qcaan.py 19.3 KB
Newer Older
Q
Quleaf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
# !/usr/bin/env python3
# Copyright (c) 2023 Institute for Quantum Computing, Baidu Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

r"""
Quantum-circuit associative adversarial network (QCAAN) model
"""

import paddle
import paddle.nn as nn
import paddle.optimizer as optim
import paddle.io as data
from paddle.vision.transforms import Compose, Normalize, ToTensor
from paddle.vision.datasets import MNIST
from tqdm import tqdm
from paddle_quantum.ansatz import Circuit
import paddle_quantum
from paddle_quantum.loss import ExpecVal
from typing import List, Tuple
import numpy as np
import matplotlib.pyplot as plt
import warnings
import os
import logging

warnings.filterwarnings("ignore", category=Warning)
os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION'] = 'python'


def Data_Load() -> paddle.vision.datasets.MNIST:
    r"""
    Load the MNIST dataset

    Returns:
        MNIST dataset

    """
    transform = Compose([ToTensor(), Normalize(mean=[127.5], std=[127.5])])
    dataset = MNIST(mode="train", transform=transform, backend="cv2")
    return dataset


class ConvBlock(nn.Layer):
    r"""
    Convolution block for building neural networks.

    Each ConvBlock consists of several convolution, Silu and layer normalization layers.
    And ConvBlock keeps the spatial dimensions unchanged, i.e., height and weight.

    Args:
        shape: The required shape for layer normalization.
        in_channels: The number of input channels in the input.
        out_channels: The number of output channels produced by the convolution.
        kernel_size: The size of the convolution kernel.
        stride: The stride size.
        padding: The padding size.
        activation: Activation function.
        normalize: A symbol indicating whether layer normalization is needed.
    """

    def __init__(self, shape: List[int], in_channels: int, out_channels: int,
                 kernel_size: int = 3, stride: int = 1, padding: int = 1,
                 activation: nn.Layer = None, normalize: bool = True) -> None:
        super(ConvBlock, self).__init__()
        self.layer_norm = nn.LayerNorm(shape)
        self.conv1 = nn.Conv2D(in_channels, out_channels,
                               kernel_size, stride, padding)
        self.conv2 = nn.Conv2D(out_channels, out_channels,
                               kernel_size, stride, padding)
        self.conv3 = nn.Conv2D(out_channels, out_channels,
                               kernel_size, stride, padding)
        self.conv4 = nn.Conv2D(out_channels, out_channels,
                               kernel_size, stride, padding)
        self.activation = nn.Silu() if activation is None else activation
        self.normalize = normalize

    def forward(self, x: paddle.Tensor) -> paddle.Tensor:
        r"""
        The ConvBlock's forward function

        Args:
            x: The input tensor

        Returns:
            The output tensor

        """
        x = self.layer_norm(x) if self.normalize else x
        x = self.conv1(x)
        x = self.activation(x)
        # x = self.conv2(x)
        # x = self.activation(x)
        # x = self.conv3(x)
        # x = self.activation(x)
        # x = self.conv4(x)
        # x = self.activation(x)
        return x


class Generator(nn.Layer):
    r"""
    The Generator network

    Args:
        latent_dim: Latent feature numbers which represents the input dimension of the Generator.
    """

    def __init__(self, latent_dim: int = 16):
        super(Generator, self).__init__()

        self.channels = 128
        self.d2 = self.channels // 2
        self.d4 = self.channels // 4
        self.d8 = self.channels // 8

        self.fc = nn.Sequential(
            nn.Linear(latent_dim, self.channels * 3 * 3),  # [-1, 128 * 3 * 3]
            nn.Silu(),
            nn.Linear(self.channels * 3 * 3, self.channels * 3 * 3)  # [-1, 128 * 3 * 3]
        )

        self.conv = nn.Sequential(
            ConvBlock([self.channels, 3, 3], self.channels, self.d2),  # [-1, 64, 3, 3]
            nn.Conv2DTranspose(self.d2, self.d2, 3, 2, 0),  # [-1, 64, 7, 7]

            ConvBlock([self.d2, 7, 7], self.d2, self.d4),  # [-1, 32, 7, 7]
            nn.Conv2DTranspose(self.d4, self.d4, 4, 2, 1),  # [-1, 32, 14, 14]

            ConvBlock([self.d4, 14, 14], self.d4, self.d8),  # [-1, 16, 14, 14]
            nn.Conv2DTranspose(self.d8, self.d8, 4, 2, 1),  # [-1, 16, 28, 28]

            ConvBlock([self.d8, 28, 28], self.d8, 1,
                      activation=nn.Tanh(), normalize=False),  # [-1, 1, 28, 28]
        )

    def forward(self, x: paddle.Tensor) -> paddle.Tensor:
        r"""
        The Generator's forward function

        Args:
            x: The input tensor

        Returns:
            The output tensor

        """
        x = self.fc(x)
        x = self.conv(paddle.reshape(x, [-1, self.channels, 3, 3]))
        return x


class Discriminator(nn.Layer):
    r"""
    The Discriminator network

    Args:
        latent_dim: Latent feature numbers which represents the input dimension of the Generator.
    """

    def __init__(self, latent_dim: int = 16):
        super(Discriminator, self).__init__()

        self.channels = 128
        self.d2 = self.channels // 2
        self.d4 = self.channels // 4
        self.d8 = self.channels // 8

        self.conv = nn.Sequential(
            ConvBlock([1, 28, 28], 1, self.d8, normalize=False),  # [-1, 16, 28, 28]

            nn.Conv2D(self.d8, self.d8, 4, 2, 1),  # [-1, 16, 14, 14]
            ConvBlock([self.d8, 14, 14], self.d8, self.d4),  # [-1, 32, 14, 14]

            nn.Conv2D(self.d4, self.d4, 4, 2, 1),  # [-1, 32, 7, 7]
            ConvBlock([self.d4, 7, 7], self.d4, self.d2),  # [-1, 64, 7, 7]

            nn.Conv2D(self.d2, self.d2, 3, 2, 0),  # [-1, 64, 3, 3]
            ConvBlock([self.d2, 3, 3], self.d2, self.channels),  # [-1, 128, 3, 3]
        )

        self.fc = nn.Sequential(
            nn.Linear(self.channels * 3 * 3, self.channels * 3 * 3),  # [-1, 128 * 3]
            nn.Silu(),
            nn.Linear(self.channels * 3 * 3, latent_dim),  # [-1, 16]
            nn.Tanh(),
        )

        self.output = nn.Sequential(
            nn.Linear(latent_dim, self.channels),  # [-1, 128]
            nn.Silu(),
            nn.Linear(self.channels, 1),  # [-1, 1]
            nn.Sigmoid()
        )

    def forward(self, x: paddle.Tensor) -> Tuple[paddle.Tensor, paddle.Tensor]:
        r"""
        The Discriminator's forward function

        Args:
            x: The input tensor

        Returns:
            The output tensor

        """
        x = self.conv(x)
        x_tanh = self.fc(paddle.reshape(x, [-1, self.channels * 3 * 3]))
        x = self.output(x_tanh)
        return x, x_tanh


def generate_pauli_string_list(num_qubits: int, num_terms: int) -> List[list]:
    r"""
    Generate the Pauli string list.
    Args:
        num_qubits: The number of the qubits.
        num_terms: The number of the generated observables.
    Returns:
        Return the generated Pauli string list.
    """
    ob = [[[1.0, f'z{idx:d}']] for idx in range(num_qubits)]
    ob.extend([[1.0, f'x{idx:d}']] for idx in range(num_qubits))
    ob.extend([[1.0, f'y{idx:d}']] for idx in range(num_qubits))
    if len(ob) >= num_terms:
        ob = ob[:num_terms]
    else:
        ob.extend(ob * (num_terms // len(ob) - 1))
        ob.extend(ob[:num_terms % len(ob)])
    return ob


class QCBM(nn.Layer):
    r"""
    Quantum Circuit Boltzmann Machine, which is exactly a quantum neural network here.

    Args:
        num_qubits: The number of qubits which the quantum circuit contains.
        num_depths: The number of depths of complex entangled layers which the quantum circuit contains.
        latent_dim: Latent feature numbers which represents the input dimension of the generator.
    """

    def __init__(self, num_qubits: int, num_depths: int, latent_dim: int = 16):
        super(QCBM, self).__init__()

        self.num_qubits = num_qubits
        self.latent_dim = latent_dim

        # 定义量子电路
        self.cir = Circuit(num_qubits=num_qubits)
        self.cir.complex_entangled_layer(depth=num_depths)
        self.cir.rz(qubits_idx="full")
        self.cir.ry(qubits_idx="full")
        self.cir.rz(qubits_idx="full")

    def forward(self) -> paddle.Tensor:
        r"""
        The forward function of QCBM

        Returns:
            A series of expectation values on Z0, Z1, ..., X0, X1, ..., Y0, Y1, ...

        """
        final_state = self.cir()

        # 定义一系列观测量
        pauli_list = generate_pauli_string_list(num_qubits=self.num_qubits, num_terms=self.latent_dim)
        obs = [paddle_quantum.Hamiltonian(pauli) for pauli in pauli_list]

        # 计算一系列观测量的平均值
        expec_obs = [ExpecVal(ob)(final_state) for ob in obs]
        expec_obs = paddle.concat(expec_obs)
        return expec_obs


def prior_sampling(expec_obs: paddle.Tensor, batch_size: int) -> paddle.Tensor:
    r"""
    Simulate the sampling process of the prior distribution, from QCBM.

    Args:
        expec_obs: The vector of expectation values whose length is the same as 'latent_dim'.
        batch_size: The number of samples in a batch.

    Returns:
        The sampling results, values in {-1, 1}.

    """
    prior_samples = paddle.rand([batch_size, len(expec_obs)])
    expec_obs_probs = (expec_obs + 1) / 2.
    prior_samples = paddle.cast(expec_obs_probs - prior_samples >= 0, dtype="float32")
    prior_samples = prior_samples * 2 - 1
    return prior_samples


def train(
        # Define the hyperparameters
        num_qubits: int = 8,
        num_depths: int = 4,
        lr_qnn: paddle.float32 = 0.005,
        batch_size: int = 128,
        latent_dim: int = 16,
        epochs: int = 21,
        lr_g: paddle.float32 = 0.0002,
        lr_d: paddle.float32 = 0.0002,
        beta1: paddle.float32 = 0.5,
        beta2: paddle.float32 = 0.9,
        manual_seed: int = 888,
) -> None:
    r"""
    The training function of QCAAN model

    Args:
        num_qubits: The number of qubits which the quantum circuit contains.
        num_depths: The number of depths of complex entangled layers which the quantum circuit contains.
        lr_qnn: The learning rate used to update the QNN parameters, default to 0.005.
        batch_size: The batch size in each iteration.
        latent_dim: Latent feature numbers which represents the input dimension of the generator.
        epochs: The number of epochs to train the model.
        lr_g: The learning rate used to update the generator parameters, default to 0.0002.
        lr_d: The learning rate used to update the discriminator parameters, default to 0.0002.
        beta1: The beta1 used in Adam optimizer of generator and discriminator, default to 0.5.
        beta2: The beta2 used in Adam optimizer of generator and discriminator, default to 0.9.
        manual_seed: The manual seed for reproducibility.

    Returns:
        The parameters of QNN, Generator and Discriminator are saved.

    """
    # Set random seed for reproducibility
    paddle.seed(manual_seed)
    np.random.seed(manual_seed)

    paddle.set_device(paddle.device.get_device())  # Run on GPU if available
    print(f"\nThis program is running on your {paddle.device.get_device()}!\n")

    # Define the data loader
    dataset = Data_Load()
    loader = data.DataLoader(dataset, batch_size=batch_size, shuffle=True)

    # Define the G and D networks and quantum circuit for sampling
    generator = Generator(latent_dim=latent_dim)
    discriminator = Discriminator(latent_dim=latent_dim)
    cir = QCBM(num_qubits=num_qubits, num_depths=num_depths, latent_dim=latent_dim)

    # Define the loss functions and optimizers
    bce_loss = nn.BCELoss()
    mse_loss = nn.loss.MSELoss()

    opt_g = optim.Adam(parameters=generator.parameters(),
                       learning_rate=lr_g, beta1=beta1, beta2=beta2)
    opt_d = optim.Adam(parameters=discriminator.parameters(),
                       learning_rate=lr_d, beta1=beta1, beta2=beta2)
    opt_qnn = optim.Adam(parameters=cir.parameters(),
                         learning_rate=lr_qnn)

    # Train the GAN
    for epoch in tqdm(range(epochs), ncols=80):
        qnn_update_interval = paddle.randint(50, 100).numpy()[0]
        print("QNN update interval in this epoch:", qnn_update_interval)
        for i, (real_data, _) in enumerate(tqdm(loader, ncols=80)):
            # Define the labels for real and fake data
            real_labels = paddle.ones((len(real_data), 1))
            fake_labels = paddle.zeros((len(real_data), 1))

            # Train the qnn
            if i % qnn_update_interval == 0:
                opt_qnn.clear_grad()
                expec_obs = cir()
                _, real_tanh = discriminator(real_data)
                qnn_loss = mse_loss(expec_obs, paddle.mean(real_tanh.detach(), axis=0))
                qnn_loss.backward()
                opt_qnn.step()

            # Train the discriminator
            opt_d.clear_grad()
            # Generate fake data and compute the discriminator
            prior_samples = prior_sampling(expec_obs.detach(), batch_size=len(real_data))
            fake_data = generator(prior_samples)
            fake_scores, _ = discriminator(fake_data.detach())
            real_scores, _ = discriminator(real_data)
            d_loss = bce_loss(fake_scores, fake_labels) + bce_loss(real_scores, real_labels)
            d_loss.backward()
            opt_d.step()

            # Train the generator
            opt_g.clear_grad()
            fake_scores, _ = discriminator(fake_data)
            g_loss = bce_loss(fake_scores, real_labels)
            g_loss.backward()
            opt_g.step()

        # # Print the losses every 100 steps
        # if i % 100 == 0:
        print("\nEpoch [%d/%d]," % (epoch, epochs),
              "Discriminator Loss: :%.4f, Generator Loss: %.4f, " % (d_loss.numpy(), g_loss.numpy()),
              "QCBM Loss: %.4f" % qnn_loss.numpy())
        if epoch == epochs - 1:
            if not os.path.exists("params"):
                os.makedirs("params")
            paddle.save(cir.state_dict(), "params/params_qnn_epoch%d.pdparams" % epoch)
            paddle.save(generator.state_dict(), "params/params_G_epoch%d.pdparams" % epoch)
            # paddle.save(discriminator.state_dict(), "params/params_D_epoch%d.pdparams" % epoch)


# 加载保存的模型参数,并生成一些图片,最后将这些图片保存。
def model_test(
        model_name: str = 'qcaan-model',
        latent_dim: int = 16,
        params_path: str = 'params',
        num_qubits: int = 8,
        num_depths: int = 4,
        manual_seed: int = 20230313,
) -> None:
    r"""
    Load the saved model parameters, and generate some pictures. Finally save these pictures.

    Args:
        model_name: The name of the model, which is used to save the model.
        latent_dim: Latent feature numbers which represents the input dimension of the generator.
        params_path: The path to load the parameters of the trained model. Both relative and absolute paths are allowed.
        num_qubits: The number of qubits which the quantum circuit contains.
        num_depths: The number of depths of complex entangled layers which the quantum circuit contains.
        manual_seed: The manual seed for reproducibility.

    Returns:
        The generated pictures are saved to a .png file.

    """

    logging.basicConfig(
        filename='./qcaan_inference.log',
        filemode='w',
        format='%(asctime)s %(levelname)s %(message)s',
        level=logging.INFO
    )
    logging.info(
        f"\nThe full config for inferring the QC-AAN model.\n"
        f"The mode of this config. Available values: 'train' | 'inference'.\n"
        f"  mode = 'inference'\n"
        f"The name of the model, which is used to save the model.\n"
        f"  model_name = '{model_name}'\n"
        f"The path to load the parameters of the trained model. Both relative and absolute paths are allowed.\n"
        f"  params_path = '{params_path}'\n"
        f"The number of qubits which the quantum circuit contains.\n"
        f"  num_qubits = {num_depths}\n"
        f"The number of depths of complex entangled layers which the quantum circuit contains.\n"
        f"  num_depths = {num_qubits}\n"
        f"Latent feature numbers which represents the input dimension of the generator.\n"
        f"  latent_dim = {latent_dim}\n"
        f"The manual seed for reproducibility.\n"
        f"  manual_seed = {manual_seed}\n"
    )

    # Set random seed for reproducibility
    paddle.seed(manual_seed)
    np.random.seed(manual_seed)

    paddle.set_device(paddle.device.get_device())  # Run on GPU if available
    print(f"\nThis program is running on your {paddle.device.get_device()}!\n")

    # load models
    gen = Generator(latent_dim=latent_dim)
    cir = QCBM(num_qubits=num_qubits, num_depths=num_depths, latent_dim=latent_dim)
    # load weights
    load_epoch = 20
    gen.set_state_dict(paddle.load(f"{params_path}/params_G_epoch{load_epoch}.pdparams"))
    gen.eval()
    cir.set_state_dict(paddle.load(f"{params_path}/params_qnn_epoch{load_epoch}.pdparams"))
    cir.eval()
    print("Model loaded, generating new images...")

    # 定义总生成图片数量
    num_shows_rows, num_shows_cols = 6, 10
    # 总共展示 11x10 张图片。上半部分是生成的,下面 40 张是原图。
    fig, axs = plt.subplots(num_shows_rows + 5, num_shows_cols)
    # plt.rcParams["figure.figsize"] = [28, 30]
    plt.gray()

    # generating pics using trained Generator
    expec_obs = cir()
    prior_samples = prior_sampling(expec_obs.detach(), batch_size=num_shows_rows * num_shows_cols)
    print("The first 10 QNN samples are listed below:\n", prior_samples.numpy()[0:10])

    with paddle.no_grad():
        gen_pics = gen(prior_samples).numpy()

    for r in range(num_shows_rows):
        for c in range(num_shows_cols):
            axs[r, c].imshow(gen_pics[r * num_shows_cols + c].reshape(28, 28))
            axs[r, c].axis("off")

    for c in range(num_shows_cols):
        axs[num_shows_rows, c].axis("off")

    # 获取一些初始图片并展示,作为对比
    # Define the data loader
    dataset = Data_Load()
    loader = data.DataLoader(dataset, batch_size=40, shuffle=True)
    rand_i = np.random.randint(low=1, high=10, size=1)
    for i, (real_data, _) in enumerate(loader):
        if i == rand_i:
            original_pics = real_data.numpy()
            break

    for r in range(4):
        for c in range(num_shows_cols):
            axs[r + num_shows_rows + 1, c].imshow(original_pics[r * num_shows_cols + c].reshape(28, 28))
            axs[r + num_shows_rows + 1, c].axis("off")

    axs[0, 4].set_title("Generated pictures by QCAAN")
    axs[7, 4].set_title("Original pictures from MNIST")

    if not os.path.exists("gen_pics"):
        os.makedirs("gen_pics")
    plt.savefig(f"gen_pics/qcaan_generated_vs_original_{manual_seed}.png")
    print(f"\nThe generated pictures are saved to the file "
          f"named 'gen_pics/qcaan_generated_vs_original_{manual_seed}.png'.\n")
    plt.show()


if __name__ == "__main__":
    exit(0)