VariationalQM_EN.ipynb 60.2 KB
Newer Older
Q
Quleaf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
{
    "cells": [
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "# Variational Quantum Metrology"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "<em> Copyright (c) 2022 Institute for Quantum Computing, Baidu Inc. All Rights Reserved. </em>"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "## Background"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "Quantum metrology is the study of high resolution and high sensitivity measurements of physical parameters using quantum theory (e.g., quantum entanglement) in order to further describe physical systems. Its theoretical aspect is quantum parameter estimation theory, and its experimental aspect is called quantum sensing. Previous studies have shown that the estimation accuracy by quantum theory is improved by taking the square root of the required number of samples compared with the classical method [1-3]. For an unknown parameter, the goal of quantum metrology is to maximize the accuracy of parameter estimation while minimizing the required resources (such as time, number of qubits, etc.).\n",
                "\n",
                "For example, given a unitary $e^{-i\\phi H}$ with a known Hamiltonian $H$, how can we extract the information about $\\phi$ by quantum metrology? It comprises the following four steps:\n",
                "\n",
                "1. Preparation. Prepare an input state $|\\psi\\rangle$.\n",
                "2. Parameterization. Obtain the parameterized quantum state $e^{-i\\phi H}|\\psi\\rangle$ after the evolution of $e^{-i\\phi H}$.\n",
                "3. Measurement. Measure the output state.\n",
                "4. Classical estimation. Estimate the parameters based on the results of multiple measurements.\n",
                "\n",
                "Combined with quantum parameter estimation theory, this tutorial is based on the idea of variational quantum sensors in [4], and the parameterized quantum circuit is constructed using Paddle Quantum to train the loss function and obtain a quantum sensor that can estimate the parameters that are normally distributed."
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "## Parameter Estimation Theory"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "### Classical  parameter estimation"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "Classical parameter estimation, such as the maximum-likelihood estimator (MLE), uses multiple samples to calculate data containing an unknown parameter. That is, given a probability distribution depending on an unknown parameter $\\phi$, where $f$ is the probability density function, and ${\\bf{X}}=\\{X_1,X_2,... X_N\\}$ is $N$ independent and identically distributed sample data, the estimated value $\\hat\\phi$ is obtained by using MLE:\n",
                "\n",
                "$$\n",
                "\\hat\\phi({\\bf X})=\\arg\\max_{\\phi}\\prod_i^Nf(X_i,\\phi), \\tag{1}\n",
                "$$\n",
                "\n",
                "which finds $\\phi$ such that $X_i(i=1,...,N)$ occurs with maximum probability. After obtaining the estimated parameters, how to measure the difference between the estimated parameters and the actual parameters? That is, how to measure the accuracy of the estimated parameters? In the parameter estimation theory, mean squared error (MSE) is generally used to measure the accuracy.\n",
                "\n",
                "The sample containing the unknown parameter $\\bf{\\phi}$ is ${\\bf{X}}=\\{X_1,X_2,... X_N\\}\\in {\\mathcal F}^N$, where ${\\mathcal F}^N$ is the sample space. Let $\\hat{\\phi}({\\bf X}):{\\mathcal F}^N\\rightarrow\\Phi$ be the estimator that estimates $\\phi\\in\\Phi$ ($\\Phi$ is the parameter space). Then the MSE of $\\hat{\\phi}(\\bf X)$ with respect to $\\phi$ is defined as\n",
                "\n",
                "$$\n",
                "\\begin{aligned}\n",
                "{\\rm{MSE}}&=\n",
                "E[(\\hat{\\phi}({\\bf X})-\\phi)^2]\\\\\n",
                "&=\\sum_{{\\bf X}\\in {\\mathcal F}^N}f({\\bf X};\\phi)(\\hat{\\phi}({\\bf X)}-\\phi)^2,\n",
                "\\end{aligned} \\tag{2}\n",
                "$$\n",
                "\n",
                "where $f({\\bf X}; \\phi)$ is the probability density of getting the current sample $\\bf X$ given the parameter $\\phi$. Although different estimators affect the value of MSE, regardless of the choice of $\\hat{\\phi}({\\bf X})$, there is ${\\rm{MSE}}\\geq\\frac{1}{N{\\mathcal I(\\phi)}}$. This lower bound is known as the Cramér–Rao (CR) bound [2], where $\\mathcal I(\\phi)$ is the Fisher information, which reflects to what extent a slight parameter change will change the probability distribution (see [Quantum Fisher Information](https://qml.baidu.com/tutorials/qnn-research/quantum-fisher-information.html) for the application of Fisher information in Paddle Quantum). "
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "### Quantum parameter estimation"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "In quantum parameter estimation, the samples used in classical parameter estimation become a quantum state $\\rho_{\\phi}\\in{\\mathcal F}({\\mathcal H})$ to be measured, where $\\phi$ is the unknown parameter and ${\\mathcal F}({\\mathcal H})$ denotes the set of density operators on the Hilbert space $\\mathcal H$. According to the steps of quantum metrology and [4], assuming that the initial input state is $|0\\rangle$ and the estimator is $\\hat{\\phi}(m)$, where $m$ is related to the measured results (such as the difference in the number of 1s and the number of 0s in the measured bit string), then the MSE is\n",
                "\n",
                "$$\n",
                "\\begin{aligned}\n",
                "{\\rm MSE}&=E[(\\hat{\\phi}(m)-\\phi)^2]\\\\\n",
                "&=\\sum_m(\\hat{\\phi}(m)-\\phi)^2p(m|\\phi),\n",
                "\\end{aligned} \\tag{3}\n",
                "$$\n",
                "\n",
                "where $p(m|\\phi)$ is the probability of obtaining $m$ by measurement with a given parameter $\\phi$. Similarly, no matter how $\\hat{\\phi}(m)$ is chosen, there is a quantum CR bound ${\\rm{MSE}}\\geq\\frac{1}{NF(\\phi)}$, where $N$ is the number of repeated measurements of $\\rho_\\phi$, and $F(\\phi)$ is the quantum Fisher information (see [Quantum Fisher Information](https://qml.baidu.com/tutorials/qnn-research/quantum-fisher-information.html) for the application of quantum Fisher information in Paddle Quantum). "
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "## Variational Quantum Sensors"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "Quantum sensing is the application of quantum metrology. Based on [4], this tutorial mainly introduces a kind of variational Ramsey interferometer. The traditional Ramsey interferometer [2] (as shown in Figure 1) is a particle interferometry method that uses magnetic resonance phenomena to measure particle transition frequency and is used to measure unknown parameters. The variational Ramsay interferometer [6] (as shown in Figure 2) consists of two parameterized quantum circuits (denoted as $U_{\\rm{En}}(\\theta_{\\rm En})$ and $U_{\\rm{De}}(\\theta_{\\rm{De}})$) in the encoding and decoding parts of the circuit for setting entanglement and measuring quantum states. Previous studies have shown that by combining with quantum theory (such as quantum entanglement), the scaling of parameter estimation accuracy is enhanced to $\\frac{1}{N}$ from $\\frac{1}{\\sqrt{N}}$ [1-3], and the appropriate entanglement mode can be effectively found by the variational method.\n",
                "\n",
                "![Ramsey_interferomertry](./figures/QM-fig-RI.png \"Figure 1:Ramsey interferometer.\")\n",
                "<center> Figure 1:Ramsey interferometer. On the left is the classical configuration of a Ramsey interferometer, and on the right is a Ramsey interferometer using quantum entanglement. Compared with the classical setting, the interferometer using quantum entanglement has an advantage in the order of square root in the accuracy of estimating unknown parameters. </center>\n",
                "\n",
                "![V_Ramsey_interferomertry](./figures/QM-fig-V_RI3.png \"Figure 2:Variational Ramsey interferometer.\")\n",
                "<center> Figure 2:Variational Ramsey interferometer. Two parameterized quantum circuits are optimized to find an efficient way of utilizing entanglement. </center>\n",
                "\n",
                "In the following, we construct a parameterized quantum circuit using Paddle Quantum to investigate the accuracy of estimating normally distributed parameters by a variational Ramsey interferometer. There are three steps as follows.\n",
                "1. Initialization.\n",
                "2. Evaluation.\n",
                "3. Optimization.\n",
                "\n",
                "The probability density function of the parameters that obey the normal distribution is:\n",
                "\n",
                "$$\n",
                "f(x)=\\frac{1}{\\sqrt{2\\pi}\\nu}\\exp(-\\frac{(x-\\mu)^2}{2\\nu^2}), \\tag{4}\n",
                "$$\n",
                "\n",
                "where $\\mu$ is the mean and $\\nu^2$ is the variance. In this case, the loss function of the variational Ramsey interferometer is:\n",
                "\n",
                "$$\n",
                "C(\\theta_{\\rm En},\\theta_{\\rm De},a)=\\int d\\phi f(\\phi){\\rm{MSE}}(\\phi), \\tag{5}\n",
                "$$\n",
                "\n",
                "where the estimator is $\\hat\\phi(m)=am$, $a$ is a parameter to be optimized, $m$ is the difference in the number of 1s and the number of 0s in the measured bit string, ${\\rm MSE(\\phi)}=\\sum_m(\\hat{\\phi}(m)-\\phi)^2p_{\\theta}(m|\\phi)$, and $\\theta=(\\theta_{\\rm En},\\theta_{\\rm De})$."
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "### 1. Initializaiton"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "- Set the input state as $|0\\rangle$.\n",
                "- Construct the parameterized quantum circuits $U_{\\rm{En}}$ and $U_{\\rm{De}}$ for encoding and decoding, respectively.\n",
                "- Encode the unknown parameter."
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "Let us import the necessary packages:"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 1,
            "metadata": {
                "ExecuteTime": {
                    "end_time": "2022-11-04T07:28:26.890500Z",
                    "start_time": "2022-11-04T07:28:23.298471Z"
                }
            },
            "outputs": [],
            "source": [
                "import numpy as np\n",
                "from math import exp, pi\n",
                "import matplotlib.pyplot as plt\n",
                "from typing import Optional, Tuple, List\n",
                "\n",
                "import paddle\n",
                "import paddle_quantum as pq\n",
                "from paddle_quantum.ansatz import Circuit\n",
                "from paddle_quantum.loss import Measure\n",
                "\n",
                "pq.set_backend('state_vector')\n",
                "pq.set_dtype('complex128')"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "Next, we construct a parameterized quantum circuit of $N$ qubits to complete the initialization.\n",
                "\n",
                "The whole circuit includes the following five parts.\n",
                "- $R_y^{\\otimes N}(\\frac{\\pi}{2})$ gates.\n",
                "- Encoding circuit $U_{\\rm{En}}(\\theta_{\\rm{En}})$.\n",
                "- Circuit with unknown parameter $R_z^{\\otimes N}(\\phi)=e^{-i\\phi J_z}$, where $J_z=\\frac{1}{2}\\sum_{k=1}^N\\sigma_z^{(k)}$.\n",
                "- Decoding circuit $U_{\\rm{De}}(\\theta_{\\rm{De}})$.\n",
                "- $R_x^{\\otimes N}(\\frac{\\pi}{2})$ gate.\n",
                "\n",
                "So the unitary of the entire circuit is\n",
                "\n",
                "$$\n",
                "U(\\phi,\\theta_{\\rm{En}},\\theta_{\\rm{De}})=R_x^{\\otimes N}(\\frac{\\pi}{2})U_{\\rm{De}}(\\theta_{\\rm{De}})R_z^{\\otimes N}(\\phi)U_{\\rm{En}}(\\theta_{\\rm{En}})R_y^{\\otimes N}(\\frac{\\pi}{2}). \\tag{6}\n",
                "$$\n",
                "\n",
                "When the depth of the encoding circuit and decoding circuit is $0$, the entire circuit is the classical configuration of a Ramsey interferometer. Here we construct the encoding and the decoding circuits."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 2,
            "metadata": {
                "ExecuteTime": {
                    "end_time": "2022-11-04T07:28:26.906450Z",
                    "start_time": "2022-11-04T07:28:26.892489Z"
                }
            },
            "outputs": [],
            "source": [
                "def RamseyCircuit(theta_EN: paddle.Tensor, theta_DE: paddle.Tensor, input_phi: float) -> Circuit:\n",
                "    r\"\"\" Construct variational Ramsey interferometer\n",
                "    \n",
                "    Args:\n",
                "        theta_EN: the parameters of encoding circuit, shape is [depth_En, num_qubits,3]\n",
                "        theta_DE: the parameters of decoding circui, shape is [depth_De, num_qubits,3]\n",
                "        input_phi: unknown parameter\n",
                "    \n",
                "    Returns:\n",
                "        Circuit\n",
                "    \n",
                "    \"\"\"\n",
                "    depth_EN, depth_DE = theta_EN.shape[0], theta_DE.shape[0]\n",
                "    num_qubits = theta_EN.shape[1]\n",
                "    \n",
                "    cir = Circuit(num_qubits)\n",
                "    cir.ry(param=pi/2)\n",
                "    \n",
                "    # Construct the encoding circuit to generate an entangled state\n",
                "    for depth in range(depth_EN):\n",
                "        cir.u3(param=theta_EN[depth])\n",
                "        cir.cnot()\n",
                "    \n",
                "    # the gate of unknown parameter\n",
                "    cir.rz(param=input_phi)\n",
                "    \n",
                "    # Construct the decoding circuit to rotate the measurement basis\n",
                "    for depth in range(depth_DE):\n",
                "        cir.cnot()\n",
                "        cir.u3(param=theta_DE[depth])\n",
                "        \n",
                "    cir.rx(param=pi/2)\n",
                "    \n",
                "    return cir"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "### 2. Evaluation"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "- Calculate the probability distribution of $m$.\n",
                "- Calculate the MSE of the estimator $\\hat{\\phi}(m)=am$: ${\\rm MSE}=\\sum_m(\\hat{\\phi}(m)-\\phi)^2p_{\\theta}(m|\\phi)$.\n",
                "- Calculate the loss function. Here, we use the discrete form of the loss function to approximate its integral form:\n",
                "\n",
                "$$\n",
                "C=\\sum_{k=1}^t\\frac{2}{t}f(\\phi_k){\\rm {MSE}}, \\tag{7}\n",
                "$$\n",
                "\n",
                "where $t$ is the number of partitions in the selected interval (the total interval size is $2$ in this tutorial), and $f(\\phi_k)$ is the probability corresponding to $\\phi_k$."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 3,
            "metadata": {
                "ExecuteTime": {
                    "end_time": "2022-11-04T07:28:26.922400Z",
                    "start_time": "2022-11-04T07:28:26.908437Z"
                }
            },
            "outputs": [],
            "source": [
                "# Define the function to calculate m\n",
                "def calculate_m(num_qubits: int)-> List[int]:\n",
                "    m_list = []\n",
                "    for k in range(2**num_qubits):\n",
                "        k_bin = list(bin(k)[2:].zfill(num_qubits))\n",
                "        u = k_bin.count('1')\n",
                "        v = k_bin.count('0')\n",
                "        m = u - v\n",
                "        m_list.append(m)\n",
                "\n",
                "    return m_list\n",
                "\n",
                "\n",
                "def MSE(qnn: paddle.nn.Layer, phi: float) -> paddle.Tensor:\n",
                "    r\"\"\" Calculate MSE \n",
                "    \n",
                "    Args:\n",
                "        cir: variational Ramsey interferometer\n",
                "        phi: unknown parameter\n",
                "        a: parameter of the estimator\n",
                "        \n",
                "    Returns:\n",
                "        MSE\n",
                "    \n",
                "    \"\"\"\n",
                "    cir = RamseyCircuit(qnn.theta_EN, qnn.theta_DE, phi)\n",
                "    \n",
                "    # Measurement\n",
                "    output_state = cir()\n",
                "    prob = Measure()(output_state)\n",
                "    \n",
                "    num_qubits = cir.num_qubits\n",
                "    m = calculate_m(num_qubits)\n",
                "    return sum([((phi - qnn.a * m[i]) ** 2) * prob[i] for i in range(2 ** num_qubits)])\n",
                "\n",
                "# Define loss function\n",
                "def loss_func(qnn: paddle.nn.Layer, sampling_times: int, mean: float, variance: float):\n",
                "    r\"\"\" Calculate loss \n",
                "    \n",
                "    Args:\n",
                "        qnn: a QNN\n",
                "        sampling_times: the number of partitions in the selected interval\n",
                "        mean: the mean of a normal distribution\n",
                "        variance: the variance of a normal distribution\n",
                "    \n",
                "    \"\"\"\n",
                "    list_phi = [] # The list of phi\n",
                "    list_pdf = [] # The list of the probability density function of phi\n",
                "    for i in range(sampling_times):\n",
                "        phi = mean - 1 + (2 * i + 1)/ sampling_times # The range of phi is [u - 1, u + 1]       \n",
                "        prob = (1 / (((2 * pi) ** 0.5) * variance)) * exp(-((phi - mean) ** 2) / (2 * (variance**2)))  # The probability density of phi\n",
                "        list_phi.append(phi)\n",
                "        list_pdf.append(prob)\n",
                "    \n",
                "    return sum([list_pdf[i] * MSE(qnn, list_phi[i]) * (2 / sampling_times) for i in range(sampling_times)])"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "### 3. Optimization"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 4,
            "metadata": {
                "ExecuteTime": {
                    "end_time": "2022-11-04T07:28:26.938337Z",
                    "start_time": "2022-11-04T07:28:26.926376Z"
                }
            },
            "outputs": [],
            "source": [
                "def optimization(qnn: paddle.nn.Layer, num_itr: int, learning_rate: float) -> None:\n",
                "    r\"\"\" Optimize QNN\n",
                "    \n",
                "    Args:\n",
                "        qnn: a QNN\n",
                "        num_itr: the number of optimization iterations\n",
                "        learning_rate: learning rate\n",
                "    \n",
                "    \"\"\"\n",
                "    opt = paddle.optimizer.Adam(learning_rate=learning_rate, parameters=qnn.parameters())\n",
                "    print(\"Begin:\")\n",
                "    for itr in range(1, num_itr):\n",
                "        loss = qnn()\n",
                "        loss.backward()\n",
                "        opt.minimize(loss)\n",
                "        opt.clear_grad()\n",
                "\n",
                "        if itr % 10 == 0:\n",
                "            print(\"     iter:\", itr, \"loss:\", \"%.4f\" % loss.numpy())"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 9,
            "metadata": {
                "ExecuteTime": {
                    "end_time": "2022-11-04T07:29:44.003762Z",
                    "start_time": "2022-11-04T07:29:43.988814Z"
                }
            },
            "outputs": [],
            "source": [
                "class RamseyInterferometer(paddle.nn.Layer):\n",
                "    r\"\"\" Variational Ramsey interferometer\n",
                "    \n",
                "    \"\"\"\n",
                "    def __init__(self) -> None:\n",
                "        super().__init__()\n",
                "        \n",
                "        # Add parameters\n",
                "        theta_EN = self.create_parameter(\n",
                "            shape= [depth_EN, N, 3], dtype=\"float64\",\n",
                "            default_initializer=paddle.nn.initializer.Uniform(low=0, high=2 * pi),\n",
                "        )\n",
                "        theta_DE = self.create_parameter(\n",
                "            shape= [depth_DE, N, 3], dtype=\"float64\",\n",
                "            default_initializer=paddle.nn.initializer.Uniform(low=0, high=2 * pi),\n",
                "        )\n",
                "        self.add_parameter('theta_EN', theta_EN)\n",
                "        self.add_parameter('theta_DE', theta_DE)\n",
                "        \n",
                "        # Add the parameter of the estimator\n",
                "        a = self.create_parameter(\n",
                "            shape= [1], dtype=\"float64\",\n",
                "            default_initializer=paddle.nn.initializer.Uniform(low=0, high=2 * pi),\n",
                "        )\n",
                "        self.add_parameter('a', a)\n",
                "        \n",
                "    def forward(self) -> paddle.Tensor:\n",
                "        r\"\"\" Calculate loss\n",
                "        \n",
                "        \"\"\"\n",
                "        return loss_func(self, TIMES, MEAN, VAR)\n",
                "    \n",
                "    def opt(self) -> None:\n",
                "        r\"\"\" Optimize QNN\n",
                "        \n",
                "        \"\"\"\n",
                "        optimization(self, num_itr=ITR, learning_rate=LR)"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "N = 2  # The number of qubits\n",
                "depth_EN = 3  # The depth of encoding circuit\n",
                "depth_DE = 3  # The depth of decoding circuit\n",
                "LR = 0.2  # Learning rate\n",
                "ITR = 150   # The number of optimization iterations\n",
                "TIMES = 30  # The number of partitions in the selected interval\n",
                "MEAN = 2  # The mean of a normal distribution\n",
                "VAR = 1  # The variance of a normal distribution"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 14,
            "metadata": {
                "ExecuteTime": {
                    "end_time": "2022-11-04T07:44:05.439096Z",
                    "start_time": "2022-11-04T07:40:20.208851Z"
                }
            },
            "outputs": [
                {
                    "name": "stdout",
                    "output_type": "stream",
                    "text": [
                        "Begin:\n",
                        "     iter: 10 loss: 3.8495\n",
                        "     iter: 20 loss: 0.8521\n",
                        "     iter: 30 loss: 0.7484\n",
                        "     iter: 40 loss: 0.4504\n",
                        "     iter: 50 loss: 0.3610\n",
                        "     iter: 60 loss: 0.3375\n",
                        "     iter: 70 loss: 0.3042\n",
                        "     iter: 80 loss: 0.2827\n",
                        "     iter: 90 loss: 0.2600\n",
                        "     iter: 100 loss: 0.2386\n",
                        "     iter: 110 loss: 0.2217\n",
                        "     iter: 120 loss: 0.2096\n",
                        "     iter: 130 loss: 0.2026\n",
                        "     iter: 140 loss: 0.1996\n"
                    ]
                }
            ],
            "source": [
                "QNN = RamseyInterferometer()\n",
                "QNN.opt()"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "The optimized circuit is used to estimate the parameters with a normal distribution, and then we draw the MSE."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 15,
            "metadata": {
                "ExecuteTime": {
                    "end_time": "2022-11-04T07:44:49.222284Z",
                    "start_time": "2022-11-04T07:44:47.797824Z"
                },
                "scrolled": true
            },
            "outputs": [
                {
                    "data": {
                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAF3CAYAAAAFEil7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABX4UlEQVR4nO3deXhU1f3H8ffJZCM7BLKwb4psCqgoiIILiFpcW7UU963U2lpt1S4WsVrct2qpotUq4lZ/LrigWHdFIjsIroCyBAJk3ycz5/fHzYQQE0hCMndm8nk9T54kd86dfE/u3JnvPfcsxlqLiIiISLBEuR2AiIiIdCxKPkRERCSolHyIiIhIUCn5EBERkaBS8iEiIiJBpeRDREREgkrJh4iIiASVkg8REREJqmi3AwgVxhgDdAdK3I5FREQkDCUDW20zZi9V8rFbd2Cz20GIiIiEsZ7Aln0VUvKxWwnApk2bSElJafZOXq+Xt99+m0mTJhETE9NuwbkhUusWqfUC1S0cRWq9QHULR62tV3FxMb169YJm3j1Q8tFASkpKi5OPhIQEUlJSIuoFCJFbt0itF6hu4ShS6wWqWzgKVr3U4VRERESCSsmHiIiIBJWSDxEREQkqJR8iIiISVEo+REREJKg02qWd+PyWnA355JVUkpEcz+h+XfBEGbfDEhERcZ2Sj3awYE0uM+evJbeosm5bdmo8M6YMYfKwbBcjExGRjixULoyVfLSxBWtymT53GQ3nlt1WVMn0ucuYPW2UEhAREQm6ULowVp+PNuTzW2bOX/ujxAOo2zZz/lp8/n1Oey8iItJmAhfG9RMP2H1hvGBNblDjUfLRhnI25O9xYMu/LSHvhR/w7qwCnAQkt6iSnA35LkUoIiIdTSheGCv5aEN5JXtmlKWrCqlYX0bJysK9lhMREWkvDS+MC97Po+D9PGqKvYA7F8ZKPtpQRnL8Hr8nH9IZgLI1Rdgaf5PlRERE2kv9C15/lY+SZfkUL95FTZG3yXLtTclHGxrdrwvZqfEE+g3H90vEkxyNv9JH+dclGJzOPaP7dXEzTBER6UDqX/CWrS3Gei3RXWKJ69mpyXLtTclHG/JEGWZMGQKAAUyUIemQNABKVhQCMGPKEM33ISIiQRO4MMZaSlYUAJA8Ig1jnM8iNy6MlXy0scnDspk9bRRZqU4GmTQ8DQxUbSrnz0cN1DBbEREJqsCFcfW2Srx5VeAxJA5LBahrqQ/2hbHm+WgHk4dlM3FIVt1ELnd9VcXH727iyw9yYcogt8MTEZEOZvKwbA4piyYXSBiUjKeT8/Gf5dI8H0o+2oknyjBmQDoA0dccxk/e3cQTT3zBrbeOIy5O/3YREQmekpJqPlrwPQB3/vkoegxJ0wynkW7y5H707JnM5s0lvPTSt5x77kFuhyQiIh3IvHnrKCvzMmhQF6b/fEhdfw+3qM9HEHg8UVx66XAAHnlkpcvRiIhIR/PII6sAuPzyg11PPEDJR9BcfPEwoqIM7723ia+/1gynIiISHEuXbmPZsu3Exno4//whbocDKPkIml69Ujj55H4AzJmzyuVoRESkowi0epx11gF07ZrgcjQOJR9BdPnlhwDwxBNfUFVV43I0IiIS6UpKqpk3bx3g3HIJFUo+guikk/rRo0cSO3dW8PLL37odjoiIRLhnn/2S0lIvBx7YmfHje7kdTh0lH0EUHR3FJZcEOp7q1ouIiLSvhx92BjmESkfTACUfQXbJJcMxBt599we++abA7XBERCRCLV26jaVLnY6mF1ww1O1w9qDkI8h6907hpJOcjqePPqrWDxERaR9z5qwG4MwzQ6ejaYCSDxcEOp4+/vgaqqt9LkcjIiKRprS0mqefXguEVkfTACUfLjjllP5kZyeyY0cFr7yijqciItK2Ah1NBw5MY8KE0OloGqDkwwXqeCoiIu0p1GY0bUjJh0suvdTpePrOO9/z7bfqeCoiIm1j+fLtfP75NmJiorjwwmFuh9MoJR8u6dMnlcmTAx1PV7scjYiIRIpAq8eZZx5At26h1dE0QMmHiwKdgNTxVERE2oLT0TQwo+khLkfTNCUfLgp0PM3LK+fVV9XxVERE9s9zz31FSUl1yHY0DVDy4aKYGA8XX6yOpyIi0jYeecSZ0fSyyw4mKir0OpoGKPlw2SWXDMMYWLjwe9avL3Q7HBERCVMrVuSRkxPoaBpaM5o2pOTDZf36pTFpUl9AHU9FRKT15sxxWtDPOOMAMjISXY5m75R8hIBAx9N//3s1Xq86noqISMuUlVUzd27ozmjakJKPEDBlygAyMxPYvr2c+fO/czscEREJM8899xXFxdUMGJDGscf2djucfVLyEQLU8VRERPZH4LPjssuGh3RH0wAlHyHi0kud5OPttzeyYUOhu8GIiEjYWLkyj8WLc4mODt0ZTRtS8hEi+vdPY+LEPlirjqciItJ8uzuaDiQzM7Q7mgYo+QghuzuerlHHUxER2afyci9PPRXoaBq6M5o2pOQjhJx66kAyMhLYtq2Mux9dySsrtrDou134/Nbt0EREJAQ999yXFBdX079/KscdF/odTQOi3Q5AdouN9TBhSl+ef2wtM+9cTObZzgspOzWeGVOGMHlYtssRiohIKPD5LTkb8rn93iUAXHJpeHQ0DVDLRwhZsCaXTzxVAFRuKKOmqBqAbUWVTJ+7jAVrct0MT0REQsCCNbmMu/1dzrr1fb5avQui4MWSwrD6jFDyESJ8fsvM+WuJ7hxLfB+nw1DpykIAAjddZs5fq1swIiId2II1uUyfu4zcosq6z4iEgcnk+31hdZEassmHMeZKY8xGY0ylMWaxMWb0PspfbYz5yhhTYYzZZIy51xgTH6x491fOhnxyiyoBSBqRBkDp6iKsz0k2LJBbVEnOhnyXIhQRETcFLlIt4Pf6Kf2iCHA+M8LtIjUkkw9jzDnAPcBMYBSwEnjLGJPRRPmpwG215QcDlwDnAH8PSsBtIK+ksu7nhAOSiUr04CutofzrkibLiYhIx1H/IrX8y2JslZ/o1Bji+zqt5eF0kRqSyQdwDTDHWvu4tXYt8EugHLi4ifJjgU+stfOstRuttW8DzwB7bS0JJRnJuxtpjMeQPKIzACVL85ssJyIiHUfg4tNaW/fZkDQiDWNMo+VCWcglH8aYWOBQ4J3ANmutv/b3MU3s9ilwaODWjDGmP3Ay8Eb7Rtt2RvfrQnZqPIGXUNKINIiCqi0VVG2rwOCMehndr4uLUYqIiFsCF59VWyqo3l6FiTYkHZzWZLlQFopDbbsCHmB7g+3bgYMa28FaO88Y0xX42DgpYDTwL2ttk7ddjDFxQFy9TckAXq8Xr9fb7GADZVuyT1P+esogfvfcCgBsajTJg1Mo+aKY8mX5pE7pzl9PGYTfV4M/SPOPtWXdQkmk1gtUt3AUqfUC1a2tjeyZTJ/OcSx/dTMAyUNTSEj2EBiWYIDMlHhG9kxudVytrVdLyxtrQ6tjijGmO7AFGGutXVRv+x3AeGvtEY3sMwF4FvgLsBgYCNyPc+vmb038nZuAGQ23z5s3j4SEhP2uR1v4+utKrrtuE9HRhkcf7UtaWijmiiIiEiw7d3q5/PKN+P1w77296dcvbt87BUF5eTlTp04FSLXWFu+rfCh+mu0EfEBmg+2ZwLYm9vkb8JS19tHa31cbYxKBR4wxt9betmloFk6n1oBkYPOkSZNISUlpdrBer5eFCxcyceJEYmJimr3f3vj8lqXfF0CvKgYfXM66VbvYuDGLP/0puF1Y2qNuoSBS6wWqWziK1HqB6tYebrzxU/z+jaT2S2T2jgTY4WzPSonnhpMO4oTBDT86W6a19Sou3me+sYeQSz6stdXGmKXA8cDLAMaYqNrfH2xitwSgYYIRuDnR6JRv1toqoCrwe6DDTkxMTKteSK3dr9HnAo460HkBlV53BNOmvcHDD6/iT386kpgYT5v8jRbF04Z1CyWRWi9Q3cJRpNYLVLe2UlHh5dFH1wDw6B3H02NkOnkllWQkO/0BPW04w2lL69XS/0HIdTitdQ9wmTHmAmPMYGA2kAg8DmCMedIYM6te+fnAdGPMucaYfsaYiTitIfOttWG9QtvPfjaIrKxEcnPLePHFb9wOR0REXPLss1+ya1cFvXsnc/rpAxkzIJ3TRvRgzID0Nk08giEkkw9r7XPA74GbgRXACGCytTbQCbU3UH+hk1uAu2u/rwUeA94CrghOxO0nNtbDL3/prFT4wAPLXI5GRETcYK3lgQeWA3DllSOJjg7Jj+9mC9norbUPWmv7WGvjrLVHWGsX13tsgrX2wnq/11hrZ1prB1prO1lre1trr7TWFroRe1u74opDiImJYtGirXz+eXhMnSsiIm3n44+3sGJFHp06RXPppcPdDme/hWzyIbtlZSVyzjnOKON//GO5y9GIiEiwBVq+zztvCF26dHI5mv2n5CNM/OY3IwHnnt+2bWUuRyMiIsHyww/FvPSS0+fvqqtGuhxN21DyESYOPzybI4/Mxuv188gjK90OR0REgmT27BX4fJbjjuvNsGHd3A6nTSj5CCO/+c0oAGbPXkl1dVgP4hERkWYoL/fyyCOrgN2fAZFAyUcYOeusA8nOTmTbtjJefPFrt8MREZF2Nm/eOvLzK+nbN4Wf/KS/2+G0GSUfYSQ21sP06SMADbsVEYl0zvBa573+178eiccTOR/ZkVOTDuLyyw8mNtbDZ5/lkpOjYbciIpHqgw82sXr1ThISorn44vAfXlufko8wk5mZyLnnDgI07FZEJJIFJhU7//yhdO4c73I0bUvJRxgKdDp67jkNuxURiUQbNxbxyivfApEzvLY+JR9h6NBDsxg7tjter5+HH9awWxGRSPPPf67A77eccEIfhgzp6nY4bU7JR5i66qrAsNsVGnYrIhJBysqqmTMn8obX1qfkI0ydddYBdO+exPbt5bzwwlduhyMiIm3k6afXUVhYRf/+qZx8cj+3w2kXSj7CVEyMh+nTtdqtiEgkieThtfVFZq06iMCw25ycbSxerGG3IiLh7r33NvHFF7tITIzhoouGuR1Ou1HyEcYyMhL5+c+d1W7V+iEiEv4C7+UXXDCUtLTIGl5bn5KPMBcYgvX881+xdWupy9GIiEhrbdhQyKuvOsNrf/3ryBteW5+SjzB36KFZHHVUD2pqNOxWRCScPfTQCqyFSZP6MnhwutvhtCslHxHgN79xMuR//WslVVU1LkcjIiItVVpazaOPrgbgt7+NzOG19Sn5iABnnHEAPXokkZdXzvPPa9itiEi4mTt3LUVFVQwcmMbkyZE5vLY+JR8RICbGw69+NQKA++9fxqff7uSVFVtY9N0ufH7rbnAiIrJX9YfXXnXVKKKijMsRtb9otwOQtnHZZQdz08xPWbp0O2fNfI+4HgkAZKfGM2PKECYPy3Y5QhERqc/nt+RsyGfhwo2sW5dPUlIMF1441O2wgkItHxFi6fYi4gYlA1C8tKBu+7aiSqbPXcaCNZoHREQkVCxYk8u429/l53M+47a7PgcgaXgan/6Q73JkwaHkIwL4/JaZ89eSfGgXAMq/KqamxAtA4KbLzPlrdQtGRCQELFiTy/S5y8gtqsRbUE3Fd840CZ5hyR3mYlHJRwTI2ZBPblElsZnxxPXsBH4oWb679cMCuUWV5GzoGBm1iEioClwsBi4FS5Y579Xx/ROJ7hIHdIyLRSUfESCvpLLu5+TDnNaP0uUF+Kv9TZYTEZHgC1wsAvirfJSuKgQgpbbluqNcLCr5iAAZybun4E04IJnozrH4K/2UrixospyIiARf/YvAkhWF2Go/0V1iie+X2GS5SKTkIwKM7teF7NR4DGCiDCmjnQy6+PN8rM9icEa9jO7XxdU4RUQ6usBFoK3xU7LEad1IPSIdY0yj5SKVko8I4IkyzJgyBAADJA1LxZPowVdSQ/naIgBmTBmCpwOMHRcRCWWBi8WyL4rxldbgSYomcWhq3eMd5WJRyUeEmDwsm9nTRpGVGo+Jjqrr+1G2pICHpo7UPB8iIiHAE2X4y8kHUZSzC4CUw7tgPM6FYeDysCNcLGqSsQgyeVg2E4dkkbMhnw2nFHP5ya9SlleJ7/sKONjt6EREBKDquzJq8qvxxHtIOiStbntWB5oUUslHhPFEGcYMSGfMgHRW/moEd9zxObffnsOUKQPcDk1EpMOz1nL77TkAXHfNYUy5eAh5JZVkJDu3WiK9xSNAt10i2NVXH0psrIdPPtnCJ59scTscEZEO74MPNpGTs434+Giu/u0oxgxI57QRPRgzIL3DJB6g5COiZWcncf75TkfUQKYtIiLuCbwXX3TRUDIyEvdROnIp+Yhwf/jD4RgD8+d/xxdf7HQ7HBGRDmvFijwWLNhIVJTh978/3O1wXKXkI8IdeGAXzjjjAADuvPNzl6MREem47rjDafU4++xB9O+f5m4wLlPy0QFcf/1oAJ5+eh0//FDscjQiIh3Phg2FPPfcVwBcd13HbvUAJR8dwujR2UyY0IuaGj/33rvU7XBERDqcu+9egt9vmTSpLyNHZrodjuuUfHQQgdaPOXNWkZ9f4XI0IiIdR15eGY89tgbY/V7c0Sn56CBOPLEvhxzSjbIyLw89tMLtcEREOox//GM5lZU1HHZYJsce28vtcEKCko8OwhjDddc5GfcDDyyjvNzrckQiIpGvtLS67oLvhhuO+NECch2Vko8O5OyzB9G3bwo7d1bw+ONr3A5HRCTizZmzioKCSg44oDOnnz7Q7XBChpKPDiQ6Ooprrz0MgLvu+pyaGr/LEYmIRK7qah93370EcOZc8nj0kRug/0QHc/HFw+natRMbNxbzwgtfuR2OiEjEmjdvHVu2lJKVlch55w1xO5yQouSjg0lIiOGqq0YCzjS/1lqXIxIRiTx+v62bVOx3vzuU+Hit41qfko8O6MorR5KYGMPKlTt4++2NbocjIhJxXnvtO9atyyclJZYrrjjE7XBCjpKPDig9vROXXXYwoAXnRETamrWW225z3lunTx9BamqcyxGFHiUfHdQ11xxKdHQU7723ic8/z3U7HBGRiPHxx1tYtGgrsbEefvvbUW6HE5KUfHRQvXqlMHXqQYBaP0RE2lLgPfXCC4eSnZ3kcjShKWSTD2PMlcaYjcaYSmPMYmPMXuekNcakGWMeMsbkGmOqjDFfG2NODla84Sgw6dj//d83fP11vsvRiIiEv9Wrd/D66+sxBn7/ey0g15SQTD6MMecA9wAzgVHASuAtY0xGE+VjgYVAX+CnwCDgMmBLMOINV0OHduUnP+mPtXDnnZ+7HY6ISNi74w7nvfSssw7kgAM6uxxN6ArJ5AO4BphjrX3cWrsW+CVQDlzcRPmLgS7A6dbaT6y1G621H1hrVwYp3rAVWOToySfXMn/RJl5ZsYVF3+3C59cQXBGRlvj++yKeeWYdoAXk9iXkBh7XtmIcCswKbLPW+o0x7wBjmtjtVGAR8JAx5jRgBzAPuN1a62vi78QB9bsgJwN4vV683uavexIo25J9QskRR2QyeERX1q3YyQXXLKTbcU7jUlZKPNefeAAQvnVrSrgfs71R3cJPpNYLOkbdqqqrydmQz87SKubetwqfz3Lccb045JD0sKx3a49ZS8ubUJtkyhjTHed2yVhr7aJ62+8Axltrj2hkny9xbrk8DfwTGFj7/QFr7cwm/s5NwIyG2+fNm0dCQsL+VySM5OSU8ve/55KQEMWcOX1JTPS4HZKISFgpLvZx6aUbqK623HRTd0aMSHQ7pKAqLy9n6tSpAKnW2uJ9lQ+5lo9WigLygMtrWzqWGmN6AH/A6TfSmFk4/UoCkoHNkyZNIiUlpdl/2Ov1snDhQiZOnEhMTEzroneJz2858b4PybVRxHbdRfnOan77aAldxqQDEB9lufkwP8efcAJxsbEuR9t2wvmY7YvqFn4itV4Q2XVb+MVWvN+v4MYlUVT5DTs/zKe62hKXGce8qmRG9xvJCYMz3Q6zxVp7zIqL95lv7CEUk4+dgA9oeNQygW1N7JMLeBvcYlkHZBljYq211Q13sNZWAVWB3wPLHMfExLTqJGntfm5a8t0uvi+oAqJIHp3OrjdyKcjJJ2FUF0z07u5AK7eUctSB4XcS7Us4HrPmUt3CT6TWCyKvbj6/5fa3vuGag6DKb6iosBQuKQQg+YiuVPujuPn1r5g0rAeeKONusK3U0mPW0uMbch1OaxOFpcDxgW3GmKja3xc1sdsnwMDacgEHArmNJR7iyCuprPs5cUgqnuRofGU+SlYW7lFuZ2kVIiLiyNmQz7bi3e+fpasK8Vf6iE6LIWFQMhbILaokZ4OmMGhKyCUfte4BLjPGXGCMGQzMBhKBxwGMMU8aY2bVKz8bZ7TL/caYA40xpwB/Ah4KctxhJSM5vu5n4zGkjukKQPFnu/B7/XWPdU3S1MAiIgH1L9z8Xj/Fi3cBkDI6HVOvpaN+OdlTSCYf1trngN8DNwMrgBHAZGvt9toivYHseuU3AScChwOrgAeA+4HbghZ0GBrdrwvZqfEETpWk4al4UqLxldZQuqKwbvuhfTRWXUQkoP6FW9HyQnylNXhSokkantpkOdlTSCYfANbaB621fay1cdbaI6y1i+s9NsFae2GD8oustUdaa+OttQOstX9vapitODxRhhlThgBgABMdVdf6UbR4Z13rR7jesxQRaQ+j+3UhKyWeyko/+Z86rR6pY7rW9ZUzQHZqPKP7dXExytAWssmHBMfkYdnMnjaKrFQnQ08anoYnNQZ/mY/xvo415FhEpDk8UYYbTjqIBQuK8JX7iE6NIWl4GkBdi/GMKUN04bYXoTjaRYJs8rBsJg7JImdDPnklleSkp/P3P37CK099xfGHd3c7PBGRkHNkr86c+38FAKSO7YrxOIlGVmo8M6YMYfKw7L3t3uEp+RDAyeTHDHDm9zh5aBbPPfoF331XyJtvFnLWWS4HJyISYv75z5UUF/vo3z+VJ+6dRH5FNRnJzq0WtXjsm267yI/ExHj461+dmexfeqmA4mINtRURCSguruKee5YB8Je/HMHRg7px2ogejBmQrsSjmZR8SKOmTh3MAQekUVLi56GHtD6fiEjAAw8sIz+/kh49Yvj5zwe5HU5YUvIhjYqOjuIvf3GW0bn33mUUFan1Q0SksLCSu+9eAsC556bj8ehjtDX0X5MmnX32gfTsGUthYRX337/U7XBERFx3771LKSysYsiQdMaOTXI7nLCl5EOa5PFEce65zjj1e+5ZSkGBZusTkY4rP7+Ce+91LsRuvPEIPB7172gtJR+yV2PHJjF0aDpFRVXce+8St8MREXHN3XcvoaSkmoMP7sYZZwx0O5ywpuRD9ioqynDjjU7fj/vuW8auXRUuRyQiEnw7d5Zz//3OCJeZM8cSpVEt+0XJh+zT6acP5JBDulFSUl3X0UpEpCO5887PKSvzMnJkBqedplaP/dXmyYcxJqOtn1PcFRVlmDnzKMAZYrZjR7nLEYmIBM/27WU8+OByAG6++SiMUavH/mp28mGMSan92lf33t7GmJeNMTcbYzQAOkKceuoARo3KpKzMy513fu52OCIiQXPHHTmUl9dw+OFZnHJKf7fDiQgtafkoAD4EzthbIWvtEuAcYBjwRetDk1BijOHmm8cC8OCDy9m+vczliERE2l9ubin//Kcz0aJaPdpOS5KPCmC8tfYpAGPM1bUtHO/Wfr8qUNBaWwVcCGhsZgQ5+eT+jB6dRUVFDXfckeN2OCIi7e6223KorKxhzJjunHhiX7fDiRgtST7WW2uLAr9Ya+8DrgeOAf5srf1H/cLW2mJgXVsEKaHBaf1w+n78858ryc0tdTkiEZH2s3lzCQ8/7LR6/O1vavVoSy1JPn7UimGt/QpYY61t6vZKSauikpA1aVJfxo7tTmVlDbfdptYPEYlcs2YtpqrKxzHH9OS443q7HU5EaYvRLvlt8BwSJozZPfLl4YdXsnmz8ksRiTzff1/EnDmrAPX1aA+a50Na7Pjje3P00T2pqvIxa9Zit8MREWlzt966GK/Xz3HH9Wb8+F5uhxNx2jv56NzOzy8uqD/yZc6cVfzwQ7HLEYmItJ316wt5/PE1gDObqbS96BaUPcgY82Ej24c3sT0NGNqqqCTkTZjQm2OP7cV7723ills+46LrDyWvpJKM5HhG9+uCR1MPi0iYuuWWz6ip8TNpUl/GjevpdjgRqSXJRxIwronHmtpuWxaOhJOZM4/ivfee5dHHVvGGp4zo1FgAslPjmTFlCJOHZbscoYhI8/j8lpwN+axYs4Mnn3TGUKjVo/20JPlYC/wFZ7KxfTE4LR93tiImCRNlnT3E902kcmMZRZ/uJP2k7gBsK6pk+txlzJ42SgmIiIS8BWtymTl/LblFlex8bSs+nyVtUAqFSWrBbS8tST7mWGtfbsmTG2P0yROhfH7LzPlrSRvXlW0byyhdXUTKkV2J6RyLxck+Z85fy8QhWboFIyIha8GaXKbPXYYFvLuqKFvrTGfV6YguuohqRy3pcDq/Fc//Ziv2kTCQsyGf3KJK4nokEN8/ESwUfbKz7nEL5BZVkrNBI7FFJDQFLqIC/QMKP9kJFjodkERsdifAuYjy+dWDoK01O/mw1q5v6ZNbaze2dB8JD3klu+ecSxvXDYCyL4qo3l7ZZDkRkVASuIgCqM6rpHydM3Iv7SjnPU0XUe2nzYbaGmMmG2PeMcZ8YYyZbYzp1lbPLaEnIzm+7ue47E4kDE4BIP/d7VhrGy0nIhJKAhdH1loK3ssDIGFQMrGZ8Y2Wk7bT7OTDGPO8MSav9muhMeYv9R6bCrwOHAsMBq4APjHGpLZ5xBISRvfrQnZqPIHeHJ3HdwOPoeqHciq+K8XgjHoZ3a+Lm2GKiDQpcHFUub6Myo1l4DGkjc9ospy0nZa0fLwMxAAXWGsnWmtvATDGZAD/rC3zAdAf6AN8B/y57UKVUOKJMsyYMgRwOpdGp8aScpiTaBS+l4f1WWZMGaLOpiISskb360JWUhwF720HIGVUZ2I6x9Y9rouo9tOS5ONE4EprbcNOpDOAFGAbcKq1dqO1dhNwPjC5bcKUUDR5WDazp40iK9W5Kkgdk05UJw/e/Gp+EpesHuIiEtI8UYbR1bF4d1UTFe8hZWzXuscCl026iGofLZrhFLiw/gZjTB/gEpx+OTOttXVrrFtrdxhjKtoiSAldk4dlM3FIFjkb8skrqeSj1C7cPfMznnt4Dbf+4UhSU+PcDlFEpFHFxVU897AzjXqvE7Ig3lP3WJYmS2xXLUk+Km39noSOGUAssB54rJF9YlobmIQPT5RhzIB0AE4emsVrz37NV1/lM2vWYm677RiXoxMRadztt+eQl1fOAQd0ZuULP2PFliItExEkLbntkmqMqUsLjTGjcW6tWGCGtdZXv7AxJg2ntUQ6kJgYD3feOR6A++5bysaNRS5HJCLyYz/8UMw99ywF4I47jqFTfDRjBqRz2ogejBmQrsSjnbUk+VgOzAIwxvQEnsa5LbbEWvt0I+X/DKjNvQP6yU/6c+yxvaiq8vHnP3/sdjgiIj/ypz99RGVlDccc05PTThvodjgdTkuSjxnARcaYQpyRLAOAIuCC+oWMMV2MMXcA17ZVkBJejDHcddcEjIF589aRk5PrdkgiInU+/zyXp59eB8Ddd0/AGLVyBFtLZjj9ATgKeAenj8crwDhr7ZeBMsaYW4G5wEjgf8C7bRqthI1RozI57zxnKO61177Pj7sLiYgEn7WWa6/9AIDzzhvCYYdluRxRx9TsDqfGmAnW2veBnzZVxlq7x7wexpgJrQ1Mwt+ttx7NCy98zccfb+Gll77hzDMPdDskEengXn75Wz76aDPx8dHceus4t8PpsFpy2+XOVjz/Ha3YRyJEz57JXHvtYQBcf/2HVFf79rGHiEj7qa72cd11TqvHtdceRq9eKS5H1HG1ZKjtSGPMb4FVwL4+RaKBETi3X6QDu+660cyZs4pvvy1k9uwV/Pa3h7odkoh0ULNnr+DbbwvJzEzg+utHux1Oh9aS5CMKuKe9ApHIlJwcy9/+No7LL3+bm29exPnnD6VzZ62TICLBlZ9fwcyZiwC4+eajSE6O3cce0p5actulBGdobSHw6T6+coCdbRmohK+LLhrG0KHp5OdXcssti9wOR0Q6oFtu+YyCgkqGDk3n4ouHux1Oh9eS5KMP8DecBKQcuN5ae3QTX2NwhuLuaIeYJcxER0dx110TAPjHP5bz3XeFrsYjIh3Lt98W8OCDywG4664JREe35KNP2kNLhtoWWmtn4CQhHwGvGGPeMcYc3UT5UjTUVmpNntyPSZP64vX6ueGGD90OR0Q6kBtu+BCv18+kSX2ZPLmf2+EILWv5AMBaW2KtvQXoCywE/muMea+xYbXW2qn7G6BEjrvuGk9UlOG///2aTz/d4nY4ItIBfPzxZl588Ruiogx33TXe7XCkVqvbnqy1Zdba23GSkPnAPGPMh8aY49sqOIksw4d34+KLhwGaeExE2p/fb7n22vcBuOSS4Qwf3s3VeGS3/b7xZa2tsNbeA/QDXgD+bYz52Bgzab+jk4hz881HkZgYw2ef5fL881+5HY6IRLDnnvuSnJxtJCXFcPPNR7kdjtTTZr1urLVVOCNcyoAxwJvGmPfa6vklMmRnJ3HddYcDzn3Y99du55UVW1j03S58frWEiEjbqKys4Y9//AiA668fTVZWossRSX0tmeejUcZZkedc4C/AQeweDfMwmuFUGnHttYfxwEPL2bixmDOufIvUI9IByE6NZ8aUIUwelu1yhCISjnx+S86GfPJKKnlr3td8/30xPXokcc01h7kdmjTQ6pYP45gKfIGzmNxgnKTjLqCftfZaa+32/QnOGHOlMWajMabSGLPYGNOsKemMMecaY6wx5uX9+fvSPj7asAsOSwOgaNFOfOU1AGwrqmT63GUsWKNVcEWkZRasyWXc7e/y8zmf8evHlvCv+52htef+ajgJCTEuRycNtTj5qE06fgGsBZ7Cae0oA27HSTqus9bu9/wexphzcGZUnQmMAlYCbxljMvaxX1+cBOij/Y1B2p7Pb5k5fy2Jw1KJyYjDVvkp+tSZjy5w02Xm/LW6BSMizbZgTS7T5y4jt6gSgMJPdmCr/cRmxvPfogJd0ISgZicftUnHNGAd8CQwCGfW078Dfa21f7TW7mywz9X7Eds1wBxr7ePW2rXAL3FaVi7eS4we4GlgBrB+P/62tJOcDfnkFlVijKHzcZkAlCwvwLurCnASkNyiSnI25LsYpYiEi8AFTeByxbuzitIVhQB0Pi4DY4wuaEJQS/p8fAkMxOnTUQTcB9xvrS3cyz5X1JZrEWNMLHAoMCuwzVrrN8a8g9OZtSl/BfKstY81NflZvb8RB8TV25QM4PV68Xq9zY41ULYl+4SL9qhbXlEZcR7nTSCufwJlByRR9k0pBQu30XNqL5wuRE45r7d9VpzUMQtPkVq3SK0XBKduORvyyS+tIM4D1lp2vLcdLCQemERqvwTAkl9awWff5jG6X5c2+7uRetxaW6+WljfNnWvBGOOv/bEAeAInAWlKNDAMOM1a62lRRM7f6g5sAcZaaxfV234HMN5ae0Qj+4wDngVGWGt3GmOeANKstac38Tduwmkh2cO8efNISEhoacjSStu3e7nqqu+prrb89reZHHuslrgWkdb55JMS7rxzG9HRhvvv702PHlo8LljKy8uZOnUqQKq1tnhf5Vs62uVdYBFQg9MC0hSzj8fblDEmGaf/yWUNb/3sxSz2XKU3Gdg8adIkUlKa/wHo9XpZuHAhEydOJCYmsjo1tUfdfH7Lifd9yPbiytpmUg8pY7uy8/0dPDhnJ69HpdA9M5G3rj4GT1T7vIR0zMJTpNYtUusFwalbzoZ8Lv7P5/gqfWx8xHn7TzmyC/dv6eRcwtb69wWHt3nLRyQet9bWq7h4n/nGHlqSfGwBJtoWTEtpjGntLFI7AR+Q2WB7JrCtkfIDqJ1pNdBsT21/FmNMDTDIWvtd/R1q5yWpqhcrADExMa16IbV2v3DQlnWLAf54ylCmz10GOH08Eg5LJ2Z1Ed5d1Wx7dwf/mDua+Lj2v2LRMQtPkVq3SK0XtG/djhyYQZekTnyxYCO+0hqiO8eSdERXqnzOe7oBslLjOXJgRrtc0ETqcWtpvVr6P2jJaJe7W5J41HqoheUBsNZWA0uBuqnajTFRtb83tib7l8BwYES9r1eB92p/3tSaOKR9TB6Wzexpo8hKjQfAeAxdTnTm9ihdWUhykX9vu4uI1PFEGc7tl0nJsgIAukzKwtSuWhtINWZMGdJuLanSOs1u+bDW3tfSJ7fWPtDSfeq5B/iPMWYJkANcDSQCjwMYY54EttSOsqkE1tTf2RhTWBvDHtslNEwels3EIVl1EwJlJMczJ+5zHn98Db/85UKWLTuPmJgWdxcSkQ6mpsbPf+5wWlK7juhMp767ZzLN0sSFIWu/ZzhtL9ba54wx3YCbgSxgBTC53sRlvQFdIocxT5RhzID0ut8PvHM88+d/x5o1O7n33qVcd12z5pQTkQ7swQeXs3x5Hmlpcax84xy+L6+qu6AZ3a+LWjxCVMgmHwDW2geBB5t4bMI+9r2wHUKSdpSe3om77hrPhRcu4KabPuXsswfRt2+q22GJSIjavLmEG2/8GIDbbz+G7tlJdCfJ5aikOdpsYTmRtnD++UMZP74nFRU1/PrX/6Pl3YxEpKP4zW/epbTUy9ix3bn00oPdDkdaQMmHhBRjDLNnTyQmJorXX1/PSy9943ZIIhKCXn31W1566Ruio6P4178mEqXbK2FFyYeEnMGD0+v6e/zmN+9SUlLtckQiEkpKS6v59a//B8A11xzK8OHdXI5IWkrJh4SkP//5CAYMSGPLllL++tdP3A5HRELITTd9yqZNJfTtm8Jf/7q3FTckVCn5kJDUqVMMDz3kTPPywAPLWLZs+z72EJGOYOXKPO67bykADz10AomJmkI9HCn5kJB14on9OOecQfj9liuueBufTyOrRToyn8/PFVcsxOez/PSnB3Lyyf3dDklaScmHhLR77z2WlJRYlizZzr/+tdLtcETERY88sorFi3NJTo7l/vuPczsc2Q9KPiSkZWcnMWvW0QD86U8fsXVrqcsRiYgbtm0r449//AiAW28dR/fums8jnCn5kJB3xRWHcPjhWRQXV/O7373ndjgi4oLf/e49ioqqOOywTH71qxFuhyP7ScmHhDyPJ4qHH3bG8T///FcsWLDB7ZBEJIjefnsjzz77JVFRhocfnoTHo4+ucKcjKGFh5MhMfvvbUQBceeU7VFR4XY5IRIKhosLL9OkLAbjqqpGMGpXpckTSFkJ6bReR+mbOPIoXXvia9euLuPlvn3HqJUO0gJRIBPL5bd2K1y/N+YL164vo0SOJv/1tnNuhSRtR8iFhIzk5lgceOI4zz3yF2+/I4T95O4jtGgdAtpbOFokIC9bkMnP+WnKLKvHurGLr4+sBuOgPo0hO1pwekUK3XSSsxA9MpNPAJKzPkv/2trqF57YVVTJ97jIWrMl1OUIRaa0Fa3KZPncZuUWVWGvZ9fY28EOngUk8tTVP53cEUfIhYcPnt9z82jq6nJCFiTFUbSqnbHURAIG1b2fOX4vPr5VwRcKNz2+ZOX9t3blctrqIqk3lmBjjnPPG6PyOIEo+JGzkbMgnt6iS6NQYUo9yFpIqeG87NSVO51ML5BZVkrMh38UoRaQ1Auc3gK+8hoL38wBIPaob0akxOr8jjJIPCRt5JZV1P6cc1oXYrHj8lX52vZFbd/ulYTkRCQ+B89ZaS/5b2/BX+IjpFkfKYV0aLSfhTcmHhI2M5Pi6n43H0PWU7phoQ+XGMkqWFTRaTkTCQ+C8LVtdRPnXJRCFc457TKPlJLwp+ZCwMbpfF7JT4wm8FcV0jSNtQgYAhe/n4d1ZRXaqM+xWRMLL6H5d6Owz5P/PWcE67ehuxGbWu+AAnd8RRMmHhA1PlGHGlCEAdQlI8qjOxPdNxNZYdr62lT9NHqT5PkTCkbVU/28HttpPXM9OpIxOr3socEbPmDJE53eEUPIhYWXysGxmTxtFVqpzRWSMIf3kbDydPFRvr2TxixvdDVBEWuX223NYu3wHnRKjGfzzfph6SUZWajyzp43SPD4RRJOMSdiZPCybiUOy6mZAzEiO54djDuLcc19j1qzFnHxyP8aO7eF2mCLSTEuXbmPGjE8BmP3QCUw7b+ge57dmMI48Sj4kLHmiDGMG7G6WHTMgnddfX89TT63lvPPeYMWKCzQbokgYKC/3Mm3aG9TU+DnrrAM4//yhGLPn+S2RR7ddJGL84x/H07t3MuvXF3HNNe+5HY6INMP113/Il1/mk52dyMMPT8IYtXB0BEo+JGKkpsbx5JMnYww8+uhqXn31W7dDEpG9eOutDTz44HIAHn98MunpnVyOSIJFyYdElPHje3HttYcBcOmlb7F9e5nLEYlIY3btquCiixYAcNVVIznxxH4uRyTBpORDIs4tt4xj+PCu7NhRwaWXvrXH7Kci4j5rLVdc8Ta5uWUMHtyF228/xu2QJMiUfEjEiYuL5umnTyE21sNrr63n0UdXux2SiNTz5JNf8OKL3xAdHcXcuafQqVOM2yFJkCn5kIg0fHg3/v73cQD87nfv8e23BfvYQ0SCYcOGQq666l0Abr75KEaNynQ5InGDkg+JWL/73WFMmNCLsjIv553nDOUTEff4fH7OP/9NSkqqGTeuB9ddd7jbIYlLlHxIxIqKMvznPyeRkhLLZ5/lcttti90OSaRDu/POz/n44y0kJ8fy5JMn4fHoI6ij0pGXiNa7dwoPPXQCADNnLmLJkm0uRyTSMS1fvp2//vUTAB544Dj69UtzNyBxlZIPiXi/+MVgzj57EDU1fqZNe50P1+YBkLMhH59fI2FE2oPPb8nZkA/AR+vy+MUvXsfr9XPmmQdwwQVDXY5O3KbkQyKeMYbZs08gPaMTX31VwFmXvAnAxf/5nHG3v8uCNbkuRygSWRasyWXc7e9y8X8+B+CsSxawbl0+nbvG8/DDEzWLqSj5kI4hZ2sh0RO6AlC0tJBly5zJx7YVVTJ97jIlICJtZMGaXKbPXUZuUSUAK1aUUbjEGW0Wc2w3lmwrcjM8CRFKPiTi+fyWmfPXEt8vieRDOwPwj39sx1fuI3DTZeb8tboFI7KfAuda4EzyVfh44IHtACSP6kxC/ySdawIo+ZAOIGdDft1VWNr4DGLTYyko8JH76las32KB3KLKuvvTItI69c81ay3b39hGfr6P2PRY0iZk6FyTOko+JOLllVTW/RwVE0X26d2JjTWUry+j8OMdjZYTkZarfw4V5+RT+lUJHg9kndqdqJioRstJx6TkQyJeRnL8Hr/HZcZz5ZUZABQv2kXZV8WNlhORlgmcQxUbSin8wBlVdskl3YjPjm+0nHRcSj4k4o3u14Xs1Hjq968fPz6FtNFO/49db+SSWmkZ3a+LOwGKRIjR/brQ2WfY+epWsJBySConnZRa97gBslPjda6Jkg+JfJ4ow4wpQwD2SEC6HZdBfO8EbLWfXS9vobSk2p0ARSJEZYWXole34q/0EZsdT8aJmXXDagPn3owpQ/BEaahtR6fkQzqEycOymT1tFFmpu5t7TZRh6LT+dMtKYMv3JUyb9jp+9cIXaRVrLZde+jYbvi4krUs8Q88fQFT07o+YrNR4Zk8bxeRh2S5GKaEi2u0ARIJl8rBsJg7J4rNv89i57jP+fcHhHDkwgxVnbueoo57htdfWc/PNn3LTTUe5HapI2Ln77iU8++yXREdH8erLpzP2qB4/OtfU4iEBavmQDsUTZeruN4/u1wVPlOHQQ7N45JFJgLP+y6uvfutmiCJhZ+HCjVx//YcA3H//sRx9dM9GzzWRACUfIsD55w/lqqtGAjBt2ht8+eUulyMSCQ8bNhRy7rmv4fdbLrpoGNOnj3A7JAkDSj5Eat199wSOPronJSXVnHHGKxQXV7kdkkhIKyur5vTTXyE/v5LRo7P45z9P0Lot0ixKPkRqxcR4eOGFKfTokcSXX+ZzwQVvqgOqSBMCHUxXrdpBRkYCL754GvHx6kYozRPSyYcx5kpjzEZjTKUxZrExZvReyl5mjPnIGFNQ+/XO3sqLNCYzM5EXXzyN2FgPL7/8LbNmLXY7JJGQVL+D6X//eyo9eya7HZKEkZBNPowx5wD3ADOBUcBK4C1jTEYTu0wAngGOBcYAm4C3jTE92j9aiSRHHJHNP/95AgA33vgxb7yx3uWIRELLO+98X9fB9L77nA6mIi0RsskHcA0wx1r7uLV2LfBLoBy4uLHC1tpfWGv/aa1dYa39ErgUp37HBy1iiRiXXDKcX/7yEKyFqVNf59tvC9wOSSQkbNhQyDnnzK/rYPqrX41wOyQJQyGZfBhjYoFDgXcC26y1/trfxzTzaRKAGEDLJ0qr3H//cYwd252ioipOP/1lioqrWPTdLl5ZsYVF3+3SsuDSIfj8tu51/96a7ZxxhtPB9PDD1cFUWi9Uewd1BTzA9gbbtwMHNfM5bge2Ui+Bqc8YEwfE1duUDOD1evF6vc0ONFC2JfuEi0itW3PrZQzMm3cSRx75DF98sYuB456k80+y6t5ss1LiueGkgzhhcGa7x9xckXrMIHLrFsr1emfddm5780u2FVdirWXbK1spWVtCWpc4nnvuZDweu9e4Q7lu+ytS69baerW0vLE29K7ejDHdgS3AWGvtonrb7wDGW2uP2Mf+NwDXAROstauaKHMTMKPh9nnz5pGQkLAf0UukWbeughtv3ExNDZx/fjpnnqlFsaTjefnlAp54YiceD9x8c0+GDu3kdkgSQsrLy5k6dSpAqrW2eF/lQzX5iMXp3/FTa+3L9bb/B0iz1p62l31/D/wFOMFau2Qv5Rpr+di8c+dOUlJSmh2r1+tl4cKFTJw4kZiYmGbvFw4itW4tqZfPbznxvg/58v1c8hZsBwM9zulFYv9EwFksKzMlnreuPiYkZnCM1GMGkVu3UKxX4HW/rbgSgLINZWx5dhNY6DYpky6HdW7W6z4U69ZWIrVura1XcXExXbt2hWYmHyF528VaW22MWYrTWfRlAGNMoPPog03tZ4y5DvgzcOLeEo/av1EF1M0iFWhKj4mJadULqbX7hYNIrVtz6rXku118X1BF/MGdSdpaSemqInJf3kLm1D7EdnMWqfu+oIrlm0sYMyA9GGE3S6QeM4jcuoVSvQKvezB4C6vZ9tJWsJA4LJVOIzpT6TMtet2HUt3aWqTWraX1aun/ICQ7nNa6B7jMGHOBMWYwMBtIBB4HMMY8aYyZFShsjLke+BvOaJiNxpis2q8kF2KXCJFX4lz5GWPoMjGLuO6d8Ff6yXt+E97C6h+VE4kEgdezr7SGvOd/wF/pIzYrnvQTs/boYKrXvbRWyCYf1trngN8DNwMrgBHAZGttoBNqb6D+2szTgVjgv0Buva/fBydiiUQZyfF1P5voKLr9tBcxXeOcN+XnfsBXWvOjciLhLiM5Hl+lj+3P/0BNgRdPagzdzuyJiY76UTmR1gjZ5APAWvugtbaPtTbOWnuEtXZxvccmWGsvrPd7X2utaeTrJjdil8gwul8XslPjCVzreTp5yDi7F9GpMdQUetn+/A90i42uW71TJBIMzUim8KUteHdU4Un0kHlOb6KTdzerGyA7NV6ve2m1kE4+RNzmiTLMmDIEoC4BiU6OIeOc3ngSPXh3VFE+P5fKisgabicdV1VVDT/76auU/lBGVHwUmef0JqZzbN3jgfNgxpQhIdHJWsKTkg+RfZg8LJvZ00aRlbq7iTmmcyxDLzmApORY1q7YyU9/+irV1T4XoxTZfz6fn2nT3uDttzeSmBjDXY9OpPfAtD3KZKXGM3vaKCYPy278SUSaISRHu4iEmsnDspk4JIucDfnklVSSkew0Oeecm8sJJzzPggUbOf/8N3j66VPweJTTS/ix1nLFFQv573+/rl1Y8XROOKEPv/HbH73u1eIh+0vJh0gzeaLMj4YVjhnTnf/7v9OYMuUlnnvuK9LS4pk9W1NOS3ix1vKHP3zAY4+tJirK8Mwzp3DCCX2Axl/3IvtLl2gi++nEE/vx9NOnYAw8/PBK/vKXj90OSaRF/v73xdx9tzM10qOPTuLMMw90OSKJdEo+RNrAz342iIcfngQ4b+R33fW5yxGJNM9DDy2vS5jvuWcCF1003OWIpCNQ8iHSRi677GBuu+1oAP7whw/4979XuxyRyN49/fRafv3r/wFw441H8rvfHeZyRNJRKPkQaUPXX38E1113OACXXfY2//d/X7sckUjj5s//jgsueBOAq64aycyZR7kckXQk6nAq0sZuu+0Y8vMrefTR1fz856/z+utxHHtcb40YENf4GoxYqfihjLPPno/PZznvvCHcd99x6iQtQaXkQ6SNGWP4178mUlRUxQsvfM2UU19iwIX9KU3x1JXJTo1nxpQhmitB2t2CNbnMnL+W3CJnHZaq3Ap2PPcDvio/p546gMceO5EoJcISZLrtItIOPJ4onnrqZEaOyaKyooZ1j39H9Y66RZTZVlTJ9LnLWLAm18UoJdItWJPL9LnL6hIP784q8l7YhK/KT3zvBC756+HExHj28SwibU/Jh0g7iY7xED0pg9junfBX+sh7/oe6lXBtbZmZ89fi89umn0SklXx+y8z5a+teazVF1Wx/7gf8FT5is+PJOLMns97+Sq8/cYWSD5F2krMhn7xKLxn1VsLd/vT3VO9wrkItkFtUSc6GfHcDlYiUsyF/d4tHYTXbn3VWYY5JjyXjZ70wcR69/sQ1Sj5E2kleifPG7+nkIeOc3QnItqe/p/KHsh+VE2lLgddV1bYKts3dSE2hl+jU2kURO0X/qJxIMCn5EGknGcm7F6KLTooh8xd9iOvZCVvlZ/vzmyj7svhH5UTaSkZyPBUbStn+zA/4y3zEZMSR+Ys+RCfH/KicSLAp+RBpJ6P7dSE7Nb5uCXJPvIfMc3qTcGAy+Cw7X9mCWVvC6H5dXI1TItPXH29jx383Yav9xPdJIGvqnomHwRl1pdefuEHJh0g78UQZZkwZAlCXgJjoKLqe1oPkkZ0B2Dh/Mzf+5WOsVac/aRvWWm6/fTEXXvgm1g+Jg1PI/FlvouJ2j2oJvB5nTBmi+WbEFUo+RNrR5GHZzJ42iqzU3U3bJsow5Kd9OP+qQwCYNWsxF120AK/X51aYEiF8Pj+/+c273HDDRwD8/veH8fyzPyG7S6c9ymWlxjN72ijNMyOu0SRjIu1s8rBsJg7JanSG0/Ejsrj88rf5z3++IC+vnBdemEJiYqzbIUsYqqysYdq013nxxW8wBu6551iuvvpQAE4clq0ZdiWkKPkQCQJPlGHMgPQfbb/44uFkZibws5/N5803N3Dssc/z+utn0q1bggtRSrgqKKjktNNe5qOPNhMb6+Gpp07i7LMPqnu8qdefiFt020XEZaecMoB33z2b9PROfP75No466hnWry90OywJEz/8UMy4cc/w0UebSU2N4623ztoj8RAJRUo+RELAkUd255NPfk6fPil8800BY8fOY/ny7fj8lkXf7eKVFVtY9N0uzUbZgTX2Wli9egdjx85j7dpddO+exEcfncuECb3dDlVkn3TbRSREDBrUhU8/ncrJJ7/IypU7OOroZ+h7Th/Ku+3uA6IF6TqmhovDASTs8vL9s99TXuplyJB03nzzLHr3TnExSpHmU8uHSAjp3j2JDz44l0NGZ1JRVsO6J76jbG1R3eNakK7jabg4HEDZumLWPf4d5aVeho7qxkcfnavEQ8KKkg+REJOUHEvcT7JIOCgZ/LBz/laKc3ZhrdWCdB1Mw8XhAIqX5LPz1S3gsyQcmEziad1JTdMspRJelHyIhJicDflsL6um66k9SD7UmYys4L08dr6yBV+lTwvSdSD1F4fze/3seiuXgv9tByB5VGe6ntaD7eXVei1I2FGfD5EQE1joyxhD5+MziU6JoeCDPMq/KqFqawVdp/QgvleCFgTrAALHuDqvkp2vbsG7qxqAtPHdSDkiHWPMHuVEwoWSD5EQU3+hL2MMKaPTieuVwM75W6gp8LL9me9JHdOVLhdpMrJI1zUxjuLPd1HwwQ7wWTyJHtJP6U6nfkl7lNPicBJudNtFJMQ0XJAOIC67E9kX9CNxWCpYKPp0J9dd9DYbNhS6Faa0s9zcUmZe+R4F7+aBz9JpYBLZF/ffI/HQ4nASrpR8iISYxhakA4iK89DtlO50ndKdhKQYPluUy4gRTzJv3jp3ApV28+qr3zJ8+H9YuPB74uI9pJ+YRcaZPfEk7G6s1uJwEs6UfIiEoMYWpANnQbCn/n4sX6y+kLFju1NcXM0vfvE655//BsXFVS5FK22lvNzL9OkLOe20l9m1q4IRIzJYvux85t51PNlpWhxOIof6fIiEqL0tSAfwwQfncssti/jb3z7jqafW8sknW3jqqcl1+/v8VouJhaCGx2Vkz2QAli/P44IL3uLLL52RK7///WHccss44uKiGQx7fS2IhBslHyIhbG8LgkVHR3HTTUdxwgl9+MUvXmf9+iLGj3+Bc8/tjKd3Lrcu+GaPiak0O6r7GpuptHdqLAO+LuDpp5/D6/XTvXsS//nPSZxwQp899tXicBJJdNtFJMyNG9eTlSsv4OyzB1FT42fu3F2cffprbNpUskc5zY7qrsZmKq0p8bL0kW944omdeL1+Tj99IKtWXfCjxEMk0ij5EIkAaWnxPPvsT3jkkROIjzdU/FBO7uPrKf+quK6MZkd1T2MzlZZ/XULuvzdQvrGcuDjDAWf24oX/nkp6eqcmn0ckUij5EIkQxhiGjM/mnnt6E5cdj7/Sz46XtzjzgxR5ATQ7qkvqz1TqK69h14Jcdry0GX+lj7isOO65pzfmoEQ+31jgcqQiwaE+HyIRZGdpFd27x9L7/D5sf38nxYt3Uba2mLKvSkge1ZnUMel4OkVrRswgyyupxF/tp3hJPsWLd2Gr/QCkHJFO5oSu9Ojhhy2aqVQ6DiUfIhGka1IcOwHjMXSekEHCoGQKP8ij8vtySj7Pp3RlIalHppMyTad+sFRX+/jo5Q1seeRb/GU+AGIz4+h8XCbxvRMxnt03YzRTqXQUuu0iEkEO7eMsRBcYgBmX3YmMc3qT8bNexGTEYav9FH64g2knvsSjj66ipsbvXrARzu+3zJu3jsGD/83dMz/DX+YjOi2GrlO6k3VBP+J7J+5RPitFM5VKx6HLH5EIUn/eB4PTx8MYQ6f+SXTql0jZ2mI8y4vYuqWUyy57m3vuWcKsWcdw6qkD6hYp0/wg+7a3/5G1lrfe2sgf//gRK1bkAZCZmcBPLx3Ka1UlGI/Zo+Np4D97w0kH6f8sHYaSD5EIdO85I7j59a/2nOcjrRMzZh3KsQd0Y/bsldxyy2esW5fP6ae/zFFH9eD224+hJDXqR/NQaH6QPTU2V0fgf5RWarnhhg/54IPNAKSkxHLddaO5+upRJCbG8pNG9s1MiQfKOGFwZrCrIuIaJR8iEeiEwZlMGtajyavzq68+lIsuGsYdd+Rw771L+eSTLYwb9wydDkgi7ZgMYrvG1T1XYH4QTeW9e66OhgOVf/iuiLPOepXyr525VeLiPPz61yP54x+P2GPobGOz1o7smcxbC94MYi1E3KfkQyRC7WtGzNTUOG699WiuvHIkM2Z8wqOPrabim1Iqvi0laXgqqeO6EZ0c49y6wZkfZOKQrA57a6CxuTpqir0UfryDsjVFBP5RF14wlJkzj6J375RGn6fhcfF6ve0buEgIUvIh0sF1757ExTccxhuUUfDhDiq+LqF0VRGlXxSTcEASiUNT6dQvqW5+kI46xXdgrg5rLVWbKyj7oojSNUXgc9KRTgckkXZ0Bpf/aXSTiYeIOJR8iAh5JZXEpMeRcUZPqraUU/B+HlWbKyj/soTyL0uI6uQhcXAKHw/dzJH9u9R1Tm0o3DqrtiTenKW5FLyfR9naInwlNXXb43ol0Hl8N+J6JACaq0OkOZR8iMge80vE9Uggc2ofqrdXUvZFMWXrivCX+ShZVsB15y9kzt+WMG3aYH7xiyEMGJBWt9/eOmKGYl+R5sT7ww/FzJu3jqefXseaNTvrypnYKBIGJZM0LJW4Xgl7JGOaq0Nk35R8iAij+3UhOzWebUWVdcNz47I6EZfVic7HZlC1sQzfN6WUf13CN98UMGPGp8yY8Sljx3Zn2rQhpA9P4/rXvvhRR8xQ7azaVMfRbUWVXD7nc05PTWPF+1v56KPNdY/FxnpIHJhE9AFJdBqYhInec5okA2Slaq4OkeZQ8iEieKIMM6YMYfrcZXXzgwRERTnzhMz+6zGM65vOSy99w9y563jnne/59NOtfPrpVozHEN8/kcShqSQM2P3B3NzOqvtzu6al+zbWcdTv9VPxbSlla4uoWF/KP2rnXjMGxo/vxS9+MZizzjqQxVsKmD53WV3dAgJ/bcaUISF9m0kkVIR08mGMuRL4A5AFrASustbm7KX8z4C/AX2Bb4DrrbVvBCFUkbA3eVg2s6eN+tGtiKwGtyLOO28o5503lK1bS3n22S/516Or+GZdvjNS5ptSouKiiO+bSGxmPDHd4ojNiGertU12Vt2f2zWt2TdnQz6bc0vx7qiiekcV1dsqKP+mtG69FYCYjDguv2g41185il69dncendy5ef8jEdm7kE0+jDHnAPcAvwQWA1cDbxljBllr8xopPxZ4Bvgj8BowFXjZGDPKWrsmaIGLhLHG5qFoqiWhe/ckrrnmMAYcl830f3zmLGD3hdMZs/yrEsq/KqkrGxUfxWX/y+f4o3py8MHdOOSQbgwdms4H3+1s8vbHvm7X7O3WSWDf8QO6snbtLlav3snq1TtYvXonS5Zvp2DnjzuFelJiSBySQuKQVGK7xTHx3AP2SDxa8z8SkcaFbPIBXAPMsdY+DmCM+SVwCnAxcFsj5X8LLLDW3ln7+43GmInAr3ESGBFphn3ND9JQRnI8sd3iiR0fT9ox3ajaXEHV1gq8eZVU76jCu6sKf6WfL5bm8cXS3dcNUVGG2PRYotJjic2IJyYjjpj0OKKio8A4tzL+8sxKRvwmhWiPoaamhpISHwUFlUR5arjx+VX4qnx1z+cr8+HdUfs3d1RxxmPrqc6vxu9vmJ44olNjiOkWR0y3ODr1TyKuR6dmdxxt6f9IRPYUksmHMSYWOBSYFdhmrfUbY94BxjSx2xiclpL63gJOb+JvxAFx9TYlgzPhT0sm/QmUjcSJgiK1bpFaL3CnbiN7JtOncxzbi53OqvF9O0Hf3bN62ho/yZXwq4P7sGbNTlatcr527qygckcV7Kii/MuSRp97E5D994YNlw+3KL6uXTsxbFg6w4Z1ZdiwdA4a3IU/vf8lu6q8P2o1AYvBmfJ8ZM/koPwf9XoMT5Fat9bWq6XljbWNXxW4yRjTHdgCjLXWLqq3/Q5gvLX2iEb2qQYusNY+U2/br4AZ1tofLZpgjLkJmNFw+7x580hISGiTeohI46y1FBT42Lixqvarmo0bq9i6tZqamn3v35jYWEOvXrH06RNLnz5xdd/T0jxNzksiIm2jvLycqVOnAqRaa4v3VT4kWz6CZBZ7tpQkA5snTZpESkrzZyf0er0sXLiQiRMnEhMT09YxuipS6xap9QJ36/bOuu3c9uaXbCuu1xEzJZ4bTjqo0UXTcjbkc9u3n0NPoCfEj4P+DcpYa3ns/MMZ3a8L1dXVLFz4DscffzwrNpdy2VNLqH/xZKIMJsqwGdgMfFIN/x57eJNDX1sab3vR6zE8RWrdWluv4uJ95ht7CNXkYyfgAxq+A2QC25rYZ1tLyltrq4CqwO+BK6OYmJhWvZBau184iNS6RWq9wJ26nXRwz70uZtfQkQMz6JLUqW5ukYaceTM6MfbATDxRhqgog8djSEiIZ9zgJNJTE/bc1+K8a7B7zo0jB2Y0+fdbGm970+sxPEVq3Vpar5b+D6L2XST4rLXVwFLg+MA2Y0xU7e+LmthtUf3ytSbupbyItLFAR8zTRvRgzID0vX6QB+YWgd3zZATsa96M/dm3tfGKSNsJyeSj1j3AZcaYC4wxg4HZQCIQGP3ypDFmVr3y9wOTjTHXGmMOqu3TcRjwYJDjFpFmCswtkpW658iSrNT4fc6Kuj/7ioi7QvW2C9ba54wx3YCbcSYZWwFMttZury3SG/DXK/+pMWYqcAvwd5xJxk7XHB8ioW1/5s3QnBsi4Slkkw8Aa+2DNNFyYa2d0Mi2F4AX2jksEWlj+zNvhubcEAk/oXzbRURERCKQkg8REREJKiUfIiIiElRKPkRERCSolHyIiIhIUCn5EBERkaAK6aG2bmjp/PRer5fy8nKKi4sjbordSK1bpNYLVLdwFKn1AtUtHLW2Xi397AzJVW3dYIzpgbMelYiIiLROT2vtln0VUvJRyzgry3UHSlq4azJO0tKzFfuGukitW6TWC1S3cBSp9QLVLRztT72Sga22GYmFbrvUqv1n7TNbayiwGi5QYq1tWbtTiIvUukVqvUB1C0eRWi9Q3cLRftar2eXV4VRERESCSsmHiIiIBJWSj/1XBcys/R5pIrVukVovUN3CUaTWC1S3cBSUeqnDqYiIiASVWj5EREQkqJR8iIiISFAp+RAREZGgUvIhIiIiQaXkox5jzDHGmPnGmK3GGGuMOb0Z+0wwxiwzxlQZY741xlzYSJkrjTEbjTGVxpjFxpjR7RH/PuJsUd2MMWcaYxYaY3YYY4qNMYuMMSc2KHNT7XPV//qyXSvSeKwtrduERuK2xpisBuVcPW6tqNcTTdTri3plXD9mxpg/GmM+N8aUGGPyjDEvG2MGNWO/nxljvqw9HquNMSc3eNwYY242xuQaYyqMMe8YYw5ov5o0GmOL62aMucwY85ExpqD2652Gr7Umju2C9q3Nj+JsTd0ubCTuygZlXD1urazX+02ca6/XKxMKx2y6MWZV7Xt44H38pH3sE5TzTMnHnhKBlcCVzSlsjOkHvA68B4wA7gMeNfU+pI0x5wD34AxdGlX7/G8ZYzLaMvBmaFHdgGOAhcDJwKE4dZxvjBnZoNwXQHa9r3FtEm3LtLRuAYPYM/a8wAMhctxaWq/fsmd9egH5wAsNyrl9zMYDDwFHAhOBGOBtY0xiUzsYY8YCzwCPASOBl4GXjTHD6hW7DvgN8EvgCKAM55jFt0MdmtLiugETcOp2LDAG2FS7T48G5Raw53H7eZtGvm+tqRs4s17Wj7tPg8fdPm6tqdeZ7FmnYYCPH59rbh+zzcANOO/hhwHvAq8YY4Y2Vjio55m1Vl+NfAEWOH0fZW4H1jTY9iywoN7vi4EH6/0ehTON+w2hXLcm9vsC+Gu9328CVrh9rFpx3CbUlkvbS5mQOm6tOWbA6YAf6BPix6xbbf2O2UuZ54DXGmz7DPhX7c8GyAV+X+/xVKASODeU69bIPh6cD+zz6217AnjZ7WPViuN2IVC4l8dD7ri18phdXXvMEkP5mNXGlQ9c0sRjQTvP1PKxf8YA7zTY9lbtdowxsTgZZ10Za62/9vcxQYqxTRhjonAWDcpv8NABxrktsN4Y87QxprcL4bXWitqmw4XGmKMCGyPouF0CvGOt/b7B9lA7Zqm13xu+turb67kG9AOy2POYFeEkkW4es+bUraEEnKvvhvtMqL0t8JUxZrYxJr1NImy95tYtyRjzvTFmkzGm4VV3KB631hyzS4BnrbVlDbaHzDEzxniMMefitKguaqJY0M4zJR/7JwvY3mDbdiDFGNMJ6IpzFdNYmSzCy++BJOD5etsW41zZTAam47wwPzLGJAc9upbJxWkyPKv2axPwvjFmVO3jYX/cjDHdgZOARxs8FFLHrDapvQ/4xFq7Zi9FmzrXsuo9zj7KBFUL6tbQ7cBW9vwQWACcDxwPXI9zq+BNY4ynbaJtmRbU7SvgYuA0YBrOZ86nxpietY+H1HFrzTEzTv+cYfz4XAuJY2aMGW6MKcWZsfRfwBnW2rVNFA/aeaZVbWWfjDFTgRnAadbaun4R1to36xVbZYxZDHwPnI1zzzAkWWu/wnlTDPjUGDMA+B1wnjtRtbkLgEKce7Z1QvCYPYTzxu1GX6H21uK6GWNuAM4FJlhr6zpmWmufrVdstTFmFfAdzi3E/7VJtC3TrLpZaxdR7yrbGPMpsA64ArixPQNspda8Hi8BVltrc+pvDKFj9hVOn8RU4KfAf4wx4/eSgASFWj72zzYgs8G2TKDYWlsB7MTphNRYmW3tH97+q22mexQ421rbsDluD9baQuBrYGAQQmtrOeyOO6yPmzHG4FxtPmWtrd5bWTePmTHmQeAnwLHW2s37KN7Uubat3uPso0zQtLBugX1+j9M5cJK1dtXeylpr1+O8TkP9uO3BWusFlrM77pA5bq08Zok4yeI+E3e3jpm1ttpa+621dqm19o84ndh/20TxoJ1nSj72zyKcJrX6JtZup/aNf2n9MrXNesfT9D23kGGM+TnwOPBza+3rzSifBAzAua0RbkZQG3e4Hzec5t2BNOMN0Y1jVjtU70HgDOA4a+2GZuy213MN2IDz5lf/mKXg9MYP2jFrZd0wxlyH0xIw2Vq7pBnlewLphP5xa/gcHmA4u+N2/bjtZ71+BsQBc5vxd4J+zJoQhRNzY4J3nrnd8zaUvnD6NIyo/bI4zfAjgN61j88CnqxXvh/OMKM7gIOAXwE1wIn1ypyD0xP4AmAw8DBQAGSGeN2mAt7aOmXV+0qtV+YunA+6vsBYnKG5O4BuIV63q3HuQQ/EaWK9D6el4/hQOm4trVe9/Z4CPmviOV0/ZsA/cW4JjW/w2upUr8yTwKx6v4+tfT1eW3uu3QRUA8Pqlbm+9hidivMB9zKwHogP8bpdj3M//qwG+yTVex3ciTMUtC/OG/9SnBaruBCv21+BSUB/nCHrzwAVwJBQOW6tqVe97R/hdDRt7NwNhWM2C2fahL61/9tZOCPgJjZxvIJ2ngXlHxAuX+wegtnw64nax58A3m9kn+W1bx7fARc28ry/xrmvXoXT4e+IUK8b8P7eyteWeRanY1wVznjyZ4EBYVC364Bvcd4Ed+HMYXJsqB23Vr4eU4Fy4LImntP1Y9ZEnWz9c6f29fdEg/1+hnP/ugpYA5zc4HED3IxzZVaJ02HzwFCvG7CxiX1uqn28E86IgzycD4KNwCME/wKmNXW7t945tA1nXqSRoXTc9uP1OKi23MRGnjNUjtljtX+7qjaWd+rH6+Z5ZmqfTERERCQo1OdDREREgkrJh4iIiASVkg8REREJKiUfIiIiElRKPkRERCSolHyIiIhIUCn5EBERkaBS8iEiIiJBpeRDREREgkrJh4iEFWPMa8YYa4yZ7HYsItI6ml5dRMKKMWYHzuqg6dbaArfjEZGWU8uHiIQNY8xAoCvwtRIPkfCl5ENEwsmRtd8/czUKEdkvuu0iIiHNGNMPuB44CegBeAA/sBl4BrjZWlvuXoQi0lJq+RCRkGWM+SmwGrgM+A4IJBn/w+n3cT3wX3eiE5HWUsuHiIQkY8zxwAKgDPgJsBgoqX04GRgK5AAxwAnW2v+5EaeItJxaPkQk5BhjYoBHgWjgV9baj4HhQBywylrrtdauAN6q3WW8K4GKSKso+RCRUPQzoC+wzFo7r3bbYbXfl9Yrt6H2e2KQ4hKRNqDkQ0RC0Wm13+v35wgkH0vqbUuv/b6t3SMSkTaj5ENEQtHhtd8/qbdtj5YPY4wBxtVu+zxIcYlIG1DyISKhKLv2ewGAMSYeGAZUAmtqHzsC6A3ksWeSIiIhTsmHiISistrvfWq/H4IzqmWltbbGGBMF3FH72H3WWm+wAxSR1lPyISKh6MPa71cbY6Kpd8ul9vd7gKNxbrfc5UJ8IrIfNM+HiIQcY8xw4FMgCVgHGOAgYAWQCvSrffxUa+0ul8IUkVZSy4eIhBxr7WrgGJxJxnriJB4ABwI7gOnAeCUeIuFJLR8iEtKMMclAIVAMdLF60xIJe2r5EJFQdxjOe9USJR4ikUHJh4iEutG133NcjUJE2oySDxEJdUo+RCKM+nyIiIhIUKnlQ0RERIJKyYeIiIgElZIPERERCSolHyIiIhJUSj5EREQkqJR8iIiISFAp+RAREZGgUvIhIiIiQaXkQ0RERIJKyYeIiIgElZIPERERCar/B4c8UgYCYqsdAAAAAElFTkSuQmCC",
                        "text/plain": [
                            "<Figure size 600x400 with 1 Axes>"
                        ]
                    },
                    "metadata": {
                        "needs_background": "light"
                    },
                    "output_type": "display_data"
                }
            ],
            "source": [
                "phi_list = []\n",
                "mse_list = []\n",
                "for i in range(TIMES):\n",
                "    phi = MEAN - 1 + (2 * i + 1) / TIMES\n",
                "    mse_est = MSE(QNN, phi)\n",
                "    phi_list.append(phi)\n",
                "    mse_list.append(mse_est)\n",
                "\n",
                "font = {'family': 'Times New Roman', 'weight':'normal', 'size':16}\n",
                "plt.figure(dpi=100)\n",
                "plt.plot(phi_list,mse_list,color='darkblue', linestyle='-')\n",
                "plt.scatter(phi_list,mse_list)\n",
                "plt.xlabel('$\\\\phi$',font)\n",
                "plt.ylabel('MSE',font)\n",
                "\n",
                "plt.grid()\n",
                "plt.show()"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "## Conclusion"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "We can see that the MSE estimated by the optimized quantum sensor is negatively correlated with the probability density of the parameters, and the value of MSE is the lowest near the mean value of the normal distribution, indicating that the obtained quantum sensor by variational method is effective for the parameters following a normal distribution."
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "---\n",
                "\n",
                "## References"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "[1] Braunstein S L, Caves C M. Statistical distance and the geometry of quantum states[J]. [Physical Review Letters, 1994, 72(22): 3439](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.72.3439).\n",
                "\n",
                "[2] Giovannetti V, Lloyd S, Maccone L. Quantum metrology[J]. [Physical review letters, 2006, 96(1): 010401](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.96.010401).\n",
                "\n",
                "[3] Tóth G, Apellaniz I. Quantum metrology from a quantum information science perspective[J]. [Journal of Physics A: Mathematical and Theoretical, 2014, 47(42): 424006](https://iopscience.iop.org/article/10.1088/1751-8113/47/42/424006/meta).\n",
                "\n",
                "[4] Marciniak C D, Feldker T, Pogorelov I, et al. Optimal metrology with programmable quantum sensors[J]. [Nature, 2022, 603(7902): 604-609](https://www.nature.com/articles/s41586-022-04435-4).\n",
                "\n",
                "[5] Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology[J]. [Nature photonics, 2011, 5(4): 222-229](https://www.nature.com/articles/nphoton.2011.35).\n",
                "\n",
                "[6] Kaubruegger R, Vasilyev D V, Schulte M, et al. Quantum variational optimization of Ramsey interferometry and atomic clocks[J]. [Physical Review X, 2021, 11(4): 041045](https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.041045)."
            ]
        }
    ],
    "metadata": {
        "kernelspec": {
            "display_name": "Python 3.8.13 ('pq')",
            "language": "python",
            "name": "python3"
        },
        "language_info": {
            "codemirror_mode": {
                "name": "ipython",
                "version": 3
            },
            "file_extension": ".py",
            "mimetype": "text/x-python",
            "name": "python",
            "nbconvert_exporter": "python",
            "pygments_lexer": "ipython3",
            "version": "3.8.13"
        },
        "vscode": {
            "interpreter": {
                "hash": "08942b1340a5932ff3a93f52933a99b0e263568f3aace1d262ffa4d9a0f2da31"
            }
        }
    },
    "nbformat": 4,
    "nbformat_minor": 2
}