comp_node.cpp 31.0 KB
Newer Older
1 2 3 4
/**
 * \file src/core/impl/comp_node/cuda/comp_node.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 */

#include "./comp_node.h"
#include "megbrain/comp_node_env.h"
#include "megbrain/utils/thread.h"

#include <string>

using namespace mgb;

#if MGB_CUDA

#include "megbrain/comp_node/alloc.h"

#include <cctype>
26
#include <cstdio>
27 28 29

#include <thread>

30
#include <cuda.h>
31 32
#include <cuda_runtime.h>

33 34 35 36 37
#ifdef __unix__
#include <unistd.h>
#include <sys/wait.h>
#endif

38 39 40
using CudaCompNodeImpl = CudaCompNode::CompNodeImpl;

namespace {
41 42 43 44 45 46 47
size_t get_min_system_memory(size_t available) {
    if (available < (1u << 31)) {
        // 225MiB
        return 225 * 1024 * 1024;
    } else {
        // max(300 MiB, 0.05 * available)
        return std::max<size_t>(300 * 1024 * 1024, available / 20);
48
    }
49 50 51 52 53 54 55 56 57
}
using CudaHostFunc = megdnn::thin_function<void()>;
void CUDART_CB cuda_host_func_caller(void* ud) {
    mgb_assert(ud);
    CudaHostFunc* func_ptr = reinterpret_cast<CudaHostFunc*>(ud);
    MGB_TRY { (*func_ptr)(); }
    MGB_FINALLY(delete func_ptr;);
}
}  // anonymous namespace
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

namespace mgb {
namespace mem_alloc {
class CudaRawAllocator final : public RawAllocator {
public:
    void* alloc(size_t size) override {
        void* addr;
        cudaError_t cuda_error = cudaMalloc(&addr, size);
        if (cuda_error == cudaSuccess) {
            mgb_assert(addr);
            return addr;
        }
        auto msg = mgb_ssprintf_log(
                "cudaMalloc failed while requesting %zd bytes (%.3fMiB)"
                " of memory; error: %s",
                size, size / (1024.0 * 1024), cudaGetErrorString(cuda_error));
        msg.append(CudaError::get_cuda_extra_info());
        if (cuda_error == cudaErrorMemoryAllocation) {
            mgb_log_error("%s", msg.c_str());
            // clear cuda error
            cudaGetLastError();
            mgb_assert(cudaGetLastError() == cudaSuccess);
            return nullptr;
        }
        mgb_throw_raw(MemAllocError{msg});
    }

    void free(void* ptr) override {
        cudaError_t cuda_error = cudaFree(ptr);
        if (cuda_error == cudaSuccess)
            return;
        auto msg = ssprintf("cudaFree failed for %p: %s", ptr,
                            cudaGetErrorString(cuda_error));
        msg.append(CudaError::get_cuda_extra_info());
        mgb_throw_raw(MemAllocError{msg});
    }

    void get_mem_info(size_t& free, size_t& tot) override {
        cudaError_t cuda_error = cudaMemGetInfo(&free, &tot);
        if (cuda_error == cudaSuccess)
            return;
        auto msg = ssprintf("cudaMemGetInfo failed %s",
                            cudaGetErrorString(cuda_error));
        msg.append(CudaError::get_cuda_extra_info());
        mgb_throw_raw(MegBrainError{msg});
    }
};

106 107 108 109
class CudaHostAllocator : public RawAllocator {
public:
    void* alloc(size_t size) override {
        void* addr;
110 111
        cudaError_t cuda_error =
                cudaHostAlloc(&addr, size, cudaHostAllocDefault);
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
        if (cuda_error == cudaSuccess) {
            mgb_assert(addr);
            return addr;
        }
        auto msg = mgb_ssprintf_log(
                "cudaHostAlloc failed while requesting %zd bytes (%.3fMiB)"
                " of pinned host memory; error: %s",
                size, size / (1024.0 * 1024), cudaGetErrorString(cuda_error));
        msg.append(CudaError::get_cuda_extra_info());
        if (cuda_error == cudaErrorMemoryAllocation) {
            mgb_log_error("%s", msg.c_str());
            // clear cuda error
            cudaGetLastError();
            mgb_assert(cudaGetLastError() == cudaSuccess);
            return nullptr;
        }
        mgb_throw_raw(MemAllocError{msg});
    }

    void free(void* ptr) override {
        cudaError_t cuda_error = cudaFreeHost(ptr);
        if (cuda_error == cudaSuccess)
            return;
        auto msg = ssprintf("cudaFreeHost failed for %p: %s", ptr,
                            cudaGetErrorString(cuda_error));
        msg.append(CudaError::get_cuda_extra_info());
        mgb_throw_raw(MemAllocError{msg});
    }

    void get_mem_info(size_t& free, size_t& tot) override {
        free = 0;
        tot = 0;
    }
};

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
class CudaDeviceRuntimePolicy : public DeviceRuntimePolicy {
public:
    CompNode::DeviceType device_type() override {
        return CompNode::DeviceType::CUDA;
    }
    void set_device(int device) override {
        MGB_CUDA_CHECK(cudaSetDevice(device));
    }
    void device_synchronize(int device) override {
        MGB_CUDA_CHECK(cudaSetDevice(device));
        MGB_CUDA_CHECK(cudaDeviceSynchronize());
    }
};

/* ===================== DevMemAlloc  ===================== */
std::unique_ptr<DevMemAlloc> DevMemAlloc::make_cuda_alloc() {
    return std::make_unique<FwdDevMemAlloc>(
            std::make_shared<CudaRawAllocator>());
}
}  // namespace mem_alloc
}  // namespace mgb

/* ===================== CudaCompNodeImpl  ===================== */
170
class CudaCompNode::CompNodeImpl final : public CompNode::Impl {
171 172 173 174 175 176 177
    MGB_DYN_TYPE_OBJ_FINAL_DECL;

    friend class EventImpl;
    friend class CudaCompNode;

    struct DeviceInfo;
    struct StaticData;
178
    static StaticData* sd;
179
    static Spinlock sd_mtx;
180 181 182
#if !MGB_BUILD_SLIM_SERVING
    std::mutex m_update_mem;
#endif
183 184 185 186 187

    //! set to true when m_locator is assigned; set to false if async init
    //! failed
    bool m_initialized = false;
    Locator m_locator, m_locator_logical;
188 189
    mem_alloc::StreamMemAlloc* m_mem_alloc;
    DeviceInfo* m_device_info;
190 191 192 193

    std::unique_ptr<Event> m_sync_event;
    Spinlock m_sync_event_mtx;

194
    void activate() { m_env.cuda_env().activate(); }
195

196
    void init(const Locator& locator, const Locator& locator_logical);
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    void fini();

    //! return whether global finalized, and print warning in such case
    static inline bool check_global_finalized();

    //! enable peer copy from dev0 to dev1
    static void enable_peer_access(int dev0, int dev1);

    static void static_free_device(ImplBase* self, void* ptr) {
        static_cast<CompNodeImpl*>(self)->free_device(ptr);
    }

    static void static_free_host(ImplBase* self, void* ptr) {
        static_cast<CompNodeImpl*>(self)->free_host(ptr);
    }

213 214
public:
    CompNodeImpl() : Impl(static_free_device, static_free_host) {}
215

216 217
    void* alloc_device(size_t size) override {
        activate();
218
#if MGB_BUILD_SLIM_SERVING
219
        return m_mem_alloc->alloc(size);
220
#else
221 222 223 224 225
        void* ptr = m_mem_alloc->alloc(size);
        {
            MGB_LOCK_GUARD(m_update_mem);
            ptr2size[ptr] = size;
            m_used_mem += size;
226
        }
227 228 229
        return ptr;
#endif
    }
230

231
    void free_device(void* ptr);
232

233
    void* alloc_host(size_t size) override;
234

235
    void free_host(void* ptr);
236

237 238 239 240 241 242 243
    void copy_to_host(void* host_ptr, const void* device_ptr,
                      size_t size) override {
        activate();
        MGB_CUDA_CHECK(cudaMemcpyAsync(host_ptr, device_ptr, size,
                                       cudaMemcpyDeviceToHost,
                                       m_env.cuda_env().stream));
    }
244

245 246 247 248 249 250 251
    void copy_to_device(void* device_ptr, const void* host_ptr,
                        size_t size) override {
        activate();
        MGB_CUDA_CHECK(cudaMemcpyAsync(device_ptr, host_ptr, size,
                                       cudaMemcpyHostToDevice,
                                       m_env.cuda_env().stream));
    }
252

253 254
    void peer_copy_to(Impl* dest_impl, void* dest, const void* src,
                      size_t size) override;
255

256 257 258
    size_t get_mem_addr_alignment() override {
        return m_env.property().mem_alignment;
    }
259

260
    std::unique_ptr<Event> create_event(size_t flags) override;
261

262
    void sync() override;
263

264
    MemNode mem_node() override;
265

266 267 268 269 270 271 272 273
    std::pair<size_t, size_t> get_mem_status_bytes() override {
        // explicitly call cuda_env() to ensure async init is finished
        m_env.cuda_env().activate();
        size_t tot, free;
        MGB_CUDA_CHECK(cudaMemGetInfo(&free, &tot));
        free += m_mem_alloc->get_free_memory_dev().tot;
        return {tot, free};
    }
274

275
#if !MGB_BUILD_SLIM_SERVING
276
    std::pair<size_t, size_t> get_free_left_and_right(size_t begin_ptr, size_t end_ptr) override {
277 278
        return m_mem_alloc->get_free_left_and_right(begin_ptr, end_ptr);
    }
279 280 281 282 283

    size_t get_max_block_size_available() {
        activate();
        return m_mem_alloc->get_max_block_size_available();
    }
284 285
#endif

286
    Locator locator() override { return m_locator; }
287

288
    Locator locator_logical() override { return m_locator_logical; }
289

290
    void add_callback(CudaHostFunc&& cb) override {
291
#if CUDART_VERSION >= 10000
292 293 294 295 296 297 298 299 300 301 302
        activate();
        CudaHostFunc* func_ptr = new CudaHostFunc(std::move(cb));
        MGB_TRY {
            MGB_CUDA_CHECK(cudaLaunchHostFunc(m_env.cuda_env().stream,
                                              cuda_host_func_caller,
                                              static_cast<void*>(func_ptr)));
        }
        MGB_CATCH(..., {
            delete func_ptr;
            throw;
        });
303
#else
304 305 306 307
        MGB_MARK_USED_VAR(cb);
        MGB_MARK_USED_VAR(cuda_host_func_caller);
        mgb_throw(MegBrainError,
                  "add_callback only support in cuda10.0 and later version");
308
#endif
309
    }
310

311
    uint64_t get_uid() override { return m_uid; }
312 313

#if !MGB_BUILD_SLIM_SERVING
314
    size_t get_used_memory() override { return m_used_mem; }
315 316
#endif

317 318
private:
    uint64_t m_uid;
319
#if !MGB_BUILD_SLIM_SERVING
320 321
    std::unordered_map<void*, size_t> ptr2size;
    size_t m_used_mem = 0;
322
#endif
323 324 325 326 327 328 329
};
MGB_DYN_TYPE_OBJ_FINAL_IMPL(CudaCompNode::CompNodeImpl);

struct CudaCompNodeImpl::DeviceInfo {
    int dev_num = -1;
    std::unique_ptr<mem_alloc::DevMemAlloc> mem_alloc;

330
    bool init_done() const { return mem_alloc.get(); }
331

332
    void init(const CompNodeEnv& env);
333

334
    void fini() { mem_alloc.reset(); }
335 336 337 338 339 340 341 342 343
};

struct CudaCompNodeImpl::StaticData {
    static constexpr int MAX_NR_COMP_NODE = 1024, MAX_NR_DEVICE = 64;

    std::recursive_mutex mtx;

    mem_alloc::DevMemAlloc::PreAllocConfig prealloc_config;

344
    std::unique_ptr<mem_alloc::SimpleCachingAlloc> host_alloc;
345 346
    CudaCompNode::CompNodeImpl node[MAX_NR_COMP_NODE];
    DeviceInfo dev_info[MAX_NR_DEVICE];
347 348
    int nr_node = 0,          //!< number of loaded node[]
            nr_dev_used = 0;  //!< number of used dev_info[]
349

350 351 352
    StaticData()
            : host_alloc(mem_alloc::SimpleCachingAlloc::make(
                      std::make_unique<mem_alloc::CudaHostAllocator>())) {
353 354
        prealloc_config.max_overhead = 0;
        prealloc_config.alignment = 1;
355
        host_alloc->alignment(1);
356 357 358
    }

    ~StaticData() {
359
        for (int i = 0; i < nr_node; ++i)
360
            node[i].fini();
361
        for (int i = 0; i < nr_dev_used; ++i)
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
            dev_info[i].fini();
    }

    static size_t get_mem_reserve_size() {
        if (auto setting = MGB_GETENV("MGB_CUDA_RESERVE_MEMORY")) {
            if (!strncmp(setting, "b:", 2)) {
                return std::stoull(setting + 2);
            }
            size_t tot, free;
            MGB_CUDA_CHECK(cudaFree(0));
            MGB_CUDA_CHECK(cudaMemGetInfo(&free, &tot));
            return free - get_min_system_memory(free);
        } else {
            return 0;
        }
    }
};
CudaCompNodeImpl::StaticData* CudaCompNodeImpl::sd = nullptr;
Spinlock CudaCompNodeImpl::sd_mtx;

382 383
void CudaCompNodeImpl::init(const Locator& locator,
                            const Locator& locator_logical) {
384 385 386 387
    m_locator = locator;
    m_locator_logical = locator_logical;
    m_initialized = true;

388
#if defined(__linux__) || defined(TARGET_OS_MAC)
389
    FILE* fp;
390 391 392 393 394
    fp = fopen("/dev/urandom", "r");
    mgb_assert(fread(&m_uid, sizeof(m_uid), 1, fp) == 1);
    fclose(fp);
#else
    m_uid = std::chrono::duration_cast<std::chrono::nanoseconds>(
395 396
                    std::chrono::system_clock::now().time_since_epoch())
                    .count();
397 398
#endif

399 400 401 402 403
    auto on_succ = [this](cudaStream_t stream) {
        auto locator = m_locator;
        log_comp_node_created(locator, m_locator_logical);

        MGB_LOCK_GUARD(sd->mtx);
404 405
        DeviceInfo* dev_info = nullptr;
        for (int i = 0; i < sd->nr_dev_used; ++i) {
406 407 408 409 410 411 412 413 414 415
            if (sd->dev_info[i].dev_num == locator.device) {
                dev_info = &sd->dev_info[i];
                break;
            }
        }

        if (!dev_info) {
            dev_info = &sd->dev_info[sd->nr_dev_used];
            dev_info->init(m_env);
            // note: add nr_dev_used only after init succeeds
416
            ++sd->nr_dev_used;
417 418 419 420 421 422 423 424 425 426 427
        }
        m_device_info = dev_info;
        m_mem_alloc =
                dev_info->mem_alloc->add_stream(static_cast<void*>(stream));
    };

    auto on_error = [this](std::exception&) {
        MGB_LOCK_GUARD(sd->mtx);
        m_initialized = false;
    };

428 429
    m_env.init_cuda_async(locator.device, make_comp_node_from_impl(this),
                          {on_succ, on_error});
430 431 432 433 434 435 436 437 438 439 440 441 442
}

void CudaCompNodeImpl::fini() {
    if (!m_initialized)
        return;

    m_sync_event.reset();
    m_env.fini();
    m_mem_alloc = nullptr;
    m_device_info = nullptr;
    m_initialized = false;
}

443
void CudaCompNodeImpl::free_device(void* ptr) {
444 445 446 447
    if (check_global_finalized())
        return;

    activate();
448 449 450
#if !MGB_BUILD_SLIM_SERVING
    {
        MGB_LOCK_GUARD(m_update_mem);
451 452
        mgb_assert(ptr2size.find(ptr) != ptr2size.end(), "ptr %p not found!",
                   ptr);
453 454 455 456
        m_used_mem -= ptr2size.at(ptr);
        ptr2size.erase(ptr);
    }
#endif
457 458 459
    m_mem_alloc->free(ptr);
}

460
void* CudaCompNodeImpl::alloc_host(size_t size) {
461 462
    // need activate because it create cuda cuda context in current device
    activate();
463 464 465 466
    return sd->host_alloc->alloc(size);
}

void CudaCompNodeImpl::free_host(void* ptr) {
467 468
    if (check_global_finalized())
        return;
469 470 471
    sd->host_alloc->free(ptr);
}

472 473
void CudaCompNodeImpl::peer_copy_to(Impl* dest_impl, void* dest,
                                    const void* src, size_t size) {
474
    if (dest_impl->same_type<CudaCompNodeImpl>()) {
475 476 477
        auto&& dst_env =
                static_cast<CudaCompNodeImpl*>(dest_impl)->m_env.cuda_env();
        auto&& src_env = m_env.cuda_env();
478 479
        activate();
        if (dst_env.device == src_env.device) {
480 481
            MGB_CUDA_CHECK(cudaMemcpyAsync(
                    dest, src, size, cudaMemcpyDeviceToDevice, dst_env.stream));
482 483 484
        } else {
            enable_peer_access(src_env.device, dst_env.device);
            enable_peer_access(dst_env.device, src_env.device);
485 486 487
            MGB_CUDA_CHECK(cudaMemcpyPeerAsync(dest, dst_env.device, src,
                                               src_env.device, size,
                                               dst_env.stream));
488 489 490 491
        }
        return;
    }
    mgb_assert(dest_impl->env().property().type == DeviceType::CPU,
492
               "cuda peer_copy_to only implemented for CPU");
493 494 495
    auto copy = [this, dest, src, size]() {
        auto stream = m_env.cuda_env().stream;
        m_env.cuda_env().activate();
496 497
        MGB_CUDA_CHECK(cudaMemcpyAsync(dest, src, size, cudaMemcpyDeviceToHost,
                                       stream));
498 499 500 501 502 503 504 505 506 507 508 509 510 511
        MGB_CUDA_CHECK(cudaStreamSynchronize(stream));
    };
    dest_impl->env().cpu_env().dispatch(copy);
}

MemNode CudaCompNodeImpl::mem_node() {
    // m_device_info would be null before async init finishes; so we just return
    // a prive pointer related to device number here
    return MemNode{sd->dev_info + m_locator.device};
}

void CudaCompNodeImpl::sync() {
    activate();

512 513 514
    // do not use MGB_CUDA_CHECK(cudaStreamSynchronize(m_env->stream)) since
    // other threads may be adding operations into the stream, and we only care
    // about previous operations in current thread. However docs of
515 516 517
    // cudaStreamSynchronize did not describe details of such condition, so we
    // use manual event implementation

518
    Event* event;
519 520 521 522 523 524 525 526 527 528 529
    {
        MGB_LOCK_GUARD(m_sync_event_mtx);
        if (!m_sync_event)
            m_sync_event = create_event(0);
        event = m_sync_event.get();
    }
    event->record();
    event->host_wait();
}

void CudaCompNodeImpl::enable_peer_access(int dev0, int dev1) {
530 531
    static bool already_enabled[StaticData::MAX_NR_DEVICE]
                               [StaticData::MAX_NR_DEVICE];
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
    if (already_enabled[dev0][dev1])
        return;

    static std::mutex global_lock;
    MGB_LOCK_GUARD(global_lock);
    if (already_enabled[dev0][dev1])
        return;

    int can;
    MGB_CUDA_CHECK(cudaDeviceCanAccessPeer(&can, dev0, dev1));
    if (can) {
        mgb_log("enable peer access from GPU %d to GPU %d", dev0, dev1);
        MGB_CUDA_CHECK(cudaSetDevice(dev0));
        auto err = cudaDeviceEnablePeerAccess(dev1, 0);
        if (err != cudaSuccess) {
            mgb_log_error("failed to enable peer access from %d to %d: %s(%d)",
548 549
                          dev0, dev1, cudaGetErrorString(err),
                          static_cast<int>(err));
550 551 552 553 554 555 556 557 558 559 560 561
            cudaGetLastError();
        }
    }

    // check for cudaMemcpyPeer usable
    int v0 = 1, v1 = 2;

    int *dp0, *dp1;
    MGB_CUDA_CHECK(cudaSetDevice(dev0));
    MGB_CUDA_CHECK(cudaMalloc(&dp0, sizeof(int)));
    MGB_CUDA_CHECK(cudaSetDevice(dev1));
    MGB_CUDA_CHECK(cudaMalloc(&dp1, sizeof(int)));
562 563
    MGB_CUDA_CHECK(cudaMemcpy(dp0, &v0, sizeof(int), cudaMemcpyHostToDevice));
    MGB_CUDA_CHECK(cudaMemcpy(dp1, &v1, sizeof(int), cudaMemcpyHostToDevice));
564 565
    MGB_CUDA_CHECK(cudaMemcpyPeer(dp1, dev1, dp0, dev0, sizeof(int)));
    int get = 0;
566
    MGB_CUDA_CHECK(cudaMemcpy(&get, dp1, sizeof(int), cudaMemcpyDeviceToHost));
567 568

    mgb_throw_if(get != 1, CudaError,
569 570 571
                 "P2P copy (%d => %d) check failed; consider disabling "
                 "Access Control Services(ACS) for the PCI device",
                 dev0, dev1);
572 573 574 575 576 577

    already_enabled[dev0][dev1] = true;
}

/* ===================== CudaCompNodeImpl::DeviceInfo  ===================== */

578
void CudaCompNodeImpl::DeviceInfo::init(const CompNodeEnv& env) {
579 580 581 582 583
    mgb_assert(!mem_alloc);
#if 0
    // forward cudaMalloc
    mem_alloc = mem_alloc::DevMemAlloc::make_cuda_alloc();
#else
584
    auto&& cuenv = env.cuda_env();
585 586 587 588 589 590 591 592 593 594
    cuenv.activate();
    dev_num = cuenv.device;
    auto reserve_size = StaticData::get_mem_reserve_size();
    mem_alloc = mem_alloc::DevMemAlloc::make(
            dev_num, reserve_size,
            std::make_shared<mem_alloc::CudaRawAllocator>(),
            std::make_shared<mem_alloc::CudaDeviceRuntimePolicy>());
    mem_alloc->prealloc_config(sd->prealloc_config);
    auto align = env.property().mem_alignment;
    mem_alloc->alignment(align);
595 596 597 598
    mgb_log_debug(
            "cuda: gpu%d: name=`%s' dyn_mem_reserve=%.2fMiB alignment=0x%zx",
            dev_num, cuenv.device_prop.name, reserve_size / 1024.0 / 1024,
            align);
599 600 601 602 603 604 605 606 607 608 609
#endif
}

bool CudaCompNodeImpl::check_global_finalized() {
    if (!sd) {
        static std::atomic_flag warn_printed = ATOMIC_FLAG_INIT;
        if (!warn_printed.test_and_set()) {
            mgb_log_debug("cuda comp node method called after global finalize");
        }
        return true;
    }
610 611 612 613 614 615 616 617 618 619 620 621
#if MGB_CUDA && defined(WIN32)
    //! FIXME: windows cuda driver shutdown before call atexit function even
    //! register atexit function after init cuda driver! as a workround
    //! recovery resource by OS temporarily, may need remove this after
    //! upgrade cuda runtime
    if (CudaCompNode::is_into_atexit) {
        mgb_log_debug(
                "windows cudaErrorCudartUnloading happened!!, resource "
                "recovery by OS!!");
        return true;
    }
#endif
622 623 624 625 626
    return false;
}

/* ===================== EventImpl  ===================== */

627
class CudaCompNode::EventImpl final : public EventImplHelper {
628
    bool m_init_finished = false;
629
    CudaCompNodeImpl* const m_comp_node_impl;
630 631 632 633
    cudaEvent_t m_cuda_event;

    void do_record() override {
        m_comp_node_impl->activate();
634
        auto&& env = m_comp_node_impl->m_env.cuda_env();
635 636 637 638 639 640 641 642 643 644
        MGB_CUDA_CHECK(cudaEventRecord(m_cuda_event, env.stream));
    }

    bool do_finished() override {
        m_comp_node_impl->activate();
        cudaError_t err = cudaEventQuery(m_cuda_event);
        if (err == cudaSuccess)
            return true;
        if (err == cudaErrorNotReady)
            return false;
645 646
        mgb_throw(CudaError, "failed to query event: %d: %s", int(err),
                  cudaGetErrorString(err));
647 648 649 650 651 652
    }

    void host_wait_cv() override {
        MGB_CUDA_CHECK(cudaEventSynchronize(m_cuda_event));
    }

653
    double do_elapsed_time_until(EventImplHelper& end) override {
654 655
        m_comp_node_impl->activate();
        float ret = 0.0;
656 657
        MGB_CUDA_CHECK(cudaEventElapsedTime(
                &ret, m_cuda_event, static_cast<EventImpl&>(end).m_cuda_event));
658 659 660
        return static_cast<double>(ret) * 1e-3;
    }

661
    void do_device_wait_by(Impl* cn_impl) override;
662

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
public:
    EventImpl(CudaCompNodeImpl* comp_node_impl, size_t create_flags)
            : EventImplHelper(comp_node_impl, create_flags),
              m_comp_node_impl{comp_node_impl} {
        m_comp_node_impl->activate();
        size_t cuda_flags = cudaEventDisableTiming;
        if (create_flags & NEED_TIMER)
            cuda_flags = 0;
        MGB_CUDA_CHECK(cudaEventCreateWithFlags(&m_cuda_event, cuda_flags));
        m_init_finished = true;
    }

    ~EventImpl() {
        if (m_init_finished) {
            MGB_TRY { MGB_CUDA_CHECK(cudaEventDestroy(m_cuda_event)); }
            MGB_CATCH(MegBrainError & exc, {
                mgb_log_error("failed to destroy cuda event: %s", exc.what());
            })
681
        }
682
    }
683 684
};

685
std::unique_ptr<CompNode::Event> CudaCompNodeImpl::create_event(size_t flags) {
686 687 688
    return std::make_unique<EventImpl>(this, flags);
}

689
void CudaCompNode::EventImpl::do_device_wait_by(Impl* cn_impl) {
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
    if (cn_impl->dyn_typeinfo() == CudaCompNodeImpl::typeinfo()) {
        auto imp = static_cast<CudaCompNodeImpl*>(cn_impl);
        auto stream = imp->m_env.cuda_env().stream;
        imp->activate();
        MGB_CUDA_CHECK(cudaStreamWaitEvent(stream, m_cuda_event, 0));
        return;
    }
    if (cn_impl->env().property().type == DeviceType::CPU) {
        auto waiter = [this]() {
            MGB_CUDA_CHECK(cudaEventSynchronize(m_cuda_event));
        };
        cn_impl->add_callback(std::move(waiter));
        return;
    }
    mgb_throw(MegBrainError, "unimplemented event device_wait_by config");
}

/* ===================== CudaCompNode static methods ===================== */

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
namespace {

#ifndef __unix__
CUresult get_device_count_forksafe(int* pcnt) {
    cuInit(0);
    return cuDeviceGetCount(pcnt);
}
#else
struct RAIICloseFD : NonCopyableObj {
    int m_fd = -1;

    RAIICloseFD(int fd) : m_fd(fd) {}
    ~RAIICloseFD() {close();}
    void close() {
        if (m_fd != -1) {
            ::close(m_fd);
            m_fd = -1;
        }
    }
};
// an implementation that does not call cuInit
CUresult get_device_count_forksafe(int* pcnt) {
    auto err = cuDeviceGetCount(pcnt);
    if (err != CUDA_ERROR_NOT_INITIALIZED) return err;
    // cuInit not called, call it in child process
    int fd[2];
    mgb_assert(pipe(fd) == 0, "pipe() failed");
    int fdr = fd[0], fdw = fd[1];
    RAIICloseFD fdr_guard(fdr);
    RAIICloseFD fdw_guard(fdw);
    auto cpid = fork();
    mgb_assert(cpid != -1, "fork() failed");
    if (cpid == 0) {
        fdr_guard.close();
        do {
            err = cuInit(0);
            if (err != CUDA_SUCCESS) break;
            err = cuDeviceGetCount(pcnt);
        } while (0);
        auto sz = write(fdw, &err, sizeof(err));
        if (sz == sizeof(err) && err == CUDA_SUCCESS) {
            sz = write(fdw, pcnt, sizeof(*pcnt));
        }
        fdw_guard.close();
        std::quick_exit(0);
    }
    fdw_guard.close();
    auto sz = read(fdr, &err, sizeof(err));
    mgb_assert(sz == sizeof(err), "failed to read error code from child");
    if (err == CUDA_SUCCESS) {
        sz = read(fdr, pcnt, sizeof(*pcnt));
        mgb_assert(sz == sizeof(*pcnt), "failed to read device count from child");
        return err;
    }
    // try again, maybe another thread called cuInit while we fork
    auto err2 = cuDeviceGetCount(pcnt);
    if (err2 == CUDA_SUCCESS) return err2;
    if (err2 == CUDA_ERROR_NOT_INITIALIZED) return err;
    return err2;
}
#endif

const char* cu_get_error_string(CUresult err) {
    const char* ret = nullptr;
    cuGetErrorString(err, &ret);
    if (!ret) ret = "unknown cuda error";
    return ret;
}

} // namespace

780 781 782 783 784 785
bool CudaCompNode::available() {
    static int result = -1;
    static Spinlock mtx;
    MGB_LOCK_GUARD(mtx);
    if (result == -1) {
        int ndev = -1;
786 787
        auto err = get_device_count_forksafe(&ndev);
        result = err == CUDA_SUCCESS && ndev > 0;
788 789
        if (!result) {
            mgb_log_warn("cuda unavailable: %s(%d) ndev=%d",
790
                         cu_get_error_string(err), static_cast<int>(err), ndev);
791
        }
792
        if (err == CUDA_ERROR_NOT_INITIALIZED) {
793
            mgb_throw(std::runtime_error, "cuda initialization error.");
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
        }
    }
    return result;
}

void CudaCompNode::finalize() {
    if (CudaCompNodeImpl::sd) {
        sync_all();

        auto ptr = CudaCompNodeImpl::sd;
        CudaCompNodeImpl::sd = nullptr;
        ptr->~StaticData();
    }
}

809 810 811 812 813 814 815 816 817
#if MGB_CUDA && defined(WIN32)
//! FIXME: windows cuda driver shutdown before call atexit function even
//! register atexit function after init cuda driver! as a workround
//! recovery resource by OS temporarily, may need remove this after
//! upgrade cuda runtime
bool CudaCompNode::is_into_atexit = false;
#endif
CompNode::Impl* CudaCompNode::load_cuda(const Locator& locator,
                                        const Locator& locator_logical) {
818
    int nr_gpu = get_device_count();
819 820 821 822 823 824 825 826 827 828
#if MGB_CUDA && defined(WIN32)
    //! FIXME: windows cuda driver shutdown before call atexit function even
    //! register atexit function after init cuda driver! as a workround
    //! recovery resource by OS temporarily, may need remove this after
    //! upgrade cuda runtime
    if (!is_into_atexit) {
        auto err = atexit([] { is_into_atexit = true; });
        mgb_assert(!err, "failed to register atexit function");
    }
#endif
829
    mgb_assert(locator.device >= 0 && locator.device < nr_gpu,
830 831
               "request gpu%d out of valid range [0, %d)", locator.device,
               nr_gpu);
832

833
    auto&& sdptr = CudaCompNodeImpl::sd;
834 835 836 837 838 839 840
    {
        MGB_LOCK_GUARD(CudaCompNodeImpl::sd_mtx);
        if (!sdptr) {
            // use static storage so object can be safely accessed even after
            // global finalize
            using T = CudaCompNodeImpl::StaticData;
            static std::aligned_storage_t<sizeof(T), alignof(T)> storage;
841
            sdptr = new (&storage) T;
842 843
        }
    }
844
    auto&& sd = *sdptr;
845 846
    MGB_LOCK_GUARD(sd.mtx);

847 848 849
    CompNodeImpl* available_node = nullptr;
    for (int i = 0; i < sd.nr_node; ++i) {
        auto&& cur = sd.node[i];
850
        if (cur.m_initialized) {
851 852
            if (cur.m_locator == locator &&
                cur.m_locator_logical == locator_logical) {
853 854 855 856 857 858 859 860 861
                return &cur;
            }
        } else {
            available_node = &cur;
        }
    }

    if (!available_node) {
        mgb_assert(sd.nr_node < sd.MAX_NR_COMP_NODE,
862 863
                   "too many CompNode allocated");
        available_node = &sd.node[sd.nr_node++];
864
    }
865
    mgb_assert(locator.device < sd.MAX_NR_DEVICE, "device number too large");
866 867 868 869 870 871 872 873 874 875 876 877 878 879

    mgb_assert(!available_node->m_initialized);
    available_node->init(locator, locator_logical);

    return available_node;
}

void CudaCompNode::try_coalesce_all_free_memory() {
    // TODO: optimized implementation
    auto sd = CudaCompNodeImpl::sd;
    if (!sd)
        return;

    size_t size = 0;
880 881 882
    for (int i = 0; i < sd->nr_dev_used; ++i) {
        size += sd->dev_info[i]
                        .mem_alloc->gather_stream_free_blk_and_release_full();
883 884 885
    }
    if (size) {
        mgb_log_debug("%zu bytes freed by try_coalesce_all_free_memory()",
886
                      size);
887 888 889 890 891 892 893 894
    }
}

void CudaCompNode::sync_all() {
    auto sd = CudaCompNodeImpl::sd;
    if (!sd)
        return;

895
    for (int i = 0;; ++i) {
896
        // ensure async init finished
897
        CompNodeEnv* env;
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
        {
            MGB_LOCK_GUARD(sd->mtx);
            if (i >= sd->nr_node) {
                break;
            }
            env = &sd->node[i].env();
        }
        env->cuda_env();
    }

    MGB_LOCK_GUARD(sd->mtx);
    for (int i = 0; i < sd->nr_dev_used; ++i) {
        MGB_CUDA_CHECK(cudaSetDevice(sd->dev_info[i].dev_num));
        MGB_CUDA_CHECK(cudaDeviceSynchronize());
    }
}

915
void CudaCompNode::foreach (thin_function<void(CompNode)> callback) {
916 917 918 919
    auto sd = CudaCompNodeImpl::sd;
    if (!sd)
        return;

920
    for (int i = 0;; ++i) {
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
        CompNode cur;
        {
            MGB_LOCK_GUARD(sd->mtx);
            if (i >= sd->nr_node)
                return;
            cur = make_comp_node_from_impl(&sd->node[i]);
        }
        callback(cur);
    }
}

size_t CudaCompNode::get_device_count(bool warn) {
    static int cnt = -1;
    static Spinlock mtx;
    MGB_LOCK_GUARD(mtx);
    if (cnt == -1) {
937 938
        auto err = get_device_count_forksafe(&cnt);
        if (err != CUDA_SUCCESS) {
939 940
            if (warn)
                mgb_log_error("cudaGetDeviceCount failed: %s (err %d)",
941
                              cu_get_error_string(err), int(err));
942 943 944 945 946 947 948
            cnt = 0;
        }
        mgb_assert(cnt >= 0);
    }
    return cnt;
}

949
void CudaCompNode::set_prealloc_config(size_t alignment, size_t min_req,
950 951
                                       size_t max_overhead,
                                       double growth_factor) {
952
    auto&& sdptr = CudaCompNodeImpl::sd;
953 954 955 956 957
    {
        MGB_LOCK_GUARD(CudaCompNodeImpl::sd_mtx);
        if (!sdptr) {
            using T = CudaCompNodeImpl::StaticData;
            static std::aligned_storage_t<sizeof(T), alignof(T)> storage;
958
            sdptr = new (&storage) T;
959 960 961 962 963 964
            sdptr->prealloc_config.alignment = alignment;
            sdptr->prealloc_config.min_req = min_req;
            sdptr->prealloc_config.growth_factor = growth_factor;
            sdptr->prealloc_config.max_overhead = max_overhead;
        } else {
            mgb_log_warn(
965 966 967 968
                    "invalid call to set_prealloc_config, will fallback to "
                    "default config; "
                    "prealloc_config should be specified before any CUDA "
                    "memory allocation");
969 970 971 972
        }
    }
}

973 974 975 976 977
#else

bool CudaCompNode::available() {
    return false;
}
978 979 980
void CudaCompNode::try_coalesce_all_free_memory() {}
void CudaCompNode::foreach (thin_function<void(CompNode)>) {}
void CudaCompNode::finalize() {}
981 982 983 984 985 986
size_t CudaCompNode::get_device_count(bool warn) {
    return 0;
}
CudaCompNode::Impl* CudaCompNode::load_cuda(const Locator&, const Locator&) {
    mgb_throw(MegBrainError, "cuda disabled at compile time");
}
987
void CudaCompNode::sync_all() {}
988

989
void CudaCompNode::set_prealloc_config(size_t alignment, size_t min_req,
990 991 992
                                       size_t max_overhead,
                                       double growth_factor) {}

993 994
#undef err

995
#endif  // MGB_CUDA
996 997

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}