yolo_v3_hand.py 12.9 KB
Newer Older
Eric.Lee2021's avatar
Eric.Lee2021 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
#-*-coding:utf-8-*-
# date:2021-03-09
# Author: Eric.Lee
# function: yolo v3 hand detect

import os
import cv2
import numpy as np
import time

import torch

from hand_detect.yolov3 import Yolov3, Yolov3Tiny
from hand_detect.utils.torch_utils import select_device
from hand_detect.acc_model import acc_model

import torch.backends.cudnn as cudnn
import torch.nn.functional as F


import random

def show_model_param(model):
    params = list(model.parameters())
    k = 0
    for i in params:
        l = 1
        for j in i.size():
            l *= j
        print("该层的结构: {}, 参数和: {}".format(str(list(i.size())), str(l)))
        k = k + l
    print("----------------------")
    print("总参数数量和: " + str(k))

def process_data(img, img_size=416):# 图像预处理
    img, _, _, _ = letterbox(img, height=img_size)
    # Normalize RG25
    img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB
    img = np.ascontiguousarray(img, dtype=np.float32)  # uint8 to float32
    img /= 255.0  # 0 - 255 to 0.0 - 1.0
    return img

def plot_one_box(x, img, color=None, label=None, line_thickness=None):
    # Plots one bounding box on image img
    tl = line_thickness or round(0.002 * max(img.shape[0:2])) + 1  # line thickness
    color = color or [random.randint(0, 255) for _ in range(3)]
    c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
    cv2.rectangle(img, c1, c2, color, thickness=tl)
    if label:
        tf = max(tl - 1, 1)  # font thickness
        t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
        c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
        cv2.rectangle(img, c1, c2, color, -1)  # filled
        cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [255, 55,90], thickness=tf, lineType=cv2.LINE_AA)

def bbox_iou(box1, box2, x1y1x2y2=True):
    # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
    box2 = box2.t()

    # Get the coordinates of bounding boxes
    if x1y1x2y2:
        # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
    else:
        # x, y, w, h = box1
        b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
        b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
        b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
        b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2

    # Intersection area
    inter_area = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
                 (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)

    # Union Area
    union_area = ((b1_x2 - b1_x1) * (b1_y2 - b1_y1) + 1e-16) + \
                 (b2_x2 - b2_x1) * (b2_y2 - b2_y1) - inter_area

    return inter_area / union_area  # iou

def xywh2xyxy(x):
    # Convert bounding box format from [x, y, w, h] to [x1, y1, x2, y2]
    y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2
    y[:, 1] = x[:, 1] - x[:, 3] / 2
    y[:, 2] = x[:, 0] + x[:, 2] / 2
    y[:, 3] = x[:, 1] + x[:, 3] / 2
    return y


def scale_coords(img_size, coords, img0_shape):# image size 转为 原图尺寸
    # Rescale x1, y1, x2, y2 from 416 to image size
    # print('coords     : ',coords)
    # print('img0_shape : ',img0_shape)
    gain = float(img_size) / max(img0_shape)  # gain  = old / new
    # print('gain       : ',gain)
    pad_x = (img_size - img0_shape[1] * gain) / 2  # width padding
    pad_y = (img_size - img0_shape[0] * gain) / 2  # height padding
    # print('pad_xpad_y : ',pad_x,pad_y)
    coords[:, [0, 2]] -= pad_x
    coords[:, [1, 3]] -= pad_y
    coords[:, :4] /= gain
    coords[:, :4] = torch.clamp(coords[:, :4], min=0)# 夹紧区间最小值不为负数
    return coords

def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4):
    """
    Removes detections with lower object confidence score than 'conf_thres'
    Non-Maximum Suppression to further filter detections.
    Returns detections with shape:
        (x1, y1, x2, y2, object_conf, class_conf, class)
    """

    min_wh = 2  # (pixels) minimum box width and height

    output = [None] * len(prediction)
    for image_i, pred in enumerate(prediction):
        # Experiment: Prior class size rejection
        # x, y, w, h = pred[:, 0], pred[:, 1], pred[:, 2], pred[:, 3]
        # a = w * h  # area
        # ar = w / (h + 1e-16)  # aspect ratio
        # n = len(w)
        # log_w, log_h, log_a, log_ar = torch.log(w), torch.log(h), torch.log(a), torch.log(ar)
        # shape_likelihood = np.zeros((n, 60), dtype=np.float32)
        # x = np.concatenate((log_w.reshape(-1, 1), log_h.reshape(-1, 1)), 1)
        # from scipy.stats import multivariate_normal
        # for c in range(60):
        # shape_likelihood[:, c] =
        #   multivariate_normal.pdf(x, mean=mat['class_mu'][c, :2], cov=mat['class_cov'][c, :2, :2])

        # Filter out confidence scores below threshold
        class_conf, class_pred = pred[:, 5:].max(1)  # max class_conf, index
        pred[:, 4] *= class_conf  # finall conf = obj_conf * class_conf

        i = (pred[:, 4] > conf_thres) & (pred[:, 2] > min_wh) & (pred[:, 3] > min_wh)
        # s2=time.time()
        pred2 = pred[i]
        # print("++++++pred2 = pred[i]",time.time()-s2, pred2)

        # If none are remaining => process next image
        if len(pred2) == 0:
            continue

        # Select predicted classes
        class_conf = class_conf[i]
        class_pred = class_pred[i].unsqueeze(1).float()

        # Box (center x, center y, width, height) to (x1, y1, x2, y2)
        pred2[:, :4] = xywh2xyxy(pred2[:, :4])
        # pred[:, 4] *= class_conf  # improves mAP from 0.549 to 0.551

        # Detections ordered as (x1y1x2y2, obj_conf, class_conf, class_pred)
        pred2 = torch.cat((pred2[:, :5], class_conf.unsqueeze(1), class_pred), 1)

        # Get detections sorted by decreasing confidence scores
        pred2 = pred2[(-pred2[:, 4]).argsort()]

        det_max = []
        nms_style = 'MERGE'  # 'OR' (default), 'AND', 'MERGE' (experimental)
        for c in pred2[:, -1].unique():
            dc = pred2[pred2[:, -1] == c]  # select class c
            dc = dc[:min(len(dc), 100)]  # limit to first 100 boxes

            # Non-maximum suppression
            if nms_style == 'OR':  # default
                # METHOD1
                # ind = list(range(len(dc)))
                # while len(ind):
                # j = ind[0]
                # det_max.append(dc[j:j + 1])  # save highest conf detection
                # reject = (bbox_iou(dc[j], dc[ind]) > nms_thres).nonzero()
                # [ind.pop(i) for i in reversed(reject)]

                # METHOD2
                while dc.shape[0]:
                    det_max.append(dc[:1])  # save highest conf detection
                    if len(dc) == 1:  # Stop if we're at the last detection
                        break
                    iou = bbox_iou(dc[0], dc[1:])  # iou with other boxes
                    dc = dc[1:][iou < nms_thres]  # remove ious > threshold

            elif nms_style == 'AND':  # requires overlap, single boxes erased
                while len(dc) > 1:
                    iou = bbox_iou(dc[0], dc[1:])  # iou with other boxes
                    if iou.max() > 0.5:
                        det_max.append(dc[:1])
                    dc = dc[1:][iou < nms_thres]  # remove ious > threshold

            elif nms_style == 'MERGE':  # weighted mixture box
                while len(dc):
                    i = bbox_iou(dc[0], dc) > nms_thres  # iou with other boxes
                    weights = dc[i, 4:5]
                    dc[0, :4] = (weights * dc[i, :4]).sum(0) / weights.sum()
                    det_max.append(dc[:1])
                    dc = dc[i == 0]

        if len(det_max):
            det_max = torch.cat(det_max)  # concatenate
            output[image_i] = det_max[(-det_max[:, 4]).argsort()]  # sort
    return output

def letterbox(img, height=416, augment=False, color=(127.5, 127.5, 127.5)):
    # Resize a rectangular image to a padded square
    shape = img.shape[:2]  # shape = [height, width]
    ratio = float(height) / max(shape)  # ratio  = old / new
    new_shape = (round(shape[1] * ratio), round(shape[0] * ratio))
    dw = (height - new_shape[0]) / 2  # width padding
    dh = (height - new_shape[1]) / 2  # height padding
    top, bottom = round(dh - 0.1), round(dh + 0.1)
    left, right = round(dw - 0.1), round(dw + 0.1)
    # resize img
    if augment:
        interpolation = np.random.choice([None, cv2.INTER_NEAREST, cv2.INTER_LINEAR,
                                          None, cv2.INTER_NEAREST, cv2.INTER_LINEAR,
                                          cv2.INTER_AREA, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4])
        if interpolation is None:
            img = cv2.resize(img, new_shape)
        else:
            img = cv2.resize(img, new_shape, interpolation=interpolation)
    else:
        img = cv2.resize(img, new_shape, interpolation=cv2.INTER_NEAREST)
    # print("resize time:",time.time()-s1)

    img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # padded square
    return img, ratio, dw, dh
#---------------------------------------------------------
# model_path = './coco_model/yolov3_coco.pt' # 检测模型路径
# root_path = './test_images/'# 测试文件夹
# model_arch = 'yolov3' # 模型类型
# voc_config = 'cfg/voc.data' # 模型相关配置文件
# img_size = 416 # 图像尺寸
# conf_thres = 0.35# 检测置信度
# nms_thres = 0.5 # nms 阈值
class yolo_v3_hand_model(object):
    def __init__(self,
        model_path = './components/hand_detect/weights/latest_416-2021-02-19.pt',
        model_arch = 'yolov3',
        img_size=416,
        conf_thres=0.16,
        nms_thres=0.4,):
        print("yolo v3 hand_model loading :  {}".format(model_path))
        self.use_cuda = torch.cuda.is_available()
        self.device = torch.device("cuda:0" if self.use_cuda else "cpu")
        self.img_size = img_size
        self.classes = ["Hand"]
        self.num_classes = len(self.classes)
        self.conf_thres = conf_thres
        self.nms_thres = nms_thres
        #-----------------------------------------------------------------------
        weights = model_path
Eric.Lee2021's avatar
update  
Eric.Lee2021 已提交
252
        if "tiny" in model_arch:
Eric.Lee2021's avatar
Eric.Lee2021 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
            a_scalse = 416./img_size
            anchors=[(10, 14), (23, 27), (37, 58), (81, 82), (135, 169), (344, 319)]
            anchors_new = [ (int(anchors[j][0]/a_scalse),int(anchors[j][1]/a_scalse)) for j in range(len(anchors)) ]

            model = Yolov3Tiny(self.num_classes,anchors = anchors_new)
        else:
            a_scalse = 416./img_size
            anchors=[(10,13), (16,30), (33,23), (30,61), (62,45), (59,119), (116,90), (156,198), (373,326)]
            anchors_new = [ (int(anchors[j][0]/a_scalse),int(anchors[j][1]/a_scalse)) for j in range(len(anchors)) ]
            model = Yolov3(self.num_classes,anchors = anchors_new)
        #-----------------------------------------------------------------------

        self.model = model
        # show_model_param(self.model)# 显示模型参数

        # print('num_classes : ',self.num_classes)

        self.device = select_device() # 运行硬件选择
        self.use_cuda = torch.cuda.is_available()
        # Load weights
        if os.access(weights,os.F_OK):# 判断模型文件是否存在
            self.model.load_state_dict(torch.load(weights, map_location=lambda storage, loc: storage)['model'])
        else:
            print('------- >>> error : model not exists')
            return False
        #
        self.model.eval()#模型设置为 eval
        acc_model('',self.model)
        self.model = self.model.to(self.device)

    def predict(self, img_,vis):
        with torch.no_grad():
            t = time.time()
            img = process_data(img_, self.img_size)
            t1 = time.time()
            img = torch.from_numpy(img).unsqueeze(0).to(self.device)

            pred, _ = self.model(img)#图片检测

            t2 = time.time()
            detections = non_max_suppression(pred, self.conf_thres, self.nms_thres)[0] # nms
            t3 = time.time()
            # print("t3 time:", t3)

            if (detections is None) or len(detections) == 0:
                return []
            # Rescale boxes from 416 to true image size
            detections[:, :4] = scale_coords(self.img_size, detections[:, :4], img_.shape).round()
            # 绘制检测结果 :detect reslut
            dets_for_landmarks = []
            colors = [(v // 32 * 64 + 64, (v // 8) % 4 * 64, v % 8 * 32) for v in range(1, 10 + 1)][::-1]

            output_dict_ = []
            for *xyxy, conf, cls_conf, cls in detections:
                label = '%s %.2f' % (self.classes[0], conf)
                x1,y1,x2,y2 = xyxy
                output_dict_.append((float(x1),float(y1),float(x2),float(y2),float(conf.item())))
                if vis:
                    plot_one_box(xyxy, img_, label=label, color=(0,175,255), line_thickness = 2)
            return output_dict_