未验证 提交 a7babadb 编写于 作者: B Bernard Xiong 提交者: GitHub

Merge pull request #2241 from Bluebear233/nuvoton_m487

[bsp][nuvoton_m487]Add EMAC drive
......@@ -42,6 +42,7 @@
| 驱动 | 支持情况 | 备注 |
| ------ | ---- | :------: |
| UART | 支持 | UART0|
| EMAC | 支持 | EH0|
### 4.1 IO在板级支持包中的映射情况
......
# RT-Thread building script for component
# RT-Thread building script for component
from building import *
......@@ -6,6 +6,7 @@ cwd = GetCurrentDir()
src = Split('''
board.c
drv_uart.c
drv_emac.c
''')
CPPPATH = [cwd]
......
......@@ -8,9 +8,7 @@
* 2018-11-16 bluebear233 first version
*/
#include <rtconfig.h>
#include <rtthread.h>
#include <rthw.h>
#include "NuMicro.h"
#include "drv_uart.h"
#include "board.h"
......
......@@ -15,22 +15,7 @@
#define SRAM_SIZE (160)
#define SRAM_END (0x20000000 + SRAM_SIZE * 1024)
#define RT_UART_485_MODE 1
#define RT_UART_FLOW_CTS_CTRL 2
#define RT_UART_FLOW_RTS_CTRL 3
#define RT_UART_CLEAR_BUF 4
void rt_hw_pdma_init(void);
void rt_hw_uart_handle(void);
void rt_hw_sc_init(void);
void rt_hw_usart_init(void);
void rt_hw_uusart_init(void);
void rt_hw_io_init(void);
void phy_error_led(void);
unsigned char *eth_get_default_mac(void);
void eth_set_mac(const unsigned char * mac);
void wdt_reload(void);
unsigned int get_uid(void);
void rt_hw_board_init(void);
void rt_hw_cpu_reset(void);
#endif /* BOARD_H_ */
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-1-20 bluebear233 first version
*/
#include <rtthread.h>
#ifdef RT_USING_LWIP
#include "NuMicro.h"
#include "drv_emac.h"
#include <netif/ethernetif.h>
#include <netif/etharp.h>
#include <lwip/icmp.h>
#include "lwipopts.h"
#define ETH_DEBUG
//#define ETH_RX_DUMP
//#define ETH_TX_DUMP
#ifdef ETH_DEBUG
#define ETH_TRACE rt_kprintf
#else
#define ETH_TRACE(...)
#endif /* ETH_DEBUG */
#if defined(ETH_RX_DUMP) || defined(ETH_TX_DUMP)
static void packet_dump(const char * msg, const struct pbuf* p)
{
rt_uint32_t i;
rt_uint8_t *ptr = p->payload;
ETH_TRACE("%s %d byte\n", msg, p->tot_len);
for(i=0; i<p->tot_len; i++)
{
if( (i%8) == 0 )
{
ETH_TRACE(" ");
}
if( (i%16) == 0 )
{
ETH_TRACE("\r\n");
}
ETH_TRACE("%02x ",*ptr);
ptr++;
}
ETH_TRACE("\n\n");
}
#endif /* dump */
#define ETH_TRIGGER_RX() EMAC->RXST = 0
#define ETH_TRIGGER_TX() EMAC->TXST = 0
#define ETH_ENABLE_TX() EMAC->CTL |= EMAC_CTL_TXON
#define ETH_ENABLE_RX() EMAC->CTL |= EMAC_CTL_RXON
#define ETH_DISABLE_TX() EMAC->CTL &= ~EMAC_CTL_TXON
#define ETH_DISABLE_RX() EMAC->CTL &= ~EMAC_CTL_RXON
#define EMAC_DMARXDESC_CRCEIF_Msk (1ul << 17)
#define ETH_TID_STACK 256
static rt_uint8_t volatile phy_speed = 0;
static rt_uint8_t eth_addr[6];
static struct eth_device eth;
static struct rt_semaphore eth_sem;
static struct rt_thread eth_tid;
static rt_uint32_t eth_stack[ETH_TID_STACK / 4];
static struct eth_descriptor volatile *cur_tx_desc_ptr, *cur_rx_desc_ptr, *fin_tx_desc_ptr;
static struct eth_descriptor rx_desc[RX_DESCRIPTOR_NUM];
static struct eth_descriptor tx_desc[TX_DESCRIPTOR_NUM];
static rt_uint32_t rx_buf[RX_DESCRIPTOR_NUM][PACKET_BUFFER_SIZE];
static rt_uint32_t tx_buf[TX_DESCRIPTOR_NUM][PACKET_BUFFER_SIZE];
static void mdio_write(rt_uint8_t addr, rt_uint8_t reg, rt_uint16_t val)
{
EMAC->MIIMDAT = val;
EMAC->MIIMCTL = (addr << EMAC_MIIMCTL_PHYADDR_Pos) | reg | EMAC_MIIMCTL_BUSY_Msk | EMAC_MIIMCTL_WRITE_Msk | EMAC_MIIMCTL_MDCON_Msk;
while (EMAC->MIIMCTL & EMAC_MIIMCTL_BUSY_Msk);
}
static rt_uint16_t mdio_read(rt_uint8_t addr, rt_uint8_t reg)
{
EMAC->MIIMCTL = (addr << EMAC_MIIMCTL_PHYADDR_Pos) | reg | EMAC_MIIMCTL_BUSY_Msk | EMAC_MIIMCTL_MDCON_Msk;
while (EMAC->MIIMCTL & EMAC_MIIMCTL_BUSY_Msk);
return EMAC->MIIMDAT;
}
static void init_tx_desc(void)
{
rt_uint32_t i;
cur_tx_desc_ptr = fin_tx_desc_ptr = &tx_desc[0];
for(i = 0; i < TX_DESCRIPTOR_NUM; i++)
{
tx_desc[i].status1 = TXFD_PADEN | TXFD_CRCAPP | TXFD_INTEN;
tx_desc[i].buf = (rt_uint8_t*)tx_buf[i];
tx_desc[i].status2 = 0;
tx_desc[i].next = &tx_desc[(i + 1) % TX_DESCRIPTOR_NUM];
}
EMAC->TXDSA = (unsigned int)&tx_desc[0];
return;
}
static void init_rx_desc(void)
{
rt_uint32_t i;
cur_rx_desc_ptr = &rx_desc[0];
for(i = 0; i < RX_DESCRIPTOR_NUM; i++)
{
rx_desc[i].status1 = OWNERSHIP_EMAC;
rx_desc[i].buf = (rt_uint8_t*)rx_buf[i];
rx_desc[i].status2 = 0;
rx_desc[i].next = &rx_desc[(i + 1) % RX_DESCRIPTOR_NUM];
}
EMAC->RXDSA = (unsigned int)&rx_desc[0];
return;
}
static void add_mac_addr(const rt_uint8_t *addr)
{
rt_uint32_t *EMAC_CAMxM;
rt_uint32_t *EMAC_CAMxL;
rt_uint8_t index = 0;
rt_uint8_t mac[6];
for(; index < 13; index ++)
{
EMAC_CAMxM = (rt_uint32_t *)((rt_uint32_t)&EMAC->CAM0M + (index * 8));
EMAC_CAMxL = (rt_uint32_t *)((rt_uint32_t)&EMAC->CAM0L + (index * 8));
mac[0] = (*EMAC_CAMxM >> 24) & 0xff;
mac[1] = (*EMAC_CAMxM >> 16) & 0xff;
mac[2] = (*EMAC_CAMxM >> 8) & 0xff;
mac[3] = (*EMAC_CAMxM) & 0xff;
mac[4] = (*EMAC_CAMxL >> 24) & 0xff;
mac[5] = (*EMAC_CAMxL >> 16) & 0xff;
if(memcmp(mac, addr, sizeof(mac)) == 0)
{
return;
}
if(*EMAC_CAMxM == 0 && *EMAC_CAMxL == 0)
{
break;
}
}
RT_ASSERT(index < 13)
*EMAC_CAMxM = (addr[0] << 24) |
(addr[1] << 16) |
(addr[2] << 8) |
addr[3];
*EMAC_CAMxL = (addr[4] << 24) |
(addr[5] << 16);
EMAC->CAMEN |= (1 << index);
}
void EMAC_init()
{
// Reset MAC
EMAC->CTL = EMAC_CTL_RST_Msk;
while(EMAC->CTL & EMAC_CTL_RST_Msk);
init_tx_desc();
init_rx_desc();
EMAC->CAMCTL = EMAC_CAMCTL_CMPEN_Msk | EMAC_CAMCTL_ABP_Msk;
add_mac_addr(eth_addr);
EMAC->CTL |= EMAC_CTL_STRIPCRC_Msk | EMAC_CTL_RXON_Msk | EMAC_CTL_TXON_Msk | EMAC_CTL_RMIIEN_Msk;
EMAC->INTEN = EMAC_INTEN_RXIEN_Msk |
EMAC_INTEN_RXGDIEN_Msk |
EMAC_INTEN_RDUIEN_Msk |
EMAC_INTEN_RXBEIEN_Msk |
EMAC_INTEN_TXIEN_Msk |
EMAC_INTEN_TXBEIEN_Msk;
/* Limit the max receive frame length to 1514 + 4 */
EMAC->MRFL = PACKET_BUFFER_SIZE;
EMAC->RXST = 0; // trigger Rx
}
void EMAC_Reinit(void)
{
rt_uint32_t EMAC_CAMxM[13];
rt_uint32_t EMAC_CAMxL[13];
rt_uint32_t EMAC_CAMEN;
EMAC_CAMEN = EMAC->CAMEN;
for(rt_uint8_t index = 0 ; index < 13; index ++)
{
rt_uint32_t *CAMxM = (rt_uint32_t *)((rt_uint32_t)&EMAC->CAM0M + (index * 8));
rt_uint32_t *CAMxL = (rt_uint32_t *)((rt_uint32_t)&EMAC->CAM0L + (index * 8));
EMAC_CAMxM[index] = *CAMxM;
EMAC_CAMxL[index] = *CAMxL;
}
EMAC_init();
for(rt_uint8_t index = 0 ; index < 13; index ++)
{
rt_uint32_t *CAMxM = (rt_uint32_t *)((rt_uint32_t)&EMAC->CAM0M + (index * 8));
rt_uint32_t *CAMxL = (rt_uint32_t *)((rt_uint32_t)&EMAC->CAM0L + (index * 8));
*CAMxM = EMAC_CAMxM[index];
*CAMxL = EMAC_CAMxL[index];
}
EMAC->CAMEN = EMAC_CAMEN;
phy_speed = 0;
}
void ETH_halt(void)
{
EMAC->CTL &= ~(EMAC_CTL_RXON_Msk | EMAC_CTL_TXON_Msk);
}
__inline static rt_uint8_t *emac_get_tx_buf(void)
{
if(cur_tx_desc_ptr->status1 & OWNERSHIP_EMAC)
{
return(RT_NULL);
}
else
{
return(cur_tx_desc_ptr->buf);
}
}
__inline static void ETH_trigger_tx(rt_uint16_t length)
{
struct eth_descriptor volatile *desc;
cur_tx_desc_ptr->status2 = (unsigned int)length;
desc = cur_tx_desc_ptr->next; // in case TX is transmitting and overwrite next pointer before we can update cur_tx_desc_ptr
cur_tx_desc_ptr->status1 |= OWNERSHIP_EMAC;
cur_tx_desc_ptr = desc;
}
#if LWIP_IPV4 && LWIP_IGMP
static err_t igmp_mac_filter( struct netif *netif, const ip4_addr_t *ip4_addr, u8_t action )
{
rt_uint8_t mac[6];
const uint8_t *p = (const uint8_t *)ip4_addr;
mac[0] = 0x01;
mac[1] = 0x00;
mac[2] = 0x5E;
mac[3] = *(p+1) & 0x7F;
mac[4] = *(p+2);
mac[5] = *(p+3);
add_mac_addr(mac);
if(1)
{
rt_kprintf("%s %s %s ", __FUNCTION__, (action==NETIF_ADD_MAC_FILTER)?"add":"del", ip4addr_ntoa(ip4_addr));
rt_kprintf("%02X:%02X:%02X:%02X:%02X:%02X\n", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
}
return 0;
}
#endif /* LWIP_IPV4 && LWIP_IGMP */
/*
* M480 EMAC Driver for RT-Thread
* Change Logs:
* Date Author Notes
* 2017-12-31 Bluebear233 first implementation
*/
void EMAC_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
unsigned int status = EMAC->INTSTS;
if(status & EMAC_INTSTS_RDUIF_Msk)
{
EMAC->INTEN &= ~(EMAC_INTEN_RDUIEN_Msk | EMAC_INTEN_RXGDIEN_Msk);
eth_device_ready(&eth);
}
else if(status & EMAC_INTSTS_RXGDIF_Msk)
{
EMAC->INTEN &= ~EMAC_INTEN_RXGDIEN_Msk;
eth_device_ready(&eth);
}
if(status & EMAC_INTSTS_RXBEIF_Msk)
{
ETH_TRACE("Reinit Rx EMAC\n");
EMAC->INTSTS = EMAC_INTSTS_RXBEIF_Msk;
EMAC_Reinit();
}
/* leave interrupt */
rt_interrupt_leave();
}
void EMAC_TX_IRQHandler(void)
{
rt_interrupt_enter();
unsigned int status = EMAC->INTSTS;
if(status & EMAC_INTSTS_TXCPIF_Msk)
{
EMAC->INTEN &= ~EMAC_INTEN_TXCPIEN_Msk;
rt_sem_release(&eth_sem);
}
if(status & EMAC_INTSTS_TXBEIF_Msk)
{
ETH_TRACE("Reinit Tx EMAC\n");
EMAC->INTSTS = EMAC_INTSTS_TXBEIF_Msk;
EMAC_Reinit();
}
rt_interrupt_leave();
}
#define PHY_LINK_MASK (1<<0)
#define PHY_10FULL_MASK (1<<1)
#define PHY_100FULL_MASK (1<<2)
#define PHY_10HALF_MASK (1<<3)
#define PHY_100HALF_MASK (1<<4)
#define PHY_ANLPA_DR100_TX_FULL (1UL << 8UL)
#define PHY_ANLPA_DR100_TX_HALF (1UL << 7UL)
#define PHY_ANLPA_DR10_TX_FULL (1UL << 6UL)
#define PHY_ANLPA_DR10_TX_HALF (1UL << 5UL)
void eth_entry(void *param)
{
uint8_t phy_addr = 0xFF;
uint8_t phy_speed_new = 0;
/* phy search */
{
rt_uint32_t i;
rt_uint16_t temp;
for(i=0; i<=0x1F; i++)
{
temp = mdio_read(i, 0x02);
if( temp != 0xFFFF )
{
phy_addr = i;
break;
}
}
} /* phy search */
if(phy_addr == 0xFF)
{
ETH_TRACE("phy not probe!\n");
return;
}
else
{
ETH_TRACE("found a phy, address:0x%02X\n", phy_addr);
}
/* RESET PHY */
mdio_write(phy_addr, MII_BMCR, BMCR_RESET);
while (1)
{
rt_thread_delay(RT_TICK_PER_SECOND);
rt_uint16_t reg = mdio_read(phy_addr, MII_BMCR);
if ((reg & BMCR_RESET) == 0)
{
break;
}
}
mdio_write(phy_addr, MII_ADVERTISE, ADVERTISE_CSMA |
ADVERTISE_10HALF |
ADVERTISE_10FULL |
ADVERTISE_100HALF |
ADVERTISE_100FULL);
{
uint16_t reg = mdio_read(phy_addr, MII_BMCR);
mdio_write(phy_addr, MII_BMCR, reg | BMCR_ANRESTART);
}
while(1)
{
uint16_t status = mdio_read(phy_addr, MII_BMSR);
phy_speed_new = 0;
if((status & (BMSR_ANEGCAPABLE | BMSR_LSTATUS)) == (BMSR_ANEGCAPABLE | BMSR_LSTATUS))
{
phy_speed_new = PHY_LINK_MASK;
status = mdio_read(phy_addr, MII_LPA);
if(status & PHY_ANLPA_DR100_TX_FULL)
{
phy_speed_new |= PHY_100FULL_MASK;
}
else if(status & PHY_ANLPA_DR100_TX_HALF)
{
phy_speed_new |= PHY_100HALF_MASK;
}
else if(status & PHY_ANLPA_DR10_TX_FULL)
{
phy_speed_new |= PHY_10FULL_MASK;
}
else if(status & PHY_ANLPA_DR10_TX_HALF)
{
phy_speed_new |= PHY_10HALF_MASK;
}
}
/* linkchange */
if(phy_speed_new != phy_speed)
{
if(phy_speed_new & PHY_LINK_MASK)
{
ETH_TRACE("link up ");
if(phy_speed_new & PHY_100FULL_MASK)
{
ETH_TRACE("100Mbps full-duplex\n");
EMAC->CTL |= (EMAC_CTL_OPMODE_Msk | EMAC_CTL_FUDUP_Msk);
}
else if(phy_speed_new & PHY_100HALF_MASK)
{
ETH_TRACE("100Mbps half-duplex\n");
EMAC->CTL = (EMAC->CTL & ~EMAC_CTL_FUDUP_Msk) | EMAC_CTL_OPMODE_Msk;
}
else if(phy_speed_new & PHY_10FULL_MASK)
{
ETH_TRACE("10Mbps full-duplex\n");
EMAC->CTL = (EMAC->CTL & ~EMAC_CTL_OPMODE_Msk) | EMAC_CTL_FUDUP_Msk;
}
else
{
ETH_TRACE("10Mbps half-duplex\n");
EMAC->CTL &= ~(EMAC_CTL_OPMODE_Msk | EMAC_CTL_FUDUP_Msk);
}
/* send link up. */
eth_device_linkchange(&eth, RT_TRUE);
} /* link up. */
else
{
ETH_TRACE("link down\r\n");
/* send link down. */
eth_device_linkchange(&eth, RT_FALSE);
} /* link down. */
phy_speed = phy_speed_new;
} /* linkchange */
rt_thread_delay(RT_TICK_PER_SECOND);
} /* while(1) */
}
static rt_err_t rt_m480_emac_init(rt_device_t dev)
{
/* Unlock protected registers */
SYS_UnlockReg();
CLK_EnableModuleClock(EMAC_MODULE);
// Configure MDC clock rate to HCLK / (127 + 1) = 1.5 MHz if system is running at 192 MHz
CLK_SetModuleClock(EMAC_MODULE, 0, CLK_CLKDIV3_EMAC(127));
// Configure RMII pins
// SYS->GPA_MFPL |= SYS_GPA_MFPL_PA6MFP_EMAC_RMII_RXERR | SYS_GPA_MFPL_PA7MFP_EMAC_RMII_CRSDV;
SYS->GPA_MFPL |= SYS_GPA_MFPL_PA7MFP_EMAC_RMII_CRSDV;
SYS->GPC_MFPL |= SYS_GPC_MFPL_PC6MFP_EMAC_RMII_RXD1 | SYS_GPC_MFPL_PC7MFP_EMAC_RMII_RXD0;
SYS->GPC_MFPH |= SYS_GPC_MFPH_PC8MFP_EMAC_RMII_REFCLK;
SYS->GPE_MFPH |= SYS_GPE_MFPH_PE8MFP_EMAC_RMII_MDC |
SYS_GPE_MFPH_PE9MFP_EMAC_RMII_MDIO |
SYS_GPE_MFPH_PE10MFP_EMAC_RMII_TXD0 |
SYS_GPE_MFPH_PE11MFP_EMAC_RMII_TXD1 |
SYS_GPE_MFPH_PE12MFP_EMAC_RMII_TXEN;
// Enable high slew rate on all RMII TX output pins
PE->SLEWCTL = (GPIO_SLEWCTL_HIGH << GPIO_SLEWCTL_HSREN10_Pos) |
(GPIO_SLEWCTL_HIGH << GPIO_SLEWCTL_HSREN11_Pos) |
(GPIO_SLEWCTL_HIGH << GPIO_SLEWCTL_HSREN12_Pos);
/* Lock protected registers */
SYS_LockReg();
EMAC_init();
NVIC_SetPriority(EMAC_TX_IRQn, 1);
NVIC_EnableIRQ(EMAC_TX_IRQn);
NVIC_SetPriority(EMAC_RX_IRQn, 1);
NVIC_EnableIRQ(EMAC_RX_IRQn);
rt_sem_init(&eth_sem, "eth_sem", 0, RT_IPC_FLAG_FIFO);
rt_thread_init(&eth_tid, "eth", eth_entry, RT_NULL, eth_stack, sizeof(eth_stack), RT_THREAD_PRIORITY_MAX - 2, 10);
rt_thread_startup(&eth_tid);
#if LWIP_IPV4 && LWIP_IGMP
netif_set_igmp_mac_filter(eth.netif, igmp_mac_filter);
#endif /* LWIP_IPV4 && LWIP_IGMP */
return RT_EOK;
}
static rt_err_t rt_m480_emac_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t rt_m480_emac_close(rt_device_t dev)
{
return RT_EOK;
}
static rt_size_t rt_m480_emac_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_size_t rt_m480_emac_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t rt_m480_emac_control(rt_device_t dev, int cmd, void *args)
{
switch(cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if(args) rt_memcpy(args, eth_addr, 6);
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
rt_err_t rt_m480_emac_tx(rt_device_t dev, struct pbuf* p)
{
struct pbuf* q;
rt_uint32_t offset;
rt_uint8_t *buf;
buf = emac_get_tx_buf();
/* get free tx buffer */
if(buf == RT_NULL)
{
rt_sem_control(&eth_sem, RT_IPC_CMD_RESET, 0);
EMAC->INTSTS = EMAC_INTSTS_TXCPIF_Msk;
EMAC->INTEN |= EMAC_INTEN_TXCPIEN_Msk;
do{
rt_sem_take(&eth_sem, 1);
buf = emac_get_tx_buf();
}while(buf == RT_NULL);
}
offset = 0;
for (q = p; q != NULL; q = q->next)
{
rt_uint8_t* ptr;
rt_uint32_t len;
len = q->len;
ptr = q->payload;
// todo 优化复制
memcpy(&buf[offset], ptr, len);
offset += len;
}
#ifdef ETH_TX_DUMP
packet_dump("TX dump", p);
#endif
ETH_trigger_tx(offset);
if(EMAC->INTSTS & EMAC_INTSTS_TDUIF_Msk)
{
EMAC->INTSTS = EMAC_INTSTS_TDUIF_Msk;
ETH_TRIGGER_TX();
}
/* Return SUCCESS */
return RT_EOK;
}
struct pbuf *rt_m480_emac_rx(rt_device_t dev)
{
unsigned int status;
struct pbuf* p;
/* init p pointer */
p = RT_NULL;
start:
status = cur_rx_desc_ptr->status1;
if(status & OWNERSHIP_EMAC)
{
goto end;
}
if ((status & RXFD_RXGD) && !(status & EMAC_DMARXDESC_CRCEIF_Msk))
{
p = pbuf_alloc(PBUF_RAW, status & 0xFFFF, PBUF_RAM);
if (p != RT_NULL)
{
RT_ASSERT(p->next == RT_NULL);
const char * from = (const char *)(cur_rx_desc_ptr->buf);
// todo 优化复制
memcpy(p->payload, from, p->len);
}
}
#ifdef ETH_RX_DUMP
packet_dump("RX dump", p);
#endif /* ETH_RX_DUMP */
cur_rx_desc_ptr->status1 = OWNERSHIP_EMAC;
cur_rx_desc_ptr = cur_rx_desc_ptr->next;
if(p == RT_NULL)
{
goto start;
}
return p;
end:
if(!(EMAC->INTEN & EMAC_INTEN_RDUIEN_Msk))
{
EMAC->INTSTS = (EMAC_INTSTS_RDUIF_Msk | EMAC_INTSTS_RXGDIF_Msk);
EMAC->INTEN |= (EMAC_INTEN_RDUIEN_Msk | EMAC_INTEN_RXGDIEN_Msk);
ETH_TRIGGER_RX();
}
else
{
EMAC->INTSTS = EMAC_INTSTS_RXGDIF_Msk;
EMAC->INTEN |= EMAC_INTEN_RXGDIEN_Msk;
}
return RT_NULL;
}
static void rt_hw_m480_emac_register(char *dev_name)
{
rt_uint32_t value = 0;
SYS_UnlockReg();
FMC_Open();
for (rt_uint8_t i = 0; i < 3; i++)
{
value += FMC_ReadUID(i);
}
FMC_Close();
SYS_LockReg();
eth_addr[0] = 0x00;
eth_addr[1] = 0x00;
eth_addr[2] = 0x00;
eth_addr[3] = (value >> 16) & 0xff;
eth_addr[4] = (value >> 8) & 0xff;
eth_addr[5] = (value) & 0xff;
eth.parent.init = rt_m480_emac_init;
eth.parent.open = rt_m480_emac_open;
eth.parent.close = rt_m480_emac_close;
eth.parent.read = rt_m480_emac_read;
eth.parent.write = rt_m480_emac_write;
eth.parent.control = rt_m480_emac_control;
eth.parent.user_data = RT_NULL;
eth.eth_rx = rt_m480_emac_rx;
eth.eth_tx = rt_m480_emac_tx;
/* register eth device */
eth_device_init(&eth, dev_name);
}
static int rt_hw_nuc487_emac_init(void)
{
rt_hw_m480_emac_register("eh0");
return RT_EOK;
}
INIT_APP_EXPORT(rt_hw_nuc487_emac_init);
#endif
/*
* Copyright (c) 2016 Nuvoton Technology Corp.
* Description: M480 EMAC driver header file
*/
#include "NuMicro.h"
#ifndef _M480_ETH_
#define _M480_ETH_
/* Generic MII registers. */
#define MII_BMCR 0x00 /* Basic mode control register */
#define MII_BMSR 0x01 /* Basic mode status register */
#define MII_PHYSID1 0x02 /* PHYS ID 1 */
#define MII_PHYSID2 0x03 /* PHYS ID 2 */
#define MII_ADVERTISE 0x04 /* Advertisement control reg */
#define MII_LPA 0x05 /* Link partner ability reg */
#define MII_EXPANSION 0x06 /* Expansion register */
#define MII_DCOUNTER 0x12 /* Disconnect counter */
#define MII_FCSCOUNTER 0x13 /* False carrier counter */
#define MII_NWAYTEST 0x14 /* N-way auto-neg test reg */
#define MII_RERRCOUNTER 0x15 /* Receive error counter */
#define MII_SREVISION 0x16 /* Silicon revision */
#define MII_RESV1 0x17 /* Reserved... */
#define MII_LBRERROR 0x18 /* Lpback, rx, bypass error */
#define MII_PHYADDR 0x19 /* PHY address */
#define MII_RESV2 0x1a /* Reserved... */
#define MII_TPISTATUS 0x1b /* TPI status for 10mbps */
#define MII_NCONFIG 0x1c /* Network interface config */
/* Basic mode control register. */
#define BMCR_RESV 0x007f /* Unused... */
#define BMCR_CTST 0x0080 /* Collision test */
#define BMCR_FULLDPLX 0x0100 /* Full duplex */
#define BMCR_ANRESTART 0x0200 /* Auto negotiation restart */
#define BMCR_ISOLATE 0x0400 /* Disconnect DP83840 from MII */
#define BMCR_PDOWN 0x0800 /* Powerdown the DP83840 */
#define BMCR_ANENABLE 0x1000 /* Enable auto negotiation */
#define BMCR_SPEED100 0x2000 /* Select 100Mbps */
#define BMCR_LOOPBACK 0x4000 /* TXD loopback bits */
#define BMCR_RESET 0x8000 /* Reset the DP83840 */
/* Basic mode status register. */
#define BMSR_ERCAP 0x0001 /* Ext-reg capability */
#define BMSR_JCD 0x0002 /* Jabber detected */
#define BMSR_LSTATUS 0x0004 /* Link status */
#define BMSR_ANEGCAPABLE 0x0008 /* Able to do auto-negotiation */
#define BMSR_RFAULT 0x0010 /* Remote fault detected */
#define BMSR_ANEGCOMPLETE 0x0020 /* Auto-negotiation complete */
#define BMSR_RESV 0x07c0 /* Unused... */
#define BMSR_10HALF 0x0800 /* Can do 10mbps, half-duplex */
#define BMSR_10FULL 0x1000 /* Can do 10mbps, full-duplex */
#define BMSR_100HALF 0x2000 /* Can do 100mbps, half-duplex */
#define BMSR_100FULL 0x4000 /* Can do 100mbps, full-duplex */
#define BMSR_100BASE4 0x8000 /* Can do 100mbps, 4k packets */
/* Advertisement control register. */
#define ADVERTISE_SLCT 0x001f /* Selector bits */
#define ADVERTISE_CSMA 0x0001 /* Only selector supported */
#define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */
#define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */
#define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */
#define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */
#define ADVERTISE_100BASE4 0x0200 /* Try for 100mbps 4k packets */
#define ADVERTISE_RESV 0x1c00 /* Unused... */
#define ADVERTISE_RFAULT 0x2000 /* Say we can detect faults */
#define ADVERTISE_LPACK 0x4000 /* Ack link partners response */
#define ADVERTISE_NPAGE 0x8000 /* Next page bit */
#define RX_DESCRIPTOR_NUM 4 // Max Number of Rx Frame Descriptors
#define TX_DESCRIPTOR_NUM 2 // Max number of Tx Frame Descriptors
#define PACKET_BUFFER_SIZE 1520
#define CONFIG_PHY_ADDR 1
// Frame Descriptor's Owner bit
#define OWNERSHIP_EMAC 0x80000000 // 1 = EMAC
//#define OWNERSHIP_CPU 0x7fffffff // 0 = CPU
// Rx Frame Descriptor Status
#define RXFD_RXGD 0x00100000 // Receiving Good Packet Received
#define RXFD_RTSAS 0x00800000 // RX Time Stamp Available
// Tx Frame Descriptor's Control bits
#define TXFD_TTSEN 0x08 // Tx Time Stamp Enable
#define TXFD_INTEN 0x04 // Interrupt Enable
#define TXFD_CRCAPP 0x02 // Append CRC
#define TXFD_PADEN 0x01 // Padding Enable
// Tx Frame Descriptor Status
#define TXFD_TXCP 0x00080000 // Transmission Completion
#define TXFD_TTSAS 0x08000000 // TX Time Stamp Available
// Tx/Rx buffer descriptor structure
struct eth_descriptor;
struct eth_descriptor
{
uint32_t status1;
uint8_t *buf;
uint32_t status2;
struct eth_descriptor *next;
#ifdef TIME_STAMPING
u32_t backup1;
u32_t backup2;
u32_t reserved1;
u32_t reserved2;
#endif
};
#ifdef TIME_STAMPING
#define ETH_TS_ENABLE() do{EMAC->TSCTL = EMAC_TSCTL_TSEN_Msk;}while(0)
#define ETH_TS_START() do{EMAC->TSCTL |= (EMAC_TSCTL_TSMODE_Msk | EMAC_TSCTL_TSIEN_Msk);}while(0)
s32_t ETH_settime(u32_t sec, u32_t nsec);
s32_t ETH_gettime(u32_t *sec, u32_t *nsec);
s32_t ETH_updatetime(u32_t neg, u32_t sec, u32_t nsec);
s32_t ETH_adjtimex(int ppm);
void ETH_setinc(void);
#endif
#endif /* _M480_ETH_ */
......@@ -315,11 +315,6 @@ static rt_err_t usart_control(struct rt_serial_device *serial,
}
break;
// TODO 完善DMA接口
// case RT_DEVICE_FLAG_DMA_TX:
// USART_DMACmd(dev->usart_base, USART_DMAReq_Tx, ENABLE);
// stm32_uart_tx_dma_configure(dev, RT_TRUE);
// stm32_uart_tx_dma_nvic(dev, RT_TRUE);
// break;
default:
RT_ASSERT(0)
;
......@@ -365,9 +360,9 @@ static int usart_receive(struct rt_serial_device *serial)
/**
* @brief 串口设备注册
* @param uart : UART设备结构体
* @param uart_base : STM32 UART外设基地址
* @param name : STM32 UART设备名
* @param tx_dma_channel : STM32 UART TX的DMA通道基地址(可选)
* @param uart_base : UART外设基地址
* @param name : UART设备名
* @param tx_dma_channel : UART TX的DMA通道基地址(可选)
*/
static void rt_hw_uart_register(usart_t usart, UART_T * uart_base, char *name)
{
......
......@@ -36,6 +36,7 @@
#define RT_USING_CONSOLE
#define RT_CONSOLEBUF_SIZE 128
#define RT_CONSOLE_DEVICE_NAME "uart0"
#define RT_VER_NUM 0x40000
/* RT-Thread Components */
......@@ -147,11 +148,6 @@
/* RT-Thread online packages */
/* system packages */
/* RT-Thread GUI Engine */
/* IoT - internet of things */
......@@ -163,6 +159,9 @@
/* Wiced WiFi */
/* IoT Cloud */
/* security packages */
......@@ -175,10 +174,16 @@
/* tools packages */
/* system packages */
/* peripheral libraries and drivers */
/* miscellaneous packages */
/* example package: hello */
/* samples: kernel and components samples */
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册