vector_ar.rst 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
:orphan:

.. module:: statsmodels.tsa.vector_ar.var_model
   :synopsis: Vector autoregressions

.. currentmodule:: statsmodels.tsa.vector_ar.var_model

.. _var:

Vector Autoregressions :mod:`tsa.vector_ar`
===========================================

:mod:`statsmodels.tsa.vector_ar` contains methods that are useful
for simultaneously modeling and analyzing multiple time series using
:ref:`Vector Autoregressions (VAR) <var>` and
:ref:`Vector Error Correction Models (VECM) <vecm>`.

.. _var_process:

VAR(p) processes
----------------

We are interested in modeling a :math:`T \times K` multivariate time series
:math:`Y`, where :math:`T` denotes the number of observations and :math:`K` the
number of variables. One way of estimating relationships between the time series
and their lagged values is the *vector autoregression process*:

.. math::

   Y_t = A_1 Y_{t-1} + \ldots + A_p Y_{t-p} + u_t

   u_t \sim {\sf Normal}(0, \Sigma_u)

where :math:`A_i` is a :math:`K \times K` coefficient matrix.

We follow in large part the methods and notation of `Lutkepohl (2005)
<http://www.springer.com/gb/book/9783540401728>`__,
which we will not develop here.

Model fitting
~~~~~~~~~~~~~

.. note::

    The classes referenced below are accessible via the
    :mod:`statsmodels.tsa.api` module.

To estimate a VAR model, one must first create the model using an `ndarray` of
homogeneous or structured dtype. When using a structured or record array, the
class will use the passed variable names. Otherwise they can be passed
explicitly:

.. ipython:: python
    :suppress:

    import pandas as pd
    pd.options.display.max_rows = 10
    import matplotlib
    import matplotlib.pyplot as plt
    matplotlib.style.use('ggplot')

.. ipython:: python
   :okwarning:

    # some example data
    import numpy as np
    import pandas
    import statsmodels.api as sm
    from statsmodels.tsa.api import VAR, DynamicVAR
    mdata = sm.datasets.macrodata.load_pandas().data

    # prepare the dates index
    dates = mdata[['year', 'quarter']].astype(int).astype(str)
    quarterly = dates["year"] + "Q" + dates["quarter"]
    from statsmodels.tsa.base.datetools import dates_from_str
    quarterly = dates_from_str(quarterly)

    mdata = mdata[['realgdp','realcons','realinv']]
    mdata.index = pandas.DatetimeIndex(quarterly)
    data = np.log(mdata).diff().dropna()

    # make a VAR model
    model = VAR(data)

.. note::

   The :class:`VAR` class assumes that the passed time series are
   stationary. Non-stationary or trending data can often be transformed to be
   stationary by first-differencing or some other method. For direct analysis of
   non-stationary time series, a standard stable VAR(p) model is not
   appropriate.

To actually do the estimation, call the `fit` method with the desired lag
order. Or you can have the model select a lag order based on a standard
information criterion (see below):

.. ipython:: python

    results = model.fit(2)

    results.summary()


Several ways to visualize the data using `matplotlib` are available.

Plotting input time series:

.. ipython:: python

    @savefig var_plot_input.png
    results.plot()


Plotting time series autocorrelation function:

.. ipython:: python

    @savefig var_plot_acorr.png
    results.plot_acorr()


Lag order selection
~~~~~~~~~~~~~~~~~~~

Choice of lag order can be a difficult problem. Standard analysis employs
likelihood test or information criteria-based order selection. We have
implemented the latter, accessible through the :class:`VAR` class:

.. ipython:: python

    model.select_order(15)

When calling the `fit` function, one can pass a maximum number of lags and the
order criterion to use for order selection:

.. ipython:: python

    results = model.fit(maxlags=15, ic='aic')

Forecasting
~~~~~~~~~~~

The linear predictor is the optimal h-step ahead forecast in terms of
mean-squared error:

.. math::

   y_t(h) = \nu + A_1 y_t(h  1) + \cdots + A_p y_t(h  p)

We can use the `forecast` function to produce this forecast. Note that we have
to specify the "initial value" for the forecast:

.. ipython:: python

    lag_order = results.k_ar
    results.forecast(data.values[-lag_order:], 5)

The `forecast_interval` function will produce the above forecast along with
asymptotic standard errors. These can be visualized using the `plot_forecast`
function:

.. ipython:: python

   @savefig var_forecast.png
   results.plot_forecast(10)

Class Reference
~~~~~~~~~~~~~~~

.. module:: statsmodels.tsa.vector_ar
   :synopsis: Vector autoregressions and related tools

.. currentmodule:: statsmodels.tsa.vector_ar

.. autosummary::
   :toctree: generated/

   var_model.VAR
   var_model.VARProcess
   var_model.VARResults


Post-estimation Analysis
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Several process properties and additional results after
estimation are available for vector autoregressive processes.

.. autosummary::
   :toctree: generated/

   var_model.LagOrderResults
   hypothesis_test_results.HypothesisTestResults
   hypothesis_test_results.NormalityTestResults
   hypothesis_test_results.WhitenessTestResults


Impulse Response Analysis
-------------------------

*Impulse responses* are of interest in econometric studies: they are the
estimated responses to a unit impulse in one of the variables. They are computed
in practice using the MA(:math:`\infty`) representation of the VAR(p) process:

.. math::

    Y_t = \mu + \sum_{i=0}^\infty \Phi_i u_{t-i}

We can perform an impulse response analysis by calling the `irf` function on a
`VARResults` object:

.. ipython:: python

    irf = results.irf(10)

These can be visualized using the `plot` function, in either orthogonalized or
non-orthogonalized form. Asymptotic standard errors are plotted by default at
the 95% significance level, which can be modified by the user.

.. note::

    Orthogonalization is done using the Cholesky decomposition of the estimated
    error covariance matrix :math:`\hat \Sigma_u` and hence interpretations may
    change depending on variable ordering.

.. ipython:: python

    @savefig var_irf.png
    irf.plot(orth=False)


Note the `plot` function is flexible and can plot only variables of interest if
so desired:

.. ipython:: python

    @savefig var_realgdp.png
    irf.plot(impulse='realgdp')

The cumulative effects :math:`\Psi_n = \sum_{i=0}^n \Phi_i` can be plotted with
the long run effects as follows:

.. ipython:: python

    @savefig var_irf_cum.png
    irf.plot_cum_effects(orth=False)


Reference
~~~~~~~~~

.. autosummary::
   :toctree: generated/

   irf.IRAnalysis

Forecast Error Variance Decomposition (FEVD)
--------------------------------------------

Forecast errors of component j on k in an i-step ahead forecast can be
decomposed using the orthogonalized impulse responses :math:`\Theta_i`:

.. math::

    \omega_{jk, i} = \sum_{i=0}^{h-1} (e_j^\prime \Theta_i e_k)^2 / \mathrm{MSE}_j(h)

    \mathrm{MSE}_j(h) = \sum_{i=0}^{h-1} e_j^\prime \Phi_i \Sigma_u \Phi_i^\prime e_j

These are computed via the `fevd` function up through a total number of steps ahead:

.. ipython:: python

    fevd = results.fevd(5)

    fevd.summary()

They can also be visualized through the returned :class:`FEVD` object:

.. ipython:: python

    @savefig var_fevd.png
    results.fevd(20).plot()


Reference
~~~~~~~~~

.. autosummary::
   :toctree: generated/

   var_model.FEVD

Statistical tests
-----------------

A number of different methods are provided to carry out hypothesis tests about
the model results and also the validity of the model assumptions (normality,
whiteness / "iid-ness" of errors, etc.).

Granger causality
~~~~~~~~~~~~~~~~~

One is often interested in whether a variable or group of variables is "causal"
for another variable, for some definition of "causal". In the context of VAR
models, one can say that a set of variables are Granger-causal within one of the
VAR equations. We will not detail the mathematics or definition of Granger
causality, but leave it to the reader. The :class:`VARResults` object has the
`test_causality` method for performing either a Wald (:math:`\chi^2`) test or an
F-test.

.. ipython:: python

    results.test_causality('realgdp', ['realinv', 'realcons'], kind='f')

Normality
~~~~~~~~~

Whiteness of residuals
~~~~~~~~~~~~~~~~~~~~~~

Dynamic Vector Autoregressions
------------------------------

.. note::

    To use this functionality, `pandas <https://pypi.python.org/pypi/pandas>`__
    must be installed. See the `pandas documentation
    <http://pandas.pydata.org>`__ for more information on the below data
    structures.

One is often interested in estimating a moving-window regression on time series
data for the purposes of making forecasts throughout the data sample. For
example, we may wish to produce the series of 2-step-ahead forecasts produced by
a VAR(p) model estimated at each point in time.

.. ipython:: python

    np.random.seed(1)
    import pandas.util.testing as ptest
    ptest.N = 500
    data = ptest.makeTimeDataFrame().cumsum(0)
    data

    var = DynamicVAR(data, lag_order=2, window_type='expanding')

The estimated coefficients for the dynamic model are returned as a
:class:`pandas.Panel` object, which can allow you to easily examine, for
example, all of the model coefficients by equation or by date:

.. ipython:: python
   :okwarning:

    import datetime as dt

    var.coefs

    # all estimated coefficients for equation A
    var.coefs.minor_xs('A').info()

    # coefficients on 11/30/2001
    var.coefs.major_xs(dt.datetime(2001, 11, 30)).T

Dynamic forecasts for a given number of steps ahead can be produced using the
`forecast` function and return a :class:`pandas.DataMatrix` object:

.. ipython:: python

    var.forecast(2)

The forecasts can be visualized using `plot_forecast`:

.. ipython:: python

    @savefig dvar_forecast.png
    var.plot_forecast(2)

Reference
~~~~~~~~~

.. autosummary::
   :toctree: generated/

   hypothesis_test_results.HypothesisTestResults
   hypothesis_test_results.CausalityTestResults
   hypothesis_test_results.NormalityTestResults
   hypothesis_test_results.WhitenessTestResults

.. _vecm:

Vector Error Correction Models (VECM)
-------------------------------------

Vector Error Correction Models are used to study short-run deviations from
one or more permanent stochastic trends (unit roots). A VECM models the
difference of a vector of time series by imposing structure that is implied
by the assumed number of stochastic trends. :class:`VECM` is used to
specify and estimate these models.

A VECM(:math:`k_{ar}-1`) has the following form

.. math:: 

    \Delta y_t = \Pi y_{t-1} + \Gamma_1 \Delta y_{t-1} + \ldots 
                   + \Gamma_{k_{ar}-1} \Delta y_{t-k_{ar}+1} + u_t

where

.. math:: 

    \Pi = \alpha \beta'

as described in chapter 7 of [1]_.

A VECM(:math:`k_{ar} - 1`) with deterministic terms has the form

.. math::

   \Delta y_t = \alpha \begin{pmatrix}\beta' & \eta'\end{pmatrix} \begin{pmatrix}y_{t-1} \\
                D^{co}_{t-1}\end{pmatrix} + \Gamma_1 \Delta y_{t-1} + \dots + \Gamma_{k_{ar}-1} \Delta y_{t-k_{ar}+1} + C D_t + u_t.

In :math:`D^{co}_{t-1}` we have the deterministic terms which are inside
the cointegration relation (or restricted to the cointegration relation).
:math:`\eta` is the corresponding estimator. To pass a deterministic term
inside the cointegration relation, we can use the `exog_coint` argument.
For the two special cases of an intercept and a linear trend there exists
a simpler way to declare these terms: we can pass ``"ci"`` and ``"li"``
respectively to the `deterministic` argument. So for an intercept inside
the cointegration relation we can either pass ``"ci"`` as `deterministic`
or `np.ones(len(data))` as `exog_coint` if `data` is passed as the
`endog` argument. This ensures that :math:`D_{t-1}^{co} = 1` for all
:math:`t`.

We can also use deterministic terms outside the cointegration relation.
These are defined in :math:`D_t` in the formula above with the
corresponding estimators in the matrix :math:`C`. We specify such terms by
passing them to the `exog` argument. For an intercept and/or linear trend
we again have the possibility to use `deterministic` alternatively. For
an intercept we pass ``"co"`` and for a linear trend we pass ``"lo"`` where
the `o` stands for `outside`.

The following table shows the five cases considered in [2]_. The last
column indicates which string to pass to the `deterministic` argument for
each of these cases.

====  ===============================  ===================================  =============
Case  Intercept                        Slope of the linear trend            `deterministic`
====  ===============================  ===================================  =============
I     0                                0                                    ``"nc"``
II    :math:`- \alpha \beta^T \mu`     0                                    ``"ci"``
III   :math:`\neq 0`                   0                                    ``"co"``
IV    :math:`\neq 0`                   :math:`- \alpha \beta^T \gamma`      ``"coli"``
V     :math:`\neq 0`                   :math:`\neq 0`                       ``"colo"``
====  ===============================  ===================================  =============

Reference
~~~~~~~~~

.. autosummary::
   :toctree: generated/

   vecm.VECM
   vecm.coint_johansen
   vecm.select_order
   vecm.select_coint_rank
   vecm.VECMResults
   vecm.CointRankResults


References
^^^^^^^^^^
.. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.

.. [2] Johansen, S. 1995. *Likelihood-Based Inference in Cointegrated *
       *Vector Autoregressive Models*. Oxford University Press.