vqsvd.py 7.7 KB
Newer Older
Q
Quleaf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2021 Institute for Quantum Computing, Baidu Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Use MBQC to simulate VQSVD circuit and compare with the circuit model
"""

from paddle import to_tensor
from paddle_quantum.mbqc.utils import print_progress, write_running_data, read_running_data, plot_results
from time import perf_counter
from paddle_quantum.mbqc.simulator import simulate_by_mbqc, sample_by_mbqc
from numpy import random
Q
Quleaf 已提交
24
import paddle_quantum
Q
Quleaf 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
from paddle_quantum.mbqc.qobject import Circuit

__all__ = [
    "vqsvd_circuit",
    "cir_uansatz",
    "cir_mbqc",
    "vqsvd",
    "compare_time",
    "compare_result"
]


def vqsvd_circuit(cir, alpha):
    r"""输入 VQSVD 算法的电路。

    Args:
        cir (Circuit or UAnsatz): Circuit 为 MBQC 电路模块中的类,UAnsatz 为量桨平台 UAnsatz 电路模型中的类,
                                 二者都具有相同的量子门输入方式
        alpha (Tensor): 旋转门的角度

    Returns:
        Circuit / UAnsatz: 输入了量子门信息的电路
    """
    width = alpha.shape[0]
    depth = alpha.shape[1]

    if isinstance(cir, Circuit):
Q
Quleaf 已提交
52 53 54 55 56
        for layer_num in range(depth):
            for which_qubit in range(width):
                cir.ry(alpha[which_qubit, layer_num], which_qubit)
            for which_qubit in range(width - 1):
                cir.cnot([which_qubit, which_qubit + 1])
Q
Quleaf 已提交
57
        cir.measure()
Q
Quleaf 已提交
58 59 60 61 62 63 64 65
    else:
        for which_qubit in range(width):
            cir.h(which_qubit)
        for layer_num in range(depth):
            for which_qubit in range(width):
                cir.ry(which_qubit, param=alpha[which_qubit, layer_num])
            for which_qubit in range(width - 1):
                cir.cnot([which_qubit, which_qubit + 1])
Q
Quleaf 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

    return cir


def cir_uansatz(alpha, shots=1):
    r"""定义 VQSVD 算法的 UAnsatz 电路模型。

    Args:
        alpha (Tensor): 旋转门的角度
        shots (int, optional): 重复次数

    Returns:
        list: 列表中的第一项为测量结果或运算后得到的量子态,第二项为电路模拟方式运行 VQSVD 算法需要的时间
    """
    qubit_number = alpha.shape[0]

    # If bit_num >= 25, the UAnsatz could not support it
    if qubit_number >= 25:
        raise ValueError("the UAnsatz model could not support qubit number larger than 25 on a laptop.")

    else:
        # Input information of circuits
Q
Quleaf 已提交
88
        cir = paddle_quantum.ansatz.Circuit(qubit_number)
Q
Quleaf 已提交
89 90 91 92
        cir = vqsvd_circuit(cir, alpha)

        # Start running
        uansatz_start_time = perf_counter()
Q
Quleaf 已提交
93 94
        state = cir()
        outcome = state.measure(shots=shots)
Q
Quleaf 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        uansatz_end_time = perf_counter()

        # As the outcome dictionary is in a messy order, we need to reorder the outcome
        outcome_in_order = {bin(i)[2:].zfill(qubit_number): outcome[bin(i)[2:].zfill(qubit_number)]
        if bin(i)[2:].zfill(qubit_number) in list(outcome.keys())
        else 0 for i in range(2 ** qubit_number)}

        result_and_time = [outcome_in_order, uansatz_end_time - uansatz_start_time]
        return result_and_time


def cir_mbqc(alpha, shots=1):
    r"""定义 VQSVD 算法的 MBQC 翻译模拟方式。

    Args:
        alpha (Tensor): 旋转门的角度

    Returns:
        list: 列表中的第一项为测量结果或运算后得到的量子态,第二项为依据行序优先算法优化翻译 MBQC 模型模拟 VQSVD 电路需要的时间
    """
    qubit_number = alpha.shape[0]

    # Run MBQC
    cir = Circuit(qubit_number)
    cir = vqsvd_circuit(cir, alpha)
    start_time = perf_counter()
    # No sampling
    if shots == 1:
        simulate_by_mbqc(cir)
        sample_outcomes = {}
    # Sampling
    else:
        sample_outcomes, all_output = sample_by_mbqc(cir, shots=shots, print_or_not=True)
    end_time = perf_counter()
    result_list = [sample_outcomes, end_time - start_time]
    return result_list


def vqsvd(start_width, end_width):
    r"""定义 VQSVD 算法的主函数。

    在主函数中,我们比较了在不同宽度下 UAnsatz 电路模型模拟 VQSVD 和基于行序优先原则算法翻译为 MBQC 模型模拟 VQSVD 的时间。

    Args:
        start_width (int): 电路的起始宽度
        end_width (int): 电路的终止宽度
    """
    # Initialize
    depth = 2  # Set the depth of circuit to 2
    time_text = open("record_time.txt", 'w')
    all_width = list(range(start_width, end_width))

    # Start running VQSVD under different qubit numbers
    counter = 0
    for width in all_width:
        eg = "VQSVD with " + str(width) + " X " + str(depth) + " size."
        print_progress((counter + 1) / len(all_width), "Current Plot Progress")
        counter += 1

        alpha = random.randn(width, depth)
        alpha_tensor = to_tensor(alpha, dtype='float64')
        mbqc_result, mbqc_time = cir_mbqc(alpha_tensor)
        uansatz_result, uansatz_time = cir_uansatz(alpha_tensor)

        write_running_data(time_text, eg, width, mbqc_time, uansatz_time)

    time_text.close()


def compare_time(start_width, end_width):
    r"""定义 VQSVD 的画图函数。

    此函数用于将 UAnsatz 电路模型模拟运行 VQSVD 的时间成本和基于行序优先原则算法翻译为 MBQC 模型模拟的时间画出来。
    """
    time_comparison = read_running_data("record_time.txt")
    bar_labels = ['MBQC', 'UAnsatz']
    xticklabels = list(range(start_width, end_width))
    title = 'VQSVD Example: Time comparison between MBQC and UAnsatz'
    xlabel = 'Circuit width'
    ylabel = 'Running time (s)'
    plot_results(time_comparison, bar_labels, title, xlabel, ylabel, xticklabels)


def compare_result(qubit_number, shots=1024):
    r"""定义 VQSVD 获得最终比特串的函数。

    此函数的调用是为了获得 VQSVD 输出的最终比特串对应的字符。
    对于量子电路模型,只需要获得演化后的量子态,并重复对该量子态进行测量多次,就可以获得输出比特串的概率分布。
    MBQC 模型则与之不同,前文中所有 MBQC 模型的 VQSVD 都是仅运算一次得到的输出比特串,而并没有输出演化后量子态的信息。
    因此,为了获得输出比特串的概率分布,我们需要对 MBQC 模型的整个过程重复执行多次,
    统计这些次数中各个比特串出现的频率,从而用频率信息估算概率信息。

    Note:
        由于采样的次数有限,统计出的输出比特串频率分布会稍有偏差。

    Args:
        qubit_number (int): 比特数
        shots (int, optional): 采样次数
    """
    # Initialize
    depth = 2  # Set the depth of circuit to 2
    CRED = '\033[91m'
    CEND = '\033[0m'
    alpha = random.randn(qubit_number, depth)
    alpha_tensor = to_tensor(alpha, dtype="float64")

    mbqc_result, mbqc_time = cir_mbqc(alpha_tensor, shots)
    uansatz_result, uansatz_time = cir_uansatz(alpha_tensor, shots)

    print(CRED + "MBQC sampling results:" + CEND, mbqc_result, "s")
    print(CRED + "UAnsatz sampling results:" + CEND, uansatz_result, "s")

    result_comparison = [mbqc_result, uansatz_result]
    bar_labels = ['MBQC', 'UAnsatz']
    title = "VQSVD Example: Comparison btween MBQC and UAnsatz"
    xlabel = "Measurement outcomes"
    ylabel = "Distribution"
    plot_results(result_comparison, bar_labels, title, xlabel, ylabel)