MethodHandle.java 28.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 * Copyright 2008-2009 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Sun designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Sun in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 */

package java.dyn;

//import sun.dyn.*;

import sun.dyn.Access;
import sun.dyn.MethodHandleImpl;

33 34 35
import static java.dyn.MethodHandles.invokers;  // package-private API
import static sun.dyn.MemberName.newIllegalArgumentException;  // utility

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
/**
 * A method handle is a typed reference to the entry point of a method.
 * <p>
 * Method handles are strongly typed according to signature.
 * They are not distinguished by method name or enclosing class.
 * A method handle must be invoked under a signature which exactly matches
 * the method handle's own type.
 * <p>
 * Every method handle confesses its type via the <code>type</code> accessor.
 * The structure of this type is a series of classes, one of which is
 * the return type of the method (or <code>void.class</code> if none).
 * <p>
 * Every method handle appears as an object containing a method named
 * <code>invoke</code>, whose signature exactly matches
 * the method handle's type.
51 52 53
 * A Java method call expression, which compiles to an
 * <code>invokevirtual</code> instruction,
 * can invoke this method from Java source code.
54 55 56 57 58 59 60 61 62 63
 * <p>
 * Every call to a method handle specifies an intended method type,
 * which must exactly match the type of the method handle.
 * (The type is specified in the <code>invokevirtual</code> instruction,
 * via a {@code CONSTANT_NameAndType} constant pool entry.)
 * The call looks within the receiver object for a method
 * named <code>invoke</code> of the intended method type.
 * The call fails with a {@link WrongMethodTypeException}
 * if the method does not exist, even if there is an <code>invoke</code>
 * method of a closely similar signature.
64 65 66 67
 * As with other kinds
 * of methods in the JVM, signature matching during method linkage
 * is exact, and does not allow for language-level implicit conversions
 * such as {@code String} to {@code Object} or {@code short} to {@code int}.
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
 * <p>
 * A method handle is an unrestricted capability to call a method.
 * A method handle can be formed on a non-public method by a class
 * that has access to that method; the resulting handle can be used
 * in any place by any caller who receives a reference to it.  Thus, access
 * checking is performed when the method handle is created, not
 * (as in reflection) every time it is called.  Handles to non-public
 * methods, or in non-public classes, should generally be kept secret.
 * They should not be passed to untrusted code.
 * <p>
 * Bytecode in an extended JVM can directly call a method handle's
 * <code>invoke</code> from an <code>invokevirtual</code> instruction.
 * The receiver class type must be <code>MethodHandle</code> and the method name
 * must be <code>invoke</code>.  The signature of the invocation
 * (after resolving symbolic type names) must exactly match the method type
 * of the target method.
 * <p>
85 86 87 88 89 90 91 92 93
 * Every <code>invoke</code> method always throws {@link Exception},
 * which is to say that there is no static restriction on what a method handle
 * can throw.  Since the JVM does not distinguish between checked
 * and unchecked exceptions (other than by their class, of course),
 * there is no particular effect on bytecode shape from ascribing
 * checked exceptions to method handle invocations.  But in Java source
 * code, methods which perform method handle calls must either explicitly
 * throw {@code Exception}, or else must catch all checked exceptions locally.
 * <p>
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
 * Bytecode in an extended JVM can directly obtain a method handle
 * for any accessible method from a <code>ldc</code> instruction
 * which refers to a <code>CONSTANT_Methodref</code> or
 * <code>CONSTANT_InterfaceMethodref</code> constant pool entry.
 * <p>
 * All JVMs can also use a reflective API called <code>MethodHandles</code>
 * for creating and calling method handles.
 * <p>
 * A method reference may refer either to a static or non-static method.
 * In the non-static case, the method handle type includes an explicit
 * receiver argument, prepended before any other arguments.
 * In the method handle's type, the initial receiver argument is typed
 * according to the class under which the method was initially requested.
 * (E.g., if a non-static method handle is obtained via <code>ldc</code>,
 * the type of the receiver is the class named in the constant pool entry.)
 * <p>
 * When a method handle to a virtual method is invoked, the method is
 * always looked up in the receiver (that is, the first argument).
 * <p>
 * A non-virtual method handles to a specific virtual method implementation
 * can also be created.  These do not perform virtual lookup based on
 * receiver type.  Such a method handle simulates the effect of
 * an <code>invokespecial</code> instruction to the same method.
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
 * <p>
 * Here are some examples of usage:
 * <p><blockquote><pre>
 * Object x, y; String s; int i;
 * MethodType mt; MethodHandle mh;
 * MethodHandles.Lookup lookup = MethodHandles.lookup();
 * // mt is {(char,char) =&gt; String}
 * mt = MethodType.make(String.class, char.class, char.class);
 * mh = lookup.findVirtual(String.class, "replace", mt);
 * // (Ljava/lang/String;CC)Ljava/lang/String;
 * s = mh.&lt;String&gt;invoke("daddy",'d','n');
 * assert(s.equals("nanny"));
 * // weakly typed invocation (using MHs.invoke)
 * s = (String) MethodHandles.invoke(mh, "sappy", 'p', 'v');
 * assert(s.equals("savvy"));
 * // mt is {Object[] =&gt; List}
 * mt = MethodType.make(java.util.List.class, Object[].class);
 * mh = lookup.findStatic(java.util.Arrays.class, "asList", mt);
 * // mt is {(Object,Object,Object) =&gt; Object}
 * mt = MethodType.makeGeneric(3);
 * mh = MethodHandles.collectArguments(mh, mt);
 * // mt is {(Object,Object,Object) =&gt; Object}
 * // (Ljava/lang/Object;Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;
 * x = mh.invoke((Object)1, (Object)2, (Object)3);
 * assert(x.equals(java.util.Arrays.asList(1,2,3)));
 * // mt is { =&gt; int}
 * mt = MethodType.make(int.class);
 * mh = lookup.findVirtual(java.util.List.class, "size", mt);
 * // (Ljava/util/List;)I
 * i = mh.&lt;int&gt;invoke(java.util.Arrays.asList(1,2,3));
 * assert(i == 3);
 * </pre></blockquote>
 * Each of the above calls generates a single invokevirtual instruction
 * with the name {@code invoke} and the type descriptors indicated in the comments.
 * The argument types are taken directly from the actual arguments,
 * while the return type is taken from the type parameter.
 * (This type parameter may be a primitive, and it defaults to {@code Object}.)
 * <p>
 * <em>A note on generic typing:</em>  Method handles do not represent
 * their function types in terms of Java parameterized (generic) types,
 * because there are three mismatches between function types and parameterized
 * Java types.
 * <ol>
 * <li>Method types range over all possible arities,
 * from no arguments to an arbitrary number of arguments.
 * Generics are not variadic, and so cannot represent this.</li>
 * <li>Method types can specify arguments of primitive types,
 * which Java generic types cannot range over.</li>
 * <li>Higher order functions over method handles (combinators) are
 * often generic across a wide range of function types, including
 * those of multiple arities.  It is impossible to represent such
 * genericity with a Java type parameter.</li>
 * </ol>
170 171 172 173 174 175 176 177 178 179
 *
 * @see MethodType
 * @see MethodHandles
 * @author John Rose, JSR 292 EG
 */
public abstract class MethodHandle
        // Note: This is an implementation inheritance hack, and will be removed
        // with a JVM change which moves the required hidden state onto this class.
        extends MethodHandleImpl
{
180
    private static Access IMPL_TOKEN = Access.getToken();
181

182 183 184 185
    // interface MethodHandle<R throws X extends Exception,A...>
    // { MethodType<R throws X,A...> type(); public R invoke(A...) throws X; }

    private MethodType type;
186 187 188 189 190 191

    /**
     * Report the type of this method handle.
     * Every invocation of this method handle must exactly match this type.
     * @return the method handle type
     */
192
    public final MethodType type() {
193 194 195 196 197 198 199 200 201 202 203 204
        return type;
    }

    /**
     * The constructor for MethodHandle may only be called by privileged code.
     * Subclasses may be in other packages, but must possess
     * a token which they obtained from MH with a security check.
     * @param token non-null object which proves access permission
     * @param type type (permanently assigned) of the new method handle
     */
    protected MethodHandle(Access token, MethodType type) {
        super(token);
205 206 207 208 209 210 211
        Access.check(token);
        this.type = type;
    }

    private void initType(MethodType type) {
        type.getClass();  // elicit NPE
        if (this.type != null)  throw new InternalError();
212 213
        this.type = type;
    }
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569

    static {
        // This hack allows the implementation package special access to
        // the internals of MethodHandle.  In particular, the MTImpl has all sorts
        // of cached information useful to the implementation code.
        MethodHandleImpl.setMethodHandleFriend(IMPL_TOKEN, new MethodHandleImpl.MethodHandleFriend() {
            public void initType(MethodHandle mh, MethodType type) { mh.initType(type); }
        });
    }

    /** The string of a direct method handle is the simple name of its target method.
     * The string of an adapter or bound method handle is the string of its
     * target method handle.
     * The string of a Java method handle is the string of its entry point method,
     * unless the Java method handle overrides the toString method.
     */
    @Override
    public String toString() {
        return MethodHandleImpl.getNameString(IMPL_TOKEN, this);
    }

    //// First draft of the "Method Handle Kernel API" discussed at the JVM Language Summit, 9/2009.
    //// Implementations here currently delegate to statics in MethodHandles.  Some of those statics
    //// will be deprecated.  Others will be kept as "algorithms" to supply degrees of freedom
    //// not present in the Kernel API.

    /**
     * <em>PROVISIONAL API, WORK IN PROGRESS:</em>
     * Perform an exact invocation.  The signature at the call site of {@code invokeExact} must
     * exactly match this method handle's {@code type}.
     * No conversions are allowed on arguments or return values.
     * <em>This is not yet implemented, pending required compiler and JVM support.</em>
     */
    public final <T> T invokeExact(Object... arguments) throws Throwable {
        // This is an approximate implementation, which discards the caller's signature and refuses the call.
        throw new InternalError("not yet implemented");
    }

    /**
     * <em>PROVISIONAL API, WORK IN PROGRESS:</em>
     * Perform a generic invocation.  The signature at the call site of {@code invokeExact} must
     * have the same arity as this method handle's {@code type}.
     * The same conversions are allowed on arguments or return values as are supported by
     * by {@link MethodHandles#convertArguments}.
     * If the call site signature exactly matches this method handle's {@code type},
     * the call proceeds as if by {@link #invokeExact}.
     * <em>This is not fully implemented, pending required compiler and JVM support.</em>
     */
    // This is an approximate implementation, which discards the caller's signature.
    // When it is made signature polymorphic, the overloadings will disappear.
    public final <T> T invokeGeneric() throws Throwable {
        MethodHandle invoker = invokers(this.type()).genericInvoker();
        return invoker.<T>invoke(this);
    }
    public final <T> T invokeGeneric(Object a0) throws Throwable {
        MethodHandle invoker = invokers(this.type()).genericInvoker();
        return invoker.<T>invoke(this, a0);
    }
    public final <T> T invokeGeneric(Object a0, Object a1) throws Throwable {
        MethodHandle invoker = invokers(this.type()).genericInvoker();
        return invoker.<T>invoke(this, a0, a1);
    }
    public final <T> T invokeGeneric(Object a0, Object a1, Object a2) throws Throwable {
        MethodHandle invoker = invokers(this.type()).genericInvoker();
        return invoker.<T>invoke(this, a0, a1, a2);
    }
    public final <T> T invokeGeneric(Object a0, Object a1, Object a2, Object a3) throws Throwable {
        MethodHandle invoker = invokers(this.type()).genericInvoker();
        return invoker.<T>invoke(this, a0, a1, a2, a3);
    }
    public final <T> T invokeGeneric(Object a0, Object a1, Object a2, Object a3,
                  Object a4) throws Throwable {
        MethodHandle invoker = invokers(this.type()).genericInvoker();
        return invoker.<T>invoke(this, a0, a1, a2, a3, a4);
    }
    public final <T> T invokeGeneric(Object a0, Object a1, Object a2, Object a3,
                  Object a4, Object a5) throws Throwable {
        MethodHandle invoker = invokers(this.type()).genericInvoker();
        return invoker.<T>invoke(this, a0, a1, a2, a3, a4, a5);
    }
    public final <T> T invokeGeneric(Object a0, Object a1, Object a2, Object a3,
                  Object a4, Object a5, Object a6) throws Throwable {
        MethodHandle invoker = invokers(this.type()).genericInvoker();
        return invoker.<T>invoke(this, a0, a1, a2, a3, a4, a5, a6);
    }
    public final <T> T invokeGeneric(Object a0, Object a1, Object a2, Object a3,
                  Object a4, Object a5, Object a6, Object a7) throws Throwable {
        MethodHandle invoker = invokers(this.type()).genericInvoker();
        return invoker.<T>invoke(this, a0, a1, a2, a3, a4, a5, a6, a7);
    }
    public final <T> T invokeGeneric(Object a0, Object a1, Object a2, Object a3,
                  Object a4, Object a5, Object a6, Object a7, Object a8) throws Throwable {
        MethodHandle invoker = invokers(this.type()).genericInvoker();
        return invoker.<T>invoke(this, a0, a1, a2, a3, a4, a5, a6, a7, a8);
    }
    public final <T> T invokeGeneric(Object a0, Object a1, Object a2, Object a3,
                  Object a4, Object a5, Object a6, Object a7, Object a8, Object a9) throws Throwable {
        MethodHandle invoker = invokers(this.type()).genericInvoker();
        return invoker.<T>invoke(this, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9);
    }

    /**
     * <em>PROVISIONAL API, WORK IN PROGRESS:</em>
     * Perform a varargs invocation, passing the arguments in the given array
     * to the method handle, as if via {@link #invokeGeneric} from a call site
     * which mentions only the type {@code Object}, and whose arity is the length
     * of the argument array.
     * <p>
     * The length of the arguments array must equal the parameter count
     * of the target's type.
     * The arguments array is spread into separate arguments.
     * <p>
     * In order to match the type of the target, the following argument
     * conversions are applied as necessary:
     * <ul>
     * <li>reference casting
     * <li>unboxing
     * </ul>
     * The following conversions are not applied:
     * <ul>
     * <li>primitive conversions (e.g., {@code byte} to {@code int}
     * <li>varargs conversions other than the initial spread
     * <li>any application-specific conversions (e.g., string to number)
     * </ul>
     * The result returned by the call is boxed if it is a primitive,
     * or forced to null if the return type is void.
     * <p>
     * This call is equivalent to the following code:
     * <p><blockquote><pre>
     *   MethodHandle invoker = MethodHandles.genericInvoker(this.type(), 0, true);
     *   Object result = invoker.invoke(this, arguments);
     * </pre></blockquote>
     * @param arguments the arguments to pass to the target
     * @return the result returned by the target
     * @see MethodHandles#genericInvoker
     */
    public final Object invokeVarargs(Object[] arguments) throws Throwable {
        int argc = arguments == null ? 0 : arguments.length;
        MethodType type = type();
        if (argc <= 10) {
            MethodHandle invoker = MethodHandles.invokers(type).genericInvoker();
            switch (argc) {
                case 0:  return invoker.invoke(this);
                case 1:  return invoker.invoke(this,
                                    arguments[0]);
                case 2:  return invoker.invoke(this,
                                    arguments[0], arguments[1]);
                case 3:  return invoker.invoke(this,
                                    arguments[0], arguments[1], arguments[2]);
                case 4:  return invoker.invoke(this,
                                    arguments[0], arguments[1], arguments[2],
                                    arguments[3]);
                case 5:  return invoker.invoke(this,
                                    arguments[0], arguments[1], arguments[2],
                                    arguments[3], arguments[4]);
                case 6:  return invoker.invoke(this,
                                    arguments[0], arguments[1], arguments[2],
                                    arguments[3], arguments[4], arguments[5]);
                case 7:  return invoker.invoke(this,
                                    arguments[0], arguments[1], arguments[2],
                                    arguments[3], arguments[4], arguments[5],
                                    arguments[6]);
                case 8:  return invoker.invoke(this,
                                    arguments[0], arguments[1], arguments[2],
                                    arguments[3], arguments[4], arguments[5],
                                    arguments[6], arguments[7]);
                case 9:  return invoker.invoke(this,
                                    arguments[0], arguments[1], arguments[2],
                                    arguments[3], arguments[4], arguments[5],
                                    arguments[6], arguments[7], arguments[8]);
                case 10:  return invoker.invoke(this,
                                    arguments[0], arguments[1], arguments[2],
                                    arguments[3], arguments[4], arguments[5],
                                    arguments[6], arguments[7], arguments[8],
                                    arguments[9]);
            }
        }

        // more than ten arguments get boxed in a varargs list:
        MethodHandle invoker = MethodHandles.invokers(type).varargsInvoker(0);
        return invoker.invoke(this, arguments);
    }
    /** Equivalent to {@code invokeVarargs(arguments.toArray())}. */
    public final Object invokeVarargs(java.util.List<?> arguments) throws Throwable {
        return invokeVarargs(arguments.toArray());
    }

    /*  --- this is intentionally NOT a javadoc yet ---
     * <em>PROVISIONAL API, WORK IN PROGRESS:</em>
     * Produce an adapter method handle which adapts the type of the
     * current method handle to a new type by pairwise argument conversion.
     * The original type and new type must have the same number of arguments.
     * The resulting method handle is guaranteed to confess a type
     * which is equal to the desired new type.
     * <p>
     * If the original type and new type are equal, returns {@code this}.
     * <p>
     * The following conversions are applied as needed both to
     * arguments and return types.  Let T0 and T1 be the differing
     * new and old parameter types (or old and new return types)
     * for corresponding values passed by the new and old method types.
     * Given those types T0, T1, one of the following conversions is applied
     * if possible:
     * <ul>
     * <li>If T0 and T1 are references, and T1 is not an interface type,
     *     then a cast to T1 is applied.
     *     (The types do not need to be related in any particular way.)
     * <li>If T0 and T1 are references, and T1 is an interface type,
     *     then the value of type T0 is passed as a T1 without a cast.
     *     (This treatment of interfaces follows the usage of the bytecode verifier.)
     * <li>If T0 and T1 are primitives, then a Java casting
     *     conversion (JLS 5.5) is applied, if one exists.
     * <li>If T0 and T1 are primitives and one is boolean,
     *     the boolean is treated as a one-bit unsigned integer.
     *     (This treatment follows the usage of the bytecode verifier.)
     *     A conversion from another primitive type behaves as if
     *     it first converts to byte, and then masks all but the low bit.
     * <li>If T0 is a primitive and T1 a reference, a boxing
     *     conversion is applied if one exists, possibly followed by
     *     an reference conversion to a superclass.
     *     T1 must be a wrapper class or a supertype of one.
     *     If T1 is a wrapper class, T0 is converted if necessary
     *     to T1's primitive type by one of the preceding conversions.
     *     Otherwise, T0 is boxed, and its wrapper converted to T1.
     * <li>If T0 is a reference and T1 a primitive, an unboxing
     *     conversion is applied if one exists, possibly preceded by
     *     a reference conversion to a wrapper class.
     *     T0 must be a wrapper class or a supertype of one.
     *     If T0 is a wrapper class, its primitive value is converted
     *     if necessary to T1 by one of the preceding conversions.
     *     Otherwise, T0 is converted directly to the wrapper type for T1,
     *     which is then unboxed.
     * <li>If the return type T1 is void, any returned value is discarded
     * <li>If the return type T0 is void and T1 a reference, a null value is introduced.
     * <li>If the return type T0 is void and T1 a primitive, a zero value is introduced.
     * </ul>
     * <p>
     */
    /**
     * <em>PROVISIONAL API, WORK IN PROGRESS:</em>
     * Produce an adapter method handle which adapts the type of the
     * current method handle to a new type by pairwise argument conversion.
     * The original type and new type must have the same number of arguments.
     * The resulting method handle is guaranteed to confess a type
     * which is equal to the desired new type.
     * <p>
     * If the original type and new type are equal, returns {@code this}.
     * <p>
     * This method is equivalent to {@link MethodHandles#convertArguments}.
     * @param newType the expected type of the new method handle
     * @return a method handle which delegates to {@code this} after performing
     *           any necessary argument conversions, and arranges for any
     *           necessary return value conversions
     * @throws IllegalArgumentException if the conversion cannot be made
     * @see MethodHandles#convertArguments
     */
    public final MethodHandle asType(MethodType newType) {
        return MethodHandles.convertArguments(this, newType);
    }

    /**
     * <em>PROVISIONAL API, WORK IN PROGRESS:</em>
     * Produce a method handle which adapts, as its <i>target</i>,
     * the current method handle.  The type of the adapter will be
     * the same as the type of the target, except that all but the first
     * {@code keepPosArgs} parameters of the target's type are replaced
     * by a single array parameter of type {@code Object[]}.
     * Thus, if {@code keepPosArgs} is zero, the adapter will take all
     * arguments in a single object array.
     * <p>
     * When called, the adapter replaces a trailing array argument
     * by the array's elements, each as its own argument to the target.
     * (The order of the arguments is preserved.)
     * They are converted pairwise by casting and/or unboxing
     * (as if by {@link MethodHandles#convertArguments})
     * to the types of the trailing parameters of the target.
     * Finally the target is called.
     * What the target eventually returns is returned unchanged by the adapter.
     * <p>
     * Before calling the target, the adapter verifies that the array
     * contains exactly enough elements to provide a correct argument count
     * to the target method handle.
     * (The array may also be null when zero elements are required.)
     * @param keepPosArgs the number of leading positional arguments to preserve
     * @return a new method handle which spreads its final argument,
     *         before calling the original method handle
     * @throws IllegalArgumentException if target does not have at least
     *         {@code keepPosArgs} parameter types
     */
    public final MethodHandle asSpreader(int keepPosArgs) {
        MethodType oldType = type();
        int nargs = oldType.parameterCount();
        MethodType newType = oldType.dropParameterTypes(keepPosArgs, nargs);
        newType = newType.insertParameterTypes(keepPosArgs, Object[].class);
        return MethodHandles.spreadArguments(this, newType);
    }

    /**
     * <em>PROVISIONAL API, WORK IN PROGRESS:</em>
     * Produce a method handle which adapts, as its <i>target</i>,
     * the current method handle.  The type of the adapter will be
     * the same as the type of the target, except that a single trailing
     * array parameter of type {@code Object[]} is replaced by
     * {@code spreadArrayArgs} parameters of type {@code Object}.
     * <p>
     * When called, the adapter replaces its trailing {@code spreadArrayArgs}
     * arguments by a single new {@code Object} array, whose elements
     * comprise (in order) the replaced arguments.
     * Finally the target is called.
     * What the target eventually returns is returned unchanged by the adapter.
     * <p>
     * (The array may also be a shared constant when {@code spreadArrayArgs} is zero.)
     * @param spreadArrayArgs the number of arguments to spread from the trailing array
     * @return a new method handle which collects some trailing argument
     *         into an array, before calling the original method handle
     * @throws IllegalArgumentException if the last argument of the target
     *         is not {@code Object[]}
     * @throws IllegalArgumentException if {@code spreadArrayArgs} is not
     *         a legal array size
     * @deprecated Provisional and unstable; use {@link MethodHandles#collectArguments}.
     */
    public final MethodHandle asCollector(int spreadArrayArgs) {
        MethodType oldType = type();
        int nargs = oldType.parameterCount();
        MethodType newType = oldType.dropParameterTypes(nargs-1, nargs);
        newType = newType.insertParameterTypes(nargs-1, MethodType.genericMethodType(spreadArrayArgs).parameterArray());
        return MethodHandles.collectArguments(this, newType);
    }

    /**
     * <em>PROVISIONAL API, WORK IN PROGRESS:</em>
     * Produce a method handle which binds the given argument
     * to the current method handle as <i>target</i>.
     * The type of the bound handle will be
     * the same as the type of the target, except that a single leading
     * reference parameter will be omitted.
     * <p>
     * When called, the bound handle inserts the given value {@code x}
     * as a new leading argument to the target.  The other arguments are
     * also passed unchanged.
     * What the target eventually returns is returned unchanged by the bound handle.
     * <p>
     * The reference {@code x} must be convertible to the first parameter
     * type of the target.
     * @param x  the value to bind to the first argument of the target
     * @return a new method handle which collects some trailing argument
     *         into an array, before calling the original method handle
     * @throws IllegalArgumentException if the target does not have a
     *         leading parameter type that is a reference type
     * @throws ClassCastException if {@code x} cannot be converted
     *         to the leading parameter type of the target
     * @deprecated Provisional and unstable; use {@link MethodHandles#insertArguments}.
     */
    public final MethodHandle bindTo(Object x) {
        return MethodHandles.insertArguments(this, 0, x);
    }
570
}