hinge_loss_layer.hpp 4.2 KB
Newer Older
G
gineshidalgo99 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
#ifndef CAFFE_HINGE_LOSS_LAYER_HPP_
#define CAFFE_HINGE_LOSS_LAYER_HPP_

#include <vector>

#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"

#include "caffe/layers/loss_layer.hpp"

namespace caffe {

/**
 * @brief Computes the hinge loss for a one-of-many classification task.
 *
 * @param bottom input Blob vector (length 2)
 *   -# @f$ (N \times C \times H \times W) @f$
 *      the predictions @f$ t @f$, a Blob with values in
 *      @f$ [-\infty, +\infty] @f$ indicating the predicted score for each of
 *      the @f$ K = CHW @f$ classes. In an SVM, @f$ t @f$ is the result of
 *      taking the inner product @f$ X^T W @f$ of the D-dimensional features
 *      @f$ X \in \mathcal{R}^{D \times N} @f$ and the learned hyperplane
 *      parameters @f$ W \in \mathcal{R}^{D \times K} @f$, so a Net with just
 *      an InnerProductLayer (with num_output = D) providing predictions to a
 *      HingeLossLayer and no other learnable parameters or losses is
 *      equivalent to an SVM.
 *   -# @f$ (N \times 1 \times 1 \times 1) @f$
 *      the labels @f$ l @f$, an integer-valued Blob with values
 *      @f$ l_n \in [0, 1, 2, ..., K - 1] @f$
 *      indicating the correct class label among the @f$ K @f$ classes
 * @param top output Blob vector (length 1)
 *   -# @f$ (1 \times 1 \times 1 \times 1) @f$
 *      the computed hinge loss: @f$ E =
 *        \frac{1}{N} \sum\limits_{n=1}^N \sum\limits_{k=1}^K
 *        [\max(0, 1 - \delta\{l_n = k\} t_{nk})] ^ p
 *      @f$, for the @f$ L^p @f$ norm
 *      (defaults to @f$ p = 1 @f$, the L1 norm; L2 norm, as in L2-SVM,
 *      is also available), and @f$
 *      \delta\{\mathrm{condition}\} = \left\{
 *         \begin{array}{lr}
 *            1 & \mbox{if condition} \\
 *           -1 & \mbox{otherwise}
 *         \end{array} \right.
 *      @f$
 *
 * In an SVM, @f$ t \in \mathcal{R}^{N \times K} @f$ is the result of taking
 * the inner product @f$ X^T W @f$ of the features
 * @f$ X \in \mathcal{R}^{D \times N} @f$
 * and the learned hyperplane parameters
 * @f$ W \in \mathcal{R}^{D \times K} @f$. So, a Net with just an
 * InnerProductLayer (with num_output = @f$k@f$) providing predictions to a
 * HingeLossLayer is equivalent to an SVM (assuming it has no other learned
 * outside the InnerProductLayer and no other losses outside the
 * HingeLossLayer).
 */
template <typename Dtype>
class HingeLossLayer : public LossLayer<Dtype> {
 public:
  explicit HingeLossLayer(const LayerParameter& param)
      : LossLayer<Dtype>(param) {}

  virtual inline const char* type() const { return "HingeLoss"; }

 protected:
  /// @copydoc HingeLossLayer
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  /**
   * @brief Computes the hinge loss error gradient w.r.t. the predictions.
   *
   * Gradients cannot be computed with respect to the label inputs (bottom[1]),
   * so this method ignores bottom[1] and requires !propagate_down[1], crashing
   * if propagate_down[1] is set.
   *
   * @param top output Blob vector (length 1), providing the error gradient with
   *      respect to the outputs
   *   -# @f$ (1 \times 1 \times 1 \times 1) @f$
   *      This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$,
   *      as @f$ \lambda @f$ is the coefficient of this layer's output
   *      @f$\ell_i@f$ in the overall Net loss
   *      @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence
   *      @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$.
   *      (*Assuming that this top Blob is not used as a bottom (input) by any
   *      other layer of the Net.)
   * @param propagate_down see Layer::Backward.
   *      propagate_down[1] must be false as we can't compute gradients with
   *      respect to the labels.
   * @param bottom input Blob vector (length 2)
   *   -# @f$ (N \times C \times H \times W) @f$
   *      the predictions @f$t@f$; Backward computes diff
   *      @f$ \frac{\partial E}{\partial t} @f$
   *   -# @f$ (N \times 1 \times 1 \times 1) @f$
   *      the labels -- ignored as we can't compute their error gradients
   */
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
};


}  // namespace caffe

#endif  // CAFFE_HINGE_LOSS_LAYER_HPP_