discrete_choice_example.py 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

## Discrete Choice Models

### Fair's Affair data

# A survey of women only was conducted in 1974 by *Redbook* asking about extramarital affairs.
from __future__ import print_function
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.formula.api import logit, probit, poisson, ols


print(sm.datasets.fair.SOURCE)


print(sm.datasets.fair.NOTE)


dta = sm.datasets.fair.load_pandas().data


dta['affair'] = (dta['affairs'] > 0).astype(float)
print(dta.head(10))


print(dta.describe())


affair_mod = logit("affair ~ occupation + educ + occupation_husb" 
                   "+ rate_marriage + age + yrs_married + children"
                   " + religious", dta).fit()


print(affair_mod.summary())


# How well are we predicting?

affair_mod.pred_table()


# The coefficients of the discrete choice model do not tell us much. What we're after is marginal effects.

mfx = affair_mod.get_margeff()
print(mfx.summary())


respondent1000 = dta.iloc[1000]
print(respondent1000)


resp = dict(zip(range(1,9), respondent1000[["occupation", "educ", 
                                            "occupation_husb", "rate_marriage", 
                                            "age", "yrs_married", "children", 
                                            "religious"]].tolist()))
resp.update({0 : 1})
print(resp)


mfx = affair_mod.get_margeff(atexog=resp)
print(mfx.summary())


affair_mod.predict(respondent1000)


affair_mod.fittedvalues[1000]


affair_mod.model.cdf(affair_mod.fittedvalues[1000])


# The "correct" model here is likely the Tobit model. We have an work in progress branch "tobit-model" on github, if anyone is interested in censored regression models.

#### Exercise: Logit vs Probit

fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
support = np.linspace(-6, 6, 1000)
ax.plot(support, stats.logistic.cdf(support), 'r-', label='Logistic')
ax.plot(support, stats.norm.cdf(support), label='Probit')
ax.legend();


fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
support = np.linspace(-6, 6, 1000)
ax.plot(support, stats.logistic.pdf(support), 'r-', label='Logistic')
ax.plot(support, stats.norm.pdf(support), label='Probit')
ax.legend();


# Compare the estimates of the Logit Fair model above to a Probit model. Does the prediction table look better? Much difference in marginal effects?

#### Genarlized Linear Model Example

print(sm.datasets.star98.SOURCE)


print(sm.datasets.star98.DESCRLONG)


print(sm.datasets.star98.NOTE)


dta = sm.datasets.star98.load_pandas().data
print(dta.columns)


print(dta[['NABOVE', 'NBELOW', 'LOWINC', 'PERASIAN', 'PERBLACK', 'PERHISP', 'PERMINTE']].head(10))


print(dta[['AVYRSEXP', 'AVSALK', 'PERSPENK', 'PTRATIO', 'PCTAF', 'PCTCHRT', 'PCTYRRND']].head(10))


formula = 'NABOVE + NBELOW ~ LOWINC + PERASIAN + PERBLACK + PERHISP + PCTCHRT '
formula += '+ PCTYRRND + PERMINTE*AVYRSEXP*AVSALK + PERSPENK*PTRATIO*PCTAF'


##### Aside: Binomial distribution

# Toss a six-sided die 5 times, what's the probability of exactly 2 fours?

stats.binom(5, 1./6).pmf(2)


from scipy.misc import comb
comb(5,2) * (1/6.)**2 * (5/6.)**3


from statsmodels.formula.api import glm
glm_mod = glm(formula, dta, family=sm.families.Binomial()).fit()


print(glm_mod.summary())


# The number of trials 

glm_mod.model.data.orig_endog.sum(1)


glm_mod.fittedvalues * glm_mod.model.data.orig_endog.sum(1)


# First differences: We hold all explanatory variables constant at their means and manipulate the percentage of low income households to assess its impact
# on the response variables:

exog = glm_mod.model.data.orig_exog # get the dataframe


means25 = exog.mean()
print(means25)


means25['LOWINC'] = exog['LOWINC'].quantile(.25)
print(means25)


means75 = exog.mean()
means75['LOWINC'] = exog['LOWINC'].quantile(.75)
print(means75)


resp25 = glm_mod.predict(means25)
resp75 = glm_mod.predict(means75)
diff = resp75 - resp25


# The interquartile first difference for the percentage of low income households in a school district is:

print("%2.4f%%" % (diff[0]*100))


nobs = glm_mod.nobs
y = glm_mod.model.endog
yhat = glm_mod.mu


from statsmodels.graphics.api import abline_plot
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111, ylabel='Observed Values', xlabel='Fitted Values')
ax.scatter(yhat, y)
y_vs_yhat = sm.OLS(y, sm.add_constant(yhat, prepend=True)).fit()
fig = abline_plot(model_results=y_vs_yhat, ax=ax)


##### Plot fitted values vs Pearson residuals

# Pearson residuals are defined to be 
# 
# $$\frac{(y - \mu)}{\sqrt{(var(\mu))}}$$
# 
# where var is typically determined by the family. E.g., binomial variance is $np(1 - p)$

fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111, title='Residual Dependence Plot', xlabel='Fitted Values',
                          ylabel='Pearson Residuals')
ax.scatter(yhat, stats.zscore(glm_mod.resid_pearson))
ax.axis('tight')
ax.plot([0.0, 1.0],[0.0, 0.0], 'k-');


##### Histogram of standardized deviance residuals with Kernel Density Estimate overlayed

# The definition of the deviance residuals depends on the family. For the Binomial distribution this is 
# 
# $$r_{dev} = sign\(Y-\mu\)*\sqrt{2n(Y\log\frac{Y}{\mu}+(1-Y)\log\frac{(1-Y)}{(1-\mu)}}$$
# 
# They can be used to detect ill-fitting covariates

resid = glm_mod.resid_deviance
resid_std = stats.zscore(resid) 
kde_resid = sm.nonparametric.KDEUnivariate(resid_std)
kde_resid.fit()


fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111, title="Standardized Deviance Residuals")
ax.hist(resid_std, bins=25, normed=True);
ax.plot(kde_resid.support, kde_resid.density, 'r');


##### QQ-plot of deviance residuals

fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
fig = sm.graphics.qqplot(resid, line='r', ax=ax)