR3kqShgkhERCTWmMFJT/mdIqnE6m33kijmPADfvuJ3ChERkVKpIJLo+W0eTLsVlk73O4n4bNmyZRx//PE0bNgQM2Po0KEAhf4djqFDh2LqaFphM2fOxMx49tlnK3Scxx57jLp167Ju3f8mKR0xYgStW7dmx44dxbbv2bMnZoaZUaVK+S9U/Pnnn7uOU/S59OyzzxZa98ILL5T7+/Tt27fQsXyzbZN/3zsJqCCS6Ni+GSZfAHWbwjH/8TuNFDFu3LgKvwmGY+jQocyaNYtrr72WiRMncuGFF1ba904Glf37LGjDhg2MHj2aESNG0KBBg13Lr732Wn7//Xcee+yxoPtlZGQwceJEnn/++ULL//jjD2644Qb69u1brIAuKj09nYkTJzJx4sQS811//fVMnDiRrl27Flr+xBNP8K9//Yu2bduSmppaaqEzcuRIJk6cSLdu3UrcJupm/gfG9/BeWyUq1IdIouOjG+GvZTD0XahRz+80peo6Zjor1+eEtG1mek3mjDoiyomib9y4cWRlZZWrdSZc27ZtY/bs2QwbNoyrr7660LqcnBxSU1OjniHRlff32b17d3JycqhatfzDYDz66KOsX7+eYcOGFVreuHFjTj/9dMaMGcMll1xSrCWoVq1anHnmmcWO9+OPP3LnnXfSrFkzDjroID744IMSv3eNGjV2HWPw4MFBtzn66KPp2bNnseV33XUX69ato0OHDmzevJnff/+9xO9zxBHe3/y0adOYPXt2idtFVYvDYOZd8NFN0P8+fzIkOBVEEnk/fQTzn4HDLoOsw/1OU6aV63NYPqZfSNuWNsKsBLd69Wqcc9SvX7/Yuho1agTZI/Zs3LiROnXq+B0jYvJ/npSUlAr9DvLy8njiiSc45phjCDYZ9uDBg5kwYQJvvfUWJ510UkjH7NSpE2vWrKFhw4asXbs26HEjYebMmTRv3pyUlBT69+9fakEUE/bsBodeCp8/DG2Ogb2P9jtRwtElM4mszWu9wcQa7QNH3OR3mri3fPlyTjrpJOrWrUvdunU57rjjWLZsGVlZWUE/9U6bNo3evXuTnp5OjRo12H///Xn88ccLbWNm/Prrr8yaNatQv4jly5eHle2tt96iQ4cO1KhRg2bNmnHTTTcxderUQn1Shg4dSosWLQC49dZbd32vmTNn7spStFXjvffeo0ePHmRkZFCzZk2aN2/OiSeeyE8//VQsw4YNG7j44otp1KgRNWrUoGvXrnzxxRfFtnPO8dhjj9GpUyfS0tKoXbs2vXr1YsaMGYW2W758OWbGLbfcwqRJk+jUqRM1a9bksssuC/m83HLLLZgZixYtYvjw4TRp0oS0tDSOPPJIfvzxRwDeeOMNOnbsSM2aNcnKymL8+PHFjjNp0iQGDhxI8+bNqV69OhkZGRx//PF8++23hbYr6/eZ/1xZuHAhffr0oV69euy///5A8D5Ep512Gqmpqbt+R/mmTJlCSkoKQ4YM2bXsyy+/5Ndff+XYY48Nei66d+9OrVq1ePXVV0M+f3Xq1IlaEVRQVlYWKSlx9hZ45M3ea+tbl8LmdWVvL2FRC5FE1l+/BEZaHQ9VqvudJq6tW7eObt26sXr1ai666CLatWvH7Nmz6dWrF5s3F+9HMH78eC666CIOOeQQbrjhBmrVqsXUqVO5+OKLWbp0Kffccw8AEydOZMSIEWRkZHDDDTfs2j+cN6HJkydz0kknkZWVxc0330yVKlWYMGEC771XuAXtwgsv5MADD2TEiBGccMIJnHjiiQC0a9cu6HFnzZrFwIED2XfffbnuuutIT09n1apVTJs2jSVLltC6detC2/fp04eGDRty8803s27dOu677z769evHsmXLCrXoDB48mJdffpmTTz6Zs88+m23btvHiiy9y9NFH88YbbzBw4MBCx33zzTd58MEHufjii7nooouoW7duyOcm31lnnUXt2rW5/vrryc7OZuzYsfTp04fbbruNkSNHcvHFF3POOefw9NNPc+GFF9K+fXsOP/x/LaoPP/wwDRo04IILLqBx48YsXbqU8ePH07VrVxYsWMDee+8NhPb7XLFiBUcccQSnnHIKJ510Eps2ldw5d/z48cybN48zzzyTr7/+moyMDP7880+GDBnCXnvtxaOPPrpr21mzZgHQpUuXoMdKTU3loIMO2rWdVFCV6t5r65O94N0r4NSJGsU6kpxzepTw6NSpk5Ny2LHN7wRhaXHtu1HZtqKuueYaB7gXXngh6PIePXrsWrZq1SpXvXp1N2jQoGLHufzyy11KSopbunTprmUtWrQotH84du7c6Zo1a+YaNGjgsrOzdy1fv369a968uQPchAkTdi1ftmyZA9zo0aOLHQtwZ5111q7/jxgxwgFu9erVpWY466yzHOAuvvjiQstfeeUVB7jHH39817I33njDAe6JJ54otO2OHTtcp06dXFZWlsvLyyuUtUqVKm7RokVlnYqgRo8e7QDXv3//Xcd1zrkHHnjAAa5OnTpuxYoVu5avWbPGVa9e3Z1++umFjrNp06Zix160aJGrVq1asZ+7tN9nixYtHOCefPLJYutmzJhR7PflnHNz5851VatWdf3793e5ubnuqKOOctWqVXNfffVVoe2GDBniALdhw4ag39s5584991wHuLVr1+5a1qNHD9eiRYsS98mXnZ1d7DlSkqLbTZgwwQFuxowZZe7br18/570dli7/eee7T8c5N7qucwtf8jtJ3AHmuxLe8+OsvVDiQpVqfidICO+88w5NmjRh0KBBhZYX7ZgM8Nprr7Ft2zbOPfdc1q5dW+gxYMAA8vLymDZtWkRyffXVV/z222+cffbZZGRk7Fper149Lrroogodu149rwP+66+/zs6dO8vcfsSIEYX+n9/59eeff9617IUXXqBOnTocf/zxhc7L+vXrGTBgAMuXLy+0PUC/fv1KbMUK1eWXX17ozqX8O5QGDhxIs2bNdi1v2LAhbdq0KZahVq1agPeh9Z9//tnVn6ZNmzZBLwuWpn79+px99tkhb3/wwQdz++238+6779K9e3emTZvGmDFj6NixY6HtsrOzqVKlSqktaPl3nq1ZsyaszFKKQ4fBIZdCi0P9TpJQdMlMKs45NdtGwbJly+jSpUuxfg6NGjUiPT290LLFixcDcNRRR5V4vNWrV0ck1y+//AJA27Zti61r3759hY49bNgw3nrrLS655BKuvfZaDj/8cPr27cugQYOCXtJr2bJlof/nv/kWHA9n8eLFbNy4kd13L3namNWrVxe6HFf00lx5FM222267AbDnnnsW23a33Xbj119/LbRs4cKF3HTTTcycObPYJdJgxyhNq1atwr6b75prruHdd99l9uzZ9O7dm+HDhxfbJpQxeVxgvkyNGxVBKanQ906/UyQcFURScXMegL+WQr/7NIu9T/LfdJ5//nmaNGkSdJuib9CxqEGDBsybN4/Zs2czdepUPvnkE0aMGMHo0aN5//33OfTQwp+IS3qTzz8f+f9u2LAhL730Uonfd9999y30/7S0tAr8FKVnCyXzihUr6N69O3Xr1uWmm26iTZs21KpVCzNj+PDhpfYBCqY8P8/y5ct3deBesmQJmzZtKnanXcOGDdm5cycbNmzY1bpX1F9//bVrW5FYpoJIKubP72D67dD2WEjR0ymSsrKyWLJkCXl5eYVaidasWcP69esLbZvfwTYjI6PUVqJ8Ffm0nl9Y/fDDD8XWLVq0qNzHzZeamkrPnj133UX37bff0qlTJ26//fZinbZDsffee/PTTz9xyCGHULt27QrnqwyTJ09m06ZNvP322/Tq1avQunXr1lG9euEbFiLd+rJz504GDRrEzp07efDBB7niiiu4+OKLi432nF9I/vzzz3TuHHQCcZYsWULjxo0LDdooEbZzG2xaA+nNyt5WSqQ+RFJ+O7bC6+dDWgPoP06XzSJswIAB/PHHH7z88suFlt97773Ftj311FOpXr06o0ePJien+CCTGzZsYNu2bbv+X7t27V2f3MPVqVMn9thjDyZMmMDatWt3Lf/nn3+K3eIfroLHy9e2bVtq1qxZ7rxDhgwhLy+P6667Luj6SF1KjKT8VqSCrUYATz75JH/++Wex7Svy+wzmxhtv5IsvvuDhhx/msssu46qrruLFF1/kueeeK7RdftE6d+7coMfJzc1l/vz59OjRI2LZJIj/+xe8dKr3mizlpo/0Un7Tb4PsxfCv1yGt+KB7UjHXXnstL730EmeffTZffvklbdu2Zfbs2Xz22WdkZGQUahXYY489eOyxxzjvvPNo164dgwcPpkWLFmRnZ/Pdd9/x5ptvsmjRIrKysgA45JBDePrpp7npppto164dKSkpDBgwYFdH3tKkpqZy//33c+qpp9KlSxfOP/98qlSpwjPPPEODBg1YsWJFuX/m888/n99//53evXvTokULcnJymDRpEhs3biw0/k048m+1f/jhh1mwYAH9+/cnIyOD33//nc8//5wlS5bs6hcVK4455hjS0tIYPHgww4YNY7fddmPOnDm8//77tGrVqliH84r8PouaOnUqd999N2ecccauMaLuvPNOZs2axbBhwzjssMN2tUh26tSJli1b8v777xcbqRq82/I3b97MKaecElaG22+/HYAtW7YAXith/rLu3bvTvXv3sH+uot555x2++eYbwGvFKvh909PTg/48MevgC+HFk73X5D53+J0mbqkgkvL5ZZY3YupB58HeZV+iiWWZ6TVDHoE6M71mlNP8T0ZGBp9++ilXXXUVzzzzDGa2azDBgw46iJo1C2c5++yzad26Nffeey9PPPEE69evJyMjgzZt2nDbbbfRuHHjXdvecccd/PXXXzzyyCOsX78e5xzLli0L+Q305JNP5rXXXuPf//43t9xyC40aNWLo0KF0796d3r17l/tnHjx4MM8++yzPPfcc2dnZ1K1bl/bt2/Paa6+FPNJxMM888wy9evVi/Pjx3HXXXWzfvp3GjRvTsWNH7rrrrnIfN1patWrFBx98wPXXX8+dd95JamoqXbt23VWUFB1Es6K/z3xr1qxhyJAhtGzZslBrX9WqVXn55Zfp0KEDgwYN4rPPPqNatWqYGRdeeCHXX389q1evLtZxfeLEiTRu3JjjjjsurBw33VR4UNeFCxeycOFCAEaPHh2Rguj1118v1uKV/31btGgRXwXR3kdD53Ph80egdR/Ys+LnJymVdD++HhqHqERb/nZubHvnHuzo3LbNfqdJOmvXrnWAu/DCC/2OUkxJ49pI4tqwYYNr1KiRu+GGGwot/+OPP1zNmjXdAw88UGyfHj16uGbNmrns7OxC4xOFKy8vz2VnZwcdryh/HKI333zTZWdnu61bt5b7+2zYsMFlZ2e7008/PTbGIQpm2ybnHujgvTbnrPc7TcyilHGI1EIkQZU24WlD/mZs1d24d+epfHvzjISZ8DQW5eTkFGsJGjNmDOBNWinit7p163LrrbcycuTIQjPejxkzhj322IOLL7446H6//fYbDRs2JDU1NaQxp4JZvXp1iXdV5jv++OMBr7Uq2GSyoTj11FOZMmVKufatNNVqcd6mC3h823W8fccZXLnjklI31+t2cSqIJKiyJzw9k/xGWU14Gj3HHnssLVq0oGPHjuTl5fHxxx/z7rvvcthhh+16oY+UDRs2BO2QXVC1atWCTtKa6HJyctiwYUOZ2xW8LJlMLrroomKDco4bN45x48YF3X7s2LH8/fffABWaT6x+/fpMnTp11/+bNm266999+vQptK7o0ArhGDNmTNABUWPNtH+aUaXvtZw48y5OHHy5d/msBHrdLk4FkUgM69+/P88//zyTJ08mJyeHPfbYg6uuuorRo0eHPdBeWa644opifSqK6tGjR7FJP5PBpEmTQhrp2RW5K0yC69SpU0SOU61atRKHmWjSpEmZrUehOvDAAyNynErR7Srvzt+WvcreVgpRQSShycuD3O1QtYbfSZLKVVddxVVXXVUp32vkyJFlXlLIH225JD179kzIoqBoa4NIzEqtCl3O9ztFXFJBJGXLy4OPboSl02Hou1Aro+x9JO60b9++wlNvJKpItjaISGzSwIxSutyd8NalMPcR71bONI02KyISN7J/gg9Gea/lUioVRFKyHTnwymD45iXoeT0c8x+NRi0iEk+WTocvHoNXhmgk6zKoIJKg6rAFXjgZfvwAjr0Xel6rYkhEJN4ccpH3Gv7j+/DCSbC17Lslk5UKIiku529ernY7/DYXTnpKHfREROJZl/O91/Lf5sKz/WFTtt+JYpIKIimuWh1+dpkw6P9gv5P9TiMiIhW138nea/ran+GZPmSioqgoFURSXGoVRuy41JsfR0REEsPeR8OQt2DLWgakfu53mpij2+7Fk5cHBUaMjdUJTyWytm3bxrBhw/j444/Jzs6mSZMmXHbZZVx22WV+RxORMIX6ut2E20mpl8moSsgUT1QQCSz5GKbeDGe+AXW82ao1x01y2LlzJ40bN+ajjz6iZcuWfPvtt/Tp04fdd9+dU0891e94IhIGvW5XjC6ZJbvv34CXTgN0B1m8mjlzJmbGs88+G/a+tWrV4rbbbmOvvfYiJSWFAw88kIEDB/Lpp5+WuM+UKVPo2bMntWvXpmHDhgwbNoytW3U7r0jc+uNb+O+bfqfwnQqiZDbvaXjtHNijszcCdaB1SJLXjh07mD17Nvvvv3/Q9WPHjqVv3740adKE+++/nwEDBvDII49wxRVXVHJSEYmYT+6BV4fC/Gf8TuIrS8R5hyKlc+fObv78+X7HiDznYPa9MP122LsPnPIsVEvzO5WUU15eHtu3b6dq1aoVnvD1wgsvZMGCBcyZM4dq1aoVWjdt2jR69+7N3XffXWjm7759+zJjxgyys7OpW7duhb6/iPhg+xavIPp5ChxxkzdBbIKOO2dmXznnOgdbpxaiZJOXB1Nu8Iqh/U+D019UMRTnUlJSqFGjRoWLoSuvvJLPP/+cDz74oFgxlJeXxxVXXEGHDh2KTTbbs2dPtm/fzvfff1+h7y8iPqmW5r0X7H8aTL/Ne4/Iy/M7VaVTQZSMtqyDgy+G4x/3ZkaWmLV161ZuueUW2rRpQ1paGunp6ey3335cc801u7YJ1ofo2WefxcyYPn069957L61ataJ69eq0bt2a5557rtj3GT58OFOnTuXjjz8mI6P45L1Tpkxh0aJFXH755ViRT475xdOGDRoBVyRupVb13hMOvtibu/KtSyB3h9+pKpXuMks2KSlw/KNgKQnbJJpILr30Up555hmGDBnClVdeyc6dO/n555+ZPn16SPtff/315OTkcOGFF1K9enUee+wxhg4dyl577UXXrl0BuPzyy5k+fTozZsygYcOGQY8zadIkUlNT6datG2vXri20bvXq1QDUqVOnAj+piPguJQX63gVp9WHGHdC6D+xzgt+pKo0KomSUUrFLK1J5Jk+ezDHHHBO0VScU27ZtY968ebtacU4++WRatmzJww8/TNeuXfn111956KGHqF69Onvuueeu/bp168YHH3yw6/8zZswgNzeXVq1alfi9WrZsWa6MIhJDzKDHSNizBzTr4neaSqWCKNFtWgNvXwbH3gPpzf1OE30T+pW87sAzoMO/Knf7CqpXrx7//e9/+f7779l3333D3v+SSy4p1B8oMzOT1q1b8/PPPwPQokULyrqxYu3ataxYsYITTjiBSy65pNj6U089lerVq9O0adOw84lIjGp+sN8JKp0KojjXdcx0Vq7PCbpuD8tmYtU72d3Wc+73/8eKup01cFecGTduHIMHD2a//fajZcuW9OrViwEDBjBgwABSUsruAhis1aZBgwb8+uuvIWf45ZdfADjooIM46qijCq1btmwZf//9N2eccUbIxxOR+NJ1zHQyNnzHOuryu2tU6raZ6TXj9n1GBVGcW7k+h+VjgrRarF4EL1wFO7bBv97j5WYHhTwVR1w7O8yfMdrbV9Bxxx3H8uXLef/995k1axbTpk3j6aefplu3bkybNq3Y3WBFlXTnWTjDbWzatAkI3kfotddeA+C0004L+XgiEl/+XL+JOU0mwM6t3owGu7cvcdt4fp/RXWaJ6LcvYcIx3r/P+RCaHeRvHqmQ+vXrc+aZZ/Lkk0/yyy+/MHLkSGbPns1bb71VKd8/f2yhf/75p9Dy7du389hjj9GmTRv69SvlUqKIxLVcUuH0l7wx7CYc473HJCAVRIlmyTR4/jjvLoFzpkCjdn4nknLKzc1l/fr1hZaZGR06dADgr7/+qpQc7du3Jy0tjSlTphRafsMNN7B8+XIefPDBCo+BJCIxbvf2cO4U773l+eO895oEo0tmiebnqdCgldesWbv0a70S2zZu3EiTJk0YOHAgHTp0oFGjRixbtozHHnuM3XbbjQEDBlRKjrS0NM477zwefPBBzjzzTHr06MEHH3zA5MmTueeee+jdu3el5BARn+2W5X3QnngivHgKZB0OPa71viYAFUTxau0S+OEdMtmt8PI+d8KOLVBdY8LEu7S0NIYPH87HH3/MtGnT2LRp064C6brrrqvUu7ruuecezIwXX3yRyZMn06lTJz744AP69u1baRlEJAbUbuT1pZzzICx+G3K3F9kgfqcD01xmpYipucycgz++gR/ehcXvQPYPAFy1/SLG3vmfkA6RNeq94B2wRURESlDqe4dzhQb5vfj6m3ks8yNo1x/aDYDG+8fUIMClzWUWsy1EZpYCXAFcCGQB2cArwM3Ouc3R3j+SSrs1vqhityzm5cFHN3pF0IYV3gjTLbpCp7OhbT9eH/MtY6OUW0REpFRFip3N1IBaGTB7LHxyD9Rr/r/iqNnBxQYGrtD7Y4TFbEEE3A9cDkwGxgLtAv/vYGZHOefKmnmuovtHTIm3xgeRNerdwgtSUmDVQq9DW4+R0OYY78m2y7eRCyoiIlIBn+QdAEOvh81r4ccPvKsa856CuY/C7vvBxZ8W2j6898fo3tIfkwWRme0DXAa84Zw7qcDyZcCDwOnAS9Hav9Jt2wRLpsLid5lU7Xugf+H1Q9/zCiMREZF4UCsDOg72Hts2ejf8bN9UbLPO9gNs6wHVa/sQsrBYfZcdBBgwrsjyJ4EtwJlR3j/6Nq+DhS/AS6fD3S3h1aHwy0yW5TUuPsOwiiEREYlX1evAvidCxyGFl2/fzAvV7vLeA1863XtP3FI5w4kEE5MtRMBBQB5QaPQn59xWM/s6sD6a+0fXorfg1bPB5UK9ZnDQudC2PzQ/hFHXf8jpqVVDPlRmes2QmxEz02uWN7GIiCSpqL3PVKnBkO2jeOWQtd6ltZ8+AEuFUyZA++PKmbb8YrUgagqsdc5tC7JuJXCYmVVzzhW936/C+5vZBcAFAM2bR2ky1MzO0O1KrwhqckCFeuDH65wxIiISH6L2PpOSypeuHRzTD/re5d1Jvfgd7z3SB7FaEKUBwYoZgK0FtimpICr3/s658cB48G67DyVs2OplwhE3RuXQIiIicccMmh7oPXwSq51TtgDVS1hXo8A20dpfREREkkisFkSrgAwzC1bUZOJdDiupdSgS+4uIiEgSidWCaB5eti4FF5pZDeBAoKzhoyu6v4iIiCSRWC2IJuFNiDK8yPLz8fr+vJi/wMxamVnb8u4vIiIiEpOdqp1z35nZI8AwM3sDeJ//jTQ9i8KDKn4MtMAbd6g8+0edbo0XEREpLpbeH2N2clczS8Vr4bkAby6ytXgtPzc75zYV2G450MI5Z+XZvzQxNbmriIiIVEhpk7vGbEEUC1QQiYiIJI7SCqJY7UMkIiIiUmlUEImIiEjSU0EkIiIiSU8FkYiIiCQ9FUQiIiKS9FQQiYiISNLTbfelMLNs4NcoHT4Db2wkCU7np2w6R2XTOSqdzk/ZdI7KFk/nqIVzrmGwFSqIfGJm80saC0F0fkKhc1Q2naPS6fyUTeeobIlyjnTJTERERJKeCiIRERFJeiqI/DPe7wAxTuenbDpHZdM5Kp3OT9l0jsqWEOdIfYhEREQk6amFSERERJKeCiIRERFJeiqIIsTMUsxshJn9YGZbzew3MxtrZrUqY/9YF4Hz40p4bIp29spiZteZ2atm9kvgZ1tezuMMMbOFZpZjZqvN7CkzCzruRjyJxPkxs+WlPJcyohC70phZazP7t5nNNbNsM9toZl+b2Q3hvI6Y2bFm9pmZbTazvwLnfM9oZq8skThHZjazlOdQ3N96bmZtzOxFM1tsZhvMbEvgdfs+M2sSxnHi7nmkPkQRYmYPAJcDk4EPgHbAZcBs4CjnXF409491ETg/LrBt0c57O5xzkyKfuPIFfsa/gAVAJ+Af51xWmMcYAdwHzAJeAvYArsQbYLSLc25zJDNXpgidn+VADnBHkNWvOue2VTCmb8xsDHAp8DYwF9gB9AJOBb4FDnHO5ZRxjBOB14BvgCeBesBwIBfo7JxbFa38lSFC52gmsA8wIsjq951zf0Uyc2UzsyOBG/DOz+/ATmA/4GzgH+BA59yaMo4Rn88j55weFXzg/XHkAa8XWX4Z4IAzorl/rD8i8fMFtnvW758lyuepZYF/fw8sD3P/DGAz8CWQWmD5gMD5u97vn9HP8xPYbzkw0++fJUrnpzNQL8jy2wO//2Fl7F8VWIlXPNcusPxAvDey8X7/jH6fo8C2M8vz3Iv3B3BK4ByNLGO7uH0e6ZJZZAwCDBhXZPmTwBbgzCjvH+si9vOZWTUzqx25aLHDOfdLBQ9xPJAGPOScyy1w3HeAX4jz51EEzs8uZlbFzOpG6nixwDk33zm3Iciq/BbUfcs4RA+gKfCUc27XpWjn3Nd4RcBpZlY1AlF9E4FztEugG0BdM7PIpIt5+dNY7VbGdnH7PFJBFBkH4bWAfFlwoXNuK/B1YH009491kfr5TsYroDaa2Roze8jM6kUyaJzLP4+fB1k3F2ibqMVkmA7Gex5tMLP1ZvacmTX1O1QU7RH4urqM7cp6/tQFWkcqVIwJ9RzlywQ2ARuATWb2hpm1jUoyn5hZDTPLMLM9zKw38ERg1ftl7Bq3z6MqfgdIEE2BtS54/4OVwGFmVs05tz1K+8e6SPx8XwKvAkvw/qCOBYYBPczssIKfRJJY/pv6yiDrVuK10jUFfqq0RLHnv8BTwGK8pv2ewHnAkWbWxcVq34ZyMrNU4Ca8fiAvlbF5Wc8f8AqB/0YmXWwI8xwBLAPm4PU5ysUrsIfhPYcOd859F62slew84KEC/18OnOmcm13GfnH7PFJBFBlpQEmdMbcW2KakN/yK7h/rKvzzOecOLrLoeTP7Fq9z7BUE7ySbbNICX4Od661FtklKzrl+RRb9n5l9ArwI3AqcX/mpomoccChe/7Efy9g2WZ8/4wj9HOGcO7vIotfM7G28y0H3AUdHOqBP3gR+AGoDHYCBeP0UyxK3zyNdMouMLUD1EtbVKLBNtPaPddH6+e7BK6KKvsklq/xzGOxcJ8LzKCqccy/hffpNqOeRmd2G13Ix3jl3Vwi7JN3zpxznKKhAq8knQC8zqxmpfH5yzv3unJvmnHvTOTcaOAu428yuK2PXuH0eqSCKjFVAhpkFewJk4l0uKq11p6L7x7qo/HzOuR35x65gvkSRf7knM8i6TLw7RBLqklAELSeBnkdmdgtwIzABuCjE3cp6/kDwyyBxqZznqDTLgVTK7nQcl5xz3wILgUvK2DRun0cqiCJjHt657FJwoZnVwLvVcH6U9491Ufn5AvvvQegdIRPdvMDXQ4OsOwT4UX2tSrQXCfI8CrzRjwaeA85zgXueQ1DW8+cfEqT/WQXOUWn2xuuHFNfjEJWhJlC/jG3i9nmkgigyJuF9+h5eZPn5eNdKX8xfYGatgtyNEPL+capC58fMGpRw3Nvw+sG9E7GkccLMmptZ2yK3r76FN+jgsEBH0fxtBwAtif/nUciCnR8zC/pCbmaX4hXWcf88MrOb8d7oJwLnuBIGPDWzJoHzU7AvxyzgD+C8gncjmtkBeJ3PXw20ysa1ipwjM6tX8G+rwPJ+QFdgauDu2bhlZo1LWN4Lb1iCuQWWJdTzSCNVR4iZPYR3LXoy3m2J7fBGZp4DHJH/RxcYKbeFc87Ks3+8qsj5MbP78T5ZzABW4HXyOxZvhNkvgF6ujNFl44GZDQZaBP57GVANGBv4/6/OuYkFtp2JN97Hns655QWWXwXci9fB82W8JuqrgN+Ag+K5haii58fMhgPnAh/iXd6ogvcCfTywFDjUOZcd1R8iigKF3cN4fyM34Q11UdBq59zUwLbP4vUJ6eWcm1ngGKfgfYDJH2G4Lt6IzA7o5JyLyUsdoaroOTKz4/E6TueP7bUTr+X7TLyWoa7OuZhs/QiVmU0GmgDT8cYeqoE3MvzpeH1/egbGFEq855HfI0MmygPv2vFVwI94vetX4v3h1C6y3XLvtJdv/3h9VOT8AMcBUwL7bMUbjflr4Hqght8/WwTP0Uy8F4xgj5klbJsV5DhD8V6ItgJrgGeARn7/fH6fH7xP8G/jvRnmBM7PYmAMkO73zxeB8/NsKeen0DkqsG3PIMfpj9cKsAX4G28KhlZ+/3yxcI7wPsi9gldAbwq8li0FHgEy/f75InSOTgXexfsQtTXwt/ID3i34zUs4nwnxPFILkYiIiCQ99SESERGRpKeCSERERJKeCiIRERFJeiqIREREJOmpIBIREZGkp4JIREREkp4KIhEREUl6KohEJKmZWR8zm2lmm8ws28weDsyTJyJJRAWRiCStwFQnH+LNvTQCb0qGS4EH/MwlIpVPI1WLSFIys6OAj4CRzrl7Cyz/EG+evIbOuX/8yicilUstRCKSdMwsBa8VaCH/myA230y8iWP3reRYIuKjKn4HEBHxQR+gPTDUFW8m3x74Wq9yI4mIn1QQiUgyOg3IBWabWUaRdbsHvm6s3Egi4if1IRKRpGNmvwLNy9gs0zm3qjLyiIj/VBCJSFIJtAhlA5OBR4Ns8gqwzTnXpFKDiYivdMlMRJJNy8DXec65aQVXmNmewG7AS5WeSkR8pbvMRCTZ1A58DdZH6OTA10mVlEVEYoQKIhFJNvljC9UtuNDMqgEXAz8C71V2KBHxlwoiEUk2i4AteLfeF3QHkAVc7pzLrexQIuIv9SESkaTinNtiZk8Bl5vZC8As4BjgBOAa59xHvgYUEV/oLjMRSTqBy2N3A/8C0oCvgDudcx/6GkxEfKOCSERERJKe+hCJiIhI0lNBJCIiIklPBZGIiIgkPRVEIiIikvRUEImIiEjSU0EkIiIiSU8FkYiIiCQ9FUQiIiKS9FQQiYiISNJTQSQiIiJJ7/8BvIFnJVRtcZ8AAAAASUVORK5CYII="
     },
     "metadata": {
      "needs_background": "light"
     }
    }
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "We can see that the outputs are consistent with the analytical results.\n",
    "\n",
    "Moreover, one can use the method `get_qfisher_norm()` to calculate the quantum Fisher-Rao norm in Eq.(10), i.e. the QFIM projection along a certain direction.\n",
    "\n",
    "As a different example, we exploit two qubits with a typical hardware-efficient ansatz\n",
    "\n",
    "$$\n",
    "|\\psi(\\boldsymbol{\\theta})\\rangle=\\left[R_{y}\\left( \\theta_{3}\\right) \\otimes R_{y}\\left( \\theta_{4}\\right)\\right] \\text{CNOT}_{0,1}\\left[ R_{y}\\left( \\theta_{1}\\right) \\otimes R_{y}\\left( \\theta_{2}\\right)\\right]|00\\rangle.\n",
    "\\tag{20}\n",
    "$$\n",
    "\n",
    "The corresponding QFIM reads\n",
    "\n",
    "$$\n",
    "\\mathcal{F}(\\theta_1,\\theta_2,\\theta_3,\\theta_4)=\\left(\\begin{array}{cc|cc}\n",
    "1 & 0 & \\sin  \\theta_{2} & 0 \\\\\n",
    "0 & 1 & 0 & \\cos  \\theta_{1} \\\\\n",
    "\\hline \n",
    "\\sin \\theta_{2} & 0 & 1 & -\\sin\\theta_1\\cos\\theta_2 \\\\\n",
    "0 & \\cos \\theta_{1} & -\\sin\\theta_1\\cos\\theta_2 & 1\n",
    "\\end{array}\\right).\n",
    "\\tag{21}\n",
    "$$\n",
    "\n",
    "Define the corresponding quantum circuit."
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "source": [
    "def circuit_hardeff_2qubit():\n",
    "    cir = UAnsatz(2)\n",
    "    theta = 2 * np.pi * np.random.random(4)\n",
    "    theta = paddle.to_tensor(theta, stop_gradient=False, dtype='float64')\n",
    "    cir.ry(theta[0], which_qubit=0)\n",
    "    cir.ry(theta[1], which_qubit=1)\n",
    "    cir.cnot(control=[0, 1])\n",
    "    cir.ry(theta[2], which_qubit=0)\n",
    "    cir.ry(theta[3], which_qubit=1)\n",
    "\n",
    "    return cir"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "source": [
    "cir = circuit_hardeff_2qubit()\n",
    "print(cir)"
   ],
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "--Ry(2.614)----*----Ry(3.253)--\n",
      "               |               \n",
      "--Ry(2.906)----x----Ry(5.027)--\n",
      "                               \n"
     ]
    }
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "Define a QFIM calculator and calculate the quantum Fisher-Rao norm $\\boldsymbol{v}^T\\mathcal{F}\\boldsymbol{v}$ along the direction $\\boldsymbol{v}=(1,1,1,1)$ corresponding to different $\\theta$ (set $\\theta_1=\\theta_2=\\theta$)."
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "source": [
    "qf = QuantumFisher(cir)\n",
    "v = [1, 1, 1, 1]\n",
    "# Record the QFI norm\n",
    "list_qfisher_norm = []\n",
    "num_thetas = 41\n",
    "thetas = np.linspace(0, np.pi * 4, num_thetas)\n",
    "for theta in thetas:\n",
    "    list_param = cir.get_param().tolist()\n",
    "    list_param[0] = theta\n",
    "    list_param[1] = theta\n",
    "    cir.update_param(list_param)\n",
    "    # Calculate the QFI norm\n",
    "    qfisher_norm = qf.get_qfisher_norm(v)\n",
    "    print(\n",
    "        f'The QFI norm along {v} at {np.array(list_param)} is {qfisher_norm:.8f}.'\n",
    "    )\n",
    "    list_qfisher_norm.append(qfisher_norm)"
   ],
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "The QFI norm along [1, 1, 1, 1] at [0.         0.         3.2533421  5.02652273] is 5.99962501.\n",
      "The QFI norm along [1, 1, 1, 1] at [0.31415927 0.31415927 3.2533421  5.02652273] is 5.93033916.\n",
      "The QFI norm along [1, 1, 1, 1] at [0.62831853 0.62831853 3.2533421  5.02652273] is 5.84133590.\n",
      "The QFI norm along [1, 1, 1, 1] at [0.9424778  0.9424778  3.2533421  5.02652273] is 5.84309143.\n",
      "The QFI norm along [1, 1, 1, 1] at [1.25663706 1.25663706 3.2533421  5.02652273] is 5.93367838.\n",
      "The QFI norm along [1, 1, 1, 1] at [1.57079633 1.57079633 3.2533421  5.02652273] is 5.99962501.\n",
      "The QFI norm along [1, 1, 1, 1] at [1.88495559 1.88495559 3.2533421  5.02652273] is 5.86697827.\n",
      "The QFI norm along [1, 1, 1, 1] at [2.19911486 2.19911486 3.2533421  5.02652273] is 5.38230779.\n",
      "The QFI norm along [1, 1, 1, 1] at [2.51327412 2.51327412 3.2533421  5.02652273] is 4.49128513.\n",
      "The QFI norm along [1, 1, 1, 1] at [2.82743339 2.82743339 3.2533421  5.02652273] is 3.28287364.\n",
      "The QFI norm along [1, 1, 1, 1] at [3.14159265 3.14159265 3.2533421  5.02652273] is 1.97995933.\n",
      "The QFI norm along [1, 1, 1, 1] at [3.45575192 3.45575192 3.2533421  5.02652273] is 0.87758767.\n",
      "The QFI norm along [1, 1, 1, 1] at [3.76991118 3.76991118 3.2533421  5.02652273] is 0.25010151.\n",
      "The QFI norm along [1, 1, 1, 1] at [4.08407045 4.08407045 3.2533421  5.02652273] is 0.26070618.\n",
      "The QFI norm along [1, 1, 1, 1] at [4.39822972 4.39822972 3.2533421  5.02652273] is 0.90660775.\n",
      "The QFI norm along [1, 1, 1, 1] at [4.71238898 4.71238898 3.2533421  5.02652273] is 2.01995733.\n",
      "The QFI norm along [1, 1, 1, 1] at [5.02654825 5.02654825 3.2533421  5.02652273] is 3.32425271.\n",
      "The QFI norm along [1, 1, 1, 1] at [5.34070751 5.34070751 3.2533421  5.02652273] is 4.52539873.\n",
      "The QFI norm along [1, 1, 1, 1] at [5.65486678 5.65486678 3.2533421  5.02652273] is 5.40406149.\n",
      "The QFI norm along [1, 1, 1, 1] at [5.96902604 5.96902604 3.2533421  5.02652273] is 5.87599852.\n",
      "The QFI norm along [1, 1, 1, 1] at [6.28318531 6.28318531 3.2533421  5.02652273] is 5.99962501.\n",
      "The QFI norm along [1, 1, 1, 1] at [6.59734457 6.59734457 3.2533421  5.02652273] is 5.93033916.\n",
      "The QFI norm along [1, 1, 1, 1] at [6.91150384 6.91150384 3.2533421  5.02652273] is 5.84133590.\n",
      "The QFI norm along [1, 1, 1, 1] at [7.2256631  7.2256631  3.2533421  5.02652273] is 5.84309143.\n",
      "The QFI norm along [1, 1, 1, 1] at [7.53982237 7.53982237 3.2533421  5.02652273] is 5.93367838.\n",
      "The QFI norm along [1, 1, 1, 1] at [7.85398163 7.85398163 3.2533421  5.02652273] is 5.99962501.\n",
      "The QFI norm along [1, 1, 1, 1] at [8.1681409  8.1681409  3.2533421  5.02652273] is 5.86697827.\n",
      "The QFI norm along [1, 1, 1, 1] at [8.48230016 8.48230016 3.2533421  5.02652273] is 5.38230779.\n",
      "The QFI norm along [1, 1, 1, 1] at [8.79645943 8.79645943 3.2533421  5.02652273] is 4.49128513.\n",
      "The QFI norm along [1, 1, 1, 1] at [9.1106187  9.1106187  3.2533421  5.02652273] is 3.28287364.\n",
      "The QFI norm along [1, 1, 1, 1] at [9.42477796 9.42477796 3.2533421  5.02652273] is 1.97995933.\n",
      "The QFI norm along [1, 1, 1, 1] at [9.73893723 9.73893723 3.2533421  5.02652273] is 0.87758767.\n",
      "The QFI norm along [1, 1, 1, 1] at [10.05309649 10.05309649  3.2533421   5.02652273] is 0.25010151.\n",
      "The QFI norm along [1, 1, 1, 1] at [10.36725576 10.36725576  3.2533421   5.02652273] is 0.26070618.\n",
      "The QFI norm along [1, 1, 1, 1] at [10.68141502 10.68141502  3.2533421   5.02652273] is 0.90660775.\n",
      "The QFI norm along [1, 1, 1, 1] at [10.99557429 10.99557429  3.2533421   5.02652273] is 2.01995733.\n",
      "The QFI norm along [1, 1, 1, 1] at [11.30973355 11.30973355  3.2533421   5.02652273] is 3.32425271.\n",
      "The QFI norm along [1, 1, 1, 1] at [11.62389282 11.62389282  3.2533421   5.02652273] is 4.52539873.\n",
      "The QFI norm along [1, 1, 1, 1] at [11.93805208 11.93805208  3.2533421   5.02652273] is 5.40406149.\n",
      "The QFI norm along [1, 1, 1, 1] at [12.25221135 12.25221135  3.2533421   5.02652273] is 5.87599852.\n",
      "The QFI norm along [1, 1, 1, 1] at [12.56637061 12.56637061  3.2533421   5.02652273] is 5.99962501.\n"
     ]
    }
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "source": [
    "# Create a figure\n",
    "fig= plt.figure(figsize=(9, 6))\n",
    "ax = fig.add_subplot(111)\n",
    "# Plot the QFI norm\n",
    "ax.plot(thetas, list_qfisher_norm, 's', markersize=11, markerfacecolor='none')\n",
    "analytical_qfi_norm = 4 + 2 * np.sin(thetas) + 2 * np.cos(thetas) - 2 * np.cos(thetas) * np.sin(thetas)\n",
    "ax.plot(thetas, analytical_qfi_norm, linestyle=(0, (5, 3)))\n",
    "# Set legends, labels, ticks\n",
    "ax.legend(\n",
    "    ['get_qfisher_norm()', '$4+2\\\\sin\\\\theta+2\\\\cos\\\\theta-2\\\\sin\\\\theta\\\\cos\\\\theta$'], \n",
    "    loc='best', prop= {'size': label_font_size}, frameon=False,\n",
    ")\n",
    "ax.set_xlabel('$\\\\theta$', fontsize=label_font_size)\n",
    "ax.set_ylabel('QFI norm along $v=(1,1,1,1)$', fontsize=label_font_size)\n",
    "ax.set_ylim([-1, 9])\n",
    "ax.tick_params(labelsize=label_font_size)"
   ],
   "outputs": [
    {
     "output_type": "display_data",
     "data": {
      "text/plain": [
       "<Figure size 648x432 with 1 Axes>"
      ],
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGDCAYAAADahUEXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABbF0lEQVR4nO3dd3gU5drH8e+dQAq9F2kBpKp0FEQELFgQj+21K3ZB7BUb2MWjHsuxe8SuR0HFfhSkiFgQsAMCAipFpAURQkue94/ZhIRskt3NbmY3+/tc11xLZp6dvTPsbO59qjnnEBEREUk0KX4HICIiIhIJJTEiIiKSkJTEiIiISEJSEiMiIiIJSUmMiIiIJCQlMSIiIpKQqvgdQLQ1aNDAZWVl+R2GiIiIRMGcOXPWOucaBjtW6ZKYrKwsZs+e7XcYIiIiEgVm9mtJx9ScJCIiIglJSYyIiIgkJCUxIiIikpCUxIiIiEhCUhIjIiIiCUlJjIiIiCQkJTEiIiKSkJTEiIiISEJSEiMiIiIJSUmMiIiIJCQlMSIiIpKQlMSIiIhIQlISIyIiIglJSYyIiIgkJCUxIiIikpCUxIhIpbF06VKOOeYYGjZsiJlx1llnART5dzjOOusszCy6QUqBDz/8kCpVqrBgwYKCfQ899BD169dnw4YNPkYmiUJJjIjEzIMPPshzzz1XYa931llnMX36dK677jpefPFFLrzwwgp7bQnPzp07ueqqqzjttNPo2LFjwf4LL7yQ9PR0br/9dh+jk0RRxe8ARJJFv7FTWJGdE1LZZnUymTnqoBhHFHsPPvggWVlZEdWChGvbtm3MmDGDiy++mKuvvrrIsZycHFJTU2Meg4Ru/PjxzJ8/n1dffbXI/oyMDIYPH85dd93FjTfeSP369X2KUBKBkhiRCrIiO4dlY4eEVDZr1PsxjqbyWb16Nc456tWrV+xYRkaGDxGFb9OmTdSsWdPvMIKKdmyPPfYYXbp0oWvXrsWOnX766YwZM4bnnnuOq666KmqvKZWPmpNEhGXLlnH88cdTq1YtatWqxT/+8Q+WLl1KVlYWAwcOLFZ+8uTJDB48mDp16pCRkUGXLl144oknipQxM3799VemT5+OmRVsy5YtCyu2t99+m+7du5ORkUGLFi24+eabmTRpEmZW0FR11lln0apVKwBuvfXWgteaNm1aQSy71wa9//77DBgwgAYNGpCZmUnLli057rjjWLhwYbEYNm7cyIgRI2jUqBEZGRn069ePr776qlg55xyPP/44PXv2pFq1atSoUYNBgwYxderUIuWWLVuGmXHLLbfw2muv0bNnTzIzM7nkkktCvi633HILZsbPP//MDTfcQPPmzUlPT6dr16588MEHxcrv3LmTe+65h86dO5ORkUH9+vU59thj+eGHH8KKLf9aTpkyhb59+1KtWjWaN2/OPffcA8CGDRs499xzadSoEdWqVeOoo45i5cqVRV7jjz/+4LPPPuPII48M+ru1adOGDh06MH78+JCvhyQn1cSIJLl169bRv39/Vq9ezfDhw+nUqRMzZsxg0KBBbN68uVj5p556iuHDh9OnTx9uvPFGqlevzqRJkxgxYgS//PIL9957LwAvvvgiV1xxBQ0aNODGG28seH7Dhg1Dju2tt97i+OOPJysri9GjR1OlShWeffZZ3n+/aE3VhRdeSLdu3bjiiis49thjOe644wDo1KlT0PNOnz6do48+mr333pvrr7+eOnXqsHLlSiZPnszixYtp3759kfKHHXYYDRs2ZPTo0axbt45//etfDBkyhKVLlxapnTjjjDN49dVXOeGEEzj77LPZtm0bL7/8MoceeihvvvkmRx99dJHzTpw4kYcffpgRI0YwfPhwatWqFfK1yTds2DCqVq3K1Vdfzfbt23nwwQc55phjWLhwIVlZWQXlTjvtNF5//XUOPfRQRowYwR9//MGjjz5K3759mTFjBt27dw85tm+++YZ3332XCy64gDPPPJPXX3+dUaNGkZGRwfPPP09WVha33HILixcv5uGHH+bMM89k8uTJRa4/wL777lvi79W3b19eeukl/v77b2rUqBH2dZEk4ZyrVFvPnj2dSDxqdd17MSlbXtdcc40D3EsvvRR0/4ABAwr2rVy50qWnp7tTTjml2HkuvfRSl5KS4n755ZeCfa1atSry/HDs3LnTtWjRwtWvX9+tWbOmYH92drZr2bKlA9yzzz5bsH/p0qUOcGPGjCl2LsANGzas4OcrrrjCAW716tWlxjBs2DAHuBEjRhTZ//rrrzvAPfHEEwX73nzzTQe4J598skjZHTt2uJ49e7qsrCyXl5dXJNYqVaq4efPmlXUpghozZowD3JAhQwrO65xzs2bNcoAbNWpUwb6PP/7YAe7EE08sUvbbb791qamp7oADDijYV1ZsgDMz9+WXXxbs27Ztm2vSpIkzM3fJJZcUKZ9/rRcsWFCwb/To0Q5w3333XYm/3+233+4AN3v27BCviFRWwGxXwt98NSeJJLl3332Xpk2bcsoppxTZv3vnWIAJEyawbds2zj33XNauXVtkGzp0KHl5eUW+cZfHnDlz+P333zn77LNp0KBBwf7atWszfPjwcp27du3aALzxxhvs3LmzzPJXXHFFkZ8POsjrdL1o0aKCfS+99BI1a9bkmGOOKXJdsrOzGTp0KMuWLStSHmDIkCEl1haF6rLLLisyDLx3797UqFGjyGu99dZbANx4441Fynbt2pWhQ4fy2WefsWbNmpBj69u3L/vtt1/Bz2lpaey7774457j00kuLlO3fvz9Q9Frlv1aw/kv58jv0/vnnnyWWEVFzkkiSW7p0Kfvuuy8pKUW/0zRq1Ig6deoU2Td//nwADjnkkBLPt3r16qjEtWTJEoAiw2/zde7cuVznvvjii3n77be56KKLuO666zjggAM4/PDDOeWUU4I2d7Vp06bIz/l/YNetW1ewb/78+WzatInGjRuX+LqrV68u0lS1e7NVJHaPLT++wrEtXbqUlJSUoEnJXnvtxcSJE1m6dGmR37202IK9Zt26dQFo3bp10P2F48lPpLwv2cHlH9M8PVIaJTEiErL8PywvvPACTZs2DVom2B+4eFO/fn2+/vprZsyYwaRJk/j000+54oorGDNmDB988AF9+/YtUr6k4dmF/wg752jYsCGvvPJKia+79957F/m5WrVq5fgtQo8tEqXFVtpw9VDiyU+W1q9fT4sWLYKWX79+fZGyIsHEXRJjZjWAS4FTgCxgG7AQeAp43pX3zhSRIrKysli8eDF5eXlFamP+/PNPsrOzi5Rt164dAA0aNCi1NiZfeb5F5ydDhWdzzTdv3ryIz5svNTWVgQMHFoy++v777+nZsyd33HFHsY7DoWjXrh0LFy6kT58+cdcRtU2bNuTl5TF//ny6dOlS5Fj+tdy9BiWW8pO5RYsWBR1iDbB48WKqVKlChw4dKiwuSTxx1SfGzFKAD4Hbga+Bq4A7gFTgWWCsf9GJVE5Dhw5l1apVxSYdu++++4qVPfHEE0lPT2fMmDHk5BSfuG/jxo1s27at4OcaNWoUfKMOV8+ePWnevDnPPvssa9euLdj/119/FRvOHa7C58vXsWNHMjMzI473zDPPJC8vj+uvvz7o8Wg1s0XimGOOAeDuu+8uUiPy448/8s4773DAAQdUaI3HgAEDAPjyyy9LLPPll1/Ss2fPuEsIJb7EW03MfsABwIPOuYKedGb2GLAAuBC4zqfYRCql6667jldeeYWzzz6bWbNm0bFjR2bMmMHnn39OgwYNitSmNG/enMcff5zzzjuPTp06ccYZZ9CqVSvWrFnDDz/8wMSJE5k3b17B0N4+ffrwzDPPcPPNN9OpUydSUlIYOnQo1atXLzOu1NRUHnjgAU488UT23Xdfzj//fKpUqcK4ceOoX78+v/32W8S/8/nnn8/y5csZPHgwrVq1Iicnh9dee41NmzZx5plnRnTO/GHVjzzyCHPnzuWoo46iQYMGLF++nC+++ILFixcX9POpaIceeignnngi//3vf9mwYQNHHXVUwRDrjIwMHn744QqNp2HDhgwcOJAPPvggaLL8yy+/8PPPPwc9JlJYvCUx+RMRFJkZyTm33czWAukVH5JIdDSrkxnyTLzN6mTGOJpdGjRowGeffcZVV13FuHHjMLOCCdp69+5NZmbRWM4++2zat2/Pfffdx5NPPkl2djYNGjSgQ4cO3H777TRp0qSg7J133sn69et59NFHyc7OxjnH0qVLQ0piwEsMJkyYwG233cYtt9xCo0aNOOusszjwwAMZPHhwxL/zGWecwXPPPcfzzz/PmjVrqFWrFp07d2bChAkcf/zxEZ933LhxDBo0iKeeeoq7776b7du306RJE3r06MHdd98d8Xmj4eWXX6ZHjx4Fs+BWr16dAQMGcPvtt7PPPvtUeDwjRozgpJNOYs6cOfTs2bPIsZdeeon09PQKWa5CEpvFUxcTM6sLLAF2AhcBXwHVgGHAtcBw59zTpZ2jV69ebvbs2bEOVaTSW7duHQ0aNODCCy8sd/NNtE2bNo1Bgwbx7LPP6g9dgsrNzaVr165069aNl156qWD/1q1badOmDSeffDL/+te/fIxQ4oWZzXHO9Qp2LK76xDjnNgBHA+uB14FfgfnASOD4khIYM7vAzGab2ezd5zoQkbIF698ydqzXBe3QQw+t6HAkCaSmpnLffffx6quvFgzdB3jiiSfYunUrN998s4/RSaKIqDnJzNoDewGNAAesAX50zi0q9Ymh+Rv4EXgH+Byoh5fEvGJm/3DOTdr9Cc65p/BGL9GrV6/4qVoSSRBHHnkkrVq1okePHuTl5fHJJ5/w3nvvsf/++xd0Co2WjRs3Bk2aCktLSyt1IrTKKicnh40bN5ZZrnCTXSI7/PDDyc3NLbLv8ssv5/LLL/cnIEk4IScxZtYJGA6cAOTfQfk9/lygzGq8GpQnnXPzi52k7NfYBy9xucI590Sh/a/iJTZPm1lb51xuSecQkfAdddRRvPDCC7z11lvk5OTQvHlzrrrqKsaMGVPqnCCRuOyyy3j++edLLTNgwICCxRuTyWuvvcbZZ59dZrl46gYg4qcy+8SYWVvgHuBYIAeYAXwB/AKsw0tk6gF7An2A/kAm8CZwnXMu5O74ZjYOOBto4Jxbt9uxfwMXA3s6534p6RzqEyMS3+bNm1dsVePd1a1bt1hnz2SwatUqfvrppzLLhTJHj0hlUVqfmFBqYuYBPwBnAW8654ova1v0xarj1dZcFnhuRhixNgs8BvvqV2W3RxFJQJ07dy73sgGVVdOmTUucCVlEigulY+//Oed6OedeLCuBAXDObXbOPe+c6wGcFGY8+dNwnlV4p5nVAf4BbAAWh3lOERERqYTKrNVwzr0T6cmdc2+H+ZQHgTOBsYH+MTPxmqrOB5oCI9UfRkRERCDOmmacc7+a2b7AaOBg4GS8fjjfAlc55970MTwRERGJI1FPYszsdOAc59xBkTw/0Gl3WHSjEhERkcomFpPdtQIGxOC8IiIiIgXiasZeERERkVCF1JxkZuEsvVo7wlhEREREQhZqTUwWXnKyOYRtR9SjFBGJwLRp0zAznnvuuaie96OPPmLgwIHUqFGDhg0bcvHFF7N169aovkZlVJmum95bHr/jDTWJWQrMds7tU9YGPBLDeEWkAmzZsoU2bdpgZlx88cUV8poLFy5k9OjR9OnTh4YNG1KzZk26devGnXfeyebNZU5RVWHuv/9+Dj/8cJo2bcoDDzzA0KFDefTRR7nsssti/tqJco2C0XUrm5/XKBJxEa9zrswNbz2kNSGWvRHIDaVsLLaePXs6ESmfq666ytWoUcMBbuTIkRXymtddd52rUaOGO/XUU93DDz/sHn/8cXfiiSc6wHXp0sVt2bIl7HPm5ua6nJwct3PnzqjEOGnSJGdm7t577y2y/7DDDnNpaWlu48aNUXmdksTiGlWEynjdKtt7K1wVGS9eJUrwnKOkA0UKwfVAHpAVQtnTgamhnDcWm5IYkfKZM2eOS01Ndffff39ESczUqVMd4KZOnRrW877++muXnZ1dbP+NN97oAPfvf/87rPNFW25uruvcubPr0aOHy8vLK3Ls7rvvdoCbOXNmyOeL5DrF+zUKJtrXLRLxft3i4RqFo6LjLS2JCak5yTl3t3MuxTm3LISyLznnBoVyXhGJL7m5uZx//vkcfvjhHHfccRX62r169aJ27eLjAk46yVu95Mcffyyyf+vWrdxyyy106NCBatWqUadOHfbZZx+uueaagjLB+i0899xzmBlTpkzhvvvuo23btqSnp9O+fftSV9f+6KOPmDdvHpdeeilmVuRYWloaABs3bgz79w5HuNcIYPv27fzzn/+kW7duVKtWjdq1a9OrVy8eeaRoy//atWsZOXIkLVq0IC0tjRYtWjBy5EjWrSuyFm9I172wRLxu8f7e0v/pLnE1Y6+I+OuBBx5gwYIFvPHGG36HUmD58uUANG7cuMj+kSNHMm7cOM4880yuvPJKdu7cyaJFi5gyZUpI573hhhvIycnhwgsvJD09nccff5yzzjqLPffck379+hUr/9prr5Gamkr//v1Zu3ZtkWOrV68GoGbNmpH8iuVW0jXavn07hx12GNOmTWPw4MGcfvrpZGRk8MMPP/Dmm28W9HfauHEj+++/P4sXL+acc86hR48efPPNNzz++ONMmTKFWbNmFfxu4V73RLxu8fze0v/pbkqqoknUTc1JUiHGHVnyNvelii8fBUuWLHHVqlVzY8eOdc45t3Tp0gptTgpm586drm/fvq5KlSpuwYIFRY7VrVvXHXHEESHF8uyzzxbse/bZZx3gunXr5rZt21awf/ny5S4tLc2dfPLJQc/VsmVLB5S6rVixIuTfLVrXqbRrdM899zjAXX/99cWel5ubW/DvG264wQHu0UcfLVLmkUcecYC76aabCvaFct0Li/Z1i5ZEfW8l4/8ppTQnqSZGRAAYPnw4bdq04corrwz5OXl5eaxfv77Ivvxq5I0bNxb7llavXj1SUkKfY/Pyyy/niy++4K677qJDhw5FjtWuXZuffvqJH3/8kb333jvkc+a76KKLCqq+AZo1a0b79u1ZtGhRsbJr167lt99+49hjj+Wiiy4qdvzEE08kPT2dPfbYI+hrxfI6lXaNXn75ZerWrcvo0aOLPa/w+d966y0aNmzIBRdcUKTMhRdeyK233spbb73F7bffDoR33ctz3bKzs3nwwQdLPX9hl156KfXq1Qu5fKK+txL5/zQmSspuEnVTTYxI+F588UVnZm7GjBkF+0KpickvE+q2dOnSkGO66aabHOAuuOCCoMcnTpzoatas6QDXpk0bd+6557qJEycW+TZa2rflyZMnFzvngAEDXFZWVrH9X331lQPcXXfdVezYkiVLHOBOPfXUEn+XWF2nsq5RZmam69u3b5nnycjIcAcccEDQY/369XOZmZkFP4dy3fOV57qFe80WLVpU5u+ZL5HfW4n8fxopVBMjIiXZtm0bV155JUceeSRNmjRh8eLFAKxYsQLwagoWL15MgwYNqFOnTpHnNmnShEmTJhXZ991333H11Vdz33330bVr12LlQ3HLLbdwxx13cPbZZ/PEE08ELfOPf/yDZcuW8cEHHzB9+nQmT57MM888Q//+/Zk8eXKRb8LBpKamBt3vfWYW9ffffwPB2/knTJgA7OokGkwsrlMo1ygWwrnu5bluWVlZQf8vyquyvbeioaL+T2OipOwmUTfVxIiEZ8OGDSF90919PoiSlLevx5gxYxzghg0bFvSbYEny8vLctdde6wD3+uuvF4kl2LflYPENGDDAtWrVqtj+r7/+2gHuzjvvLLJ/27ZtrnXr1q5Dhw5hzxdSnusU6jXq2rWrq1u3rtu6dWup5+vcubNr2LCh27FjR5H9O3bscA0bNnR77bVXic8Ndt3zxeK6lUdleG8l4/8p5R1iLSKVV/Xq1Rk/fnyx7bHHHgPg8MMPZ/z48Rx99NExj+W2227j1ltv5YwzzmDcuHEl9gvJzc0lOzu7yD4zo3v37gDF+p+UV+fOnalWrRofffRRkf033ngjy5Yt4+GHHy7x23e0hXqNAE477TQ2bNjAHXfcUeyYK1QrcMwxx7BmzRr+85//FCnz9NNPs2bNGo499lgg/OueiNct3t9b+j8tKurNSWaWC6wAbnLOvRDt84tIdFWtWpUTTjih2P5ly5YB0LZt26DHo+3RRx9lzJgxtGzZkkMOOYRXXnmlyPHGjRtz6KGHArBp0yaaNm3K0UcfTffu3WnUqBFLly7l8ccfp27dugwdOjSqsVWrVo3zzjuPhx9+mNNPP50BAwbw4Ycf8tZbb3HvvfcyePDgqL5eScK5RgCXXXYZ7777LnfccQdff/01gwcPJiMjg59++omff/6ZyZMnA3Dttdcyfvx4Ro4cydy5c+nevTvffPMNzzzzDB06dODaa68Fwr/uiXjd4v29pf/T3ZRURRPpBiwD1uDN8Ds32ucva1Nzkkh0VPQQ62HDhpXanDVgwICCstu2bXOjRo1yvXv3dvXq1XNpaWmuVatW7uyzz3YLFy4sFkt5q/zzX/Oyyy5zDRo0cNWqVXP9+/d3H374YVi/Y2GRXKdwrlG+nJwcd8cdd7jOnTu79PR0V7t2bderV69iQ2///PNPN2LECNesWTNXpUoV16xZM3fRRRe5NWvWFJQJ9boXFu3rFonK9t5Ktv9TSmlOMleo+imazKwLMNg5d19MXqAEvXr1crNnz67IlxQREZEYMbM5zrlewY7FbHSSc+574PtYnV9ERESSmzr2ioiISEKKehJjZqebWWgLTIiIiIhEKBY1Ma2AATE4r4iIiEgBNSeJiIhIQgqpY6+ZLQnjnLUjjEVEREQkZKGOTsoCNgArQyhbLeJoREREREIUahKzFFjsnDusrIJmdhNwa7miEhERESlDqH1i5gA9Qiwbm9nzRERERAoJNYn5BqhvZlkhlP0V+DTiiERERERCEFIS45y72zmX4pxbFkLZl5xzg8odmYiIiEgpNMRaREREEpKSGBEREUlISmJEREQkISmJERERkYSkJEZEREQSkpIYERERSUhRT2LMLNfMfjOzM6N9bhEREZF8saiJ+R3IBJ4zs7kxOL+IiIhIyGsnhcw5lwVgZl2AwdE+v4iIiAjEIInJ55z7Hvg+VucXERGR5KaOvSIiIpKQlMSIiIhIQorF6KTTzWxKtM8rIiIiUlgsamJaAQNicF4RERGRAmpOEhERkYQU0ugkM1sSxjlrRxiLiIiISMhCHWKdBWwAVoZQtlrE0YiIiIiEKNQkZimw2Dl3WFkFzewm4NZyRSUiIiJShlD7xMwBeoRY1kUYi4iIiEjIQk1ivgHqm1lWCGV/BT6NOCIRERGREISUxDjn7nbOpTjnloVQ9iXn3KByRyYiIiJSCg2xFhERkYQUl0mMmdUzs/vMbLGZbTWzNWY21cz6+x2biIiIxIeYrWIdKTNrBUwDagDPAAvx5p7pAjSrqDj6jZ3CiuyckMo2q5PJzFEHxTii6EuG31Eqh2R4rybD7yiVQzy9V+MuiQFewouri3NulV9BrMjOYdnYISGVzRr1foyjiY1k+B2lckiG92oy/I5SOcTTezWukhgzOxA4ALjUObfKzKoCVZ1zW3wOrUyh/kfFMisNNzsWqax0P4okh7hKYoAjA4+/mdm7wBFAqpktAm5zzr3kW2Sb14LLgxqNgh6Oh6w0nrJjkZhxDnJ3QJW0EovEw31QrvtxRw6sWQA194CajWMQnUgUbVkP1er58tJRT2LMLBdYAdzknHshzKd3CDw+DSwChgFpwFXAi2ZW1Tn3bJDXvAC4AKBly5aRhl66Oc/ClDugRhNo2hWadvEem3Qhoeb3cw42/cGglG/Y25bChzPgiLFFy8x7GzLrQat+kLKr73c8fLuVyiGiWoqNy+H71+C7/0Lnf8BBNxUt+MMEaNSJVHKjHG2M7dzOvjafvVOWwVvvwqrvYM3P4HLBUuCEcbDXscWepvtRoimcexKAbZtg/rvw3avw6xdwxU++JNyxqIn5HagOPGdmlzvnQp3pF6Bm4HETMMg5tx3AzCYCS4C7zOx551xe4Sc5554CngLo1atXbDKKDkOganXvA+aP72HxJK9mBvg8vR64IWAW0qnC+fABwntjBbN8Dix4z4t71XeweQ3P5n+JXdIR8nIhJXVX+al3ed8Ca7eALidB15OB+Ph2K5VDyLUU2zZx1a13cFzVGfDAPMBBy77QeK+i5Tb9AW+cC8C89Krw1D7eF40mXaBpN2jcGaoGb7IJ58M71YxcV46PmM1rIW8n1Gyya9+OLbyefrv3718aezF3ONL7HVf/CC36FD3HjhyMPJaOHRrSS+p+lFCEXXO46GOYOALqtoYDr4YUfxp2ov6qzrksADPrAgwO8+n5nySv5icwgXNuMLN3gDPxamvmRyHU8DTu7G35duTA6nmw6ltemvgV1+6ewPzvesj+DVof6G0NOxYkOeEmA6GXfw/W/eK9qQrVoPD7V/D5w9CwE7QbDE26cMLbm5nvWvHTyBOKn+j8qfDzB16G/dm/YMZ9TExrC7NWwt7H+1ZtKElmxr9g+j+5Py2HZXmNYeD10OVEqNe6eNnqDWHkLFj1Hc+/PpEL0jfBT2/BnOe848c8Ad1OCfoy4X54h3X/blkPy2bA0k+9be1C6DMSDr9rV8HMOpy6/QYW5TXj61tOL3qSvY8rfuLP/82M9Cfhk2+g6ynQoF1I8YhEbPVPUCUD6rfdta/DkXDOx9Bi35C/wMdCzFIn59z3wPdhPm154PGPIMfyRyrVjTioaKqaCc17QvOePPZGE67d/XiVDK/mY8F73s/VG0JWf05JrQsb9oK6WdGJY+NyWOp9SM5M/wj+vQ6GfwZN9tlVpseZ0OscqJpRsGv2xFK+naVVg31O8LZNf8AP40n739PwwdWQXrOgZkYkpuq2gq4nc9znrZjr2rFs4FEll01JhYYdoGEH7nqlOhcMG+I1nWb/5tU+ttq/aPnfvoRpYxmR2pjP8zpD7k5IjeLH4bR7+CDtZfjnr97PVat7MXQ7DdoMLFb887y9Qz93024szmtG888egBn3Q7OeXjKjLxgSTX//CT+M977M/vED9BgGRz+863jVTGi5n3/xBcRbx95ZwHCgeZBj+fv+rLhwyuGQMd62YVlBksGyGdxddRXM2AFH/3tX2bw82Ph7sVM0tzXeP7ZuhIzauw78tQqmj/XOuX6Jty+zHt/m7Umzo2+Amk2Lnii9RuS/R80msP8lHPlOG5Zd3ir4t2CR8vrxTS/xLlyrsPfxsPfxzJ0ZYXOImZcI1W1V/NjWv+Dv1VxXdar38z/v85KM1gdCVn+vKaqwLeth2ybvntzwa6EDzjvX7uXXLWaDq+H122k9APboDqlVI/s9dtd+MGft2MGya3t6/YC++6/3BWPK7V4tauFvyyKR+OMHeOYw2LEZ9ugBR9wbvFYwDsRbEjMReAg43czucM79DWBmTYFjgIXOucX+hReBulne1uMMcI6DbvgPU/rt1slu+9/wUJdiT/0sPfCPuX/D/hfvOlA1E36a6PUN6H2+98HbqDMjb/iQIb1Dq+qOSJPdvi06532jbdU3dq8pld+q7+GtC73q6ROfr5jXbD8Y2g+m56hX6JMyn0d7bvK+FCz8H6TXgut3+1Lx6b3w5WPePfnQbufKqAPXLinar+y4pzjt6w9YdmAM78eaTbzPhf0vhpXfwCsnw6pvlcRI+WzfDOPP9mrdz/8EGnXyO6JSxWJ00unAOc65sLvDB/q+XA08CXxpZuPwRieNCDxeEtVgK5oZS9wexT9kqmTAPx4rVvzqCd8BcN+eBxc9kFkHrl1atN+LH2aPg/evhNMmQLtD/Y1FEtP2zTDhHG803JD7K/zl11Gb9/P68OjQQLKxcbmXEOxu7xOg8d5cPeE77juha9FjwUZkVHQfgT26w6XfeE3BIuXx4bWwbjEMeyfuExiITU1MK2BApE92zj1lZmuBa4HbgTzgC+BU59zM6IRYtmZ1MiuuV3+VNOh+WrHdE16rA8B9wd5IUUhgyv07djsVvn4G3hoOI2YWHXEhEooPCn1gVm9QYrEKux9rN/e23QX6v014rQ73dY9N7Uq5f0clMBINHY+C+u28Gv5ShDvKNlbirTkJAOfcm8CbfsYQzrwKiTqEsdy/Y9VM+L9n4ckB8OYFcMZE/2uHJHF8Px6+fQkOvKbMD0zdj0WF9Dvm5el+lPB1OMLbyhDqKL1YCymJMbMlYZyzdtlFKpcKrbUpQ4Vnxw07wJH/hHcugZkPQP+ronNeqdRa2mp4b7Q3B8qAUVE9dzj3Y7M6meWfh6kUvn1b/epJbx6PU1+P7nlF4kyoNTFZwAZgZQhlk65OM56+JfqSHXc/A36ZClPu9EZ2iJThwJTvvSHNxz8d3aHNhHc/QmzvSd++rVatBosnw2cPAPHfr0F8tnqe3xFELNRPj6XAYufcYWUVNLObgFvLFZXEnbK+3dbkSN5Pm8Gqpy+hWZ27KzAySURTax5Ntw19yB77A/BDqWW1OGJxZdc21eXhqn058pM7OazWnRUWlySgRZPh5eMZVvNKskKsFI2ne9JcCFNom9nreMsANAyh7I14izWmllU2Fnr16uVmz57tx0uHJJI1Y8Ip7+saKX8u8EZqZMbHfIQioYjVsgO+349bN8IT/b3lUYbP0H0pxW1aDU/08yZjPX9KiUtz+M3M5jjnegU7FmpNzDfACWaW5ZxbVkbZX4FPw4gvqVTqhdgadfQ7ApGwVdp7MqM2nPAsjBsM71wKJ77g6/TwEmfy8uCtC2Db3zDsvbhNYMoSUtd159zdzrmUEBIYnHMvOecGlTsyEak88vLgtdO9GWal4jTvCQePhvnvePM6ieT7/CFYMg2OGJvQX0Djcoi1VAJb1nvrugy6UfNXJInSmmVGpL7DdVXf5brvm/Day5n+N7Ukk76XwPql3oR4kjRKux+72WLGp93OR3l9uHh8A5pNmpKw96OSGIm6fmOn0Oqvr3kl7RFenjGfG3eeW2JZ/TGrPEpcDfr3WTBuPHQ+lntOuJd7zOJmSoKkkJJCv5+OZsXMVUDZ1133ZOVQ4v3oHDw1EHKacdTw1zkqo3ZC349lJjFmdrBz7pNITm5mhzjnJkfyXElcK7JzmDn2Opi0mdNmPsRpp5wBex0btGwi3zwSgpxsmHAu1G4GQx9SnwyflPgHLQjdk5WcGZz0EuRsKLqwcIIKpU/M/8xsipkdZWZljjgys6pmdqyZTQc+KH+IkrAOuhma9YR3Lttt5V9JCs7Bu5fCppVw/LhK8YFZKTgHaxNrHV2Jsjotiq+8nqBCSWK6AzuBd4CVZvaymV0WSGr2N7N+ZjbUzK4MDMX+A5gAbAG6xSxyiX+pVeH4ZwAHb5wHuTv9jkgq0tznYd7bcNBN0KK339FIvk9uhacP0hcLqRTKTGKccz865wYD/YCPgaHAA8DbwAy84dQTgfuAwYH9fZxzRzjnEncaQImOeq3hyPtg+Sz4WRVzSSWtBvQ6B/a/zO9IpLCeZ0Hu9sBsvpI0Fk32mncrmZBXB3POfeGcOwOoC/QBzgVGAdcB5wC9gXrOuXOcc1/HIlhJUPucALWae4mMJI99ToCjHtAihPGmbpbXR+2HCd4cIVL5bV4H/z0Fpt/jdyRRF/boJOdcLjArsImULSUVRsyEzDp+RyIiAD2HwXevwE9vQY8z/I5GYu27V73atx5n+h1J1OkrklQMJTAi8aPFftCgA8x5zu9IJNac8/6fm+8LjSrfYqBKYkQkuhZNgj/n+x2FlMbMq41ZMRtW/+R3NBJLv30B6xZ5/9+VkJIYqXjbN/sdgcRK7k5vnZ6Pb/Y7EilLl5Mho46SmMpuzvOQXqvEuboSnWbslYr18oleH5lTXvU7EomyZnUyOffmu3gmbSUXrjuJj0qZNC1/hXbxUfX6cPVCqJLudyQSA83qZNJl1GvMSn+D8bkDuHn0tFLLJqqIkhgzM6AF8IdzbruZpQDN83+OZoCSeJrVySxx1s9rq6RzQep77D/qJf6kbkLfPFLUzFEHwStPwYpGPHnzjd48QRIXSrsng5WVxDdz1EGw8luY0IIz/m80ZzTt6ndIMWHOufCfZFYf+BM41Dk3xcwaAyvzf45yjGHp1auXmz17tp8hSGnWL4GHu3sToB14jd/RSDRtXAEP7g39LodDxvgdjYiA17E3wZf7MLM5zrlewY6Vp0/M7lclsa+SVIx6baD1gTD3BcjL8zsaiaZvXwaXpyG7iWjndti60e8oJBYSPIEpizr2SsXrMQyyf4MlU/2ORKIlLxfmvgitB3iJqiSOndvgoa4w/Z9+RyISNiUxUvE6DYXMet7aOlI55GyAhu2h19l+RyLhqpIOzXt5E6Lt3OZ3NBIN2/72mneTgJIYqXhV0qHbqbDwY9j6l9/RSDRUbwCnv1Fph3FWej2HwZZ1sOA9vyORaPjhda9/2tpFfkcSc0pixB/7XwqXfgMZtfyORETaHAS1W3pzikjim/M8NOoM9ff0O5KYUxIj/qjZGGo19TsKEQFvkc4eZ8LS6d4IQklcK7+FVd96fQ8readeUBIjIuXhHPw+y3uUxNb9NLAUr4O2JK65z0OVDOjyf35HUiGUxIj/9AcwcS2bAc8cCvPf8TsSKa9ae0C7w2DhR7onE9X2zfD9eOh8DGTW9TuaCqEkRvy1+BN4dD/Yst7vSCQSc56DjNrQbrDfkUg0DH0QLpiaFM0QldJPb8H2TdDzLL8jqTBKYsRfNZvA2p/hu//6HYmEa/M6mP+ut5BgVU1VXynUbKK1lBLZ8q+hQQdo2cfvSCpMpAtArgdaA38Efl6z288ioWm8FzTr5bXj9hmhb4CJ5Pv/Qu52b3iuiPhv6EOQk51Un6MR1cQ4z6/OuW2Bn/MK/ywSlp7DYM0C+P0rvyORUDnnDeNs3ttLRKXyycv1OwKJRGYdvyOoUGpOEv/tdRyk1dAcFYnk96+8ZsAeqoWplL583OurpkRG4pySGPFfeg3Y5wSvU1pOtt/RSCj+nAfVGsDex/kdicRCrT1g3SJYPNnvSCQU2zf7HYFvlMRIfOh5FuzMgR/G+x2JhKLXOXDlPEir7nckEgvtj4DqDb3RZxL/Xj4RJpzrdxS+CLtjr5k9BtzsnFsXg3gkWe3RHY5/RkN140y/sVNYkZ0TUtlmdTKZOeqgGEckFaJKmre+2eePwF+rNLt2nAh2P7a2VUxN/4x/7jiJx2a/X7A/We7HSEYnnQucamZ3AQ8657ZHOSZJMrtuzExgRqllk+XGjBcrsnNYNnZISGWzRr1fdiGJe/n3Y5a1ZFp6LvfeM5pHc48JWlb3Y8UKej9+fBN8WYVrR93OtTUbF+xOlvsxkiRmL+AeYCwwwsyud85pkg+JmP5QJpCcDV4n7NSqfkciMVLkfnxuItdkf8k1lz7pra+0G92PPtu5Hb59Fdof7q1Hl4TC7hPjnFvsnDseOABvXphXzOwLM9s/6tGJSHyZNBoe3VejVpJFz7Mg+zdveQmJPz+/D1vWJtUMvbuLuGOvc+5z51xf4GSgITDDzF43szZRi06Sz85t8NGN8MMEvyOR3W3bBD+8Aa32h5RUv6ORitDxKDjzbcjq73ckEsyc56B2C2ibvE165R6d5Jx7HegEXA0cBMwzs/vKe15JUqlpsPB/8O3Lfkciu1s8GXZshq6n+h2JVJSqGdBmYNCmJPHZ1o2wdAZ0OSmpv1RE5Z3pnNsBvAZcDGQDV0TjvJKEzLz23WWfJfXcB3Fp0STIqAMt9vM7EhHJqA2X/wD7XuB3JL6KZIh1fWDvQttega1OfhFAI5Ykcu0OhS8egaWfQocj/I5GAPLyvCRmz4MhNdIl10Qkqmo38zsC30XyabQGcHjJCsBK4Cvg+0LbgqhEJ8mp5f7eCJiFHymJiRervoXNf0K7w/yORPywZDrMexuG3J9UiwtK/IskiXkW+I5AwuKcWx/dkCTpVUnz2uEXTfIWGtSHpv8WTQLMq4mR5LNuMcx+BvYbDg3b+x2NSIGwkxjnXHLObSwVq91gWPCet0aPVkn23/6XQNYBUL2B35GIH/Jn0l70kZKYeDDnOfj7TzjwmqT/kqfGbYlP7QZDp6PB5fkdSVJrVidztwnNSp7crFmdzNgHJP6o0wIadYZFH3sJrfgi/358N+0BckjnxA9L/oKXLPejkhjxXfE/lPlOhm9+A34rUlYqjqaUTz4l3Y+jqrTl3NQP6D5qPH9TraCsVJyZow6CTX/A/cvg4NEs6x/aTOeVmZIY8Z3+UIrEjxLvx2V14Ll3+fHMdOisP56+WTTJe9RiuUCU5okRkUoqdye8fzWs/MbvSMRvLfaF9Npek5L4Z9HHUHMPaLy335HEBSUxEt/ycmH9Er+jSF7LZ8HXT8OGX/2ORPyWWhV6nOFNcy/+2LkdfpnqzaWV5B1688V1EmNm1cxsiZk5M3vE73jEB+9eBs8M9iZbk4q36GNIqQJtB/kdicSDw+6Egdf5HUXy+v1L2L4J2mu+pnxxncQAt+EtLinJqvWBsHkNrFJzhi8WTYKWfb0pzkXEX5YKbQ+G1gP8jiRuRLLswJQyijggB29IycfA2845F8Hr9AAuB64F7g/3+VJJ7HkIYN4f02Y9/Y4muWxcAat/hENv8zsSEQHI6udtUiCS0UltgEx21ZBkBx7rBB7X4NXwHAlcCMw0syOccyGv5mdmqcDTwP+AN1ESk7yq1YPmvb0lCAaO8jua5JLfgVOjIGR3WzdCSlVIq+Z3JJLkImlOGghsAe4FGjvn6jnn6gGNgfuAzUAvoAHwL+AAYHSYr3EF0BFvVWxJdu0Gw8q53gyVUnEWTYLaLaFhR78jkXiy5mf4ZxtYUPLEhyIVJZIk5gFgpnPuOufcmvydzrk1zrlrgS+AB5xz651z1+BN8Xl8qCc3s9bArcBtzrllEcQnlU27Q73HxZP9jSPZ1GoKXU7UKAgpqn47yKjjLUEgFSf7d28tOSkikiTmIGBGKcdnBMrkmww0D+P8TwBL8GpxQmJmF5jZbDObvWbNmrKfIImlaVeo0URJTEUbcj8cfLPfUUi8SUnxvlgsnuxNgSCxtyMHHukFU+7wO5K4E+nopNLqlzsChb+65eF19C2TmZ0OHAqMcM7tCDUY59xTzrlezrleDRtqMFOlYwanT4Cj/+13JCICXhKTswFWzPE7kuSw7DPYuRVa9fU7krgTSRIzGRhhZifvfsDMTgGGA5MK7e4BLCvrpGaWjlf78gHwh5ntaWZ7Aq0CRWoH9tWJIGZJdE32gbTqfkchIgBtD/KG+2r23oqx8COoWg1aHeB3JHEnkiTmSrwRSC+b2XIzmxbYlgMvAWuBqwDMLAMvCXkhhPPmj3gaAiwqtE0LHD898PN5EcQsIqHavhl2bvM7ColnmXWhxX7eH1eJLee8/ketB0DVDL+jiTthJzHOuV+BrnjDnv8C9gtsmwL7ugbK4Jzb6pw7yDn3QAin3gz8X5DtosDx/wV+fifcmEUkDHNfhHtaw+a1fkci8azdofDH9/DXKr8jqdzWLoLs33YNcJAiIlrF2jm3Hm8SumujFUigD8yE3febWVbgn78454odlySy7heY+RAMuBZqh9NXXMKy6GOo3QyqN/A7EolnXU+BPQ+Gmk38jqRy03xNpYr3ZQdEdsnbCXOfVzt8LG3f7HUi1AemlKVWU2/koIbgx9aij6FRZ6ijhTeDiagmpiIF5orRXSLQoD3UaeVNwtbrHL+jqZyWfgq521R1LRIvTngW/lrhdxRxK6Ikxsz64s2m2w6oT/Ekwznn2pYzNpGizLwagm9fhh1b1cktFhZ+BGk1oOX+fkciIgDV63ubBBV2c5KZnQl8hjcLbwbeQo+/7rb9FsUYRXZpNxh2bIFfZ/odSeXjnFfL1WYgVEnzOxpJFHNfgG9e8jsKSVKR1MTcCPwMHOKcWxnleERK17o/VMnw2on3PNjvaCqXP+fDX8u9jtMiofrxTfhrJXQ/3e9IJAlF0rG3FfC4EhjxRdVMaH2gOvfGQoN2MOxd6HiU35FIImk3GNb+DBuW+R1J5fLnfPj4Jtj0h9+RxLVIkpjlQHq0AxEJ2V7HQfN9vfVEJHpSq3oJotrfJRztD/MeF00qvZyEZ8F78Pm/wTSIuDSRXJ0ngNPMLDXawYiEpNspcNyTXq2MiPirfluo10a1o9G28GPYozvUaOR3JHEtkj4xc/A69c4ys0eBpUCxpUydc5+WMzYREUkE7QbDnOdg+xZIq+Z3NIlv8zpY/jUMuM7vSOJeJEnMJ4X+/R/A7XbcAvtUUyOSKGaPg+oNodNQvyORRNRuMHz1hDdRYntNlFhuv0wBnCadDEEkSczZUY9CJBI7t8G2v9WHo7zy8mDqXd4Cc0piJBKt+kGzXpC3w+9IKodFH0G1Bl5zkpQq7CTGOfd8LAIRCUteHjzU1etUOPQhv6NJGP3GTmFFdtEO0V3sF95JX8Plcxsxcfb7Bfub1clk5qiDKjpESURVM+D8T8ouJ0UEux9TyGNO+odMyevOVTd8WLBf92Nwcb/sgEhhhW/6x6s2p+vsd9h/5qEEW5lCN31xK7JzWDZ2SNGd08bCNOPBG6/mwUK1Wlmj3kekLMH+EJdE92RRQe/HzevgnQEc3/00ju+465jux+AiXXagOt4K1scCbQK7lwBvAvc65zZHJzyRoorc9HPXwTuXsOzyLGiyd7GyuulDtPAjaN5LzXISkaB/iEugezIE1evDKa/4HUXCiGTZgXrALOBmoDHwTWBrDIzGG7VUL5pBigS1Z2CRQg3tjNzff8LKudDuML8jkcpi60a/I5AkEsk8MbcBHfEWgNzDOdffOdcf2AMYCXQAbolahCIlqdUUmnRRElMeiyd7j1q1WqLhqyfh3j2VyEiFiSSJORr4j3PuMedcwfwwzrlc59zjwDjgmCjFJ1K6doPh968gJ9vvSBJT3k5o3ttLBkXKq/HekLsdlkz3O5LElJPtDVqQkEWSxOQ3IZVkbqCMSOy1PQhcnjc/hYSvx5lw3mRI0dTmEgUt9oW0GrBkmt+RJKb3r4InDvA7ioQSySfXaqC0wevdA2VEYq95bxj2nppDROJBalXIOgCWTPU7ksSTl+clf0EGKUjJIkli3gXONbMLzXatTGVmKWZ2AXAO8E60AhQpVZU0aN0fqmhNUpG40GYgrF8CG371O5LEsvpH2LLWu34SskiSmNF4w6kfA1aa2XQzmw6sBB4PHBsTvRBFJCZyNbuqxECbQd6jmpTCk3+9lMSEJewkxjm3DugFjAXWAb0D21rgbqB3oIyIxKsdW+Gfbb3RJCLR1LAD1GyqJqVwLZkKDTtCrT38jiShRDTZnXPuL+DGwCbiv/nvwaZVsO/5fkcS15rVySRr1Pv0S/mBl9M2cvbba5j6VvAJyJrVyazg6KRSMINjHoPaLfyOJO7l34/pbOfb9M/4b+4gbi1hQkDdj8Fp2QFJKPk3/e7ur/o4A1O+o9ebTXCBCkbd9MUVTPk+6Sv4oirPjrkc0mv4GpMktpLuSVgY2IqWlV0K7scl0+GF7Zx9xjmc3eFwf4NKMGUmMWZ2ZiQnds69EMnzREpT4ror322Ctz5j6WUtoWnXig0qES2Z5g2HVQIj5aS1kKKgWQ84+RVvZJeEJZSamOcAR7AV9krmACUxUnFaD/Aef5mqJKYsm9fBqu9hkFqDReJCek3oGNr6U1JUKEnMoJhHIVJetZpCw05e57gDLvc7mvi2dBrgNApCYiv7d5g3EXqfB1XVjCSxUWYS45zT/NGSGNoOgq+fgR05+tAszS9TIb027FHanJUi5fTnfPj4Jmi8lzeztkgMaK5xqTzaDILcbfDbl35HEt/2PR+GPgip6tcvMZTVD1KqekmzlOyHCbD4E7+jSFgRf4qZWS9gP6AuxZMh55y7vTyBiYSt1f5Qf0/Y9pffkcS3pl3Vb0hiL606tNhPk96Vxjn45FZovA/sebDf0SSksJMYM8sE3gQG43X2Ldzp1xXapyRGKlZ6Dbhkjt9RiEi+tgNhyh2weS1Ub+B3NPFnw1LI/g32v9TvSBJWpMsODAbuxOv0a8Aw4AhgBvA10DlaAYqISILSEgSly29qa6PxM5GKJIk5ARjvnBsN/BjYt8I59xFwCJAGnBWd8EQkavJyYe4LsOkPvyORZLFHd8iorSUISrJkKtRqDvXb+h1JwookiWkB5I9Yyg08pgE453YCrwInlz80kXLIyy27TLJZ+Q28cwn8OtPvSCRZpKR6I5O2bvQ7kviTlwtLP/Wa3CycadiksEg69m4q9LxNQB5QeMWqjUCTcsYlErmpd8GPb8DFs/XhUFh+1XXrgX5GIcnm+HGQooGwxaz81kvu1JRULpG8s34B2gM453KBn/CamDAzA44Dfo9WgCJhq9EI1i2G9Uv8jiS+LJkKTbpA9fp+RyLJRAlMcH+tgGoNNOlkOUXy7poMHG9mqYGfnwQON7NfgEV4/WKeiVJ8IuHL/2bzyxR/44gn2/6G32d5EwKKiP86Hw3XLNaorXKKJIkZy65RSTjnHgOuxmtG2gDcAPwzWgGKhK1eG6jdUiMiCvv1c8jboaprkXii5u5yCzuJcc797Zz7OdCJN3/fv5xzPZxzvZ1z9zjnXHTDFAmDmddZbukMyN1ZZvGksGQqpKZDyz5+RyLJ6I8f4NH9vNpAkShSY6VUTm0GwraN3ogcgQ2/Qqu+WlNK/FGrGaz5WUsQSNQpiZHKqfVAwNSklO+UV+CU1/yOQpJVtXreUhe6Hz3jjoBpY/2OolJQEiOVU/X6MOR+6Hik35HEj6oZfkcgyaztIFg+C7Zt8jsSf21aDb99DlXS/Y6kUlASI5VX73Oh8V5+RyEi4HUqz9sJy5J8ssX82ih1so8KJTEiIhJ7LfaDKplqUloyDTLreXM2SbkpiRGpzP5cAP851JsdVMRPVTO8zuXJvI6Sc97v32aAJgGMkkiWHRBJHH+thN++hL2P8zsSf/wyxeuHUE2z9Eoc2PcCbwFS55JzjpQ1P8OmVWpKiqKIkhgzOxUYCbQDgn06OuecEiTx3w/jYdJoaNkXajX1O5qKt2Qq1N8T6rTwOxIR6HCE3xH4K78WSksNRE3YiYaZ3QTcCqwGPsebpVckPuV/WCyZBt1O8TOSirdzu9eJMtl+b5F41bIPDLoJ6rbyO5JKI5LakouAacDhzrkd0Q1HJMoa7+MtsrZkavL9MV/+NezYrKprkXixR3dvk6iJpGdRLeB1JTCSEFJSvE50S6Z57fDJZMlUsBTIOsDvSER2ycuF5XO8vjEi5RRJEvMNoAZ2SRxtBsHfq+HP+X5HUrGWTINmPSGzjt+RiOyyaRX85yD4YYLfkUglEEkScxMw3MxUJyaJoaBfTJIN7dzrWOh9nt9RiBRVuznUb5d888X8MgW2rPc7ikon7D4xzrnpZnYu8KWZfQksA3KLF3PnRiE+kfKr08IbobPmZ78jqVh9R/odgUhwbQfBNy/Bzm3JMf3+1o3w0vHQ/yo46Ca/o6lUIhmdtB/wPFAV6B/YducAJTESPy6YBuk1/Y4iJvqNncKK7JyQyjark8nMUQfFOCKRMrQZCLOegt9nQetgf0ISV7D7cXDK1zyVlsdJkzL46uP3C/brfiy/SEYnPQRsB/4BzHDOZUcrGDNrD5wODAbaAhnAL8B44EHn3OZovZYkmUqawACsyM5h2dghIZXNGvV+2YVEYi3rALBUr4m3kiUxQe/H96fAt9V57aZLoUpawW7dj+UXSRLTBbjFOfdutIMBzsGbRO8d4GVgBzAIuAM40cz6OOdC+8opQpLWUuRsgM1rvSa0ZJwVVeJW4ftxQlpbqkyfyDGTegYtW2nuR/D6/2T1K5LASHREksT8iVcTEwsTgLudcxsL7XvCzBYBN+I1UT0So9eWSigpaynmvQPvXgojZ0HDDn5HI1KgyP049XuY+SDLbhwA6TWKla0092P277BuMfQ6x+9IKqVIRieNA043s6gvK+Ccm71bApPvtcDj3tF+TUkiSz+FZw6DnGy/I4mtJdOgZlNo0N7vSERK1mc4XPNL0ASmUilYakCTTsZCJInIZ8BReKOTHgOWUnx0Es65T8sZW2HNA4+ro3hOSTYpVeD3L71kpvPRfkcTG3m5sHQ6tBuspiSJb5l1/Y6gYqz8Fmo0hkad/I6kUookiZlc6N//wRuJVJgF9qVGGlSRk5mlAjcDO4FXSihzAXABQMuWLaPxslIZNe8NGbVh4f8qbxKz/GvYsg72PMTvSEQEYMj93tBqfamIiUiSmHMonrjE0oNAX+AG51zQiT6cc08BTwH06tUryeaWl5ClVoX2h8PPH0LuTkithAutz38XUqpCu0P9jkREwEteajfzO4pKK5LJ7p6LQRxBmdntwMXAU865uyvqdaUS63gUfP8a/PY5tD7Q72iiyzlY8J63VlRGbb+jESmbc/C/UVCrGfS71O9oJAGF1bHXzDLN7MzAhHcxZWa34C1x8CwwPNavJ0liz4OhSgbMf8/vSKJvw1LY8KuXqIkkAjNvTbO5L/gdiSSocEcnbcPrBxPTdZMCCcwYvJmBz3Mu2ZYflphJqw5tD4YF71e+Va3rtYGrF8Hex/sdiUjoOg2FdYsq37Igy2fDi8fCul/8jqRSC6s5yTmXZ2a/AbViFA9mNhovgXkROMc5lxer15Ik1esc+HMe5G6vFOu2NKuTGfKcGs3qZMY4GpEwdRwCH1ztNYVWgnmN8u/HUVVe4dzU6fS8dw5/saDEslI+kfRsfB44w8wecs5ti2YwZjYSuBX4DW8U1KlWtEf3aufcpGi+piShdod4WyVRaWY1leRUaw9o1tNr4u1/ld/RlNvMUQd5tbz/vgnqDuD7M070O6RKLZIk5nPgOODbwDwxi4AtuxeKcJ6Y3oHHlnjJ0u6mA0piJGSqpRCJHyXdjyNS23Fd1f/SZ9QL/EH9grIJa80CWL8E+l7sdySVnoXb3cTMdm/eCTpPjHMuKvPEhKtXr15u9uzZfry0iH8mjoQ9usG+5/sdiUj41iyER3vDEffCfhf4HU35Tb8Xpt4JVy2Amk38jibhmdkc51yvYMciqYk5u5zxiMSHtYu9xRJb9C67bDz7ew18+7LmopDE1bA99BkJjTv7HUl0LHjXm1xTCUzMRTJPTLBmHpHE8+Z5YKlw/id+R1I+P38AOA2tlsR2+F1+RxAd2b/Bqu/gkFv9jiQpRLIApEjl0PEoWDEb/lrpdyTls+A9qNMSmuzjdyQikpoGB14Dnf/hdyRJIaIkxsyqm9mtZva9mf0d2L43s1vMrHq0gxSJifyaiwWhdfyNS9s2eatWdxyqtVlE4kHNJnDQTVCvtd+RJIWwkxgzqwfMwluUsTHwTWBrDIwGZgXKiMS3hh2g/p5eTUaiWjTJm++mk5qSpBLI3QG/TIXtxQa8igQVSU3MbUBHvDWN9nDO9XfO9Qf2AEYCHYBbohahSKyYebUxyz7zOvgmogXvQbUG0CLmK4GIxN6vn8OLx8AvCd5PTSpMJEnM0cB/nHOPOedy83c653Kdc48D44BjohSfSGx1Ggp5O2Hhx35HEpl2h8GAayHFlxkNRKKrVT/IrJu4a5stmgSbVvsdRVKJJInJb0IqydxAGZH4t0cPbwXdNcGnBY97XU+C/S70OwqR6EitAu2PgIUfek1LiWTb3/Df0+Czf/kdSVKJJIlZTekLQHYPlBGJfykpcPFsOGSM35GICHhrKW3d6DXzJpLFkyF3m6Y6qGCRJDHvAuea2YVmVvB8M0sxswuAc4B3ohWgSMylVfM7AhHJ1/YgqJKZeB3uF7wHmfWgZV+/I0kqkSQxo4ElwGPASjObbmbTgZXA44Fj+lorEkvrl8KKud5CcyKVSVo12PNgb+qDvN1XuYlTO7d7/eo6HOk1iUmFCTuJcc6tA3oBY4F1eIs29gbWAncDvQNlRBJPoiQFX/8Hxh3mzRMjUtl0Gur1Mcle5nckoVk2A7Zt1FQHPogoZXTO/QXcGNhEEt+an+H1YXDkP6H1gX5HUzrnvKrr1gMgo5bf0YhE317HeluVdL8jCc2C96BqdWgz0O9Iko6WHRABqN0cNixNjKGdq3+CDcv0rU8qryrpiZPAAKz7xWsCq5rpdyRJJ6KaGDPrizfZXTugPrD7fOfOOde2nLGJVJy06tA20A5/xD3xPYX/gvcA89rfRcR/w96BHTl+R5GUwk5izOxM4FlgB7AQ+C3aQYn4ouMQ+Pl9WPkNNOvhdzQlm/+eN0NvjUZ+RyIi+VQL44tIamJuBH4GDnHOJfjyvyKFdDgCLNWr6YjXJGbDMlj9Awy+w+9IRGLv03vh1y/gjDf9jkTiVCR9YloBjyuBkUqnWj1otX98r2q96jtIqaoJtSQ5WKq3jtLG5X5HElyijGasxCJJYpYDCdTjSiQMnYZ6SxCsXex3JMF1/gdctxTqtfY7EpHYy0/W4/WLxYz7Ydzh3jwx4otIkpgngNPMTCvOSeXT6WgY8i+oXt/vSEqWXtPvCEQqRsP20KB9/M7eO/8dyMuFKml+R5K0IukTMwc4HphlZo8CS4Hc3Qs55z4tZ2wiFa9WU+h9rt9RiEi+jkfBzIdgy3qvyTdeZP/mNe8eepvfkSS1SJKYTwr9+z/A7o2CFtinmhoRESmfTkd5K0Mv/B90O9XvaHbJb+JS/zRfRZLEnB31KESkQL+xU1iRXXTOiRps4e20m7ln58l8nNe7YH+zOpnMHHVQRYcoUnH26AG1mnlTC/iUxAS7J/+b9jx1aMHh9y4AFhTs1z1ZscJOYpxzz8ciEBG/Ff6gamfL6ZaymPG5A4OWjeUH1YrsHJaNHVJ0549vwIRVPHXhYG8EVUDWqDjt8ChSToXvx6NTjmXD2hrM+C74+z3WiUOxe3LzWrjvZ+h/FcsOKnqv6p6sWFpuUySgyAfVpDHwxTjuveYGyKxbrGyFf1AteB+qNfAmuRNJAkUThyGllq3w+/HnD8HlqSkpDmjtJJFgOg2FvJ2w8GO/I4Gd27w4Oh4JKepqJuK71gfC4WOhaVe/I0l6SmJEgtmjB9Rs6g2h9NuS6bB9E3Qc6nckIgJQtxX0GRHfa6wlCSUxIsGkpECXE+HnD2D1PP/icA5m3AfVG3nf/kSSlXOwaBL8MMHvSCSOKIkRKUm/y72J5SaP8S+GxZPh969g0A1QNcO/OETiwef/hg+ugZxsvyOROKEkRqQk1epB/6th0cdek44f2h4Exz8D3c/w5/VF4oUZDL4dctbDZw/4E8OkMfDl4/68tgSlJEakNPteAHsfH3SEUoVISYV9ToBUDSQUoWlX6HKSl0hk/16xr73mZ68maP3Sin1dKVVIn4xmdmWY53XOOZ9SZZEoqpoBJ4zzOwoRyXfQTfDTRJhyBxz3ZMW97qQxkFYdBlxbca8pZQr16919YZ7XAUpiRCK1dSNk1PY7CpH4U6cl9BkOMx+GvhdVyDDn/Ww+LPwQDh4N1RvE/PUkdKEmMYNiGoWIFOhaewt/3d2BW3cM44280kckNauTWUFRicSRA66EuS/AlDvhtNdj+1p5eYzJeJWVefUY9H4btr1f+sR6uicrVkhJjHPOp16NIhWnWZ3MUmf+bG+/c12V/3LVjuE0q9MoZnG83XkafJ/L/ZeP4P66WTF7HZF4Vtb92D/lQhZvaMaqUe/HNnH46U06u8VwzGP83P3Y2L2ORMSc230R6iCFzPYFFjvn1sc+pPLp1auXmz17tt9hSGW0eh480Q/2GwGH3xWj1/gJHu8HfUfCYXfG5jVEJHTPDoGt2XDhp5ox2ydmNsc51yvYsVBHJ30BHF7ohDXM7BUz6xyNAEUSQuPO0O00mPVU7EYoTBoDGbWg/1WxOb+IhOf0N+CkF5XAxKlQk5jd51ZOB04GmkQ3HJE4N+gGSKkCn9wW/XMvmQaLJ8GB13hz1IhIaHZuhx1bY3PuqhlQr01szi3lpnliRMJRaw/Y/2L46U1YPid6583Lg49vhtotoff50TuvSGWXkw2P9oYvHvE7EvGBkhiRcPW7DKo3hEk3e+u5RMOWdVAl3RvCqeUFREKXWQca7QWfPQh/r4nOOTf9AX+tis65JKaUxIiEK70mDBwFv30Bq3+MzjlrNIRzJ3mz84pIeA65BXZsgen3ROd8k0bD4/vD9i3ROZ/ETDhzmR9pZvl9YKrhTWj3f2bWLUhZzdgrlVuPYZDVHxp2iN45bfeuZyISkobtoecwmPMs7DccGuwZ+blWfgvfv+bNRZNWLWohSmyEOsQ6L8zzOuecL125NcRaRCQJ/f0nPNwd2g6Ck16K7BzOwQtHe1MdXPqNZs2OE6UNsdaMvSIR6Dd2Ciuyc0Iqmz8RV7Dyp6R+wvd5bfnJZRUpP3PUQVGJUyRZ9HvkR47bfDhXzZ/Acdc/wFzXvsSyqWbkBvkCPzDlW55L+5QxO4bx/C2fAbof451m7BWJwIrsHJaNHeL9kJcHf86DJnsHLZs/62hB+Xzrl8Ajw6DbKXD0yGLlRSR0K7JzuOq2h+Gp73nzwObQZUiJZbNGvV/8fszLhSfugJ1tuPWi+7i1SlpBWYlfEXfsNbNqZtbYzDQDkCS3T26BZw71RjSE9bzbILUqDLoxJmGJJJ206nDRl9Dl/8J/7rcve19GDh4DgQRG4l9YSYyZNTCze8xsMbAJWAlsNbPFZjbGzBrGJEqReNbzLMjdAVPDWIpg+Wz46S3Y/xKoqTkjRaIm0pl1azWDrqdA539ENx6JqZBHJwXWT3obaAzsAH4E/gJqAR2BMcB5Zna0c+6bwHMudM49GfWoReJJvTbQ+1z46klY9PGu/W0GwbGPFy374rHw53zYtsmba2b/Syo2VpFksngyvH1xsd1fpm+F+6+C09/0lhMB2PNgb5OEElISE6hheQ+oCowEnnPO5RQ6ngkMA+4C3jOzTsA5wP2Akhip/Abd4E1Wl7Nh177G+xQv17Iv1G7u/bvbad6cMyISG9UbQbtDi+2eOut3TmnXQvdfJRBqTczVQG2gr3Nu7u4HAwnNE2Y2C/gc+AzYC/gwWoGKxLWM2nBoCOspDbg29rGIiKdpFzj638V2X//5+5xydMkdfyVxhNon5ijgxWAJTGGB4y8Be+M1PR1bvvBEREREggs1ickCvgyx7Fd4s/me4JzbEW5AZpZiZleY2QIz22pmv5vZ/WZWPdxziYiISOUVahKTi9cfJhRVgM3OuXBn+c33APAvYB5wCTAeuBR418y01pOIiIgAofeJWYQ3a+/jZRUEBgbKh83M9sJLXN50zh1faP9S4GHgZOCVSM4tIiIilUuoScxEYIyZHe6c+19JhczsMOA44JYI4zkFMODB3fY/DYwFTkdJjMSBZnUyQ57JM3/ZgXDLi0jowrknU810P1YSoS4AWRP4HmiK19zztHNuSaHjbYDzgCuBFUBX59zfYQdj9hFwCFDNObdtt2MzgfbOuVIn1NMCkCIiIpVHaQtAhtTHxDm3CTgM+BW4DlhkZtlm9quZbcBrPhoFLAOOiCSBCdgDWLt7AhOwAmhgZsXmgzazC8xstpnNXrNmTYQvLSIiIokk5I6yzrmFQDfgMrx5YHbi1czkAjPwOt92D5SLVDUgWAIDsLVQmd1je8o518s516thQ618ICIikgxCXnYACia1+3dgi4UtQKMSjmUUKiMiIiJJLt6GLK/EazJKD3KsGV5T0/YKjklERETiULwlMV/jxbRv4Z1mloHXlKUeuyIiIgLEXxLzGt5sv5fvtv98vL4wL1d0QCIiIhKfwuoTE2vOuR/M7FHgYjN7E/gA6ITXaXg6miNGREREAuIqiQm4HG+o9gXAEGAtXkfi0eVYykBEREQqmbhLYpxzucD9gU1EREQkqHjrEyMiIiISEiUxIiIikpCUxIiIiEhCUhIjIiIiCUlJjIiIiCQkJTEiIiKSkJTEiIiISEJSEiMiIiIJSUmMiIiIJCQlMSIiIpKQlMSIiIhIQlISIyIiIglJSYyIiIgkJCUxIiIikpCUxIiIiEhCUhIjIiIiCUlJjIiIiCQkJTEiIiKSkJTEiIiISEJSEiMiIiIJSUmMiIiIJCQlMSIiIpKQlMSIiIhIQlISIyIiIgnJnHN+xxBVZrYG+DVGp28ArI3RuSsDXZ+y6RqVTdeodLo+ZdM1Kl2iXZ9WzrmGwQ5UuiQmlsxstnOul99xxCtdn7LpGpVN16h0uj5l0zUqXWW6PmpOEhERkYSkJEZEREQSkpKY8DzldwBxTtenbLpGZdM1Kp2uT9l0jUpXaa6P+sSIiIhIQlJNjIiIiCQkJTEiIiKSkJTElMLMUszsCjNbYGZbzex3M7vfzKr7HVs8MLP2ZnabmX1pZmvMbJOZfWtmN+oaBWdm1cxsiZk5M3vE73jihZnVM7P7zGxx4F5bY2ZTzay/37HFAzOrYWY3mNkPgftsrZl9bmZnmZn5HV9FMrPrzWx8oftoWRnl9zOzyYHr9peZ/c/MulVMtBUv1OtjZhlmdr6ZvW1my8wsJ/CcV82sUwWHHbEqfgcQ5x4ALgXeAu4HOgV+7m5mhzjn8vwMLg6cA4wE3gFeBnYAg4A7gBPNrI9zLsfH+OLRbUDQSZuSlZm1AqYBNYBngIVAbaAL0My/yOKDmaUAHwL7A88D/waqAacAz+J9Ll3nW4AV7y5gPTAXqFNaQTPrg/feWgGMDuy+GJhhZvs7536IXZi+CfX6ZOF18P0M775bCbQBRgDHmdnhzrmpMY00Gpxz2oJswF5AHvDGbvsvARxwqt8x+r0BvYDaQfbfEbhGF/sdYzxtQA9gJ3Bl4Po84ndM8bABM4DfgaZ+xxKPG9A38H55YLf9acASINvvGCv4erQp9O8fgWWllJ0F/AU0K7SvWWDfx37/Ln5eH6A+0C3I/s7ANmC2379LKJuak0p2CmDAg7vtfxrYApxe0QHFG+fcbOfcxiCHXgs87l2R8cQzM0vFe+/8D3jT53DihpkdCBwA/NM5t8rMqppZNb/jijO1Ao8rC+90zm3Hmzp+c4VH5CPn3JJQypnZnkBvYLxzbkWh568AxgOHmFmT2ETpn1Cvj3NunXPu2yD75+ElPwnx+a0kpmS98WpiZhXe6ZzbCnwbOC7BNQ88rvY1ivhyBdARrypbdjky8Pibmb0L5ACbzWyhmSX9F4WAWUA2cK2Z/Z+ZtTSzjmZ2N9ATuMXP4OJY/mf0F0GOfYn3JbVnxYWTGALNl01JkM9vJTEl2wNY65zbFuTYCqCBmaVVcExxL1DjcDNes8krPocTF8ysNXArcJtzbpnP4cSbDoHHp4F6wDC8vlbbgRfN7Gy/AosXzrkNwNF4/Rxex1vgdj5ef7TjnXNP+xhePNsj8LgiyLH8fUnf5yqI4XhJzPN+BxIKdewtWTW8dsFgthYqs71iwkkYD+K14d/gnPvZ51jixRN4fRf+5Xcgcahm4HETMCjQRIKZTcS7ZneZ2fNOnej/xqvifwf4HC/hGwm8Ymb/cM5N8jO4OJXfLBnsc3zrbmUEMLP98T6nvsPrIBz3VBNTsi1AegnHMgqVkQAzux2vueQp59zdfscTDwJNIocCI5xzO/yOJw7lj157NT+BgYLah3eAJuyqrUlKZrYPXuIyyTl3jXPuLefcM3h9if4Ang7UgEpR+Z/PwT7H9Rm+GzPrCbyP1/dqSKDrRNxTElOylXhNRsFugGZ4TU2qhQkws1uAm/CGfA73N5r4EHjv/Av4APjDzPYMdDZsFShSO7Cvjl8xxoHlgcc/ghxbFXisW0GxxKsr8P7oji+80zm3Be+PTiu84bJSVH5H6GBNRvn7gjU1JR0z6wFMAjbi1YgmzHVRElOyr/Guz76Fd5pZBtANmO1DTHEpkMCMwWtDPc8FxukJmXhzwgwBFhXapgWOnx74+Tw/gosT+R3nmwc5lr/vzwqKJV7l/8ENVttSZbdH2eXrwGPfIMf64A1bn1Nx4cSnQAIzmV1Nur/6HFJYlMSU7DW8N/nlu+0/H68d9eWKDigemdlovATmReAc9V0oYjPwf0G2iwLH/xf4+R1foosPE/E+PE83sxr5O82sKXAMsNA5t9if0OLGvMDjWYV3Bmrw/gFsAJL9GhUTeN/MBv7PzPI7+RL49/8BU5xzwWoAk4aZdcergfkbL4FZ6nNIYdMq1qUws3/j9fF4C69JIH/G3pnAQcn+B9vMRgKPAL/hjUja/XqsVofD4swsC1gKPOqcS/oh12Z2AfAk8BMwDm8StxF4IySOcs597GN4vgvMaDwXr1ntZbzPn3p4X6iygJHOucd8C7CCmdkZ7GqSvQTv/XJ/4OdfnXMvFiq7PzAVr9ny34We0xjo55z7rkKCrkChXp/A+2oO3nvpVuCXIKd7yzkX1/MQKYkpRaCz3OXABXgfFmvxamhGO+f+9i+y+GBmz+ENiS3JdOfcwIqJJnEoiSnOzI4DrgX2wUuGvwBudc7N9DWwOGFmbfGmzT8Y7w9wDt58VQ8655Jq8kQzmwYMKOFwsc8cM+uLN4v4fni1658D1zvn5sYwTN+Een3MbCBeglea1vE+LYSSGBEREUlI6hMjIiIiCUlJjIiIiCQkJTEiIiKSkJTEiIiISEJSEiMiIiIJSUmMiIiIJCQlMSIiIpKQlMSISEIxs8PMbJqZ/W1ma8zskcCaZiKSZJTEiEjCMLOr8NacWoW3uvO7wEjgIT/jEhF/aMZeEUkIZnYI8DFwrXPuvkL7/wcMAho65/7yKz4RqXiqiRGRuGdmKXi1Ld+wazG7fNPwFrnbu4LDEhGfVfE7ABGREBwGdAbOcsWrj7cHHmtXbEgi4jclMSKSCE4CcoEZZtZgt2ONA4+bKjYkEfGb+sSISNwzs1+BlmUUa+acW1kR8YhIfFASIyJxLVDzsgZ4C3gsSJHXgW3OuaYVGpiI+E7NSSIS79oEHr92zk0ufMDMWgN1gVcqPCoR8Z1GJ4lIvKsReAzW5+WEwONrFRSLiMQRJTEiEu/y536pVXinmaUBI4CfgfcrOigR8Z+SGBGJd/OALXjDrAu7E8gCLnXO5VZ0UCLiP/WJEZG45pzbYmb/AS41s5eA6cARwLHANc65j30NUER8o9FJIhL3Ak1H/wROA6oBc4C7nHP/8zUwEfGVkhgRERFJSOoTIyIiIglJSYyIiIgkJCUxIiIikpCUxIiIiEhCUhIjIiIiCUlJjIiIiCQkJTEiIiKSkJTEiIiISEJSEiMiIiIJSUmMiIiIJKT/B2ZkV6j7Z6HRAAAAAElFTkSuQmCC"
     },
     "metadata": {
      "needs_background": "light"
     }
    }
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "We can see that the outputs are consistent with the analytical results."
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "### Calculate the effective quantum dimension\n",
    "\n",
    "With Paddle Quantum, one can obtain the effective quantum dimension (EQD) by simply using the method `get_eff_qdim()`. For example, the EQD of the hardware-efficient ansatz shown above can be calculated as follows."
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "source": [
    "cir = circuit_hardeff_2qubit()\n",
    "qf = QuantumFisher(cir)\n",
    "print(cir)\n",
    "print(f'The number of parameters is {len(cir.get_param().tolist())}.')\n",
    "print(f'The EQD is {qf.get_eff_qdim()}. \\n')"
   ],
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "--Ry(4.248)----*----Ry(1.233)--\n",
      "               |               \n",
      "--Ry(6.121)----x----Ry(4.717)--\n",
      "                               \n",
      "The number of parameters is 4.\n",
      "The EQD is 3. \n",
      "\n"
     ]
    }
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "In this example, the EQD is smaller than the number of parameters, which can be easily seen from the fact that the two $R_y$ gates on the control wire can be merged without changing anything. This inefficiency can be fixed by simply replacing one of the $R_y$ gates with a $R_x$ gate, and then the EQD will increase by one.\n",
    "\n",
    "If we continue to add gates to the circuit, can we make the EQD grow indefinitely? The answer is clearly no. Provided $n$ qubits, an obvious upper bound can be given by the real number degrees of freedom in a general quantum state, which is equal to $2\\cdot 2^n-2$. The minus two reflect the two constraints of normalization and global phase independence. This can be verified by the following example."
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "source": [
    "def circuit_hardeff_overparam():\n",
    "    cir = UAnsatz(2)\n",
    "    theta = 2 * np.pi * np.random.random(8)\n",
    "    theta = paddle.to_tensor(theta, stop_gradient=False, dtype='float64')\n",
    "    cir.ry(theta[0], which_qubit=0)\n",
    "    cir.ry(theta[1], which_qubit=1)\n",
    "    cir.rx(theta[2], which_qubit=0)\n",
    "    cir.rx(theta[3], which_qubit=1)\n",
    "    cir.cnot(control=[0, 1])\n",
    "    cir.ry(theta[4], which_qubit=0)\n",
    "    cir.ry(theta[5], which_qubit=1)\n",
    "    cir.rx(theta[6], which_qubit=0)\n",
    "    cir.rx(theta[7], which_qubit=1)\n",
    "\n",
    "    return cir\n",
    "\n",
    "\n",
    "cir = circuit_hardeff_overparam()\n",
    "qf = QuantumFisher(cir)\n",
    "print(cir)\n",
    "print(f'The number of parameters is {len(cir.get_param().tolist())}.')\n",
    "print(f'The EQD is {qf.get_eff_qdim()}. \\n')"
   ],
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "--Ry(0.173)----Rx(5.837)----*----Ry(3.082)----Rx(3.997)--\n",
      "                            |                            \n",
      "--Ry(1.354)----Rx(0.536)----x----Ry(5.267)----Rx(5.647)--\n",
      "                                                         \n",
      "The number of parameters is 8.\n",
      "The EQD is 6. \n",
      "\n"
     ]
    }
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "### Calculate the CFIM and effective dimension\n",
    "\n",
    "Here we exploit a brief example to show how to calculate the effective dimension defined in Eq.(16) with respect to a quantum neural network with Paddle Quantum.\n",
    "\n",
    "Firstly, define the encoding method from classical data to quantum data."
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "source": [
    "def U_theta(x, theta, num_qubits, depth, encoding):\n",
    "    cir = UAnsatz(num_qubits)\n",
    "    if encoding == 'IQP':\n",
    "        S = [[i, i + 1] for i in range(num_qubits - 1)]\n",
    "        cir.iqp_encoding(x, num_repeats=1, pattern=S)\n",
    "        cir.complex_entangled_layer(theta, depth)\n",
    "    elif encoding == 're-uploading':\n",
    "        for i in range(depth):\n",
    "            cir.complex_entangled_layer(theta[i:i + 1], depth=1)\n",
    "            for j in range(num_qubits):\n",
    "                cir.rx(x[j], which_qubit=j)\n",
    "        cir.complex_entangled_layer(theta[-1:], depth=1)\n",
    "    else:\n",
    "        raise RuntimeError('Non-existent encoding method')\n",
    "    return cir"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "Then, define our quantum neural network along with the loss function using PaddlePaddle."
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "source": [
    "import paddle.nn as nn\n",
    "\n",
    "class QuantumNeuralNetwork(nn.Layer):\n",
    "    def __init__(self, num_qubits, depth, encoding):\n",
    "        super().__init__()\n",
    "        self.num_qubits, self.depth, self.encoding = num_qubits, depth, encoding\n",
    "        if self.encoding == 'IQP':\n",
    "            self.theta = self.create_parameter(\n",
    "                shape=[self.depth, self.num_qubits, 3],\n",
    "                default_initializer=paddle.nn.initializer.Uniform(low=0.0,\n",
    "                                                                  high=2 *\n",
    "                                                                  np.pi),\n",
    "                dtype='float64',\n",
    "                is_bias=False)\n",
    "        elif self.encoding == 're-uploading':\n",
    "            self.theta = self.create_parameter(\n",
    "                shape=[self.depth + 1, self.num_qubits, 3],\n",
    "                default_initializer=paddle.nn.initializer.Uniform(low=0.0,\n",
    "                                                                  high=2 *\n",
    "                                                                  np.pi),\n",
    "                dtype='float64',\n",
    "                is_bias=False)\n",
    "        else:\n",
    "            raise RuntimeError('Non-existent encoding method')\n",
    "\n",
    "    def forward(self, x):\n",
    "        if not paddle.is_tensor(x):\n",
    "            x = paddle.to_tensor(x)\n",
    "        cir = U_theta(x, self.theta, self.num_qubits, self.depth,\n",
    "                      self.encoding)\n",
    "        cir.run_state_vector()\n",
    "        return cir.expecval([[1.0, 'z0']]) * paddle.to_tensor(\n",
    "            [0.5], dtype='float64') + paddle.to_tensor([0.5], dtype='float64')"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "Finally, define a CFIM calculator and calculate the effective dimension corresponding to different size of training samples."
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "source": [
    "# Configure model parameters\n",
    "num_qubits = 4\n",
    "depth = 2\n",
    "num_inputs = 100\n",
    "num_thetas = 10\n",
    "# Define the CFIM calculator\n",
    "cfim = ClassicalFisher(model=QuantumNeuralNetwork,\n",
    "                       num_thetas=num_thetas,\n",
    "                       num_inputs=num_inputs,\n",
    "                       num_qubits=num_qubits,\n",
    "                       depth=depth,\n",
    "                       encoding='IQP')\n",
    "# Compute the normalized classical Fisher information\n",
    "fim, _ = cfim.get_normalized_cfisher()\n",
    "# Compute the effective dimension for different size of samples\n",
    "n = [5000, 8000, 10000, 40000, 60000, 100000, 150000, 200000, 500000, 1000000]\n",
    "effdim = cfim.get_eff_dim(fim, n)"
   ],
   "outputs": [
    {
     "output_type": "stream",
     "name": "stderr",
     "text": [
      "running in get_gradient: 100%|##################################| 1000/1000 [02:05<00:00,  7.94it/s]\n"
     ]
    }
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "Plot the ratio of the effective dimension over number of parameters vs. sample size."
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "source": [
    "fig = plt.figure(figsize=(9, 6))\n",
    "ax = fig.add_subplot(111)\n",
    "print('the number of parameters:%s' % cfim.num_params)\n",
    "ax.plot(n, np.array(effdim) / cfim.num_params)\n",
    "label_font_size = 14\n",
    "ax.set_xlabel('sample size', fontsize=label_font_size)\n",
    "ax.set_ylabel('effective dimension / number of parameters', fontsize=label_font_size)\n",
    "ax.tick_params(labelsize=label_font_size)"
   ],
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "the number of parameters:24\n"
     ]
    },
    {
     "output_type": "display_data",
     "data": {
      "text/plain": [
       "<Figure size 648x432 with 1 Axes>"
      ],
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAF7CAYAAADc5v+BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABNzElEQVR4nO3dd5xcZdn/8c83ZbPpIT0BliSEJNJLlF4CBBF9FEFRERUVeIQfWHjsYkNsPIiCDVER4VFBihUQFANIJ0HphEAa6dn07GY3W67fH+dsmAy72bObmZ0t3/frNa+ZOec+575mCLvX3lURgZmZmVlP16vUAZiZmZl1Bk6KzMzMzHBSZGZmZgY4KTIzMzMDnBSZmZmZAU6KzMzMzADoU+oAOruRI0fGhAkTSh2GmZmZFcCcOXMqI2JUc+ecFLViwoQJzJ49u9RhmJmZWQFIWtTSOXefmZmZmeGkyMzMzAxwUmRmZmYGOCkyMzMzA5wUmZmZmQFOiszMzMwAJ0VmZmZmwE4kRZImSyovZDBmZmZmpZIpKZL0LUkfSl9L0t+Bl4Dlkg4tZoBmZmZmHSFrS9H7gbnp67cABwKHATcA3yl8WGZmZmYdK+s2H2OAJenrU4DfR8TjktYC3gPDzMzMurysLUVrgD3S1ycB96av+wAqdFBmZmbW82ysqWPuik3MmruK1ZtqO7z+rC1FtwG/lfQSMBy4Oz1+IPByEeIyMzOzbmTL1gaWbdjC8vU1256Xb9jCsg01LF+/heUbathcW7+t/I/PPJi37j+uQ2PMmhRdDCwkaS36bERUpcfHAT8tQlxmZmbWRdTWN7ByQ22S7GzYwrI04UkSoOT1+uq61103clA/xg8rZ9KogRw5eSTjh5Uzbmh/xg8rZ68xgzv8c7SaFEnqC3wT+HFELMo9FxHfL1ZgZmZmVnr1DY2s2lS7XbKzLenZUMOy9TVUbn59V9ewAX2TBGdoOYfsMWxbspMc68+Yof3o16d3CT5Ry1pNiiKiTtIFwE86IB4zMzPrII2NQWVV7WtdWc10aa3aVEtDY2x33aB+fRg3tJxxw/qz97ghjBvan3HDyhmfPo8bWs6AsqydUZ1H1ojvBo4HritiLGZmZlYgEcH66rpmx+80dWmt3FDL1obG7a7r16cX44f1Z9zQco7Y87UurdykZ0h53xJ9quLKmhTdC3xL0v7AHKAq92RE3F7owMzMzKxlm2rq0u6rpEUnN9lpGsxcU7d9wtO3txgzJEluDq7YZbsurXFDyxk/rD+7DOiL1DMnlmdNin6UPn+8mXMBZO4UTLviPkMySPs54JMR8a8Wyl4PfKiZU9URMTCn3LHAlcA+wDLg8oi4pr31mpmZldKWrQ05Y3bSpCdvAPOmnJlaAL0EoweXM25YOW8YN4Tjp41m3LBkTE/T88hB/ejVq2cmPFlkSooioiAbx0p6D3AVcAHwYPp8l6S9I2JxM5d8Avh83rGHgAdy7jkRuJOka+8s4CjgJ5JWR8Rt7azXzMysKLbWN7Jy42vJznbdW+nzumZnapUxbmh/JowYyBF7jtw2pqcp6RkzuB99enuf952hiGi9VKEqkx4Dno6Ic3OOzQNujYgvZLj+SJKk5siIeDg99l3gtIjYK6fcL4B9IuLwna13+vTpMXu2F+02M7PWNTQGqzbV5E1J335MT+XmWvJ/9Q7t33db91Xuc1P31pgh5ZT37VwztboqSXMiYnpz5zK1FCnpXDwf+H/ARGDfiJgv6fPA/Ij4fYZ7lAGHAFfknboHOCJLHMC5wHNNCVHq8PQeue4GPpQuJ6AC1GtmZj1cY2OwpmprM1PSXxvTs7KZmVoDy3ozLk1ypo0dkjdLK0l6uuJMre4o63+FTwCfBb7L9hvALgUuBFpNioCRJGOPVuYdXwmc2NrFkoYCZwD5LTtjgX80c88+aZ1qa72SzgPOA6ioqGgtNDMz6+JeN1Nr42tT0puSnhUbapqdqdXUonPYniO2JTu5Sc+Q8j49duByV5M1KfoYcG5E3CHpspzjT5IMbu4IZ5Hs1XZjsSuKiGuBayHpPit2fWZmVlytzdRavqGGLXUN213Tp1c6U2tYOQfuPoxx+6XJTk731vCBZU54upGsSdEewLPNHK8D+me8RyXQAIzJOz4GWJHh+nOB2yJibd7xFS3csz6tUztZr5mZdWI1dQ2vDVrOOFNLgtGD+zFuaH+mjRvMjGmjXzemZ+SgfvT2TK0eJWtSNB84GFiUd/wU4PksN4iIrZLmADOBW3JOzSTZcLZFkt4EHAB8spnTjwDvzDs2E5gdEXXp9e2q18zMSqu9M7VGDCxj3LBy9hgxkMMnjdg2pqcp6RkzpJy+nqllebImRVcAP5I0gKTl5XBJHyAZZ/SRNtR3JXCjpMdJptZ/DBgPXAMg6QaAiPhg3nXnAfMi4r5m7nkNcKGkHwA/A44Ezgbel7VeMzPreO2dqTWkvM+25ObAimHJlPScsTxjh3qmlrVP1nWKfiWpD/AtYADJuJ5lwMcj4uaslUXEzZJGAJeQLKL4LHBKzkazrxvVLGkw8F7g0hbuuUDSKcD3SWbINcV1W06Z1uo1M7MCau9MrQFlvbe16EwdO3j7TUTT54H9PFPLiqPN6xRJGgn0iohVxQmpc/E6RWZm24sINmypa3bz0B3N1CrbNlPr9VPSm3ZOH9LfM7WsuAqxTtE/SRZIXB8RlTnHhwB/jIjjCxOqmZmV2uba+tdmZ63PS3rS7q38mVq9e4mxQ5KE54Ddh/GWfctzVlxOEqARnqllnVzWNsjjgLJmjpcDRxcsGjMzK6qauobtp6Q3s4noppodzNQaO5gZU0dvW5unaRzPqMGeqWVd3w6TIkkH57zdX1LudPjewJtJFnA0M7MSq2toZMWGmtdNSc8d07O2auvrrmuaqVUxYgCHTRrumVrWY7XWUjQbiPSRv5UGwBbgokIHZWZm22toDFZvqm12SnpTi8/qVmZqHbC7Z2qZ7UhrSdFEkin484E3Aatzzm0FVkVEQ3MXmplZNhHpTK1tU9Kbxu+8NpZn5cYa6nc0U2vqqNfN1Bo7tD+DPFPLLLMd/t+SM2Xd7aZmZu0QEWzcUp8kO3mrLC/b0LT6cg1b61ueqXXoxOGeqWXWATL/CSHpLcD/AyYBb46IVyWdAyyIiHuLFaCZWWdWVVvf4vidpunp1Vtbnqm1/27DOHkfz9Qy6wyyTsl/P8nqz78ATgD6pqd6k6xq7aTIzLqdmroGVuRvLZG3Js/GZmZqjRrUj3HD+jNlzGCOnTJ6W+uOZ2qZdW5ZW4o+C5wbETelrUNNHqWFlabNzLqChZVVPLVkfbM7p69pZqbW8IFljBtazm67DOBNE4dv16XVNFOrrI9HHJh1RVmTor1INl7NtxkYUrhwzMyKq7a+gccXrOWfL67ivrmrWVBZte3c4PI+27qv9ts1nak1rP+253GeqWXWrWVNipYBU4D8vcKOAV4paERmZgW2bP0W7pu7mllzV/HQy5VUb22gX59eHL7nCD585AQOnTiCXXfxTC2zni7rT4Brgatzus52l3Q0cDnwtWIEZmbWXvUNjTy5eD2z5q5i1oureHHFJgB2Hdaf0w/ejeOnjeawSSPoX+ZWHzN7TaakKCIulzQU+DvJ1h6zgFrgioj4cRHjMzPLZM3mWu5/aTX/fHEVD7y0mo019fTpJaZP2IUvnjKNGVNHM3n0IM/oMrMWZW4rjogvSfomsDfJukXPR8TmokVmZrYDjY3Bs8s2MOvFpFvsqSXriYCRg/rx5n3Gcvy00Ry510iGlPdt/WZmZrQhKQKIiGqSrT/MzDrcxpo6HpxXuW2QdOXmWiQ4cPdhfOrEKcyYOpp9xg+hl6e7m1k7ZF2nqB9wATADGE3eCtcR8abCh2ZmPV1EMG/VZma9uIp/vriKOYvWUd8YDO3fl2OmjOL4aaM4Zq9RjBjUr9Shmlk3kLWl6OfA24A/Ac+TbBBrZlZwW7Y28Mj8pDVo1ourWbp+CwBvGDeE846ZxIxpozlo92H08a7tZlZgWZOitwPviIj7ixmMmfVMi9dUM2tu0hr0yPw1bK1vZEBZb46cPJILj5/Mcelmp2ZmxZQ1KVoFVBYzEDPrObbWNzJ7YbKA4qy5q3hldbKA4qSRAznr0D2YMW0Ub5o4nH59PGXezDpO1qToi8C3JJ0dEeuKGZCZdU8rN9ZwX9oa9OC8Sqq2NlDWuxeHThrOWYftwYypo5kwcmCpwzSzHixrUnQP8N/AKkkrgLrckxExqdCBmVnX1tAY/OfV9cxKW4OeW7YRgHFDy3nHQbty/NTRHDF5BAPKvIq0mXUOWX8a3UCyPtEPgJV4oLWZNWNd1VYemJcsoHj/S6tZX11H717ikIpd+NzJ05gxbRRTxwz2Aopm1illTYpmAsdHxGPFDMbMupaI4LllG7lv7ipmzV3NvxevozFgxMAyjp82muOnjeboyaMYOsALKJpZ55c1KVpMsq2HmfVwm2vreXBe5bZusVWbkh8N++82lIuO34sZ00az/65DvYCimXU5WZOiTwGXS7ogIl4uZkBm1rlEBK+srkpbg1bx+IK11DUEg8v7cMxeo5gxbTTHThnFqMFeQNHMurasSdEtQD9grqRaoD73ZEQMyVqhpAuAzwDjgOeAT0bEv3ZQvgy4BPgAMJ5kTNMVEXF1er4v8AXgQ8CuwFzgcxHxt5x7fA34at6tV0bE2Kxxm/UkNXUNPDp/TdoatJrFa6sBmDpmMB85aiLHTx3NwXvsQl8voGhm3UjWpOjCQlQm6T3AVSRbhjyYPt8lae+IWNzCZTcBuwHnAfOAMUDuKm6XAR8EzgFeAN4M/EHSERHx75xyc4Hjct437PQHMutGlqyrZtbc1cx6cRUPv1JJTV0j5X17ceSeIznvmEkcN3UUu+0yoNRhmpkVTaakKCJ+XaD6Lgauj4ifp+8vknQycD5Ja892JJ0EnADsGRFNi0cuzCv2AeA7EXFH+v6nkk4E/gc4K6dcfUSsKMzHMOv66hoambNo3baxQS+t3AxAxfABvPeNFcyYNppDJw6nvK8XUDSznqHNC4RIGguU5R7bQStP7nVlwCHAFXmn7gGOaOGyU4EngIslfRDYAtwFfDEiNqdl+gE1eddtAY7KOzZJ0jKSAeOPpfeY31rcZt3Jqk013D93NbPmruJfL1Wyqbaevr3FoRNHcMb03ZkxbTSTRg70lHkz65EyJUWShgJXA2eQlxClsvwpOTIttzLv+ErgxBaumUSS3NQCpwPDgB+SjC16V1rmbuCTku4j6V47ATgtL6bHgLOBF4HRJGOUHpa0T0Ssya9U0nkk3XVUVFRk+GhmnVNjY/D00g3888VV3Dd3FU8v2QDAmCH9eOv+45gxbTRHTh7JoH5eQNHMLOtPwiuAA0habm4HPkIyqPkTJN1UxdKLZKHIMyNiA4CkC4G7JY2JiJVpDD8Hnk/LvgL8Ko0RgIi4K/emkh4F5pMMzr4yv9KIuBa4FmD69OleqNK6lA3VdTwwLxkbdP9Lq1lTtZVegoMrduEzb57KcVNHsfe4IW4NMjPLkzUpegvwvoj4l6QGYE5E3CxpOcn2H7dmuEclyeDmMXnHxwAtjfVZDixtSohSL6TPFSQzyFYDp0oqB0YAy4DvkCQ9zYqIzZKeA/bKELdZpxYRvLhiE7PmruK+F1czZ/E6GhqDXQb05dgpyZT5Y/YaxS4Dm2vkNTOzJlmTomHAovT1BpLk42XgEeAXWW4QEVslzSFZHfuWnFMzgdtauOwh4N2SBuWMIZqSPi/KLRgRNcDSdIr+6cDvW4olTaCmAbOyxG7W2VTV1vPwK2u2dYst35AMq9t31yFccNyeHDd1NAfuPozeXkDRzCyzrEnRKyTjexaTtNS8V9LjJGN31rahviuBG9NrHwI+RjI+6BoASTcARMQH0/K/Bb4M/Cpda2gYyZT+WyNiVXrNoSRdef9Jn79G0u12eVOlkq4A/pLGPzq950CgULPqzIpuQWXVtplij81fy9aGRgb168NRk0fyqRNHc+zUUYwZUl7qMM3MuqysSdH1wP7AfSRdU38lWbuoF8mYnkzSLrcRJAOdxwHPAqdERFOrT0Ve+c3p9PofksxCWwf8Efh8TrFykrWKJgGbgTuBD0TE+pwyuwG/IxnsvRp4FDgsp16zTqe2voHHF6xNW4NWs6CyCoDJowfxoSP2YMa00UzfYzhlfbyAoplZISii7eOIJVUA04F5EfFMwaPqRKZPnx6zZ88udRjWQyxbv4X70inzD71cSfXWBvr16cXhe47g+GmjOW7KaCpGeAFFM7P2kjQnIqY3d67VlqJ0jM6DwAcjYi5sW5eo1bWJzGzH6hsaeXLxembNXcWsF1fx4opNAOw6rD+nH7wbx08bzWGTRtC/zAsompkVW6tJUUTUSZpIMt3dzHbSms213P/Sav754ioeeGk1G2vq6dNLTJ+wC188ZRozpo5m8uhBnjJvZtbBso4p+jVwLslGrmbWBo2NwbPLNjDrxaRb7Kkl64mAkYP68eZ9xnL8tNEcuddIhpT3LXWoZmY9WtakaCDwfkkzgTlAVe7JiPh4oQMz68o21tTx4LzKbYOkKzfXIsGBuw/jUydOYcbU0ewzfgi9PGXezKzTyJoUvQF4Mn09Ke+cu9Wsx4sI5q3avG3K/OyF66hvDIb278sxU0Zx/LRRHLPXKEYM6lfqUM3MrAWZkqKImFHsQMy6mi1bG3hkftIaNOvF1SxdvwWAN4wbwnnHTGLGtNEctPsw+vT2lHkzs67Au0CatcHiNdXMmruKf764ikfmr2FrfSMDynpz5OSRXHj8ZI6bOopxQ/uXOkwzM2uHzEmRpBnA+0gWWNxuE6WIOL7AcZl1ClvrG5m9MFlAcdbcVbyyOhlON2nkQM46dA9mTBvFmyYOp18fT5k3M+vqMiVFks4m2YrjD8BxwJ9I9iCbCPxfkWIzK4mVG2u4L20NenBeJVVbGyjr3YtDJw3nrMP2YMbU0UwYObDUYZqZWYFlbSn6NHBhRPxC0ibgCxExX9KPSLbWMOuyGhqD/7y6ftsg6eeWbQRg3NBy3nHQrhw/dTRHTB7BgDL3NpuZdWdZf8pPAv6Rvq4FBqWvf0SyH9rnm7nGrNNaV7WVB+YlCyje/9Jq1lfX0buXOKRiFz538jRmTBvF1DGDvYCimVkPkjUpWgMMTl8vBfYFngZGAB5Vap1eRPD88o1pa9Bq/r14HY0BIwaWcfy00Rw/bTRHTx7F0AFeQNHMrKfKmhT9CzgJeAb4PXB1upDjCcDfixSb2U5paAzufWEl976wivteWsXKjbUA7L/bUC46fi9mTBvN/rsO9QKKZmYGZE+KLgTK09ffBuqBI0kSpMuKEJfZTnl6yXq+9IdneWbpBgaX9+GYvUYxY9pojp0yilGDvYCimZm9XtbFG9fmvG4Evlu0iMx2woYtdXzvnrnc+OgiRg7qx1XvPZBT9htHXy+gaGZmrWjLOkXlwJnA3umh54HfRcSWYgRm1hYRwZ+fWsY3/voCa6tq+dDhE7j4pCneZNXMzDLLuk7RwcBfgAEk44oAPgJ8U9JbI+LJFi82K7JXVm/mK396lodeXsMBuw3lV2e/kf12G1rqsMzMrIvJ2lJ0LfAQ8OGIqAKQNBC4Lj03vTjhmbWspq6BH896mZ/dP59+fXvxjXfsw5mH7kFvD5w2M7N2yJoU7QN8sCkhAoiIKkmXArOLEpnZDsyau4qv/uk5Fq+t5tQDx/PFt76B0YPLW7/QzMysBVmToheB8STjiHKNA14qaERmO7B8wxYu/cvz3PXsCiaNGshvzzmUIyaPLHVYZmbWDWRNii4hWZvoUuDR9Nhh6fHPSxreVDB3pppZodQ3NHL9wwv5/t9for4x+PRJUzj3mEneiNXMzAoma1L0l/T5t0Ckr5sGbvwp530A/i1lBTVn0Tou+eOzvLB8I8dNHcWlb9+XihEDSh2WmZl1M1mTohlFjcKsGeurt/Ldv73I7x5/lbFDyvnp+w/m5H3Hej8yMzMriqyLN95f7EDMmkQEt85ZwrfvepENW+o456iJfHLmFAb18y71ZmZWPP4tY53KSys3cckfnuXxhWs5uGIY33znfrxh3JBSh2VmZj2AkyLrFKq31nPVvfP45b8WMKi8D985bT/OmL67N2s1M7MO0+EbQkm6QNICSTWS5kg6upXyZZIuTa+plbRY0sdzzveV9BVJr6T3fErSyTtbr3Wcfzy/kplXPsDP7p/POw/alXsvPpb3vqnCCZGZmXWoFluKJB0DPBwR9YWqTNJ7gKuAC4AH0+e7JO0dEYtbuOwmYDfgPGAeMAbon3P+MuCDwDnAC8CbgT9IOiIi/r0T9VqRRQTf/8c8rr53HlPGDOL3/304b5o4vPULzczMikAR0fwJqQEYFxGrJM0H3hgRa3aqMukx4OmIODfn2Dzg1oj4QjPlTwJuAfaMiMoW7rkM+G5EXJVz7DZgS0Sc1Z56c02fPj1mz/ai3YXW2Bh87S/PccMji3j3IbvxrdP28072ZmZWdJLmRESz25Pt6LfQOmBi+npCK2WzBFEGHALck3fqHuCIFi47FXgCuFjSEknzJF0taVBOmX5ATd51W4CjdqJeK6Kt9Y188ub/cMMjizjvmElc/q79nRCZmVnJ7Wig9W3A/ZKWkyzKODttPXqdiJiUoa6RJAs7rsw7vhI4sYVrJpEkN7XA6cAw4IckW468Ky1zN/BJSfeRdK+dAJzGa4tItrleSeeRdNdRUVHR2ueyNqjeWs/5//ck97+0ms+dPI3zj9uz1CGZmZkBO06KPgb8GdgLuBL4FbCpI4LK0YskITszIjYASLoQuFvSmIhYCXwC+DnJvmwBvJLG+pH2VhoR1wLXQtJ9tlOfwLbZUF3HR379BP9evI5vn7Yf73uTE04zM+s8WkyKIhlsdAeApAOA70XEziRFlUADyUDpXGOAFS1csxxY2pQQpV5InyuAlRGxGjhVUjkwAlgGfAeYvxP1WoGt2ljDB375OAsqq/jxmQfzlv3GlTokMzOz7WQayBERH46ITZLKJe0raZ80CcksIrYCc4CZeadmAg+3cNlDwPi8MURT0udFefeviYilJIne6aR7srWzXiugRWuqOP2ah3l1XTXXnf1GJ0RmZtYpZUqKJPWR9L8kg6+fAp4B1km6XFLfNtR3JXC2pHMkvUHSVSTjg65J67lB0g055X8LrAF+lSZiR5JMrb81Ilal1xwq6TRJk9K1h/6Wfq7Ls9ZrxfP8so2c/tNH2FxTz2/PPYyj9hpZ6pDMzMyalXVF68uB95GMM3owPXY08G2SBOTTWW4SETdLGgFcAowDngVOiYimVp+KvPKbJZ1IMrj6CZKk7I/A53OKlZOsVTQJ2AzcCXwgIta3oV4rgicWruUj1z/BoH59uOm8w5k8enCpQzIzM2tRi+sUbVdIWgF8JCLuzDv+VuAXEdFt+0O8TlH7zHpxFef/Zg7jh/bnxnMOZddh/Vu/yMzMrMh2tE5R1paioSSzuvK9QjJN3mybP/57KZ++5SmmjRvMrz/8JkYM6lfqkMzMzFqVdcW8p4CPN3P8E8B/ChaNdXnXP7SAT978H6ZP2IXfnXuYEyIzM+sysrYUfRa4Mx3f82h67DCSwcpvKUZg1rVEBD/4xzyuunceJ+09hqvfdxDlfXu3fqGZmVknkXVK/gMkU+FvBQalj1uAqRHx4I6ute6vsTH42p+f46p75/HuQ3bjJ+8/2AmRmZl1OVlbioiIZcCXihiLdUF1DY38z++f4s9PLePcoyfyxVPegKRSh2VmZtZmmZMis3xbtjZw/m/mcN/c1Xz25Kmcf+yeTojMzKzLclJk7eJ9zMzMrLtxUmRttmpjDR+87nHmr67iR2cezCnetsPMzLqBTEmRpAFATUQ0Fjke6+QWr6nmrF8+RuXmWq47+43etsPMzLqNVmefSeoNbACmFT8c68xeWL6R0695mI01dd7HzMzMup1Wk6KIaCDZkb6s+OFYZzV74VrO+Nkj9Ja45b8P58Ddh5U6JDMzs4LKuqL1N4DvSHLTQA/08qrNnPXLxxg1qB+3nn84e43xxq5mZtb9ZB1o/WlgIrBU0hKgKvdkROxf6MCsc2hsDL54+zP069Obm847jNFDyksdkpmZWVFkTYpuLWoU1mndPPtVHl+4lstP398JkZmZdWuZkqKI+HqxA7HOZ9XGGr515wscNmk4756+W6nDMTMzK6qsY4qQVC7pXZI+J2lYemxPScOLFp2V1Nf/+jy19Y186537eaVqMzPr9rKuUzQZ+AfJRrDDSDaDXQ+cn74/pyjRWcnc+8JK7nh6Of8zcwqTRg0qdThmZmZFl7Wl6AfAPcAYYEvO8T8DMwock5VYVW09X/7js+w1ehD/feyepQ7HzMysQ2QdaH0EcFhENOR1oywGxhc8Kiup793zEss21HDb+YdT1idzD6uZmVmX1pbfeH2bOVZBstq1dRNPvbqe6x9ewFmHVXDIHh4uZmZmPUfWpOge4OKc9yFpCPB14I6CR2UlUd/QyBduf4aRg/rx2ZO9q4uZmfUsWbvPLgZmSZoLlAM3A5OBlcAZRYrNOth1Dy3g+eUbueasgxlS3lzDoJmZWfeVdZ2iZZIOBN4HHEzSwnQt8JuI2LKja61reHVtNVf+/SVm7j2GN+8zttThmJmZdbisLUWkyc916cO6kYjgS398lt4Sl75jH69JZGZmPVJbFm88WNINkmanjxslHVzM4Kxj/PmpZTzw0mo+e/I0xg3tX+pwzMzMSiJTUiTp/cATwDjgzvQxBnhc0lnFC8+KbV3VVi79y/McuPswzjpsj1KHY2ZmVjJZW4q+CXw5ImZGxFfSx0nAl4HL2lKhpAskLZBUI2mOpKNbKV8m6dL0mlpJiyV9PK/MJyS9KGmLpCWSfixpUM75r0mKvMeKtsTdXX3rzhfYsKWOb5+2H717udvMzMx6rqxjikYBv2/m+C0kiVEmkt4DXAVcADyYPt8lae+IWNzCZTcBuwHnAfNIWqi29fFIOhO4nGSrkX8Bk4BfksyS+2jOfeYCx+W8b8gad3f18MuV3DJnCecftydvGDek1OGYmZmVVNakaBZJQvFy3vHjgPvbUN/FwPUR8fP0/UWSTibZQ+0L+YUlnQScAOwZEZXp4YV5xY4AHo2IG5vOS7oBOD2vXH1EuHUoVVPXwBf/8Ax7jBjAJ07Yq9ThmJmZlVyLSZGk03Le3gV8W9J04NH02GHAacDXslQkqQw4BLgi79Q9JIlNc04lGct0saQPkuy7dhfwxYjYnJZ5EPiApMMi4lFJFcDbScY95ZokaRlQCzyW3mN+lti7ox/982UWrqnm/z56KOV9e5c6HDMzs5LbUUvRrc0cOy995Poh8JMMdY0EepMs+JhrJXBiC9dMAo4iSWROB4al9Y0H3gUQETdJGgE8oGQueR/gRuBzOfd5DDgbeBEYDVwCPCxpn4hYk1+ppG2fs6KiIsNH61rmrtjENfe/wmkH78pRe40sdThmZmadQotJUUR0hp1AewEBnBkRGwAkXQjcLWlMRKyUdCzJuKYLSJKfySTjlr4OfAUgIu7KvamkR4H5wIeAK/MrjYhrSRanZPr06VGcj1YajY3B529/msHlfbjkrXuXOhwzM7NOI/PijQVQSTK4eUze8TFAS2N9lgNLmxKi1AvpcwVJK9NlwO8i4hfp8WckDQR+IenSiKjPv2lEbJb0HNDjBtP85rFF/Hvxeq484wCGDywrdThmZmadRuakSNJBwAyS7qftWpEi4rOtXR8RWyXNAWaSzFprMhO4rYXLHgLeLWlQzhiiKenzovR5AK+fSdYAtDi/XFI5MI1kAHmPsWJDDd/921yOmjySdx60a6nDMTMz61QyJUWSPgt8hyQRWUnSpdWkLd1LVwI3SnqcJOH5GMn4oGvSem4AiIgPpuV/S9I19itJXyMZU3QVcGtErErL/IVkIPZsXus++wbw16ZWIklXpOUWkyR1XwYGAr9uQ+xd3lf//Cx1DY188537eisPMzOzPFlbij4FnB8RP9uZyiLi5nRQ9CUkq2M/C5wSEU2tPhV55TdLOpFkcPUTwDrgj8Dnc4pdRpKYfYNkPaNKkgToSzlldgN+RzLYezXJDLrDcurt9v727Arufm4lnzt5GnuMGFjqcMzMzDodRbTe0CNpJXBkROSvU9TtTZ8+PWbPnl3qMHbKppo6TrzyfnYZUMZfLjqKvr07wxh6MzOzjidpTkRMb+5c1t+OPwU+XLiQrCP9791zWbWplu+cvr8TIjMzsxZk7T77OnCnpH+TdHnV5Z6MiI8UOjArjDmL1nHjo4v40OETOHD3YaUOx8zMrNPKmhR9EzgJeBLYhbYNrrYSqWto5Iu3P8PYIeV8+s1TSx2OmZlZp5Y1KbqAZAHFm4sZjBXWbx5dxNyVm/j5B6czqF9HLkllZmbW9WQdYLIF+HcxA7HCighueuJVDth9GDP3zl8v08zMzPJlTYq+D3xSXtymy3h++UZeXLGJdx3sRRrNzMyyyNqncjRwDPBWSc/z+oHWby90YLZzbn9yKX17i7ftP77UoZiZmXUJWZOiSuD2YgZihVPX0Mif/rOUE6aNYRfvb2ZmZpZJpqQoIrxGURfyr3mrqdy8ldPcdWZmZpaZV/Lrhm57cinDB5Zx3NTRpQ7FzMysy8i6Iewz7GBtoojYv2AR2U7ZUF3H359fyZlvqqCsj3NeMzOzrLKOKbo1731f4EDgSODHhQzIds4dzyxna32ju87MzMzaKOuYoq83d1zSZ4A9ChqR7ZTbnlzCXqMHsd+uQ0sdipmZWZeys/0rtwPvL0QgtvMWVlYxZ9E6Tjt4N7yklJmZWdvsbFJ0DFBdiEBs593+76VI8M6D3HVmZmbWVlkHWv85/xAwDjgIaLZrzTpWY2Nw+5NLOGrySMYOLS91OGZmZl1O1oHWa/LeNwLPAV+MiHsKG5K1xxML17Jk3Rb+56QppQ7FzMysS/Lijd3EbU8uYWBZb968z9hSh2JmZtYleSGbbmDL1gbufGYFb9lvHAPKsjb+mZmZWa6sY4qGA98ETgBGk5dMRcSQwodmWd3z/Ao219Zz+sG7lToUMzOzLitrs8IvSQZVXwssYwerW1vHu+3Jpew6rD+HThxe6lDMzMy6rKxJ0QnAzIh4rJjBWNut3FjDg/NW8/9mTKZXL69NZGZm1l5ZxxStAjYXMxBrnz/+eymN4bWJzMzMdlbWpOhLwKWSBhUzGGubiOC2J5dwUMUwJo3yfxozM7OdkbX77BJgArBK0iKgLvdkROxf4Lgsg+eWbeSllZu57NR9Sx2KmZlZl5c1Kbq1qFFYu9z25BLKevfibfuPK3UoZmZmXV7WxRsLtpWHpAuAz5BsE/Ic8MmI+NcOypeRtFR9ABgPrASuiIirc8p8Ajgf2INk9e0/AZ+LiM05ZdpUb2dX19DIn/+zjBP3Hs2wAWWlDsfMzKzL69CV/iS9B7gKuAB4MH2+S9LeEbG4hctuAnYDzgPmAWOA/jn3PBO4HDgH+BcwiWQJgXLgoztRb6f2wEurWVO1ldMO8tpEZmZmhdDRyx9fDFwfET9P318k6WSSVp4v5BeWdBLJcgB7RkRlenhhXrEjgEcj4sam85JuAE5vb71dwR1PL2f4wDKOnTqq1KGYmZl1Cx22zUfaDXYIkL+B7D0kiU1zTgWeAC6WtETSPElX582CexA4UNJhaT0VwNuBO3ei3k7vpVWb2G/XofTt7Z1azMzMCqEjW4pGAr1JxgTlWgmc2MI1k4CjgFqSlp9hwA9Jxha9CyAibpI0AnhAkkg+043A59pbr6TzSLrrqKioyPThOlJEsGB1FdP38ArWZmZmhbLDZgZJV0o6WlKpmiN6kWwpcmZEPBYRdwMXAqdLGpPGeCzwZZJxQgcDpwHHAe0eHB4R10bE9IiYPmpU5+ueWr25lqqtDUwYMaDUoZiZmXUbrbUU9ScZ6Fwm6Q7gj8DdEbGlHXVVAg0kA6VzjQFWtHDNcmBpRGzIOfZC+lxB0tpzGfC7iPhFevwZSQOBX0i6tJ31dmoLK6sBmDByYIkjMTMz6z522AIUEedHxK7AW4GlJAlIpaQ/S/qIpMzNKBGxFZgDzMw7NRN4uIXLHgLG540hmpI+L0qfB5AkPbkaAO1EvZ3awsoqACaN9CrWZmZmhZKpWywiHo+IL0XEvsABwP3A2cASSQ9K+rSkLJtvXQmcLekcSW+QdBXJ+KBrACTdkM4ca/JbknWHfiVpH0lHkkytvzUiVqVl/gKcJ+m9kiZKmgl8A/hrRNRnqbermV9ZRd/eYvyw8lKHYmZm1m20eaB1RLwMfA/4nqSRJDO93p6evqKVa29OB0VfQrKI4rPAKRHR1OpTkVd+s6QTSQZXPwGsI+nC+3xOsctIxh19g2Q9o0qSROlLbai3S1lYWcXuwwfQxzPPzMzMCkYRUeoYOrXp06fH7NmzSx3Gdk7+wQPsOqw/vzz7jaUOxczMrEuRNCcipjd3zk0NXUxjY7CgsoqJHmRtZmZWUE6KupgVG2uorW/0zDMzM7MCc1LUxTTNPHNLkZmZWWE5KepiFqxxUmRmZlYMmWefSRoAHAiMJi+ZiojbCxuWtWTB6ir69enF2CGejm9mZlZImZKidFr874ARzZwOkr3FrAMsXFPFhBED6dVLpQ7FzMysW8nafXYVcAewW0T0yns4IepACyqrmDDSe56ZmZkVWtakaALwjYhYVsRYrBUNjcHitdVM9PYeZmZmBZc1KXoImFrMQKx1S9dtoa4hmOiWIjMzs4LLOtD6GuAKSeOBZ4C63JMR8WShA7PXa5p5NmGEZ56ZmZkVWtak6Nb0+dpmznmgdQfxGkVmZmbFkzUpmljUKCyTBZVVDCzrzajB/UodipmZWbeTKSnqqrvJdzfJzLOBSJ6Ob2ZmVmiZV7SWtL+kGyTNlvSEpF9L2reYwdn2Fq6p8p5nZmZmRZIpKZL0duBJYHfgLuBvQAXwb0n/VbzwrEldQyNL1m1hogdZm5mZFUXWMUWXAd+MiK/mHpR0aXruL4UOzLb36tpqGhrDg6zNzMyKJGv32RTgxmaO34jXL+oQC9KZZ+4+MzMzK46sSdEq4JBmjh8CrCxcONaSBZ6Ob2ZmVlRZu89+DvxM0mTg4fTYkcCngf8tRmC2vYVrqhjavy+7DOhb6lDMzMy6pbaMKdoM/A/wjfTYMuCrwNVFiMvyeDq+mZlZcWVdpyiA7wPflzQ4PbapmIHZ9hZWVvPGCbuUOgwzM7NuK/M6RU0iYpMToo5VU9fAsg1bPMjazMysiFpsKZL0NHBsRKyT9AzJHmfNioj9ixGcJRavrSbCg6zNzMyKaUfdZ7cBtenrW3dQzops/mrPPDMzMyu2FpOiiPh6c6+t4y1c4zWKzMzMii3rNh+9JPXKeT9W0jmSjmhrhZIukLRAUo2kOZKObqV8maRL02tqJS2W9PGc8/dJimYez+WUObuFMuVtjb8UFlZWMWJgGUPKPR3fzMysWLJOyb+DZL+zqyQNAmYDA4FBkj4aETdkuYmk9wBXARcAD6bPd0naOyIWt3DZTcBuwHnAPGAM0D/n/GlAWc77fsAzwO/z7lMN7Jl7ICJqssRdagsqq9x1ZmZmVmRZk6LpwGfT16cBG4GJwPtJFnDMlBQBFwPXR8TP0/cXSToZOB/4Qn5hSScBJwB7RkRlenhhbpmIWJt3zfuBAcB1ebeLiFiRMc5OZUFlFcdMGVXqMMzMzLq1rFPyBwHr09cnAX+IiDrgn+S1vrREUhnJtiD35J26B2ipG+5U4AngYklLJM2TdHXaWtWSc4G/RcSrecf7S1qU3uevkg7KEnepVdXWs2pTrVuKzMzMiixrUrQYOFLSQODNwN/T48NJuqWyGAn05vV7pa0ExrZwzSTgKOAA4HTgQuBk4PrmCkuaAhxLsi1JrrnAR4B3AO8DaoCHJO3Vwn3OkzRb0uzVq1fv+FMV2bZB1iOcFJmZmRVT1u6zK4EbSbb6WAQ8kB4/hmT8TrH0Ilkf6cyI2AAg6ULgbkljIiI/wToXWE4yBmqbiHgEeKTpvaSHgf8AFwEfJ09EXAtcCzB9+vQW12fqCAsrk5zTLUVmZmbFlXWbj59Jmg1UAH+PiMb01CvAlzPWVQk0kAyUzjUGaGmsz3JgaVNClHohfa4gp9Up7Z77EPDziKjfUSAR0ZB+nmZbijqTBZWbAZgwckCJIzEzM+veMm/zERFzIuIPEbE559gdEfFQxuu3AnOAmXmnZgIPt3DZQ8D4vDFEU9LnRXllTyXpovtla7Eo2VV1f5Kkq1NbUFnNmCH9GFCWtVHPzMzM2iPzb1pJh5LMBBtNXjIVEa/rgmrBlcCNkh4nSXg+BowHrknruCG93wfT8r8laYn6laSvAcNIpvTfGhGr8u59HnBvRMxvJvavAo+STOkfQtJltj/JrLdObeEaT8c3MzPrCJmSIkmfBi4HXgaWsf0+aJnH3ETEzZJGAJcA44BngVMioqnVpyKv/GZJJwI/JJmFtg74I/D5vPgmAccD722h6mEkY4TGAhuAfwPHRMTjWWMvlYWVVZy0T36Po5mZmRVa1paiTwAfj4gf7WyFEfET4CctnDuumWNzSZYB2NE957ODrsCI+BTwqTYF2gls2FLHmqqtnnlmZmbWAbKOKRoC3FnMQOz1FlZ6zzMzM7OOkjUp+h3J+kDWgZrWKJrkpMjMzKzosnafvQp8XdKRwNNAXe7JiLiy0IEZzF9dhQS7D/d0fDMzs2LLmhSdQ7Jw4xG8fkuOIJlVZgW2cE0V44f2p7xv71KHYmZm1u1lXbxxYrEDsddbWOnp+GZmZh0l8+KNTSSNkdTm66xtIoIFTorMzMw6TKbkRlJfSZdL2gQsBSakx78r6YIixtdjra3aysaaes88MzMz6yBZW3y+CvwXcBZQm3P8ceDsAsdkvDbzbKL3PDMzM+sQWQdavw/4SETcL6kx5/izvLYXmRXQgspqACaOHNRKSTMzMyuErC1F43n9BqyQJFXeqbQIFlZW0buX2G2X/qUOxczMrEfImhQ9BxzTzPEzSHa+twJbUFnF7rv0p29vj2k3MzPrCFlbeb4O/J+k3YHewLslTQPOBN5arOB6sgWVVR5kbWZm1oEyNUNExF9IWoVOAhpJBl7vBfxXRPyjeOH1TBHBwjWejm9mZtaRMo8Hioi7gbuLGIulVm+qpXprg5MiMzOzDtTmQdKSyslrYYqI6oJFZMyvTKbjTxjhpMjMzKyjZF28cQ9Jf5K0EagCNuU9rIAWVjatUeSkyMzMrKNkbSn6P6AcuAhYSbIJrBXJgjVVlPXuxfhhno5vZmbWUbImRQcBb4yIF4oZjCUWVlZRMWIAvXup1KGYmZn1GFkXwXkKGFXMQOw1CyqrPJ7IzMysg2VtKToPuFrS1SRbe9TlnoyIxYUOrKdqbAwWranm2CnOQc3MzDpS1qSoFzAG+APbjydS+r53gePqsZZvrKG2vtF7npmZmXWwrEnRr4FVwOfwQOuiWrA6nY4/ckCJIzEzM+tZsiZF04ADI+KlYgZjycwz8HR8MzOzjpZ1oPXjwMRiBmKJhZVV9O/bmzGDy0sdipmZWY+StaXop8APJH0PeIbXD7R+stCB9VQLK6vYY8QAenk6vpmZWYfKmhT9Ln2+tplzHmhdQAsqq5g6dnCpwzAzM+txsnafTdzBY1JbKpR0gaQFkmokzZF0dCvlyyRdml5TK2mxpI/nnL9PUjTzeC7vPqdLej69x/OS3tmWuDtCfUMji9dWM8HjiczMzDpcppaiiFhUiMokvQe4CrgAeDB9vkvS3jtY6+gmYDeStZLmkSwNkLv/xWlAWc77fiRdfL/Pqfdw4Gbgq8Dt6TW3SDoyIh4rwEcriKXrt1DfGB5kbWZmVgItJkWSTgP+EhF16esWRcTtGeu7GLg+In6evr9I0snA+cAXmonhJOAEYM+IqEwPL8yre23eNe8HBgDX5Rz+JDArIr6Zvv+mpBnp8fdljL3oFngjWDMzs5LZUUvRrcBYkvWJbt1BuUxjiiSVAYcAV+Sdugc4ooXLTgWeAC6W9EFgC3AX8MWI2NzCNecCf4uIV3OOHQ78MK/c3cCFrcXdkZqSIm/xYWZm1vFaTIoioldzr3fCSJLkaWXe8ZXAiS1cMwk4CqgFTgeGkSQ344F35ReWNAU4liSZyjW2hXrHNleppPNIuuuoqKhoIbTCW1hZxaB+fRg5qKz1wmZmZlZQWWeflUovkpaoMyNiA4CkC4G7JY2JiPxE51xgOXDHzlQaEdeSzrSbPn16h63evWBNNRNHDkTydHwzM7OOtqMxRR/MepOIuCFDsUqggWSgdK4xwIoWrlkOLG1KiFIvpM8V5LT+pN1zHwJ+HhH1efdZ0cZ6S2JhZRUH7D6s1GGYmZn1SDtqKfpx3vsyoC/QmL7vRbKIYy3QalIUEVslzQFmArfknJoJ3NbCZQ8B75Y0KGcM0ZT0OX9G3KkkXXS/bOY+j6T1/G9evQ+3FndH2VrfyJJ11Zx64PhSh2JmZtYjtThWKCIGNz2A9wJPA0cD5enjaOA/wJltqO9K4GxJ50h6g6SrSMYHXQMg6QZJuQnWb4E1wK8k7SPpSJIp/bdGxKq8e58H3BsR85up9yrgeEmflzRN0heAGcAP2hB7US1eW01j4DWKzMzMSiTrmKIrgI9ExCM5xx6S9EngeuCvWW4SETdLGgFcAowDngVOyVkHqSKv/GZJJ5IMrn4CWAf8Efh8bjlJk4DjSZK35up9WNJ7gcuAS4FXgPd0pjWKFno6vpmZWUllTYomAFXNHK8mL5FpTUT8BPhJC+eOa+bYXOCkVu45n1ZW546IW9nx0gIltXCNkyIzM7NSyjrV/jHgakm7Nh1IX38feLQYgfU08yurGDagL8MGeDq+mZlZKWRNij4KjAAWSlooaSHJytKjSabB205aWFnlViIzM7MSyrr32SuS9ieZsTUtPfwC8I+I6LB1fLqzhZVVHDZpRKnDMDMz67EyL96YJj/3pA8roC1bG1i2ocYzz8zMzEqoENt32E5atDbd88xJkZmZWck4KeoEmqbjT3JSZGZmVjJOijqBBZXVgFuKzMzMSslJUSewoHIzIwf1Y1C/zr4/r5mZWfeVOSmSVC7pXZI+J2lYemxPScOLFl0PsbCymokjB5Q6DDMzsx4tU9OEpMnA34HBwDCSDV3XA+en788pSnQ9xII1VcyYOqrUYZiZmfVoWVuKfkCSFI0BtuQc/zPJxqrWTptr61m9qdbjiczMzEos6yCWI4DDIqJBUu7xxSS73Fs7bdsIdoSTIjMzs1Jqy0Drvs0cqwA2FCiWHmlBpdcoMjMz6wyyJkX3ABfnvA9JQ4CvA3cUPKoeZMWGGgB226V/iSMxMzPr2bJ2n10MzJI0FygHbgYmAyuBM4oUW4+wsaaOXsLT8c3MzEos64awyyQdCLwPOJikhela4DcRsWVH19qObaqpZ1C/PuSN1TIzM7MOlnVK/siIqASuSx9WIBtr6hhc3txwLTMzM+tIWccULZP0V0nvkVRe1Ih6mE019Qwud9eZmZlZqWVNit4GVJJ0ma2UdL2kE+Q+n522qaaOIW4pMjMzK7lMSVFE3BMRZ5Ms3ngesAtwJ/CqpP8tXnjdn1uKzMzMOoc2bQgbETURcXNEvAM4EFjN9lP1rY2cFJmZmXUObUqKJA2UdJaku4CnSPZCu6wokfUQmzzQ2szMrFPIOvvsrcD7gbeT7H32e+DSiHikiLF1exHhliIzM7NOIutv41uAv5CsU3RXRNQXL6Seo6aukfrGcEuRmZlZJ5A1KRoTEZuKGkkPtKmmDsAtRWZmZp1Ai7+NJQ2PiLXp276ShrdUNqectcHGmqTBzUmRmZlZ6e1ooPVqSaPT15UkM83yH03HM5N0gaQFkmokzZF0dCvlyyRdml5TK2mxpI/nlRki6WpJy9IyL0s6I+f81yRF3mNFW+IuhqaWIq9TZGZmVno7aqI4Hlib8zp2tjJJ7wGuAi4AHkyf75K0d0QsbuGym4DdSNZHmkeyVtK2LeUl9QX+nsZ6BrAkLV+bd5+5wHE57xt28uPstE1uKTIzM+s0WvxtHBH357y+r0D1XQxcHxE/T99fJOlk4HzgC/mFJZ0EnADsme69BrAwr9iHgVHA0RGxtYUyAPURUfLWoVyvJUVuKTIzMyu1TOsUSWrI6UrLPT5CUqYWF0llwCHAPXmn7gGOaOGyU4EngIslLZE0L+0mG5RX5iHgh5JWSHo+7S7LzzQmpd1rCyTdJGlSlriLqao2SYoG9utd4kjMzMws6+KNLe1x1g/Y2sK5fCOB3sDKvOMrgbEtXDMJOAo4ADgduBA4Gbg+r8y7gb7AW4EvAx8Dvp1T5jHg7PTac9P6HpY0orlKJZ0nabak2atXt2nIVJtUb02SogFl7j4zMzMrtR3+NpbUtIVHAB+TtDnndG/gaODFIsUGSdIWwJkRsSGN6ULgbkljImJlWmYVcG5ENABz0mTn+5I+E4m78j7Xo8B84EPAlfmVRsS1JJvfMn369J0eS9WS6rqkkW1AmVuKzMzMSq21JoqL0mcB57D94OStJGN3Ppaxrsr0+jF5x8cALY31WQ4sbUqIUi+kzxUkrUzLgbo0IcotM4Ckdep1TT0RsVnSc8BeGWMvii1bG+gl6NenTbutmJmZWRHs8LdxREyMiInA/cABTe/Tx9SIeHNEPJalonQQ9BxgZt6pmcDDLVz2EDA+bwzRlPR5UU6ZyZJ65ZWpJknEXkdSOTCNJKEqmaraBgaU9UFqqXfSzMzMOkrWJoqTSfY8246k8nQAdVZXAmdLOkfSGyRdBYwHrknvd4OkG3LK/xZYA/xK0j6SjiSZ0n9rRKxKy/wUGA5cJWmqpDcDXwd+EhGR3vcKScdKmijpUOBWYCDw6zbEXnBb6urp764zMzOzTiHrCN/fk7QW5Y+/+RjJ2j+nZrlJRNycjve5BBgHPAucEhFNrT4VeeU3SzoR+CHJLLR1wB+Bz+eUeTWdun8l8B+SrrjrgMtybrUb8Dte6057FDgsp96SqN7awEAnRWZmZp1C1qToSOBLzRz/O/DFtlQYET8BftLCueOaOTYXOKmVez5Ky9P6iYj3tiXGjlJV20B/zzwzMzPrFLJ2nw0A6ps53ggMLlw4PcuWunrPPDMzM+sksiZFTwPva+b4mSRdYNYO1VsbnBSZmZl1Eln7bi4F/iRpMvDP9NgJJIsmvrMYgfUEW7Y2MHpwv1KHYWZmZmRsKYqIO4H/AvYArk4fFcDbI+KvxQuve6vaWu/VrM3MzDqJzL+RI+JvwN+KGEuPs8XdZ2ZmZp1G5qWU0zWJ3iXps5KGpcf2lDS8aNF1cx5TZGZm1nlkailKxxL9AxgEDCNZ/HA9cH76/pyiRNeNNTYG1Vs9Jd/MzKyzyNpS9APgHpJ9ynJXtv4zMKPAMfUINfXeDNbMzKwzydpMcQTJCtANeft0LSbZpsPaqHprkhR5RWszM7POoS3bs/dt5lgFsKGZ49aK6tokKXL3mZmZWeeQNSm6B7g4531IGkKy8eodBY+qB6iuSxYId/eZmZlZ55C1meJiYJakuUA5cDMwGVgJnFGk2Lq1pu4zJ0VmZmadQ6akKCKWSTqQZKuPg0lamK4FfhMRW3Z0rTVvy7akyN1nZmZmnUGLv5ElzQfeGBFrJH0FuCIirgOu67DourGqWnefmZmZdSY7GlM0DhiQvv4qyRpFViBb6tx9ZmZm1pnsqO/m38B1kh4EBHxa0ubmCkbEpcUIrjurdveZmZlZp7Kj38gfBi4DTgWCZEPY+mbKBeCkqI2aus/6u6XIzMysU2gxKYqIucC7ASQ1AsdGxKqOCqy72+LZZ2ZmZp1Ki2OKJM2XNCJ9+3Wg2a4za5/qugbKeveib++2rJ9pZmZmxZJ1oPVX8EDrgqqurXfXmZmZWSfigdYlUr21wV1nZmZmnYgHWpdIdZ2TIjMzs87EA61LZMvWBk/HNzMz60SybvPh0cAFNnXsYPYYMaD1gmZmZtYhMjdVSHoLcCEwCTgpIl6VdA6wICLuLVaA3dXnTp5W6hDMzMwsR6YWIEnvB34PvARMAPqmp3oDn21LhZIukLRAUo2kOZKObqV8maRL02tqJS2W9PG8MkMkXS1pWVrmZUln7Ey9ZmZm1rNk7Rb7LHBuRHyK7QdbPwocmLUySe8BrgK+BRwEPAzcJaliB5fdBJwMnAdMJRnn9HTOPfsCfwf2As5Iy5wNLNjJes3MzKwHydp9thfwSDPHNwND2lDfxcD1EfHz9P1Fkk4Gzge+kF9Y0knACcCeEVGZHl6YV+zDwCjg6IjY2kKZNtVrZmZmPU/WlqJlwJRmjh8DvJLlBpLKgEOAe/JO3QMc0cJlpwJPABdLWiJpXtpNNiivzEPADyWtkPS8pK+lLUjtrdfMzMx6mKxJ0bXA1ZKOTN/vLulDwOXATzPeYyTJGKSVecdXAmNbuGYScBRwAHA6yUDvk4Hr88q8m2Sc01uBLwMfA77d3nolnSdptqTZq1evbu1zmZmZWTeQdUr+5ZKGkozdKQdmAbXAFRHx4yLG14tkccgzI2IDgKQLgbsljYmIlWmZVSRjnhqAOemebd+X9Jn2VBoR15IkgkyfPj0K8DnMzMysk8s8JT8iviTpm8DeJInI8xHRlk1iK4EGYEze8THAihauWQ4sbUqIUi+kzxUkrT3Lgbo0IcotM4Cklag99ZqZmVkP06ZFGSOiOiJmR8TjbUyISAdBzwFm5p2aSTIbrDkPAePzxhA1jW1alFNmsqReeWWqgcp21mtmZmY9TEevVH0lcLakcyS9QdJVwHjgGgBJN0i6Iaf8b4E1wK8k7ZOOaboKuDVny5GfAsOBqyRNlfRm4OvATyIistRrZmZm1qGbb0XEzel4n0uAccCzwCkR0dTqU5FXfrOkE4EfksxCWwf8Efh8TplX06n7VwL/IekSu45kM9us9ZqZmVkPp9caU6w506dPj9mzZ5c6DDMzMysASXMiYnpz57zRq5mZmRlOiszMzMwAd5+1StJqXpvpVihNSwVYx/D33XH8XXcsf98dy993xyrW971HRIxq7oSTohKQNLul/kwrPH/fHcffdcfy992x/H13rFJ83+4+MzMzM8NJkZmZmRngpKhUri11AD2Mv++O4++6Y/n77lj+vjtWh3/fHlNkZmZmhluKzMzMzAAnRWZmZmaAk6KikHSBpAWSaiTNkXR0K+WPTcvVSJov6WMdFWtX15bvWtJpku6RtFrSJkmPSXp7R8bb1bX133bOdUdJqpf0bLFj7E7a8bOkTNKl6TW1khZL+nhHxdvVteP7PlPSfyRVS1oh6f8kje2oeLsqScdI+rOkpZJC0tkZrtlP0v2StqTXfUWSCh2bk6ICk/Qe4CrgW8BBwMPAXZIqWig/EbgzLXcQ8G3gh5JO75iIu662ftfAscA/gbem5e8E/pD1F3tP147vu+m6XYAbgHuLHmQ30s7v+ybgZOA8YCrwbuDpIofaLbTjZ/eRwI3Ar4F9gFOBvYHfdES8Xdwgko3ZPwFsaa2wpCHA34GVwBvT6z4DXFzowDzQusAkPQY8HRHn5hybB9waEV9opvx3gdMiYq+cY78A9omIwzsi5q6qrd91C/d4HPhXRPxPkcLsNtr7fUu6HXgKEPCuiNi36MF2A+34WXIScAuwZ0R41eU2asf3/WngoojYI+fYh4EfRsSgjoi5O5C0GbgwIq7fQZnzge8CYyJiS3rsEuB8YLcoYCLjlqICklQGHALck3fqHuCIFi47vJnydwPTJfUtbITdRzu/6+YMBtYVKq7uqr3ft6QLgDHAZcWLrvtp5/d9KvAEcLGkJZLmSbpakn9Bt6Kd3/dDwDhJ/6XESOC9JC3QVliHk/zxmtuqdDcwHphQyIqcFBXWSKA3SRNfrpVAS/3MY1so3ye9nzWvPd/1diT9P2A3kiZw27E2f9+S9gO+CpwVEQ3FDa/bac+/70nAUcABwOnAhSRdadcXJ8Rupc3fd0Q8QpIE/QbYCqwmaQ39UPHC7LFa+j3ZdK5gnBRZj5SO2fpf4MyIKPSGvz2epH7AzcCnI2JBqePpIXoBQfJv+rGIuJskMTpd0pjShtb9SNob+CHwDZJWppNJfkH/rJRx2c7pU+oAuplKoIGkuyDXGGBFC9esaKF8Pd6NeUfa810DIOldJAN/PxgRfylOeN1OW7/vccAbgF9J+lV6rBcgSfXAKRGR31Vhr2nPv+/lwNKI2JBz7IX0uYLX/6Vtr2nP9/0F4PGI+N/0/dOSqoB/SfpiRCwpTqg9Uku/J5vOFYxbigooIrYCc4CZeadmksxkaM4jLZSfHRF1hY2w+2jnd42kM0i6y86OiFuLF2H30o7veymwH3BgzuMa4OX0dYv/jazd/74fAsbnjSGakj67NXQH2vl9DyBJpHI1vffv1sJ6BDhaUnnOsZnAMmBhQWuKCD8K+ADeQ9K/fA7JX8pXAZuBPdLzNwA35JSfCFQBP0jLn5Nef3qpP0tnf7Tju34vUEcynXNszmN4qT9LV3i09ftu5vqvAc+W+nN0lUc7/n0PAl4lmYG2D3AkybTnW0r9WbrCox3f99npz5PzScZzHUky0H1OqT9LZ3+k/1YPTB/VwFfS1xXp+W8D9+aUH0rSInQTsC9wGrAR+J+Cx1bqL6c7PoALSLLXWpK/Po7JOXcfcF9e+WOBJ9PyC4CPlfozdJVHW77r9H0087ivo+Puqo+2/tvOu9ZJUZG/b5K1ie5Jf9EsBX4MDC715+gqj3Z83xcBz6Xf93KSQde7lfpzdPYHcFwLP4uvT89fDyzMu2Y/4AGgJv2uv0q6rFAhH16nyMzMzAz3e5qZmZkBTorMzMzMACdFZmZmZoCTIjMzMzPASZGZmZkZ4KTIzMzMughJ10laJenZjOXPkPS8pOck/ba18k6KzKxHkzRBUkiaXsQ6rpf012Ld36wHuZ5kn7lWSdqLZDuWIyNiH+CTrV3jvc/MzIrvEyQ7qJvZToiIByRNyD0maU+ShUpHkSykeW5EvAicC/w4Ital165q7f5uKTIzK7KI2BAR60sdh1k3dS1wUUQcAnwa+El6fAowRdJDkh6V1GoLk5MiM+sQko5JfzBtlrRB0uOS9k3PjZD0O0lLJG1J+/8/nHf9fZJ+Kul7ktZKWi3pE5L6SfqxpPWSFkv6QM41TV1jZ0p6UFKNpBclndRKrHtLukPSpnT8wu8kjW3lmq9IWiSpVtIKSTfknNvWfSbpuDSm/Md9OeWPkHS/pGpJS9PPPaRNX7hZD5BugHwEcIuk/wA/A8alp/sAe5FsK/I+4OeShu3ofk6KzKzoJPUB/gQ8CBwAHEqyCXLTruLlJPv/vY1kM9OrgJ9JOiHvVu8HNqXXfye9xx+Bl4DpwK+BX0gal3fd5cDVJJtO/h34k6RdW4h1HMkeS88CbwJOJNnA8k+Smv2ZKel0kr9QLyD5Ifw24PEWvo6HSX5oNz2mA+tJ9tZC0n4k+5f9meS7Oi2N+7oW7mfWk/UC1kfEgTmPN6TnlgB/joi6iFhA8nNirx3dzHufmVnRSRoOrAGOi4j7M15zE7A5Is5J398H9IuIw9P3AlYBj0TE29NjfYEq4MyIuDUde7AAuCQivpmW6QW8CPw+Ii7JKfPGiJgt6VKSgZkn5MSyC7AWODQiXpfsSLoY+G9g34ioa+b89cDIiHhb3vH+wL+AxcDpERFpC1NdRHw0p9yBwL+BMVnGRZh1Z+n/s3+NiKaW5oeB70fELenPhf0j4qm0u+x9EfEhSSNJ/h86MCLWtHRvtxSZWdFFxFqSWSN3p91SF0uqaDovqbekL0l6WtIaSZtJWkgq8m71dM49gyQpeibnWB2wDhidd90jOWUagceAvVsI9xDgmLSbb3May6vpuT1buOYWktauBZJ+Kendkvq1UBbYltRdD/QGPhCv/YV6CHBWXv0PtVK/WY8g6Xck/z9PTbvbP0rSgvxRSU8BzwHvSIvfDayR9DwwC/jMjhIi8OwzM+sgEfFhST8gmU77duCbkk6NiLtJup7+h2SW1jPAZuBbvD65yW+FiRaO7cwffL2AO9KY8q1s7oKIeFXSVOAEku627wFflXRoRFS1UM9XgGNIWqhyy/QCfgF8v5lrlmb7CGbdU0S8r4VTrxtEnf6hcXH6yMRJkZl1mIh4CngK+K6ku4APkfw1dxTwl4i4Eba1okwhGWtTCIcB/8y595uAW1so+yRwBrCoua6wlkREDUkydYek7wArgCNJxgdtR9K7gM8CMyJiSTP17xMRL2et28wKw91nZlZ0kiZK+k46q2oPSTOA/YHn0yIvASdIOkrSNOBHwMQChnC+pHelrTk/APYAftpC2R8DQ4GbJR0qaZKkEyVdK2lwC5/vbEnnSNpP0kTgwyQtWPOaKbsvyYDwLwKLJY1NH8PTIt8F3iTpGkkHSZos6W2SfrYTn9/MMnBSZGYdoZqk5ecWkgTo18BvSBIAgMtIZmvdRTLzqyo9XyifJ2lCf4qkmf2dzbTQABARy0haeBqBv5GMUfgxUJs+mrMe+CjJoOlngdOB09IZL/mmAwNIkrPlOY/b0/qfJulWmwDcn8b8bVroujOzwvHsMzPrtvJnlpU4HDPr5NxSZGZmZoaTIjMzMzPA3WdmZmZmgFuKzMzMzAAnRWZmZmaAkyIzMzMzwEmRmZmZGeCkyMzMzAxwUmRmZmYGwP8H6bpv3nsTY+AAAAAASUVORK5CYII="
     },
     "metadata": {
      "needs_background": "light"
     }
    }
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "## Conclusion\n",
    "\n",
    "This tutorial briefly introduces the concept of classical and quantum Fisher information and their relationship from a geometric point of view. Then, we illustrates their applications in quantum machine learning by taking effective dimension as an example. Finally, we show how to actually perform calculations of these quantities with Paddle Quantum."
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "_______\n",
    "\n",
    "## References\n",
    "\n",
    "[1] Meyer, Johannes Jakob. \"Fisher information in noisy intermediate-scale quantum applications.\" [arXiv preprint arXiv:2103.15191 (2021).](https://arxiv.org/abs/2103.15191)\n",
    "\n",
    "[2] Haug, Tobias, Kishor Bharti, and M. S. Kim. \"Capacity and quantum geometry of parametrized quantum circuits.\" [arXiv preprint arXiv:2102.01659 (2021).](https://arxiv.org/abs/2102.01659)\n",
    "\n",
    "[3] Stokes, James, et al. \"Quantum natural gradient.\" [Quantum 4 (2020): 269.](https://quantum-journal.org/papers/q-2020-05-25-269/)\n",
    "\n",
    "[4] Mari, Andrea, Thomas R. Bromley, and Nathan Killoran. \"Estimating the gradient and higher-order derivatives on quantum hardware.\" [Physical Review A 103.1 (2021): 012405.](https://journals.aps.org/pra/abstract/10.1103/PhysRevA.103.012405)\n",
    "\n",
    "[5] Datta, Nilanjana, and Felix Leditzky. \"A limit of the quantum Rényi divergence.\" [Journal of Physics A: Mathematical and Theoretical 47.4 (2014): 045304.](https://iopscience.iop.org/article/10.1088/1751-8113/47/4/045304)\n",
    "\n",
    "[6] Abbas, Amira, et al. \"The power of quantum neural networks.\" [Nature Computational Science 1.6 (2021): 403-409.](https://www.nature.com/articles/s43588-021-00084-1)"
   ],
   "metadata": {}
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}